
PHYSICAL REVIEW RESEARCH 5, 013185 (2023)

Joint quantum estimation of loss and nonlinearity in driven-dissipative Kerr resonators
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We address multiparameter quantum estimation for coherently driven nonlinear Kerr resonators in the presence
of loss. In particular, we consider the realistic situation in which the parameters of interest are the loss rate and
the nonlinear coupling, whereas the amplitude of the coherent driving is known and externally tunable. Our
results show that this driven-dissipative model is asymptotically classical, i.e., the Uhlmann curvature vanishes,
and the two parameters may be jointly estimated without any additional noise of quantum origin. We also find
that the ultimate bound to precision, as quantified by the quantum Fisher information (QFI), increases with
the interaction time and the driving amplitude for both parameters. Finally, we investigate the performance of
quadrature detection, and show that for both parameters the Fisher information oscillates in time, repeatedly
approaching the corresponding QFI.
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I. INTRODUCTION

Quantum properties of radiation and matter may provide
enhanced precision in metrological applications [1,2]. Indeed,
quantum systems are notoriously fragile and very sensitive to
perturbations, even to very weak perturbations, which makes
them inherently precise sensors. Quantum probes have been
exploited to improve sensitivity [3–9], and the resulting quan-
tum technology represents a fundamental tool to improve
metrological standards and increase precision of several char-
acterization techniques ranging from stochastic noise [10–13]
to material science [14–18], and from biology [19–23] to
gravitational wave detection [24,25].

For a single parameter of interest, the performance of a
quantum sensor may be characterized in terms of the quantum
Fisher information (QFI), which bounds the achievable pre-
cision via the quantum Cramér-Rao bound (QCRB). On the
other hand, in many realistic situations one is interested in the
joint estimation of two or more parameters [26–36]. Besides,
the multiparameter case has fundamental interest for study-
ing compatibility problems involving the noncommutativity
of quantum operations [37–40]. In turn, the impossibility of
jointly measuring noncompatible quantum observables makes
it theoretically impossible to reach the multiparameter version
of the QCRB bound.

Quantum mechanical features of physical systems pro-
vide room for new sensing and computing technologies. Loss
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and decoherence usually limit the performance of quantum-
enhanced protocols, though an accurate manipulation and
control of the internal and external degrees of freedom makes
it possible to overcome and sometimes exploit loss and dissi-
pation. In this framework, driven-dissipative systems are of
particular interest for a wide range of fields, ranging from
foundations to solid state physics [23,41–56]. In this kind
of system, one may explore the joint estimation of loss and
nonlinearity by tuning the external driving in order to achieve
the optimal working regime, possibly exploiting the existence
of a stationary solution. In particular, here we address the
paradigmatic example of driven-dissipative Kerr resonator
[57], which represents a sensitive probe due to its strongly
nonlinear response [58–67]. We investigate situations where
the parameters of interest are the strength of the Kerr non-
linearity χ and the rate of (one-photon) loss γ , which are
estimated by probing the optical medium with suitable optical
signals. We focus on the nonequilibrium dynamics of the
Kerr resonator, where the driving competes with incoherent
dissipation and coherent amplification [68–70], and seek for
configurations where the joint estimation of loss and nonlin-
earity is possible without any additional noise of quantum
origin, possibly enhancing the single-parameter sensitivity of
the system. This also paves the way to study more involved
situations, e.g., regimes where also two-photon loss may play
a role.

The structure of the paper is as follows. In Sec. II A we
introduce the model, and in Sec. II B we briefly review the ba-
sic tools of local multiparameter quantum estimation theory.
Specifically, we outline the ultimate bounds to precision in
the joint estimation of the driven-dissipative Kerr nonlinear
resonator. In Sec. III, we illustrate and discuss our results:
in Sec. III A we show results about the time evolution of the
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quantum Fisher information matrix, and in Sec. III B we dis-
cuss the performance of homodyne detection in the estimation
of the two parameters. Finally, Sec. IV closes the paper with
some concluding remarks.

II. PRELIMINARIES

A. Driven-dissipative Kerr resonator

The system we study is a general model of a single driven-
dissipative Kerr nonlinear resonator of frequency ωc whose
coherent dynamics is described by the Hamiltonian

H = −�â†â + χ

2
â†â†ââ − iF (â − â†), (1)

in the rotating-wave approximation, where � = ωp − ωc is
the pump-cavity detuning, F is the coherent drive strength,
and χ is the Kerr nonlinearity. The operator â† (â) is creation
(annihilation) operator of the resonator. We assume that the
resonator is coupled to a zero-temperature bath. Therefore,
the full dissipative dynamics of such a system is described by
the Lindblad master equation

d

dt
ρ̂ = −i[Ĥ , ρ̂] + γ

2
D[â]ρ̂ ≡ L0ρ̂, (2)

where D[X̂ ]ρ̂ ≡ X̂ ρ̂X̂ † − (1/2){X̂ †X̂ , ρ̂} is the usual Lind-
blad dissipative superoperator, and γ is the one-photon decay
rate. Systems described by the Hamiltonian in Eq. (1) may be
realized using several experimental platforms such as semi-
conductor microcavities [71–74], quantum circuits [75–77],
and optomechanical setups [78,79]. As a matter of fact, there
may be other forms of loss other than incoherent dissipation
in driven-dissipative systems. However, we focus on systems
where the dynamics is governed by Eq. (2) for their relevance
in practical applications.

B. Multiparameter quantum estimation

The quantum Fisher information is the main tool of quan-
tum sensing and metrology, as its quantifies the ultimate
precision in estimating a parameter encoded onto a quantum
state. In turn, it also serves to assess whether and how a certain
quantum system may be exploited as a sensing device. Let us
consider a scenario in which we are interested in estimating
the value of a vector of parameters λ = (λ1, λ2, . . . ) encoded
onto a quantum state

ρ(λ) =
∑

k

pk (λ)|ρk (λ)〉〈pk (λ)|. (3)

The quantum Fisher information matrix (QFIM) is defined as

F jk = 1
2 Tr[ρ(λ) {L j,Lk}], (4)

where {A, B} = AB + BA denotes the anticommutator, and the
operators L j ≡ Lλ j are the so-called symmetric logarithmic
derivatives with respect to the parameter λ j , which are defined
implicitly by the relations

2∂λ j ρ(λ) = ρ(λ)L j + L jρ(λ), (5)

where we have used the notation ∂λ j ≡ ∂/∂λ j for j = 1, 2.
The QFIM provides a matrix lower bound on the average
mean-square error (MSE) matrix of the estimates, usually

referred to as the multiparameter quantum Cramér-Rao bound
(QCRB)

V(λ̂; λ) � 1

MF (λ)
, (6)

where V(λ̂; λ) is the covariance matrix of λ, M the number of
independently repeated measurements.

If we now introduce the d × d real, weight matrix W ( can
be any semidefinite matrix), we may obtain a useful scalar
bound as

Tr[WV (λ̂,λ)] � Tr[W MF−1(λ)] = CS (W ,λ), (7)

which is usually referred to as the SLD-QFI scalar bound, and
represents a benchmark for multiparameter estimation. The
SLD-QCRB is generally not attainable, due to the incompati-
bility of generators of different parameters, which is reflected
by the noncommutativity of the corresponding SLDs. Indeed,
the optimal measurement operators corresponding to the dif-
ferent parameters may not commute with each other, making
this scalar bound unreachable. The SLD-QRCB is achievable
if the Uhlmann curvature matrix with elements [27–29]

[U (λ)]nm = − i

2
Tr[ρ(λ)[Ln,Lm]] (8)

vanishes. We recall that multiparameter quantum metrology
corresponds to simultaneous estimation of multiple param-
eters using a single quantum system to probe a quantum
dynamics with unknown parameters. In other words, if one
wishes to estimate separate parameters as precisely as one
would estimate them individually when assuming perfect
knowledge of the other parameters, then compatibility con-
ditions need to be satisfied, which is precisely the vanishing
of the Uhlmann curvature matrix U (λ) = 0. This ensures the
existence of compatible measurements and the possibility of
saturating the SLD-QCRB. In addition, there must exist a
single probe state ρ(λ) leading to the optimal QFI for each
of the parameters under consideration.

In our case, we have two parameters χ and γ and the
corresponding SLDs are defined implicitly (at any time) by

2∂χρ(λ) = ρ(λ)Lχ + Lχρ(λ), (9)

2∂γ ρ(λ) = ρ(λ)Lγ + Lγ ρ(λ). (10)

In order to evaluate the QFIM and the Uhlmann matrix at any
time we write the derivatives of the master equation (2) with
respect to the parameters χ and γ and obtain

d

dt
∂χρ(λ) = − i[Ĥ, ∂χρ(λ)] − i[∂χ Ĥ , ρ(λ)]

+ γ

2
D[â]∂χρ(λ) ≡ ∂χ (L0ρ(λ)),

d

dt
∂γ ρ(λ) = − i[Ĥ, ∂γ ρ(λ)] + 1

2
D[â]ρ(λ)

+ γ

2
D[â]∂γ ρ(λ) ≡ ∂γ (L0ρ(λ)), (11)

where we have used the notation ∂k ≡ ∂/∂k for k = χ, λ. The
above set of equations, together with the master equation (2),
can be written in a compact matrix form as Ṙ(t ) = AR(t ),
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FIG. 1. The quantum Fisher information matrix elements as a functions of (renormalized) evolution time �t . The first column shows
results for Fχ , the second one for Fγ , and the last one shows the off-diagonal element of the QFIM Fχγ . Parameters are set to χ = 0.1� (first
row), χ = 0.5� (second row), and χ = � (third row) and the different curves refer to different values of the driving strength F = 0.1� (black
curves), F = 0.2� (blue curves), and F = 0.15� (red curves). We also set γ = 0.01�.

where R(t ) = [ρ(λ), ∂χρ(λ), ∂γ ρ(λ)]T and A takes the form

A =

⎛
⎜⎝

L0 0 0

∂χL0 L0 0

∂γL0 0 L0

⎞
⎟⎠. (12)

We end this section by reminding that if the Uhlmann curva-
ture vanishes, then it makes sense to address single-parameter
estimation. In this case the relevant CR bounds are given by

Varλ � 1

MFλλ

, (13)

where λ = χ, γ , Var denotes the variance of any unbiased
estimator, and the quantities Fλλ are the diagonal elements of
the QFIM. These elements also provide bounds to the classical
Fisher information of any observable aimed at estimating the
parameter λ as follows. If we perform a measurement de-
scribed by the probability operator-valued measure (POVM)
{	x}, with

∑
	x = I, and obtain the distribution of outcomes

p(x|λ) = Tr[ρ(λ) 	x], then we have FX (λ) � Fλλ where
FX (λ) = ∑

x[∂λ p(x|λ)]2/p(x|λ) is the Fisher information of
p(x|λ), i.e., the maximum information about λ that may ex-
tracted by measuring {	x}.

III. RESULTS

A. Elements of the QFIM and the Uhlmann curvature

Upon solving the system of coupled differential equa-
tions in (12), we may obtain the SLDs for the two parameters
χ and γ and, in turn, the QFIM. In general, it is challenging
to obtain symmetric logarithmic derivative Lχ,γ analytically.
In our case, we solve the above set of equations numerically
to obtain the SLDs and then QFIM using the Python library
QUTIP [80]. In doing this, we are free to tune the value of the
driving F and the detuning � since these degrees of freedom
are typically available in realistic situations. In particular,
we evaluate the elements of the QFIM as a function of the
renormalized interaction time �t (since varying � simply
corresponds to a change of the overall timescale) and for
different values of the driving.

In Figs. 1(a)–1(c), we show the typical behavior of the
QFI elements as a function of �t for different values of the
coherent drive strength F . The specific values used for these
plots are χ = 0.1� and γ = 0.01�. We use the notation
Fλ ≡ Fλλ for the diagonal elements of the QFIM, λ = χ, γ

and Fχγ for the off-diagonal one. For small times, all the
elements of the QFIM increase quite rapidly and then tend
to saturate, at least in the range of interaction times we have
explored numerically. Notice that our system is known to pos-
sess a stationary state [81], and this corroborates our findings,
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FIG. 2. Homodyne Fisher information FX (χ ) for the nonlinearity as function of the rescaled time �t for F = 0.1� (a), F = 0.15� (b),
and F = 0.2� (c) for fixed value of χ = 0.05�. The corresponding diagonal element of the QFIM Fχ is shown for comparison. The insets
show the ratio FX (χ )/Fχ . The other parameters are set as in Fig. 1.

indicating the saturation of the values of the elements of the
QFIM.

The off-diagonal term of the QFIM is nearly zero in all
the conditions we have investigated numerically and, in turn,
the Uhlmann curvature vanishes. This means that the loss
and nonlinearity parameters may be jointly estimated, and no
additional noise of quantum origin occurs in inferring them
from measured data.

The diagonal terms of the QFIM govern the ultimate preci-
sion achievable in estimating χ and γ . Both elements increase
with time and the amplitude of the coherent driving. A similar
behavior may be observed for other values of the parameters.
Overall, we conclude that joint estimation of loss and non-
linearity is possible, and to maximize precision one has to
employ a moderately large driving (in unit of �) and a large
interaction time (� t ∼ 100).

B. Estimation in practice: Performance of homodyne detection

In this section, we analyze the performance of homodyne
detection, i.e., we evaluate the classical Fisher information of
this detection scheme for one of the parameters and compare
its value with the corresponding (diagonal) element of the
QFIM. Homodyne detection measures a quadrature of the
field, i.e., the Hermitian operator

xθ = 1
2 (ae−iθ + a†eiθ ). (14)

In our case, we set θ to zero. The POVM of the detector is
given by 	x = |x〉〈x| where, in the Fock representation, |x〉 is

given by

|x〉 = 1

π1/4

∑
n

exp(−x2/2)

2n/2(n!)1/2
Hn(x) |n〉, (15)

where Hn(x) is the Hermite polynomial of order n. Since the
quadrature has a continuous spectrum, the classical Fisher
information is given by

FX (λ) =
∫

dx
1

p(x|λ)

[
∂ p(x|λ)

∂λ

]2

, (16)

where p(x|λ) = Tr[ρ(λ) 	x].
By using the numerical solution of the master equation (2),

we evaluate the distribution p(x|χ, γ ) at any time and, in
turn, the two classical Fisher informations FX (χ ) and FX (γ ).
Results are illustrated in Figs. 2 and 3.

In Figs. 2(a)–2(c), we show FX (χ ) as a function of the
rescaled time �t together with the QFIM element Fχ for χ =
0.05� and different values of the driving amplitude F . As it
is apparent from the plots, the homodyne Fisher information
oscillates in time, with the maxima being very close to Fχ . In
other words, homodyne detection provides a nearly optimal
estimation scheme for the nonlinearity, though an accurate
selection of the measurement time is required. In the insets of
Figs. 2(a)–2(c), we show the ratio FX (χ )/Fχ , which confirms
the observations made above. Notice that both FX (χ ) and Fχ

increase with the amplitude of the coherent driving F .
Figures 3(a)–3(c) contain results similar to those in

Figs. 2(a)–2(c), but for the loss parameter γ , i.e., FX (γ ) as
a function of the rescaled time �t together with the QFIM
element Fγ for γ = 0.01� and different values of the driv-
ing amplitude F . Also for the loss parameter, the homodyne

FIG. 3. Homodyne Fisher information FX (γ ) for the loss as function of the rescaled time �t for F = 0.1� (a), F = 0.15� (b), and
F = 0.2� (c) for fixed value of γ = 0.01�. The corresponding diagonal element of the QFIM Fγ is shown for comparison. The insets show
the ratio FX (γ )/Fγ . The other parameters are set as in Fig. 1.
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Fisher information oscillates in time, with the maxima being
very close to Fγ , i.e., homodyne detection is a nearly optimal
estimation scheme [82] provided that an accurate selection of
the measurement time is available. In the insets, we show the
ratio FX (γ )/Fγ .

Notice that by changing the phase of the measured quadra-
ture, we may change the position of the maxima of the
homodyne Fisher information, i.e., a feedback mechanism
may be used to achieve optimality.

IV. CONCLUSIONS

In this paper, we have addressed the joint estimation of loss
and nonlinearity in driven-dissipative Kerr resonators, i.e.,
coherently driven Kerr oscillators in the presence of loss. In
particular, we have considered the realistic situation in which
the loss rate and the nonlinear coupling are the parameters of
interest, whereas the amplitude of the coherent driving, and
the detuning, are known and externally tunable.

Our results show that this driven-dissipative model is
asymptotically classical, i.e., the Uhlmann curvature vanishes,
and the two parameters may be jointly estimated without any
additional noise of quantum origin. We have also found that

the ultimate precision, as quantified by the quantum Fisher
information (QFI), may be improved, for both parameters, by
increasing the interaction time and the driving amplitude.

Finally, we have investigated the performance of quadra-
ture measurements, i.e., homodyne detection, and have shown
that for both parameters homodyne Fisher information oscil-
lates in time, repeatedly approaching the corresponding QFI.
In other words, homodyne detection provides a nearly optimal
estimation scheme for both loss and nonlinearity, though an
accurate selection of the measurement time is required in both
cases.

Our results show that driven-dissipative Kerr resonators are
convenient probes for jointly estimating nonlinearity and loss
without additional quantum noise, and pave the way for the
experimental implementation in quantum optical systems.
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