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Mutual friction and diffusion of two-dimensional quantum vortices
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Dissipation of quantum vortex motion is fundamental to superfluid dynamics and quantum turbulence,
yet there is currently a large gap between theory and experiments with ultracold atoms. Here we present a
microscopic open quantum systems theory of thermally damped vortex motion in oblate atomic superfluids
that includes previously neglected energy-damping interactions between superfluid and thermal atoms. This
mechanism couples strongly to vortex core motion and causes dissipation of vortex energy due to mutual
friction, as well as Brownian motion of vortices due to thermal fluctuations. We derive an analytic expression for
the dimensionless mutual friction coefficient that gives excellent quantitative agreement with experimentally
measured values, without any fitted parameters. Our work closes an existing two orders of magnitude gap
between dissipation theory and experiments, previously bridged by fitted parameters, and provides a microscopic
origin for the mutual friction and diffusion of quantized vortices in two-dimensional atomic superfluids.
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I. INTRODUCTION

Quantum vortex dynamics are central to many super-
fluid phenomena, including the Kibble-Zurek mechanism [1],
Berezinskii-Kosterlitz-Thouless (BKT) transition [2,3], per-
sistent current decay [4,5], and type II superconductivity [6].
Planar atomic superfluids offer an ideal platform for studying
nonequilibrium superfluid behavior, with dynamics signifi-
cantly simplified by forcing vortex lines to align with the
tightly confined axis and move as points in the plane [7]
in perfect analogy to two-dimensional (2D) electrodynamics
[8]. Experimentally, these systems have demonstrated pow-
erful capabilities for studying incompressible “point-vortex”
turbulence [9–12], arguably the simplest manifestation of 2D
turbulent flow [13].

Dissipation of vortex energy is an important aspect of
the nonequilibrium dynamics of 2D quantum vortices, and
is critical to spectral energy transport [14], turbulent cas-
cades [15], the emergence of negative-temperature vortex
clusters [9,16,17], and turbulent relaxation of vortex matter
[11,12,18]. In superfluid helium, vortex dissipation is under-
stood as arising due to “mutual friction” between moving
vortices and the normal component of the fluid [19–21]. This
approach reduces to phenomenology for weakly interacting
systems which cannot be described within a two-fluid approx-
imation, leaving the microscopic origin of thermal dissipation
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of vortex energy in atomic superfluids an important open
question.

Although the conservative dynamics of point vortices in
2D superfluids are well described by the Helmholtz-Kirchoff
point-vortex model (PVM) [22,23], there is currently no mi-
croscopic theory of 2D vortex dynamics that can ab initio
account for vortex dissipation observed in experiment. Ex-
isting microscopic estimates of vortex damping rates [24,25]
are orders of magnitude lower than observed in experiments
[9,11,12,17,26,27], requiring vortex damping to be treated
phenomenologically as a fitted parameter [9–12,17,26]. Fur-
thermore, there exists no microscopic theory for recent
observations of vortex diffusion driven by Brownian motion
[12]. The lack of a complete theory of vortex damping and
noise is therefore a significant barrier to establishing a strong
understanding of 2D vortex dynamics and superfluid turbu-
lence.

In this work, we present a microscopic model of quan-
tum vortex damping and diffusion in 2D due to thermal
friction, derived from first-principles reservoir theory of finite-
temperature atomic Bose gases. Our approach identifies the
number-conserving scattering between superfluid and thermal
atoms as the dominant vortex dissipation mechanism, con-
trasting with previous approaches that neglect this interaction
and focus instead on Bose-enhanced particle transfer between
superfluid and normal fluid. Our model includes both a dissi-
pative mutual friction term and a stochastic term that describes
the Brownian motion of vortices due to thermal fluctuations;
crucially, it contains no fitted parameters and allows the mu-
tual friction coefficient to be determined analytically from first
principles. Our microscopic model’s predictions are in close
quantitative agreement with previous experimental measure-
ments of the mutual friction coefficient. This establishes a
microscopic justification for vortex damping phenomenology
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FIG. 1. The two reservoir processes described by SPGPE theory.
Number damping (γ ) involves interatomic scattering that transfers
atoms from the high occupation low-energy modes to the thermal
reservoir and vice versa, e.g., a collision of two reservoir atoms
that transfers most of the collision energy to one atom, leaving
the other in a low-energy mode. Energy damping (ε), in contrast,
describes number-conserving scattering interactions that exchange
energy between the low-energy modes and reservoir without
exchanging atoms.

and opens the door for quantitative ab initio modeling of two-
dimensional quantum turbulence (2DQT) experiments using
stochastic point vortex theory.

II. VORTEX DISSIPATION PHENOMENOLOGY

The dynamics of dissipative 2D point vortices in atomic
superfluids is accurately described by the PVM with the
addition of a phenomenological longitudinal damping force
[9,11,12,17,26,27]. For a system of N point vortices with
positions ri(t ) = (Xi(t ),Yi(t ), 0) and unit charges h̄qi/m =
±h̄/m, this gives the “damped-PVM”:

ṙi = v0
i − αqiẑ × v0

i . (1)

Here v0
i = h̄

m

∑
j �=i

q j

r2
i j

(Yj − Yi, Xi − Xj, 0) is the local super-

fluid velocity at the ith vortex, with r2
i j≡(Xi−Xj )2+(Yi−Yj )2,

ẑ is the unit vector perpendicular to the 2D superfluid plane,
and α is the dimensionless mutual friction coefficient. Note
α = 0 gives the idealized PVM. The damped-PVM can be
derived from a variational treatment of the dissipative GPE
(dGPE) [28], a complex Ginzburg-Landau equation where an
imaginary component is added to the prefactor of the GPE.

Dissipation of this type can be microscopically justified
based on reservoir interactions between the partially coherent
modes of the quantum field and the sparsely occupied high-
energy incoherent modes which act as a thermal bath. This
can be described by the stochastic projected GPE (SPGPE),
a first-principles reservoir theory that formally divides the
reservoir modes from the low-energy modes by an energy
cutoff εcut (a brief review of SPGPE theory is provided in
Appendix A). Specifically, damping of this form arises due
to number damping reservoir interactions where interatomic
scattering transfers atoms from the superfluid to the thermal
reservoir (or vice versa); see Fig. 1. Based on this process, the
mutual friction coefficient α in Eq. (1) corresponds to the first-
principles dimensionless parameter γ ∼ 8a2

s /λ
2
th [28], where

as the s-wave scattering length and λth is the thermal de
Broglie wavelength. Typically, γ is of order 10−5 [29], orders
of magnitude too weak to account for the mutual friction
coefficients α ∼ 10−2 observed in experiment [26]. Addition-
ally, the damped-PVM does not include the effect incoherent
thermal fluctuations described by SPGPE theory, limiting its

validity to relatively low temperatures far from the critical
temperature.

In addition to number damping, SPGPE theory also con-
tains a second reservoir process in which energy is exchanged
due to number-conserving scattering interactions between su-
perfluid and thermal atoms (Fig. 1). This process, called
energy damping, has been neglected in almost all SPGPE
studies to date, often under the justification that it is ex-
pected to be weak near equilibrium [24,25]. Only a handful of
recent theoretical investigations have included energy damp-
ing, following developments in numerical techniques that
have enabled simulation of the full SPGPE [30–34]. Notably,
Ref. [31] studied the effect of both reservoir processes on
the dissipation of a single vortex in a harmonically trapped
three-dimensional (3D) gas, finding that energy damping was
the dominant process in the regime studied. This is consistent
with the results presented here, where we find that the energy-
damping process is the dominant mechanism of point-vortex
damping by two orders of magnitude.

III. MICROSCOPIC THEORY OF FINITE-TEMPERATURE
POINT VORTICES

Our model of finite-temperature point-vortex dynamics
is constructed within the framework of SPGPE theory, ex-
plicitly including the energy-damping terms and neglecting
the number-damping process, precisely the opposite ap-
proach taken in previous work. Our starting point is the
quasi-2D SPGPE (Appendix B), neglecting number-damping
terms [35]:

ih̄dψ = (L − μ)ψdt + (Vεdt − h̄dUε )ψ, (2)

where ψ (x, t ) is a classical field describing the finite-
temperature superfluid dynamics in the plane x = (x, y), L =
(−h̄2∇2/(2m) + g|ψ |2)ψ is the Gross-Pitaevskii (GP) oper-
ator, μ is the chemical potential, and spatial and temporal
arguments are suppressed for brevity. ih̄dψ = (L − μ)ψdt is
precisely the GPE describing the conservative dynamics of the
highly occupied modes that host the vortices, and remaining
are reservoir terms. The energy-damping reservoir process
leads to dissipation described by an effective scattering po-
tential [36]

Vε(x) = h̄
∫

d2x′ε(x − x′)
dρ(x′)

dt
(3)

that damps changes in the fluid density ρ = |ψ |2. Here ε(x)
is the 2D scattering kernel. Associated with energy-damping
dissipation is a Gaussian noise term representing incoherent
thermal fluctuations, satisfying correlations 〈dUε〉 = 0 and
h̄〈dUε(x, t )dUε(x′, t ′)〉 = 2kBT ε(x − x′)δ(t − t ′)dt . Both the
scattering potential and noise correlations are local in Fourier
space, in which the kernel is

ε̃(k) = 4a2
s Ncut

π
e|l2

z |k|/2|2 K0

(∣∣∣∣ lz|k|
2

∣∣∣∣2
)

, (4)

where Ncut ≡ (e(εcut−μ)/(kBT ) − 1)−1 is the number of reservoir
atoms at the cutoff energy, K0 is a modified Bessel function of
the second kind, and

√
2lz is the 1/e transverse “thickness” of

the atomic cloud.
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To derive a stochastic PV theory from Eq. (2), we exploit
the fact that the energy-damping terms form a stochastic po-
tential, and hence can be added to the GP action as potential
energy terms, giving

S =
∫ (

LGPdt +
∫

d2x(Vεdt − h̄dUε )ρ

)
, (5)

where

LGP =
∫

d2x ψ∗
(

ih̄∂t + h̄2∇2

2m
+ μ − g|ψ |2

2

)
ψ (6)

is the GP Lagrangian. That is, the variational (least action)
theory obtained by minimizing the action functional (5) is
precisely Eq. (2). This allows for an analytic treatment of
vortex dynamics, provided a suitable ansatz is chosen for the
classical field ψ .

We consider a system of isolated vortices on a homoge-
neous background, each with a single quantum of circulation
±h̄/m, for which the variational theory of the GP action
reduces to the idealized PVM provided vortices are well
separated [37], a condition satisfied by modern 2D vor-
tex experiments in homogeneous systems which operate
within the point-vortex regime [9–12,26,27]. In this case we
can treat the nondissipative dynamics via the point-vortex
Lagrangian [38]:

LGP ≈ LPV ≡ 2π h̄ρ0

( ∑
n

qn

2
εi j Ẋ

i
nX j

n

+ h̄

m

∑
m �=n

qnqm log |rm − rn|
)

, (7)

where εi j is the Levi-Civita symbol and ρ0 is the 2D back-
ground superfluid density.

Next, we integrate out the spatial degrees of freedom in the
reservoir terms in Eq. (5) in order to express the action purely
in terms of the vortex positions and velocities. Note that this
requires only an appropriate ansatz for the 2D fluid density ρ,
rather than the full classical field ψ . We choose a Gaussian
ansatz for the density that separates the contribution of the
vortices from the infinite background

ρ(x, t ) = ρ0

(
1 −

∑
n

e−|x−rn (t )|2/2ξ 2

)
, (8)

where the healing length ξ gives the vortex core scale [39].
This ansatz is entirely characterized by microscopic param-
eters and has a Gaussian vortex core, which is needed for
analytic tractability and provides an excellent approximation
to the true vortex core in the region |x − rn| � ξ – precisely
where dρ/dt , and hence dissipation described by Eq. (3), is
most significant.

Next, since the Fourier transform of dρ/dt is sharply
peaked at the vortex core scale |k| = ξ−1 for this density
ansatz, we can treat the scattering kernel as approximately
constant in Fourier space: ε̃(k) ≈ ε̃(ξ−1). Consequently, we
can write the scattering potential in the approximate local
form

Vε(x) ≈ 2Ncut h̄σED
dρ(x)

dt
, (9)

where σED ≡ σsel2
z /(2ξ )2

K0(l2
z /(2ξ )2)/(2π ) is an effective 2D

scattering cross section for the energy-damping process in
terms of the s-wave scattering cross section σs = 8πa2

s [40]. A
similar argument justifies treating the energy-damping noise
correlator as approximately local in space (see Appendix C).

Under the above approximations, the spatial integrals over
the damping term in Eq. (5) can be computed analytically to
give

Ldiss ≡
∫

d2xVε(x, t )ρ(x, t ) (10)

= σEDNcutπ h̄ρ2
0

∑
nm

e
− r2

mn
4ξ2 ṙm · (rm − rn), (11)

where we have defined r2
nm ≡ |rn − rm|. Neglecting, for the

moment, the noise term in Eq. (5), we can therefore derive
dissipative dynamics of the point-vortex system by taking the
Euler-Lagrange equations with respect to LPV + Ldiss (see Ap-
pendix C), which in the point-vortex limit of well-separated
vortices r2

nm � ξ 2 gives

ṙn = v0
n − σEDρ0Ncutqn

2
ẑ×ṙn

= v0
n − αεqnẑ×v0

n + O
(
α2

ε

)
, (12)

where the last line is precisely the damped-PVM (1), with
mutual friction coefficient

αε ≡ σEDρ0Ncut

2
. (13)

In Appendix D we compare the evolution of a vortex dipole
under Eq. (12) to direct integration of the SPGPE (2), find-
ing excellent quantitative agreement in the point-vortex limit
r2

nm � ξ 2. This validates the two key approximations made in
this derivation: our choice of density ansatz and approximate
treatment of the energy-damping kernel.

The above calculation can be extended to include the noise
term in Eq. (5), as the same set of approximations allow
the spatial integrals arising in the noise correlations to be
analytically computed. The full details of this computation
are provided in Appendix C; the final result is the following
stochastic point-vortex equation:

drn = (
v0

n − αεqnẑ×v0
n

)
dt +

√
2ηdwn, (14)

with leading corrections of order O(α2
ε , e−r2

nm/4ξ 2
)  1.

Equation (14) is the key result of this work, describing
not only vortex damping but also vortex diffusion driven
by thermal fluctuations. The latter aspect is described by
the noise vector dwn = (dW x

n , dW y
n , 0), where dW α

i are
Gaussian random variables with zero mean and correlations
〈dW α

n (t )dW β
m (t ′)〉 = δαβδnmδ(t − t ′)dt . The magnitude of the

noise term is dictated by the diffusion coefficient, which is
related to the mutual-friction coefficient by

η ≡ αε

kBT

2π h̄ρ0
. (15)

The diffusive evolution can be interpreted as Brownian motion
of vortices due to thermal fluctuations; further approximating
the background flow with its average over the vortices, the
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FIG. 2. Comparison of microscopic mutual friction αε (estimated
with εcut = 2μ) to mutual friction determined phenomenologically
by fitting the damped PVM (1) to dynamical ZNG simulations [41].
We observe good quantitative agreement, with slight disagreement
at intermediate temperatures. The microscopic prediction of α varies
slightly with the choice of energy cutoff; the shaded region denotes
a 15% variation of εcut .

convective position variance of each vortex grows diffusively:
〈�r2

n〉 = 4ηt (see Appendix E).

Physical interpretation

The microscopic expression for the mutual friction co-
efficient (13) has a simple physical interpretation, as it is
proportional to the product of the per-particle probability of
energy-damping scattering σEDρ0 and the number of thermal
reservoir atoms at the cutoff Ncut. That is, the mutual friction
coefficient is proportional to the rate of number-conserving
two-body scattering events between the atoms in the con-
densed modes and atoms in the reservoir. It scales with both
the number of reservoir atoms and condensed atoms, and
recovers the idealized (nondissipative) PVM as T → 0.

Additionally, the effective energy-damping cross sec-
tion σED is a monotonically decreasing function of the
transverse thickness lz, and thus so too is the mutual fric-
tion coefficient αε. Although the validity of the quasi-2D
SPGPE requires lz � ξ , we find our stochastic PV theory
can quantitatively capture vortex damping in the much less
restrictive regime lz � 10ξ , consistent with previous work
[42]. We demonstrate this in Fig. 2 by comparing our micro-
scopic expression for the mutual friction coefficient to values
phenomenologically extracted from Zaremba-Nikuni-Griffin
(ZNG) kinetic theory simulations via fits to Eq. (1) [41]. There
is excellent quantitative agreement with the fitted ZNG values
of α, despite the system considered in Ref. [41] having a
significant 3D extent, lz∼10ξ . Figure 2 also demonstrates that
the value of αε does not strongly depend on the precise choice
of εcut (see Appendix F), varying weakly as εcut is varied by
15%.

Although the SPGPE reservoir dissipation and noise terms
satisfy the fluctuation-dissipation relation, this same rela-
tion does not apply for the damping and noise terms in the
stochastic PV equation (14), as the thermal equilibrium of a
nonrotating cloud corresponds to a system without vortices.
As noted in Ref. [12], which used a stochastic PVM with
experimentally fitted coefficients, the noise term in Eq. (14)
is dissipative and can be understood as an effective viscosity
term. Importantly, the microscopic formulas for αε and η

provide a complete understanding of the relationship between
thermal noise acting on vortices and the system temperature,

FIG. 3. Microscopic mutual friction contributions of number
damping αγ = γ and energy damping αε (both estimated with
εcut = 2μ) compared to experimental measurements reported in
Ref. [26]. Shaded region gives variation of αε for 15% change in εcut .
The number-damping estimate is several orders of magnitude smaller
than the experimentally measured values; much closer agreement
is given by the energy-damping estimate. The inset more clearly
compares the experimental results to the energy-damping prediction,
demonstrating agreement within ≈20%−40% of the experimentally
measured values. For comparison, the analytical estimate of Ref. [44]
disagrees with experiment by approximately a factor of two.

which under the phenomenological picture of mutual friction
could only be obtained through ad hoc fitting.

Historically, a stochastic PVM of similar form to Eq. (14)
was considered within the context of superfluid helium
[8]. However, the inclusion of stochastic noise in Ref. [8]
was not derived from microscopic theory, but motivated
by fluctuation-dissipation arguments to generalize the phe-
nomenological Hall-Vinen-Iordanskii equations [19,20,43].
Tractable microscopic models are lacking for superfluid he-
lium, necessitating a phenomenological treatment of the
damping that can only qualitatively describe experiment [21].

IV. EXPERIMENTAL COMPARISON

Reference [26] reports experimental measurements of the
mutual friction coefficient, obtained by fitting experimentally
measured trajectories of a pair of like-sign vortices in a har-
monic trap to the predictions of Eq. (1). Figure 3 compares
these experimentally measured values to the analytic predic-
tion of our microscopic model (13). For the temperature range
considered in the experiment, the noise term in Eq. (14) is
negligible (η ∼ 10−5h̄/m), despite strong damping.

Our microscopic prediction is within ∼20%−40% of the
experimentally measured values; given the quoted thermal
density variations of up to 30% and the linear dependence of
αε ∼ ρ0 [45], we do not expect agreement better than what
we report here [46]. Harmonic trapping in the experiment
also causes temperature-dependent vortex precession, which
may further contribute to this discrepancy. In comparison, the
mutual friction coefficient predicted from number-damping
reservoir interactions (αγ = γ ) is several orders of magnitude
smaller than the experimentally determined values, across
the entire temperature range. This justifies the neglect of the
number-damping process in our stochastic PV theory (14).
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We may understand this result by noting the number-damping
reservoir process drives equilibration against imbalance be-
tween the chemical potential of the low-energy atomic modes
and the reservoir, which is significant during condensate
growth. For vortex excitations in an otherwise equilibrated
gas, which have a very low effective chemical potential,
damping is therefore dominated by the number-conserving
reservoir process which directly opposes changes in the
atomic density.

Our microscopic prediction also gives closer quanti-
tative agreement than the theoretical estimate of α ≈
(nth/n0)

√
μ/(kBT ) by Ref. [44], where nth/n0 is the ratio

of the 3D densities of the thermal cloud and condensate,
respectively. This estimate is derived from low-energy pertur-
bation theory and can only be phenomenologically extended
to compare to the experiment of Ref. [26], where a significant
thermal fraction was present.

The close quantitative agreement between our microscopic
prediction αε = σEDρ0Ncut/2 and this experiment confirms
that energy-damping reservoir interactions are the underly-
ing microscopic mechanism to mutual friction in 2D atomic
superfluids. Consequently, previous modeling of thermal fric-
tion in 2D quantum vortices that neglected energy damping
must be treated as phenomenological. It will therefore be
important to revisit previous microscopic 2DQT modeling,
such as in Ref. [47], and make quantitative predictions with
the explicit inclusion of energy-damping interactions.

V. APPLICATION OF THEORY: VORTEX DIFFUSIVITY
AT THE BKT TRANSITION

At higher temperatures near the transition to superfluid-
ity, vortex diffusion driven by critical thermal fluctuations
is expected to play a more significant role. In particular,
the diffusion coefficient η is an essential parameter in dy-
namic corrections to static BKT theory [8,48,49], yet it is
currently treated as a phenomenological fitting parameter in
the context of ultracold atomic gases [50]. Our work provides
a microscopic expression for η and sets a theoretical foun-
dation for future experiments probing the BKT regime. For
example, we can predict the value of η for a weakly inter-
acting Bose gas at the BKT transition temperature T BKT

c =
2πρ0 h̄2/[mkB ln(360/g̃)] [51], where g̃ = √

8πas/lz. For typ-
ical experimental parameters (e.g., Ref. [52]), our microscopic
expression predicts η ∼ 10−2 h̄/m at the BKT transition—two
orders of magnitude smaller than in strongly interacting su-
perfluid helium films [8,48].

VI. CONCLUSION

We have provided a microscopic foundation for mutual
friction and thermal diffusion of 2D vortex motion in atomic
superfluids, based on often neglected finite-temperature inter-
actions with a static thermal reservoir. We derived a stochastic
point-vortex theory, which gives an analytic expression for
the mutual friction coefficient that compares excellently with
available experimental data. The damped evolution in this the-
ory is consistent with previous phenomenological modeling,
validating the mutual friction concept in studies of turbulent
atomic superfluids. These results profoundly impact future

theory of vortex dynamics in atomic superfluids, showing the
importance of energy-damping interactions for quantitative
understanding of dissipation. Crucially, our microscopic the-
ory allows experimentally testable predictions of 2D quantum
vortex dynamics without any fitted parameters.

2DQT experiments have evolved significantly and now
routinely study 2D vortex dynamics in homogeneous systems
[9–12,27], allowing further tests of our theory. In particular,
experimentally measuring the diffusion coefficient η is an
important test of stochastic point-vortex theory. In principle,
η can be extracted from the dynamics of a corotating pair of
same-sign vortices by tracking the drift in their center-of-mass
position. The thermal noise identified sets a floor for the
total noise that will include other sources, such as technical
noise in the trapping potential and incoherent density fluctu-
ations. Observing the fundamental point-vortex noise poses
an interesting challenge for future experimental study, and an
important test of BKT physics in ultracold gases.

A deeper understanding of thermal friction’s role in quan-
tum turbulence could require further theoretical investigations
into the effect of reservoir interactions on vortex dynamics
outside of the point-vortex regime, for which a numerical
approach will probably be required. Beyond its influence on
vortex core motion, energy damping will also couple strongly
to compressible excitations [53,54], with important implica-
tions for weak-wave turbulence in quantum fluids [55,56].
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APPENDIX A: BRIEF REVIEW OF SPGPE THEORY

The SPGPE is a first-principles reservoir theory that quan-
titatively describes a finite-temperature ultracold Bose gas
[24]. Within this framework, highly populated modes of the
quantum field (generally �1 atoms on average) are treated as a
coherent classical field ψ , which interacts with an incoherent
thermal reservoir composed of the remaining sparsely occu-
pied high-energy modes. This leads to a stochastic equation of
motion for the classical field ψ , which in Stratonovich form is

ih̄dψ (r, t ) = P[(1 − iγ )(L − μ)ψdt + Vε(r, t )ψdt

+ ih̄dξγ (r, t ) − h̄ψdUε(r, t )], (A1)

where L = H0 + g|ψ |2 for the single-particle Hamiltonian
H0. Here g = 4πash̄

2/m is the two-body interaction strength
for an s-wave scattering length as. The explicit inclusion of
the projector P ensures dynamic separation of the field into
a low-energy coherent region and incoherent reservoir. The
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noise terms dξγ and dUε correspond to incoherent thermal
fluctuations from the number-damping and energy-damping
processes, respectively, and coupled with the deterministic
dissipation terms ultimately drive any initial state to a steady
state at thermal equilibrium within the grand-canonical en-
semble at temperature T and chemical potential μ. The
strengths of the number-damping and energy-damping dis-
sipation processes are characterized by the dimensionless
quantity γ and the length-squared quantity M, respectively.
These parameters can be a priori determined from the reser-
voir chemical potential μ, temperature T , and the energy
cutoff εcut [29]:

γ = 8a2
s

λ2
dB

∞∑
j=1

eβμ( j+1)

e2βεcut j
�[eβ(μ−2εcut ), 1, j], (A2)

M = 16πa2
s

exp
(

εcut−μ

kBT

) − 1
, (A3)

where as is the s-wave scattering length, β = 1/(kBT ), λdB =√
2π h̄2/(mkBT ) is the thermal de Broglie wavelength, and

�[z, x, a] is the Lerch transcendent.
In the main text, we define Ncut ≡ (e(εcut−μ)/(kBT ) − 1)−1

as the number of reservoir atoms at the cutoff energy, as it
is the thermal equilibrium number distribution for an ideal
gas evaluated at the cutoff energy. This is a good estimate
of the true number of atoms at the cutoff energy, as the
cutoff energy εcut should be sufficiently large compared to
μ such that high-energy modes very close to the cutoff are
essentially noninteracting (see the discussion in Appendix F).
The energy-damping coefficient can then be written as M =
2σsNcut, where σs ≡ 8πa2

s is s-wave scattering cross section.
The energy-damping dissipation process is described by an

effective potential term Vε:

Vε(r, t ) = −h̄
∫

d3r′ε3D(r − r′)∇r′ · j(r′, t ), (A4)

which is a convolution between the divergence of the particle
current j(r, t ) and the scattering kernel

ε3D(r) = M
(2π )3

∫
d3k

eik·r

|k| . (A5)

The noise terms in the SPGPE are random Gaussian variables
with zero mean and correlations:

〈dξ ∗
γ (r, t )dξγ (r′, t ′)〉 = 2γ kBT

h̄
δ(r − r′)δ(t − t ′)dt, (A6)

〈dUε(r, t )dUε(r′, t ′)〉 = 2kBT

h̄
ε3D(r − r′)δ(t − t ′)dt . (A7)

Note that the number-damping noise dξγ is complex, whereas
the energy-damping noise dUε is real-valued.

To zeroth order in the reservoir processes, the SPGPE
satisfies the continuity equation

∇ · j + ∂ρ

∂t
= 0, (A8)

where ρ = |ψ |2 is the fluid density (the leading correction
occurs at order γ  1). Crucially, the above relation remains
exactly satisfied by the energy-damping reservoir process,
with corrections only coming in through the number-damping
interaction terms. Therefore for the derivation presented in

the main text, where we neglect the number-damping process,
the energy-damping potential directly opposes changes in the
density:

Vε(r, t )dt = h̄
∫

d3r′ε(r − r′)dρ(r′, t ). (A9)

APPENDIX B: QUASI-2D SPGPE AND THE EFFECTIVE
SCATTERING KERNEL

For studies of 2D systems, it is convenient to work with a
quasi-2D form of the SPGPE, where the transverse (z) degrees
of freedom are integrated out. In the case of 2D vortex dynam-
ics, this requires only that the transverse length scale be of
the same order as the healing length lz ≈ O(ξ ), which ensures
that Kelvin waves along the vortex filaments are suppressed
[42]. This is a much less restrictive condition than the oblate
confinement need to realize a thermodynamically 2D gas (i.e.,
the BKT transition), thus the quasi-2D SPGPE can be used to
investigate 2D vortex dynamics in a convenient regime where
condensate fraction, temperature, etc., are all well defined
[57].

The resulting quasi-2D SPGPE has the same form as
Eq. (A1) with the following modified 2D scattering kernel
[33]:

ε(x) = 1

2π

∫
d2k eik·x

[ M
(2π )2

F

(
(lz|k|)2

4

)]
︸ ︷︷ ︸

ε̃(k)

, (B1)

where F (x) = exK0(x) with K0 a modified Bessel function of
the second kind, and M = 16πa2

s [exp( εcut−μ

kBT ) − 1]−1.
The convolution with the scattering kernel in the energy-

damping potential given in Eq. (3) adds a level of complexity
that prevents most integrals involving Vε to be analytically
solved. In the main text we treat this by approximating the
kernel as flat in Fourier space, evaluated at the vortex core
scale k = ξ−1. This results in a simplified form of the kernel:

ε(x) ≈ 2πε̃(ξ−1)δ(x) = 2σEDNcutδ(x), (B2)

where σED = σsF ( l2
z

4ξ 2 )/(2π ) is the effective energy-damping
scattering cross section defined in the main text, and the factor
of 2π in the first line arises due to the convolution theorem
for the 2D Fourier transform (in the unitary transform con-
vention).

APPENDIX C: DETAILED DERIVATION OF EQ. (14)

Here we provide further details of the derivation of the
stochastic point-vortex equation [Eq. (14)] from the varia-
tional action formulation of the quasi-2D SPGPE [Eq. (5)] and
the approximate form of the energy-damping kernel described
in Appendix B.

As described in the main text, the spatial degrees of free-
dom can be integrated out from the energy-damping reservoir
terms in the action with an appropriate ansatz for the 2D fluid
density ρ in terms of the vortex positions rn(t ). In Fig. 4 we
demonstrate that our Gaussian ansatz for the density

ρ(x, t ) = ρ0

[
1 −

∑
n

exp

(
−|x − rn(t )|2

2ξ 2

)]
(C1)
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FIG. 4. Comparison of the Gaussian density ansatz (C1) (red) to the analytic asymptotic solution ρ(x) ≈ ρ0
∏

n |x − rn|2/(|x − rn|2 +
0.82−2) [57] (black, dashed), for a pair of well-separated vortices (left) and vortices separated by 2.5ξ (right). For the former case, the ansatz is
an excellent description of density within 1ξ of the vortex cores and is positive definite. In the latter case, the density becomes slightly negative
as there is significant overlap between the two vortex cores.

agrees well with the exact GPE solution for a single vortex
core in the range |x − rn(t )| � ξ . Furthermore, Fig. 4 illus-
trates that, although this ansatz is not strictly nonnegative
in the multivortex case, it is well approximated as such in
the point-vortex regime where vortices are well separated.
The form of this ansatz is convenient for this derivation for
two key reasons: (1) the Gaussian form allows for simple
analytic computation of the spatial integrals in Eq. (5), and
(2) the infinite background term does not need to be manually
discarded, as only derivatives of the density contribute to the
final equation of motion.

First, we focus on the dynamics generated by damping
term in the Lagrangian Ldiss, given in Eq. (11), neglecting
the noise term in Eq. (5) for now. Taking the Euler-Lagrange
equations with respect to LPV + Ldamping, we have

qn

[(−Ẏn

Ẋn

)
+ h̄

m

∑
m �=n

qm

r2
mn

(
δxnm

δynm

)]

= αε

2ξ 2

∑
m

e
− r2

mn
4ξ2

(
Ẋm

(
2ξ 2 − δx2

mn

) − Ẏmδxmnδymn

Ẏm
(
2ξ 2 − δy2

mn

) − Ẋmδxmnδymn

)
,

where we have canceled common factors of 2π h̄ρ0,
and used the definition αε ≡ σEDρ0Ncut/2. In the point-
vortex limit r2

mn � ξ 2, we may make the approximation
exp[−r2

mn/(4ξ 2)] ≈ δmn, resulting in a very simple set of
equations:(

Ẋn

Ẏn

)
≈ h̄

m

∑
m �=n

qm

r2
mn

(−δynm

δxnm

)
+ αε

qn

(
Ẏn

−Ẋn

)
.

Since the first term on the right-hand side is exactly the back-
ground superfluid velocity at the ith vortex v0

i , we may write
this equation as (assuming qn = ±1):

ṙn = v0
n − αεqnẑ×ṙn

= v0
n − αεqnẑ×v0

n + O
(
α2

ε

)
, (C2)

where in the last line we substituted in the zeroth-order result
ṙn = v0

n + O(αε ). This gives Eq. (12).
Next, we derive the noise term in the stochastic point-

vortex equation (14) and its correlations, starting from the

noise term in Eq. (5):

S|noise ≡ −h̄
∫

d2x ρ(x, t )
∫

dUε(x, t ). (C3)

In contrast to the approach for the damping term, we will
find it convenient to evaluate the spatial integrals after first
taking the Euler-Lagrange equations with respect to the vortex
positions. The above noise term contributes the following term
to the equations of motion:(

dXn

dYn

)∣∣∣∣
noise

= dUn(t ), (C4)

where we have defined the stochastic noise vector

dUn(t ) ≡ 1
2πρ0qn

∫
d2x dUε(x, t )

(−(∂ρ(x)/∂Yn)
(∂ρ(x)/∂Xn)

)
.

We will now consider the noise correlations of this stochastic
noise vector using the properties of dUε given in the main
text. To simplify our expressions, we denote the ith element
of the vectors dUn(t ) and rn = (Xn,Yn)T by dU i

n(t ) and X i
n,

respectively, and define σ i j = 1 if i = j and σ i j = −1 if i �= j.
Following from the properties of dUε, dUn(t ) is a Gaussian

noise vector with zero mean and correlations:

〈
dU i

n(t )dU j
m(t ′)

〉 = σ i j

(2πρ0)2

∫
d2x

∫
d2y

∂ρ(x)

∂X i
n

∂ρ(y)

∂X j
m

×〈dUε(x, t )dUε(y, t ′)〉, (C5a)

= 2kBT σ i j

h̄(2πρ0)2
δ(t − t ′)

∫
d2x

∂ρ(x)

∂X i
n

×
(∫

d2y
∂ρ(y)

∂X j
m

ε(x − y)

)
dt . (C5b)

The integrand of the bracketed integral in Fourier space
is a local product of the Fourier transform of ∂ρ/∂X j

m and
the kernel ε̃(k). Following the same argument made in the
main text for the energy-damping potential term, we may
approximate this integral by noting ∂ρ/∂X j

m will be peaked
in Fourier space at k = ξ−1, allowing us to treat the kernel as
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FIG. 5. Numerical validation of the damped point-vortex model for dipole decay. (a) Dipole size as a function of time for various initial
sizes d0 ∈ [2, 25]ξ as given by the analytic expression Eq. (D1) (lines) and numerical integration of the noiseless SPGPE (pluses). (b) Decay
time τc, defined as d (τc ) = dc for dc = 2ξ , given in terms of the speed of sound c = √

μ/m, as a function of initial dipole size d0 ∈ [4, 15]ξ .
Analytic expression (D1) compares well to numeric values, with increasing agreement for d � dc.

constant at this scale: ε̃(k) ≈ ε̃(ξ−1). This allows us to make
the substitution (B2) in the above correlation,

〈
dU i

n(t )dU j
m(t ′)

〉 ≈ σ i j 4kBT σEDNcut

h̄(2πρ0)2
δ(t − t ′)dt

×
∫

d2x
∂ρ(x)

∂X i
n

∫
d2y

∂ρ(y)

∂X j
m

δ(x − y),

= σ i j kBT σEDNcut

π2h̄ρ2
0

δ(t − t ′)dt

×
∫

d2x
∂ρ(x)

∂X i
n

∂ρ(x)

∂X j
m

.

The integral can be solved analytically for our choice of
density ansatz

∫
d2x

∂ρ(x)

∂X i
n

∂ρ(x)

∂X j
m

= πρ2
0 e

− r2
mn

4ξ2

4ξ 2

(
2ξ 2δi j − δX i

mnδX j
mn

)
≈ πρ2

0

2
δi jδnm, (C7)

where in the last step we have again made the approxima-
tion exp[−r2

mn/(4ξ 2)] ≈ δmn valid in the point-vortex regime
r2

mn � ξ 2. Therefore, off-diagonal correlations vanish, leading
to the simple expression

〈
dU i

n(t )dU j
m(t ′)

〉 = 2
αεkBT

2π h̄ρ0
δi jδnmδ(t − t ′)dt, (C8)

noting σ i jδi j = δi j and σEDNcut = 2αε/ρ0. This correlation
allows us to express the noise vector in terms of white noise
processes:

dUn(t ) ≡
√

2ηdwn(t ) =
√

2η

(
dW x

n (t )

dW y
n (t )

)
, (C9)

where dW i
n are real Gaussian noises with zero mean and

correlation 〈dW i
n (t )dW j

m (t ′)〉 = δi jδnmdt (i.e., Weiner incre-
ments), and we have defined the diffusion coefficient (units
length2/time): η ≡ αεkBT/(2π h̄ρ0). This gives the noise term
in Eq. (14).

APPENDIX D: NUMERIC VALIDATION: DIPOLE DECAY
AND DENSITY ANSATZ

Here we numerically validate our choice of density ansatz
and approximate treatment of the energy-damping kernel
ε(x) ≈ 2σEDNcutδ(x) by comparing the predictions of our de-
rived point-vortex equation against direct integration of the
quasi-2D SPGPE [with the exact expression for the scattering
kernel ε(x)] for a vertical thickness of lz = ξ . For simplicity,
we neglect the noise in both equations, effectively compar-
ing the predictions of each equation for the mean vortex
dynamics. This allows us to separate deviations due to the
approximate form of the kernel and density (used in both the
damping and noise terms) from sampling errors in averaging
over a finite number of stochastic trajectories.

Specifically, we consider the decay of a vortex-antivortex
dipole due to damping, for which the analytic solution to
the damped point-vortex equation is well-known (see, for
example, Ref. [27]). For our model, this solution can be
written as

d (t ) =
√

d (0)2 − 4
h̄

m
αεt, (D1)

where d (t ) is the separation between the two vortices and
we have neglected the contribution of number damping. By
defining a critical scale dc at which the vortex-antivortex pair
are expected to annihilate, we can estimate a timescale for
decay τc = m[d (0)2 − d2

c ]/(4h̄αε ). An estimate of this critical
scale is dc = 2ξ , where ξ is the healing length of the fluid
[27]. Our simulations are performed in dimensionless healing
length units of ξ (space) and c/ξ = h̄/μ (time), with lz = ξ

and M = 2σsNcutρ0 = 0.1 together giving a mutual friction
coefficient αε ≈ 0.006. Here c = √

μ/m is the speed of sound
in the superfluid.

Figure 5 compares the analytic expression Eq. (D1) to
direct numerical integration of the noiseless quasi-2D SPGPE
(with γ = 0) for a range of initial dipole sizes. We see strong
quantitative agreement between the analytic and numeric re-
sults, particularly for large intervortex distances d (t ) � ξ .
This clearly demonstrates the validity of the assumptions
made in the derivation of our model in the point-vortex limit
(e.g., the density ansatz and the approximate form of the ker-
nel), and the stability of our model over long timescales. We
observe growing discrepancy between the analytics for dipole
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sizes below d (t ) � 5ξ , indicating the expected breakdown of
a point-vortex description of the vortex dynamics. When the
approximate form of the energy-damping kernel is also used
in the numeric simulations, we observe a slight improvement
in the agreement for dipoles with initial separation d (0) �
10ξ . This demonstrates that there is a weak quantitative de-
viation due to the density ansatz and treatment of the kernel,
but only close to the breakdown of the point-vortex regime.

APPENDIX E: BROWNIAN MOTION IN THE
MEAN-FIELD APPROXIMATION

Here we show that the convective position variance of each
vortex grows diffusively under the evolution of Eq. (14) in the
mean-field limit. Specifically we consider the mean-field ap-
proximation wherein each vortex interacts with a mean-field
flow induced by all other vortices, allowing us to approximate
Eq. (14) by

drn = 〈
v0

n − αεqnẑ×v0
n

〉
dt −

√
2ηdwn, (E1)

where we have replaced the background superfluid velocity
at the ith vortex, v0

i , with its stochastic average 〈v0
i 〉. In other

words, under this assumption the ith vortex interacts with the
mean velocity field produced by the dynamics of all other
vortices.

Using the shorthand 〈v0
i 〉−αεqiẑ×〈v0

i 〉 ≡ (ai(t ), bi(t ), 0)T ,
we can then write the solution of the above equation as a
vector Ornstein-Uhlenbeck process:

Xi(t ) = x0 +
∫ t

0
ai(t

′)dt ′ −
√

2η

∫ t

0
dW x

i (t ′), (E2a)

Yi(t ) = y0 +
∫ t

0
bi(t

′)dt ′ +
√

2η

∫ t

0
dW y

i (t ′). (E2b)

From here we may then compute the variance of the
positions by noting that the noise vanishes in the means
(〈dW α

i 〉=0):〈
�X 2

i

〉 ≡ 〈(Xi(t ) − 〈Xi(t )〉)2〉 (E3)

= 2η

∫ t

0
dt ′

∫ t

0
dt ′′〈dW x

i (t ′)dW x
i (t ′′)

〉
(E4)

= 2η

∫ t

0
dt ′ = 2ηt . (E5)

An identical calculation gives 〈Y 2
i 〉 = 2ηt . Finally, this allows

us to compute the growth of the variance induced by thermal
fluctuations, in the mean-field approximation:〈

�r2
i

〉 ≡ 〈
�X 2

i + �Y 2
i

〉 = 4ηt . (E6)

This can be interpreted as Brownian motion of vortices around
the background flow, with diffusive growth of the position
variance of each vortex.

APPENDIX F: DETERMINATION
OF THE ENERGY CUTOFF

Determining the value of the energy cutoff εcut for a
particular experiment is a nontrivial yet essential aspect of
first-principles modeling with the SPGPE. To ensure the va-
lidity of the SPGPE framework, the choice of cutoff must

satisfy two key properties. First, εcut must be chosen such that
each of the modes in the low-energy region are appreciably
occupied, i.e., have occupation no fewer than O(1) atoms [24].
Second, the cutoff should be sufficiently large (compared to
μ) to ensure the interacting modes of the system are contained
within the low-energy coherent region. The latter requirement
is typically satisfied for εcut � 2μ [58], where μ is the chem-
ical potential of the reservoir.

These constraints do not uniquely specify a particular en-
ergy cutoff, but rather tightly constrains appropriate choices
of εcut. In principle, this means calculations in the SPGPE
framework will depend weakly on the precise choice of εcut.
In practice, it is therefore important for first-principles SPGPE
calculations to demonstrate robustness of results to small
variations of εcut (on the order of 10%); see, for example,
Refs. [5,24,29,34]. In the main text results are shown for a
15% variation in εcut.

For the comparison to Ref. [26] presented in Fig. 3, we
find the choice of εcut = 2μ to satisfy the two requirements
described above, across the temperature range considered.
Significantly increasing the cutoff beyond this value results
in the highest-energy modes becoming too sparsely occupied,
particularly for the lower range of temperatures considered.
For example, setting εcut = 3μ results in Ncut ≈ 0.4 for the
T = 200 nK in Fig. 3. Significantly reducing the cutoff below
2μ will result in a number of appreciably occupied interacting
modes of the system inappropriately becoming part of the
incoherent region.

APPENDIX G: ESTIMATION OF ATOMIC
CLOUD PARAMETERS

1. Reduction to 2D theory: Calculation of lz, μ2D, ρ0

from 3D cloud parameters

A key parameter in our stochastic point vortex theory is
the vertical thickness of the atomic cloud lz. In terms of
the quasi-2D SPGPE, this is defined as the 1σ radius of the
transverse wavefunction, which is treated as a Gaussian [33].
In this work we compute lz for a given harmonically trapped
system based on the analytical variational ground state for
a Gaussian ansatz, as given in Ref. [40]. Specifically, we
find lz as the solution to the following algebraic equation
[bi = li/

√
h̄/(mωi )]:

1

2
h̄ωi

(
b2

i − 1

b2
i

)
− 1

2(2π )3/2

gN0

l3
geo

1

b1b2b3
= 0, (G1)

where ωgeo = (ωxωyωz )1/3 is the geometric mean of the trap-
ping frequencies, lgeo = √

h̄/(mωgeo), and N0 is the number of
condensate atoms.

Integrating out the z dimension results in an effective 2D
chemical potential and interaction strength:

μ2D = μ − mω2
z l2

z

4
− h̄2

4ml2
z

, (G2)

g2D = g√
2π lz

, (G3)

which we use to estimate the healing length ξ = h̄/
√

mμ2D

and the 2D background density ρ0 = μ2D/g2D.

013184-9



MEHDI, HOPE, SZIGETI, AND BRADLEY PHYSICAL REVIEW RESEARCH 5, 013184 (2023)

2. Estimation of chemical potential for comparison to ZNG
simulations of Ref. [41]

In the main text, we compare our microscopically derived
expression for the mutual friction coefficient to the numerical
calculations of Ref. [41]. In their calculations, the total atom
number NT of the gas was fixed for all temperatures studied,
resulting in a different chemical potential for each temperature
considered, therefore changing the effective energy cutoff for
each temperature. For each temperature T , we compute the
chemical potential by first estimating the number of conden-
sate atoms N0, using the thermodynamic expression [39]:

N0

NT
=

[
1 −

(
T

T 0
c

)3
]

− 3ωarithζ (2)

2ωgeo[ζ (3)]2/3

(
T

T 0
c

)2

N−1/3
T , (G4)

where ωarith = (ωx + ωy + ωz )/3 is the arithmetic mean of the
trapping frequencies, and T 0

c = 177 nK is the ideal gas critical
temperature for the parameters in Ref. [41]. The first term in
this equation is simply the ideal-gas relation, and the second
accounts for the first-order shift in the critical temperature due
to the finite-size of the trapped gas. From N0, the chemical
potential can then be estimated in the Thomas-Fermi approx-
imation [39]:

μ = h̄ωgeo

2

(
15N0as

lgeo

)2/5

. (G5)

This value of μ is then used to set the energy cutoff εcut = 2μ

and compute the 2D background density as described above.
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