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Quantum computers have the potential to efficiently simulate large-scale quantum systems for which classical
approaches are bound to fail. Even though several existing quantum devices now feature total qubit numbers
of more than 100, their applicability remains plagued by the presence of noise and errors. Thus, the degree to
which large quantum systems can successfully be simulated on these devices remains unclear. Here, we report on
numerical results of physics-motivated variational ansatzes, as well as cloud simulations performed on several
of IBM’s superconducting quantum computers to simulate ground states of spin chains having a wide range of
system sizes up to 102 qubits. Our numerical analysis shows that the accuracy of the ground-state energy and
fidelity improves substantially by increasing the number of layers used in the ansatzes. From the cloud exper-
iments, we find that the ground-state energies extracted from realizations across different quantum computers
and system sizes reach the expected values to within errors that are small (i.e., on the percent level), including
the inference of the energy density in the thermodynamic limit from these values. We achieve this accuracy
through a combination of physics-motivated variational ansatzes, and efficient, scalable energy-measurement
and error-mitigation protocols, including the use of a reference state in the zero-noise extrapolation. By using
a 102-qubit system, we have been able to successfully apply up to 3186 CNOT gates in a single circuit when
performing gate-error mitigation. Our accurate, error-mitigated results for random parameters in the ansatz states
suggest that a standalone hybrid quantum-classical variational approach for large-scale XXZ models considered
in this work is feasible.
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I. INTRODUCTION

The notion of quantum computers traces back to the works
of Benioff [1], Mannin [2], and Feynman [3]. In particular,
Feynman suggested using quantum computers to simulate
other quantum systems instead of using classical computers,
giving rise to the notion of a universal quantum simulator [4].
A critical breakthrough was made by Shor, whose quantum
factoring algorithm outperforms classical algorithms almost
exponentially faster [5]. Experimental progress has come a
long way, leading to the burgeoning of quantum devices,
with the total qubit number now exceeding one hundred
in the best cases. However, these devices are still regarded
as noisy intermediate-scale quantum (NISQ) processors [6],
not yet suitable for full-scale quantum error correction and
fault-tolerant quantum computation. However, there are con-
current efforts to develop error mitigation techniques [7–15]
and algorithms [16] for NISQ devices to realize their po-
tential quantum advantage [17]. Recent notable experimental
achievements include random quantum circuits of around 50
qubits [18,19], boson sampling with large numbers of photons
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[20,21], Hartree-Fock method implementation for quantum
chemistry with 12 qubits [22], realization of the toric-code
state with 31 qubits [23], and quantum walks on a 62-qubit
processor [24].

Despite all this effort and accomplishment, the central
question remains of whether NISQ computers can be of prac-
tical use for the simulation of large quantum systems and
to extract accurate observable values, such as the energy
of the simulated quantum states. So far, most experiments
with quantitatively accurate results have been limited to
small numbers of qubits, around ten or below [9–12,22],
with a few others reaching beyond twenty [15,23]. None of
them has demonstrated accurate results over a wide range
of system sizes with the same model and across different
devices. There are also challenges to overcome for large-
scale experiments (around or over one hundred qubits) with
useful outcomes, including the need for high-fidelity gates
and readout as well as scalable and efficacious approaches
to mitigating the effects of noise and errors on the measured
observables.

In this work, we have designed a family of physics-
motivated variational ansatzes and analyzed their accuracy
for the Heisenberg and XXZ spin chains. For small numbers
of qubits, our ansatzes can reach exact ground-state wave
functions and for larger number of qubits, the accuracy of
the ground-state energy and fidelity improves substantially
by increasing the number of layers used in the ansatzes. For

2643-1564/2023/5(1)/013183(18) 013183-1 Published by the American Physical Society

https://orcid.org/0000-0003-4897-3410
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.013183&domain=pdf&date_stamp=2023-03-16
https://doi.org/10.1103/PhysRevResearch.5.013183
https://creativecommons.org/licenses/by/4.0/


HONGYE YU, YUSHENG ZHAO, AND TZU-CHIEH WEI PHYSICAL REVIEW RESEARCH 5, 013183 (2023)

TABLE I. Results related to the open-chain Heisenberg model. The numerical calculation was done with the MPS method using a bond
dimension χ = 64. The “error” in the last column represents the relative error between the experimentally estimated value Eexp and the exact
ground-state energy Egs. ∗Note that these values were obtained by averaging results over different backends and/or different groups of physical
qubits; see Tables S.2 and S.3 in the Supplemental Material [45] for the complete list of results.

N θ∗
even θ∗

odd E∗
ansatz Egs ε f Eexp error

4 0.151748 0.215765 −6.464102 −6.464102 0 1.0000 −6.5(1.6) 0.56%
6 0.141671 0.216088 −9.880996 −9.974309 0.94% 0.9923 −9.9(1.9)∗ 0.19%
8 0.138569 0.216093 −13.299823 −13.499730 1.48% 0.9796 −13.2(2.2) 2.22%
10 0.13710 0.216102 −16.719307 −17.032141 1.84% 0.9639 −16.7(1.3)∗ 1.95%
12 0.136248 0.216110 −20.139037 −20.568363 2.09% 0.9462 −20.3(2.1) 1.30%
14 0.135688 0.216115 −23.558885 −24.106899 2.27% 0.9271 −23.6(1.8) 2.10%
16 0.135293 0.216120 −26.978800 −27.646949 2.42% 0.9072 −25.8(1.6)∗ 6.68%
18 0.134999 0.216123 −30.398756 −31.188044 2.53% 0.8867 −30.7(0.7)∗ 1.56%
20 0.134773 0.216126 −33.818738 −34.729893 2.62% 0.8659 −33.0(0.5)∗ 4.98%
30 0.134132 0.216134 −50.918850 −52.445423 2.91% 0.7614 −50.2(2.0)∗ 4.28%
40 0.133832 0.216139 −68.019098 −70.165893 3.06% 0.6629 −68.5(2.0)∗ 2.34%
50 0.133658 0.216141 −85.119397 −87.888441 3.15% 0.5737 −85.0(2.8)∗ 3.29%
60 0.133544 0.216143 −102.219721 −105.612060 3.21% 0.4946 −99(4) 6.26%
70 0.133464 0.216144 −119.320058 −123.336305 3.26% 0.4253 −125(7) 1.35%
80 0.133405 0.216145 −136.420403 −141.060947 3.29% 0.3649 −138.5(2.5) 1.82%
90 0.133359 0.216146 −153.520754 −158.785857 3.32% 0.3126 −153(5) 3.64%
98 0.133329 0.216146 −167.201038 −172.965924 3.33% 0.2760 −168.1(2.6) 2.81%
100 0.133323 0.216146 −170.621109 −176.510957 3.34% 0.2675 −173(9) 1.99%
102 0.133316 0.216146 −174.041180 −180.055995 3.34% 0.2592 −177.5(2.7) 1.42%

example, with six layers and N = 50 qubits in the Heisen-
berg model, the fidelity of our ansatz with the ground-state
wave function is above 0.9 and the accuracy in the ground-
state energy is above 99.75%. For potential realization, we
have also developed efficient approaches for measuring ener-
gies, including the use of Bell measurement. Moreover, we
have also improved scalable mitigation methods to extract
accurate GS energy values for large systems, despite the
presence of noise and errors in the gates and the readout.
We have also introduced a reference state in the zero-noise
extrapolation (rZNE) to further improve the accuracy of
the results.

To demonstrate that noisy quantum processors can still
be used to provide accurate results, we have utilized nine
distinct cloud quantum computers, and carried over 40 dif-
ferent sets of cloud experiments for the Heisenberg model
(see Tables I–III) and over 48 sets of them for the XXZ
model (see the figures presenting the results below). We
present realizations of approximate ground states (GS) of
these spin chains having nineteen different system sizes, rang-
ing from 4 to 102 qubits. To distinguish our work from
experiments performed on in-house devices or customized
physical apparatuses, we shall refer to our use of third-party
hardware as “cloud experiments,” as well as to make a dis-
tinction from numerical simulations. We report the extracted
GS energies, accurate to within a few percent level of error,
including the inference of the energy density in the thermo-
dynamic limit from these values. We emphasize that these
cloud experiments are not equivalent to numerical simula-
tions, as the actual devices have substantial noise and errors
and devices’ condition can drift over time, and sometimes
the same submitted jobs can fail. Nevertheless, cloud-
based experiments offer a new paradigm for research and

development. In addition, we have used our procedure to mea-
sure the energies of several ansatz states that have randomly
chosen parameters, and obtained accurate mitigated energy
values. Our work thus establishes a simple–yet substantially
improved–quantum variational protocol with mitigation, and
paves the way for massive use of large NISQ computers
for fundamental physics studies of many-body systems, as
well as for practical applications, including optimization
problems.

The remaining structure of the paper is as follows. In
Sec. II, we discuss the motivation that leads to our fam-
ily of ansatzes for the Heisenberg and XXZ spin chains
and give the decomposition of the ansatz gates in terms of
elementary ones. In Sec. II, we analyze our ansatzes nu-
merically and present results for various numbers of qubits
and layers in the ansatz, including cases of both open
and periodic conditions. In Sec. IV, we discuss scalable
methods to measure energy and mitigate measured energy
values and present cloud experimental results from real
devices. In Sec. V, we present results of numerical anal-
ysis of our ansatz on a two-leg ladder. We conclude in
Sec. VI. Additional supporting materials are presented in
the Appendix.

II. HEISENBERG AND XXZ MODELS AND THE ANSATZ
FOR GROUND STATES

Quantum spin systems, such as the Heisenberg [25] and
XXZ models [26,27], have sparked analytical development
and understanding of quantum phases and also served as a
testbed for numerical techniques. The Hamiltonian of the
spin-1/2 XXZ spin chain with the open boundary condition
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TABLE II. Various Heisenberg spin-chain cloud experiments performed on the 127-qubit ibm_washington backend/device of IBM Q.

N Eexp εans εgs QOD Qubits used Shots Rep.

10 −16.9(3.4) 1.08% 0.78% 44(7) [30,31,32,36,51,50,49,48,47,35] 40K 50
10 −16.5(1.4) 1.31% 3.12% 31(4) [32,36,51,50,49,48,47,35,28,29] 40K 25
20 −33.8(1.4) 0.055% 2.67% 20.3(1.0) [50,51,36,32,31,30,29,28,35,47, 40K 25

48,49,55,68,69,70,74,89,88,87]
30 −51.1(2.3) 0.36% 2.57% 19.6(1.1) [115,116,117,118,110,100,101,102,92,83,84,85,73, 40K 50

66,67,68,55,49,50,51,36,32,31,30,29,28,27,26,16,8]
40 −69.2(1.6) 1.74% 1.38 12.1(0.8) [2,1,0,14,18,19,20,33,39,38,37,52,56,57,58,59,60,61,62, 40K 50

72,81,82,83,92,102,103,104,105,106,93,87,
86,85,73,66,67,68,55,49,48]

50 −86.9(1.8) 2.09% 1.12% 13.19(0.28) list of 40 qubits +[47,35,28,27,26,25,24,23,22,15] 40K 25
60 −99(4) 3.15% 6.26% 11.28(0.34) [3,2,1,0,14,18,19,20,33,39,38,37,52,56,57,58,59, 40K 50

60,53,41,42,43,34,24,25,26,27,28,29,30,31,32,
36,51,50,49,48,47,46,45,54,64,63,62,72,81,82,83,92,

102,103,104,105,106,107,108,112,126,125,124]
70 −125(7) 4.76% 1.35% 13.1(0.8) [3,2,1,0,14,18,19,20,21,22,23,24,25,26,27,28,29,30, 40K 50

31,32,36,51,50,49,48,47,46,45,54,64,65,66,67,68,69
70,74,89,88,87,93,106,105,104,111,122,121,120,119,

118,110,100,101,102,92,83,82,81,80,79,
91,98,97,96,95,94,90,75,76,77]

80 −138.5(2.5) 1.52% 1.82% 12.79(0.23) [3,2,1,0,14,18,19,20,33,39,38,37,52,56,57,58, 40K 50
59,60,53,41,42,43,34,24,25,26,27,28,29,30,31,32,36,
51,50,49,55,68,69,70,74,89,88,87,93,106,105,104,

111,122,121,120,119,118,110,100,101,102,92,83,84,85,73,
66,65,64,63,62,72,81,80,79,91,98,97,96,95,94,90,75]

90 −153(5) 0.34% 3.64% 12.5(0.4) [3,2,1,0,14,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, 40K 25
36,51,50,49,48,47,46,45,44,43,42,41,40,39,38,37,52,56,

57,58,59,60,61,62,63,64,65,66,67,68,69,70,74,89,88,87,86,
85,84,83,82,81,80,79,78,77,76,75,90,94,95,96,97,98,99,

100,101,102,103,104,105,106,107,108,
112,126,125,124,123,122]

98 −168.1(2.6) 0.54% 2.81% 12.32(0.27) [3,2,1,0,14,18,19,20,33,39,40,41,42,43,34,24,23,22,15,4,5, 40K 75
6,7,8,16,26,27,28,29,30,31,32,36,51,50,49,48,47,46,45,

54,64,63,62,61,60,59,58,71,77,76,75,90,94,95,96,97,98,91,
79,80,81,82,83,84,85,73,66,67,68,69,70,74,89,88,87,93,
106,107,108,112,126,125,124,123,122,111,104,103,102,

101,100,110,118,117,116,115,114]
100 −173(9) 1.39% 1.99% 11.9(0.14) [3,2,1,0,14,18,19,20,21,22,15,4,5,6,7,8,16,26,27,28,29,30, 40K 50

31,32,36,51,50,49,48,47,46,45,44,43,42,41,40,39,38,37,52,
56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,74,89,88,87,
86,85,84,83,82,81,80, 79,78,77,76,75,90,94,95, 96,97,98,

99,100,101,102,103,104,105,106,107,108,112,126,125,124,
123,122,121,120,119,118,117,116]

102 −177.5(2.7) 1.99% 1.42% 12.23(0.17) list of 100 qubits +[115,114] 40K 75

reads

ĤXXZ (�) =
N−1∑

j=1

ĥ[ j, j+1]
XXZ (�)

=
N−1∑

j=1

(
σ [ j]

x σ [ j+1]
x + σ [ j]

y σ [ j+1]
y + �σ [ j]

z σ [ j+1]
z

)
,

(1)

where � represents the anisotropy in the coupling. For � = 1,
the model reduces to the isotropic antiferromagnetic Heisen-
berg chain. The model is known to possess three distinct

quantum phases: (i) a ferromagnetic phase for � < −1,
where classical states, such as |↑↑ . . . 〉 and |↓↓ . . . 〉, are
ground states; (ii) a gapless, critical phase, for −1 < � <

1; and (iii) an antiferromagnetic phase for � > 1. We will
mainly focus on the range of � > −1 with nontrivial ground
states.

In the following, we explain how we use adiabatic connec-
tion [28] to arrive at a physics-motivated ansatz, schematically
shown in Fig. 1(a), and justify its validity by considering the
gap structure through the adiabatic connection, as illustrated
in Fig. 2. We also analyze how well the ansatz performs and
how its accuracy is improved by increasing the number of
layers.
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TABLE III. Heisenberg spin-chain cloud experiments performed on all available 27-qubit backends/devices and the 65-qubit
ibmq_brooklyn of IBM Q.

Backend

N Eexp εans εgs QOD qubits used shots rep.

ibm_auckland
20 −34.3(1.3) 1.42% 1.24% 13.4(0.5) [13,12,10,7,4,1,2,3,5,8,11,14,16,19,22,25,24,23,21,18] 100K 50

ibm_cairo
16 −27.5(2.5) 1.93% 0.53% 13.5(1.1) [1,2,3,5,8,11,14,16,19,22,25,24,23,18,15,12] 100K 50
18 −28.9(1.3) 4.93% 7.34% 13.4(0.4) [1,2,3,5,8,11,14,16,19,22,25,24,23,18,15,12] 100K 50
18 −32.3(1.1) 6.25% 3.57% 13.51(1.1) [6,7,4,1,2,3,5,8,11,14,16,19,22,25,24,23,21,18] 100K 50
20 −32.8(1.1) 3.01% 5.56% 12.47(0.35) [6,7,4,1,2,3,5,8,11,14,16,19,22,25,24,23,21,18,15,12] 100K 50

ibm_hanoi
20 −32.3(1.3) 4.49% 7.00% 17.0(0.7) [5,3,2,1,4,7,10,12,15,18,21,23,24,25,22,19,16,14,11,8] 100K 100

ibmq_kolkata
20 −33.5(1.2) 0.94% 3.54% 18.6(0.8) [26,25,22,19,16,14,11,8,5,3,2,1,4,7,10,12,15,18,21,23] 40K 25

ibmq_montreal
6 −9.9(1.6) 0.75% 0.19% 13.1(0.6) [20,19,22,25,24,23] 32K 100
20 −31.7(1.7) 6.26% 8.72% 13.0(0.5) [12,10,7,4,1,2,3,5,8,11,14,16,19,22,25,24,23,21,18,17] 32K 50

ibmq_mumbai
4 −6.5(1.6) 0.56% 0.56% 37(9) [12,15,18,17] 8192 146
6 −9.9(3.5) 0.19% 0.75% 64(11) [7,10,12,15,18,17] 8192 146
8 −13.2(2.2) 0.75% 2.22% 36(5) [1,4,7,10,12,15,18,21] 8192 146
10 −16.6(3.3) 0.71% 2.54% 38(7) [0,1,4,7,10,12,15,18,21,23] 8192 100
12 −20.3(2.1) 0.80% 1.30% 14.0(1.4) [8,5,3,2,1,4,7,10,12,15,18,21] 8192 100
14 −23.6(1.8) 0.17% 2.10% 14.1(1.0) [8,5,3,2,1,4,7,10,12,15,18,21,23,24] 8192 100
16 −24.0(2.1) 10.1% 7.42% 12.1(0.8) [8,5,3,2,1,4,7,10,12,15,18,21,23,24,25,22] 8192 100
18 −29.7(1.3) 2.30% 4.77% 16.7(0.7) [8,5,3,2,1,4,7,10,12,15,18,21,23,24,25,22,19,16] 8192 100
20 −31.6(2.3) 6.56% 9.01% 14.2(1.0) [8,5,3,2,1,4,7,10,12,15,18,21,23,24,25,22,19,16,14,11] 8192 100

ibm_toronto
18 −32.1(1.7) 5.60% 2.92% 13.1(0.6) [0,1,4,7,10,12,15,18,21,23,24,25,22,19,16,14,11,8] 16K 50

−32.3(1.4) 4.49% 7.00% 13.0(0.5) [0,1,4,7,10,12,15,18,21,23,24,25,22,19,16,14,11,8,5,3] 32K 50

ibmq_brooklyn
10 −16.8(1.6) 0.48% 1.36% 24.0(2.1) [53,47,48,49,40,35,34,33,25,19] 100K 50
20 −33.4(0.9) 1.24% 3.83% 22.7(0.7) [9,8,7,6,5,4,3,2,1,0,10,13,14,15,16,17,18,19,25,33] 100K 50
20 −34.0(3.1) 0.54% 2.10% 27.4(3.4) [0,1,2,3,4,5,6,7,8,12,21,20,19,18,17,16,15,24,29,28] 20K 80
30 −49.3(3.3) 3.18% 6.00% 18.4(1.1) [43,52,56,57,58,59,60,53,47,48,49,40,35,34,33,32,31, 100K 50

30,2,24,15,16,17,11,4,5,6,7,8,9]
40 −68(4) 0.028% 3.09% 20.6(1.3) [63,62,61,60,53,47,46,45,39,31,32,33,25,19,18,17,16,15, 100K 50

14,13,10,0,1,2,3,4,5,6,7,8,12,21,22,23,26,37,36,35,40,49]
50 −83(5) 2.49% 5.56% 18.7(1.5) [43,52,56,57,58,59,60,61,62,63,64,54,51,50,49,40,35,36, 100K 50

37,26,23,22,21,12,8,7,6,5,4,3,2,1,0,10,13,14,15,16,
17,18,19,25,33,32,31,39,45,46,47,48]

A. Gap structure of the interpolated Hamiltonian
and the ansatz structure from adiabatic evolution

For the XXZ interaction ĥ[ j, j+1]
XXZ (�) on a bond involving

two nearest-neighbor qubits, the singlet pair |�−〉 = (|01〉 −
|10〉)/

√
2 has an energy value −2 − �, the triplet |�+〉 =

(|01〉 + |10〉)/
√

2 has energy 2 − �, and both |00〉 and |11〉
(or equivalently the two entangled triplets |�±〉 = (|00〉 ±
|11〉)/

√
2) have energy �. Note that we have used the notation

|0/1〉 to replace |↑/↓〉, the eigenstates of the Pauli Z operator
σz. Thus, the singlet is the ground state of the simple two-qubit
XXZ interaction for � > −1. This means that the following
Hamiltonian with interaction only on odd numbers of bonds

only even N ,

Ĥodd =
N/2−1∑

j=1

(
σ [2 j−1]

x σ [2 j]
x + σ [2 j−1]

y σ [2 j]
y + �σ [2 j−1]

z σ [2 j]
z

)
,

(2)

has its unique ground state being the product of singlets over
these odd bonds, i.e., a linear chain of valence-bond state,

|ψsinglets〉 = 1√
2N/2

N/2∏

j=1

(|01〉 − |10〉)2 j−1,2 j . (3)
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FIG. 1. Variational ansatz and the layout of a 102-qubit quantum computer. (a) The variational ansatz structure, (b) the layout of the
127-qubit ibm_washington backend, where a chain of 102 qubits is illustrated by the thick, shaded line.

We then expect that |ψsinglet〉 is adiabatically connected to
the ground state of the XXZ model, by connecting Ĥodd

to the full XXZ Hamiltonian ĤXXZ via the following linear
interpolation,

Ĥ (s) = (1 − s)Ĥodd + s ĤXXZ = Ĥo(s) + Ĥe(s). (4)

We regroup it into interaction terms on even and odd bonds,
denoted collectively by Ĥo(s) and Ĥe(s), respectively, and it is
straightforward to see that Ĥo(s) = Ĥodd, but

Ĥe(s) = s
N/2−1∑

j=1

(
σ [2 j]

x σ [2 j+1]
x + σ [2 j]

y σ [2 j+1]
y + σ [2 j]

z σ [2 j+1]
z

)
,

(5)

is a rescaled version of the XXZ model on even bonds.

We check the spectral properties of this Hamiltonian for
small N and find that Ĥ (s) is gapped in the range s ∈
[0, 1] for � > −1; see Fig. 2 for two different � values
using 8 qubits. This means that the product of singlets
|ψsinglet〉 is adiabatically connected to the ground state of
the XXZ model via the evolution |ψ (1)〉 = Uevo|ψsinglets〉 =
e−i

∫ 1
s=0 ds Ĥ (s)|ψsinglets〉. Discretizing the evolution operator

Uevo, we have the following Trotterized approximation

Uevo ≈
NL∏

l=1

e−iĤ (sl )δs ≈
NL∏

l=1

(
e−iĤe (sl )δse−iĤo(sl )δs

)
, (6)

where NL is the number of discretized time steps or layers
and δs = 1/NL is the dimensionless step size. To allow for
flexibility, we turn the discretized evolution into a variational
form and arrive at the structure of the ansatz shown in Fig. 1(a)

FIG. 2. The energy gap of 8-qubit XXZ model with open-boundary condition in the Hamiltonian interpolation Ĥ (s) from one with
interaction on odd bonds only to one with interaction on all bonds, for (a) � = 1, i.e., the Heisenberg model, and (b) the XXZ model at
� = −0.8.
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with gates in the lth layer being

U (l )
even/odd({θ})

=
⊗

j∈even/odd

[
e−iθ (l )

e/o,x σ
[ j]
x σ

[ j+1]
x −iθ (l )

e/o,y σ
[ j]
y σ

[ j+1]
y −iθ (l )

e/o,z σ
[ j]
z σ

[ j+1]
z

]
,

(7)

where {θ}′s are a set of variational parameters, the sub-
scripts e/o denote the association with even and odd bonds,
respectively. Therefore, we arrive at the following NL-layer
variational ansatz state

|ψansatz({θ})〉 =
NL⊗

l=1

[
U (l )

even({θe})U (l )
odd({θo})

]|ψsinglets〉. (8)

In Fig. 1(b), we illustrate a particular choice of a chain
with 102 qubits, which we have used to implement the
Heisenberg model. We remark that our construction from the
adiabatic connection is similar to how the quantum approxi-
mate optimization algorithm (QAOA) ansatz originates from
discretizing the Ising interaction and the transverse field [28].
But they differ in the goal: the QAOA aims to minimize the en-
ergy of a classical Ising Hamiltonian using the transverse-field
part as a driver, whereas our goal is to optimize the energy
of a quantum Hamiltonian as a whole. We note that similar
physics-motivated ansatzes were used previously [29–31], for
the Heisenberg mode on the kagome lattice was also studied
numerically in Ref. [32].

B. Creation of singlets

Each singlet pair in |ψsinglets〉 can be created from |00〉 by
simple single-qubit gates (the Hadamard H and the Pauli X

gates) followed by a CNOT gate,

(9)

and, thus, the product of such singlet pairs can be created in
parallel with these circuits,

|ψsinglets〉 = Uinit|0 . . . 0〉 =
N/2⊗

i=1

U [i]
singlet|0 . . . 0〉, (10)

with the superscript i denoting the pair of qubits for the singlet
creation. We note that the reverse of the latter part corresponds
to Bell measurement,

(11)

which can be used to measure the energy contribution of a pair
of qubits; see below.

C. Gate decomposition

Let us define the essential two-qubit Rxyz gate that we
need,

Rxyz(θx, θy, θz ) ≡ e−i(θx/2)σx⊗σx−i(θy/2)σy⊗σy−i(θz/2)σz⊗σz , (12)

where a factor of 1/2 is inserted in the definition of the Rxyz
gate to match the convention of single-qubit rotation and we
have used the tensor product notation “⊗” to emphasize the
two-qubit structure in the gate. We present a decomposition
of the Rxyz gate that has a minimum number of CNOTs [33]
(which is three) in the decomposition,

(13)

where H is the Hadamard gate, Rα (θ ) = e−iθσα/2 is the single-
qubit rotation around α-axis (α = x, y, z) by an angle θ , and
S is the one-qubit phase gate S = eiπ/4Rz(π/2). The gate
Ueven/odd(θ ) = Rxyz(2θ, 2θ, 2θ ) will be used for the Heisen-
berg model, and for the XXZ model, due to the ZZ anisotropy,
we will allow θz = 2θ2 parameter to be independent from
θx = θy = 2θ1, and thus Rxyz(2θ1, 2θ1, 2θ2) is needed.

Note that as the circuit action is symmetric with respect to
swapping the two qubits, one can flip the circuit in the last line
to fit the desired or natural direction of the CNOT gate. One
can also replace the Hadamard gate H by a combination of
the square root of X gate (or equivalently Rx(π/2), which is

among the native gates in IBM Quantum Computers), and the
phase gate S via the identity H = SRx(π/2)S. Note that S is
equivalent to Rz(π/2) up to an irrelevant global phase factor,
and, therefore, the circuit can be expressed entirely in terms
of IBM Q’s native gate set: {Rz, SX , CNOT, X}, where SX is
the square root of X .

D. Boundary condition and even-odd choice
of the total qubit number

We note that Fig. 1 mainly depicts the ansatz for the
open boundary condition (OBC). For the periodic boundary
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FIG. 3. Simulation results of the ansatz. (a) the fidelity of the optimal ansatz state with the ground state of the open-chain Heisenberg
model vs the total number of qubits N for one to six layers in the ansatz; (b) the corresponding relative error in the GS energy. (c) The fidelity
and (d) relative energy error of the optimal ansatz state and the exact ground state of the periodic-boundary-condition Heisenberg model with
the total number of qubits N for one to six layers in the ansatz.

condition (PBC), our ansatz (in the sublayer labeled as even
gates) should include the two-qubit gates that act on the last
qubit and the first qubit. From the numerical results presented
in Fig. 3 (and to be discussed below), we do see that our ansatz
gives comparable ground-state energy accuracy in both cases.
For the ground-state fidelity for the PBC case seems to have
values less than those in the case of the OBC. For practical
purposes, it is easier on the real devices to find a open-ended
path with good CNOT links. To find one periodic path with
good CNOT links along the way will limit the size of the loop.
In our cloud experiments, we focus on the case of the OPC.

Throughout this paper, we focus on the total qubit number
N being even, as we argued earlier that the product of singlets
(requiring N being even) can be adiabatically connected to the
ground state of the XXZ model for finite even N . For odd N ,
the XXZ model has doubly degenerate ground states. To see
this we consider the antiferromagnetic Heisenberg chain, for
example. It was known that the ground state is a singlet [34],
but this is valid for even N , because if one has an odd number
of qubits (spin-1/2), the state with smallest spin magnitude
one can construct is 1/2, which indicates double degeneracy.

However, we also checked that for odd N , the interpolated
Hamiltonian has a finite gap throughout the bulk range of
the interpolating parameter s, except at the end s = 1, where
the the final Hamiltonian is degenerate. If the goal is to target
one ground state, then our ansatz can be modified by changing
the initial state to be (N − 1)/2 singlet pairs plus one remain-
ing qubit arbitrarily initialized. The subsequent variational
gate structure can be made the same, but we may need to allow
them with site dependence. However, we have not tested this
extensively.

III. ANALYSIS OF THE ANSATZ

We have explained how we arrive at a physics-motivated
ansatz,

|ψansatz({θ})〉 = U({θ})|0 . . . 0〉

=
NL⊗

l=1

[
U (l )

even({θe})U (l )
odd({θo})

]
Uinit|0 . . . 0〉,

(14)
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schematically shown in Fig. 1(a), where we have used Uinit to
denote the initialization step that takes |0 . . . 0〉 ≡ |↑ . . . ↑〉 to
a product of singlets or Bell pairs |ψsinglets〉 in Eq. (10).

Variational ansatzes and trial wave functions are commonly
used in physics. Well-known examples include the BCS wave
function for superconductivity [35] and the Laughlin wave
function for the fractional quantum Hall effect [36]. Despite
not exactly representing the GS, they capture the essential
physical properties. To analyze how well our ansatzes sim-
ulate the GS wave functions and their energy, we minimize
Eansatz({θ}) to obtain the optimal parameters {θ∗} and then
compute the GS fidelity [37] f ≡ |〈ψgs|ψansatz({θ∗})〉| and the
error in the GS energy ε ≡ |Eansatz({θ∗}) − Egs|/|Egs| [38],
where |ψgs〉 denotes the GS and Egs its exact energy. In partic-
ular, we find that in the case of the open boundary condition,
the one-layer ansatz can reach exact ground states of the
N = 4 chain and the three-layer ansatz can reach exact ground
states of the N = 6 chain. (See Appendix A for the exact
ground state wave function of 4-qubit XXZ model.) In the
case of the periodic boundary condition, the one-layer ansatz
can reach exact ground states of the N = 4 chain and the
two-layer ansatz can reach exact ground states of the N = 6
chain. For larger chains, exact preparation of ground states
is possible but requires more layers of the ansatz [39]. We
note that even for N = 3 electrons, Laughlin’s droplet state
is not an exact wave function [36,40], but his wave func-
tions are the key to understand the fractional quantum effect.
That variational ansatzes contain the exact ground states is a
desired feature, as it can ascertain optimality of variational
parameters.

In Table I, we show the optimized parameters, energy, and
overlap with MPS diagonalized ground-state wave function
using one layer of our ansatz for the Heisenberg model. We
check that the results agree with the exact computation for the
qubit number N � 12. As expected, the fidelity decreases with
the number of qubits, but much slower than exponentially. In
contrast, the approximate ground-state energy seems to reach
about 3% of error even for large chains using just one layer in
the ansatz (e.g., 3.33% even for N = 100).

Using one to six layers in the ansatz, we compare the
fidelity and energy error versus N in Figs. 3(a) and 3(b)
for the open chain. For large systems, we use matrix prod-
uct states (MPS) [41–44] for these calculations. The results
improve substantially with increasing layers: with six layers
and N = 50, the fidelity is above 0.9 and the accuracy in
the GS energy is above 99.75%. For the periodic chain [see
results in Figs. 3(c) and 3(d)], given our ansatz breaks the
translation invariance (down to two sites), it may take a few
layers to approximately restore the invariance. Overall, we do
see general improvement in both quantities as the number of
layers in the ansatz increases.

For the numerical optimization, we used both the quasi-
Newton algorithm (with Matlab’s fminunc function) and the
sequential quadratic programming (SQP) algorithm (with
Matlab’s fminunc). The optimized parameters for small chains
are used for the initial guess of larger chains. Our six-layer
ansatz for the Heisenberg model contains only 12 variational
parameters. For more layers, we expect that techniques used
in machine learning, such as stochastic gradients, should be
helpful.

IV. CLOUD EXPERIMENTS, rZNE, AND RESULTS

We have performed cloud experiments by creating the
(one-layer) ansatz states and measuring their energies on nine
different backends of IBM Q, which contain 27, 65, and 127
qubits on three types of layouts (see Fig. 4, Table IV, and
Appendix B). The cloud experimental results of the 19 differ-
ent sizes (ranging from 4 to 102 qubits) of Heisenberg chains
are also summarized in Table I; their relative errors with the
ground-state energy values are within a few percentages. We
will explain below how the experimental results and their miti-
gated values were obtained. For the purpose of demonstration,
we mostly use the numerically optimized parameters to run
the state creation circuits. But still, we also test the feasibility
of the hybrid quantum-classical approach by performing cloud
experiments with random parameters below.

We first discuss different approaches to measure the total
energy and then the readout-error and gate-error mitigation
methods to extract estimated values from experiments. In
particular, we will introduce a reference state in doing the
gate-error mitigation.

A. Measuring energy: Several approaches

Here we describe three approaches that we have used to
measure the energy expectation value. Ideally the three ap-
proaches should give the same results and we have indeed
tested all three experimentally and verified that they give the
same results within a few percentages of errors for small
systems; see Appendix D.

(1) Tomography-based approach. For the models we con-
sider, the Hamiltonian terms are of the form σ

[ j]
α σ

[ j+1]
α , where

j is the site number and α is the spin direction (x, y or
z). Naively, if we can obtain the reduced density ρ j, j+1 ma-
trix for the pair ( j, j + 1) then we can calculate the energy
contribution from Tr(ρ j, j+1σ

[ j]
α σ

[ j+1]
α ). But this requires state

tomography and seems to need to run 9Nbond different circuits
for the total energy, where Nbond is the number of nearest
pairs or bonds, e.g., N − 1 for an open chain and N for a
periodic one. However, we can improve the efficiency by
performing the state tomography in parallel. Doing so, we just
need two sets of state tomography circuits (for even and odd
bonds respectively) to obtain the reduced density matrices of
neighboring pairs of qubits. We will later discuss the mea-
surement mitigation on pairs of qubits associated with bonds
to extract reliable energy contribution. Doing the tomography
in parallel reduces the number of circuits to measure to 9 × 2,
which is independent of the model size. The benefit of this is
that any one- and two-qubit observables are readily available,
such as the local spin observables and the concurrence which
quantifies nearest-neighbor entanglement, and it applies to
all nearest-neighbor interacting spins. (Extension to finite-
ranged interaction is straightforward but requires more sets
of measurements and multiqubit state tomography.) For our
cloud experimental results on measuring the concurrence in a
8-qubit XXZ chain; see Appendix D.

(2) XYZ measurement. The second, slightly reduced mea-
surement method is to measure separately the two neighboring
qubits on each bond in basis α and then average over

the classical results σ
[k]
α σ

[k+1]
α , treating σα = ±1 from the
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FIG. 4. Illustration of the layout of some backends used in this work: (a) the layout of 27-qubit machines, such as ibm_auckland,
ibm_cairo, ibm_hanoi, ibmq_kolkata, ibmq_montreal, ibmq_mumbai, and ibm_toronto; (b) the 65-qubit layout of ibmq_brooklyn;
and (c) the 127-qubit layout of ibm_washington. An edge between two qubits indicates that a direct CNOT gate can be executed between
them. See Table IV for certain properties of these backends.

measurement outcome assignment. This naively requires
3Nbond different circuits for the total energy. But a much
simplified implementation is to measure all qubits in α basis

and calculate the average σ
[k]
α σ

[k+1]
α for all bonds. This only

requires three different measurement settings to obtain the
total energy. Such simplification is applicable for the same
reason mentioned in the previous approach (1).

(3) Bell measurement. There is another method that uses
Bell-state measurement on all bonds. It exploits the specific
form of ĥ[ j, j+1]

XXZ (�), for which |�−〉 ≡ (|01〉 − |10〉)/
√

2 has

energy −2 − �, the triplet |�+〉 ≡ (|01〉 + |10〉)/
√

2 has en-
ergy 2 − �, and both |00〉 and |11〉 (or equivalently |�±〉 ≡
(|00〉 ± |11〉)/

√
2) have energy �. We can identify the Bell

state on a particular bond with Bell measurement. The energy
contribution of that bond is the energy corresponding to the
Bell state obtained from the measurement outcome. The total
energy can be calculated by adding up every bond’s energy
contribution. In practice, the Bell measurement requires a
short circuit including a CNOT gate, and the effect of its error
can be mitigated; see below.

TABLE IV. Properties of various IBM Q backends used in this work, data taken in late June, 2022. Our cloud experiments were performed
during the span from March 2022 to June 2022. (Detailed information of these on specific dates when a job was run could be obtained in the
Supplemental Material [45]). Q. volume is the quantum volume and Ntot is the total number of qubits in the backend. The basis gate set of these
backends includes CX, ID, RZ, SX, and X, where CX denotes the CNOT gate, ID is the identity gate, RZ is the z-rotation gate, and SX is the
square root of the Pauli X gate. The volume of the detailed device information, such as properties of individual qubits and individual gate and
readout errors, is too large to list in the table here. Moreover, the device properties may have shifted over time. We have included such detailed
device properties in the Supplemental Material [45].

Backend (Q. volume) Ntot Processor type Average frequency
Average CNOT

error
Average readout

error
Average T1

time
Average T2

time

ibm_auckland (64) 27 Falcon r5.11 4.97 GHz 1.042 × 10−2 1.439 × 10−2 178.38 μs 152.09 μs
ibmq_brooklyn (32) 65 Hummingbird r2 5.13 GHz 2.842 × 10−2 2.928 × 10−2 74.35 μs 77.66 μs
ibm_cairo (64) 27 Falcon r5.11 5.13 GHz 7.969 × 10−2 1.352 × 10−2 101.71 μs 132.51 μs
ibm_hanoi (64) 27 Falcon r5.11 5.00 GHz 4.444 × 10−2 1.357 × 10−2 151.26 μs 116.79 μs
ibmq_kolkata (128) 27 Falcon r5.11 5.10 GHz 4.801 × 10−2 1.556 × 10−2 118.67 μs 96.82 μs
ibmq_montreal (128) 27 Falcon r4 5.00 GHz 1.943 × 10−2 3.426 × 10−2 119.39 μs 102.78 μs
ibmq_mumbai (128) 27 Falcon r5.1 4.89 GHz 7.984 × 10−2 2.665 × 10−2 135.78 μs 117.56 μs
ibmq_toronto (32) 27 Falcon r4 5.09 GHz 8.680 × 10−2 6.050 × 10−2 115.84 μs 104.92 μs
ibm_washington (64) 127 Eagle r1 5.07 GHz 4.734 × 10−2 2.789 × 10−2 94.38 μs 90.82 μs
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Naively, this approach of measuring energy requires Nbond

different measurement patterns appended at the end of state
creation as readout for the total energy if each bond is mea-
sured separately. However, we can divide the bonds into even
and odd groups, as above, and can perform the Bell measure-
ment in parallel within each group. Then we only need to
perform two different sets of measurements. This turns out
to be the approach we used to perform large-system (up to
N = 102 qubits) cloud experiments on real devices to obtain
the total energy.

We mainly use the Bell-state approach to measure the
system’s energy, as it requires the least resource compared to
two other approaches.

B. Error mitigation

Here we describe the approaches we have used to im-
plement error mitigation on of readout and gate errors. For
additional information, see Appendix C, and for example
codes, see the Supplemental Material [45].

1. Measurement/readout error mitigation

For superconducting qubits, the readout error can be as
large as 10% or more and it is therefore crucial to mitigate
the measurement error to calculate the correct energy of the
created state on the real device. Due to the expanding deploy-
ment of cloud quantum computers, the interest in the issue of
state preparation and readout error has recently been rekindled
[46–51]. The key idea is to first characterize the measurement
pattern dependent on the state input, such as from the detec-
tor tomography or simply measuring the probability matrix
M that relates the input states to the measured outcomes,
i.e., Pmeasured = M Pideal, where Pmeasured and Pideal represent
respectively the measured and ideal probability distribution.
By properly inverting the relation with the constraint that the
outcome distribution Pideal be nonnegative, one can obtain the
mitigated distribution to evaluate the observables.

For N qubits, the complete matrix M is of size 2N × 2N

and requires preparation of 2N computational states, thus is
not efficient and is only doable for a small number of qubits.
As the models we consider here contain only nearest-neighbor
interactions, we are mainly concerned with measurement mit-
igation for pairs of qubits in a bond, i.e., involved in the
interacting Hamiltonian, and such simplification allows us
to deal with large systems in a practical way. We can per-
form readout mitigation pairwise for the nearest-neighbor two
qubits on all bonds. Similar to the energy measurement, this
can be reduced to two sets of mitigation, i.e., on pairs of
even and odd bonds, respectively. Each mitigation requires
four different inputs from all two-qubit computational basis
and measurement in the same basis gives rise to a 4 × 4
matrix M, which we can then use to infer the ideal two-qubit
measurement distribution so as to obtain the mitigated energy
contribution.

2. Bell-measurement mitigation

In our cloud experiments with large numbers of qubits, the
local energy for a pair of qubits is obtained by measuring in
the Bell-state basis, which uses an inverse circuit for Bell-state

preparation and involves CNOT gates. To mitigate potential
errors caused by imperfect CNOT gates, we adopt the above
readout mitigation for the Bell measurement. Specifically, for
each pair in the bonds, we prepare the four Bell states and then
immediately measure qubits pairwise in the Bell-state basis,
such as the circuit shown previously, to obtain a 4 × 4 Bell-
state assignment matrix MBell for each pair. With this we can
mitigate the outcome distribution and hence the energy value
obtained from the Bell-state measurement.

3. Gate-error mitigation

By doing readout mitigation we are probing the properties
of the state actually created on the quantum devices. How-
ever, the observable expectation is affected by gate errors as
well that prevent us from obtaining the idealized value. To
estimate the latter, prior works have considered pulse and
gate-error mitigation by extrapolating to the zero-error limit
[7–9], and this is an extrapolation of the physical observables,
not the actual observable values associated with the quantum
states created. Nevertheless, it is still important to see how
well quantum computers can estimate these values despite
the noise and errors, especially in the regime where direct
classical calculations might not be feasible.

However, to perform accurate gate mitigation, one needs to
have substantial access to the hardware performing pulse-level
optimization and operations [9], which is still not practi-
cal for dealing with a large number of qubits. (Note that
recent experiments have been carried on 26 qubits using
pulse-level zero-noise extrapolation [15].) Instead, we will
use the gate-level zero-noise extrapolation (ZNE) approach
discussed in Refs. [10–13]. In particular, our approach builds
on the idea in Ref. [13] and we prepare the circuits to create
|ψn〉 = U(U−1U)n|0...0〉, where n is a nonnegative integer and
U = Uvar ({θ})Uinit , as in Eq. (14) of the main text, denotes
the circuit to prepare the ansatz state from the fiducial state
|0 . . . 0〉, i.e., |ψansatz〉 = U({θ})|0 . . . 0〉, and then use several
forward-backward repetitions in U to evaluate the observ-
able On = 〈ψn|Ô|ψn〉, as a function of n. Ideally, different
n should give the same state and hence the same value for
the observable Ô. However, noise and errors spoil this and
the state with larger n should be noisier. The extrapolation to
the gate-level zero-noise limit is done by a fitting to On with
m = 2n + 1 → 0 limit.

4. Reference-state gate-error mitigation

Building on this, we propose to use a reference state (or
possibly multiple ones), which is contained in the ansatz
family, for example, the product of Bell pairs that we use
below (via setting all θ ’s to zero, i.e., |ψsinglets〉 = U({θ} =
0)|0 . . . 0〉), with a known exact energy value, to improve
the extrapolation of the energy value or other observables.
Running the energy cloud experiment for this reference
state with the above gate-level mitigation, we obtain the
naively-extrapolated experimental value and hence the pos-
sible mismatch with the exact value. Using such knowledge
for the reference state as a calibration, we can estimate the
expected value of the ansatz state from the naive experimental
value. Combining both gate and readout error mitigation, we
are able to reach the accuracy of the extrapolated energy with
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a few percentages of the exact value for all ranges of the
qubit number that we have tested on real devices. We expect
that this reference-state ZNE (rZNE) may be applied to the
general VQE platform. It does not require additional circuits
from randomized compiling, as done, e.g., in Ref. [12,14], but
averaging the results from these randomized circuits can be
used to further improve the accuracy.

C. Cloud experimental results: Reference-state zero-noise
extrapolation applied

From the 102-qubit Heisenberg-chain experimental data in
Figs. 5(a) and 5(b), we fit the total energy of the optimal ansatz
state and Bell pairs to a form fE (m) = a exp(−bm) + c and
obtain their respective ZNE values −199.2 and −169.8. The
energy of Bell pairs with N qubits is known exactly, −(2 +
�)N/2, which is −153 when N = 102 and � = 1. The two
values for the Bell pairs enable us to naively correct the ansatz
state energy from −199.2 to −199.2/(169.8/153) ≈ −179,
close to the numerical MPS value −174.04.

The noise in real devices is very complex, but a sim-
plified model on neighboring two qubits is a depolarizing
channel: ρ2 → (1 − pm)ρ2 + pmI ⊗ I/4. One naively expects
that pm = 1 − e−bm and this implies that fE (m) = Ee−bm. (In
Appendix E, we provide further results of the decay constant
b.) But in our fitting above, we observe a nonzero residual
value c. This means that we should rescale only the drop (i.e.,
a) from m = 0 to m → ∞. To be more precise, the rescale
factor r is obtained via aB · r + cB = Ebell, where Ebell is the
exact Bell pairs energy and the subscript B in a and c denotes
the parameters obtained from fitting the cloud experiments
for Bell pairs. Assume the cloud experiments for the optimal
ansatz experience similar noise and errors, as their circuit
structure and depth are identical (except the rotation param-
eters), we obtain the extrapolated experimental ansatz energy
to be Eexp = aE × r + cE , where the subscript E denotes the
parameters obtained from fitting the cloud experiments for
the ansatz. Applying this to the 102-qubit cloud experiment,
we obtain almost the same result (up to rounding): Eexp =
−179.1 ± 3.1. This is how all the other reported data were
obtained. From our experience, the results obtained this way
do not differ much from the naive rescaling in most of our
cloud experiments.

We note that in this set of cloud experiments, the maximal
CNOT depth is 63 and the maxmial total number of CNOTs
used is 3186. Similar experimental results on 50 qubits in
ibmq_brooklyn are shown in Figs. 5(c) and 5(d). We also
note that, in Ref. [12], |00 . . . 0〉 was used as a reference
state in a circuit that is used to extract the depolarizing rate.
Additional randomized instances (e.g., 448 copies) of each
main circuit were needed for averaging [12], in addition to
tripling and quintupling all CNOT gates for ZNE [11].

1. Cloud experimental results for the Heisenberg model
on various sizes

Table I has a summary of cloud experimental results of
Heisenberg chains with 19 different sizes (ranging from 4 to
102 qubits) and some were averaged over several different sets
of qubits or different devices. We refer to Tables II and III for

a comprehensive list of 39 mitigated results on nine different
backends. These backends possess different qubit numbers,
quantum volumes, and noise and error rates (see Table IV), but
the success across all these backends (with varying numbers
of qubits used) demonstrates the utility of such a simple and
scalable rZNE approach. With these results, we can, for ex-
ample, extract the energy per site in the thermodynamic limit
(see also Fig. 6), which yields a value of −1.713 ± 0.046 that
agrees with the exact Bethe ansatz calcuation, 4(ln 2 − 1) ≈
−1.773 [27], within 3.4% of deviation.

2. Results using random parameters

To illustrate a proof-of-principle demonstration of the
potential hybrid quantum-classical approach, we have also
performed additional cloud experiments on 40 qubits with
random parameters in the ansatz, and our rZNE method gives
energy values agreeing well with the numerically calculated
values; see Figs. 5(e) and 5(f). This demonstrates that it is
feasible to use quantum devices to extract mitigated expecta-
tion values accurately, and, based on these, estimate the next
iteration of the variational parameters by classical comput-
ers. Hence, there is no need to know the optimal variational
parameters in advance, and the rZNE-mitigated variational al-
gorithm can potentially become practical for large-scale NISQ
devices.

3. Results for the XXZ model

As constructed, our approach works equally well for the
XXZ model, and in Fig. 7, we present the two sets of cloud
experimental results for a wide range of � ∈ [−0.8, 1.4] with
N = 40 and N = 80 spins, respectively, carried out on two
separate backends, ibmq_brooklyn and ibm_washington.
The mitigated values agree well with the anticipated ansatz
values. (The results for additional experiments with N = 8
chain are shown in Appendix D and fall within several per-
centages of the numerical ground-state energy values.)

V. BEYOND ONE DIMENSION

We expect that our protocol can be generalized to two-
dimensional structures. As a concrete example beyond the
strict 1D, we consider a two-leg ladder of the XXZ model (see
Fig. 8). We first prepare all vertical pairs of qubits in singlets,
and apply the XXZ anastz gates to all horizontal odd bonds,
even bonds, and then all vertical bonds. This constitutes a one-
layer ansatz and can be repeated for multiple layers. We have
performed numerically simulations and found that for N = 6
(total number of spins in the ladder), the two-layer ansatz can
achieve the exact ground state for � > −1 up to machine pre-
cision. It is likely that for larger N , exact ground states can be
achieved by using more layers. Our ansatz achieves very high
GS fidelity, exceeding 0.95 even for N = 50 with just three
layers, as well as high acurracy in the GS energy; see Fig. 9.
There is an interesting phase diagram from this two-leg model
[52,53], including a Haldane phase, which could potentially
be implemented on a digital quantum processor.
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FIG. 5. Zero-noise gate-error extrapolation for cloud experimental realizations of optimal ansatz states of Heisenberg spin chains, along
with the use of Bell pairs. The data points presented were already processed by measurement-error migitation. (a), (b) 102-qubit Heisenberg
chain on ibm_washington for the optimal ansatz state and Bell pairs, respectively; (c), (d), similarly for a 50-qubit Heisenberg chain on
ibmq_brooklyn; (e), (f) results for two 40-qubit random ansatz states on ibmq_brooklyn. In panel (e), the parameters [θeven, θodd] = [3.5, 0.7]
were used and the exact ansatz energy is −16.0669. In panel (f), parameters [0.3,1.7] were used and the exact ansatz energy is −48.0625.
Separate cloud experiments (results not shown in plots) with 40-qubit Bell pairs gives a naive extrapolation of the Bell pairs energy to be
−67.0(4.0), whose ideal value is −60. The migtigated values with the reference state for panels (e) and (f) are −15.4 ± 0.7 and −46.1 ± 2.4,
respectively.
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FIG. 6. Approximated ground-state energy per site vs the total
number N in the spin chain obtained from cloud experiments per-
formed on various IBM Q backends using the one-layer variational
ansatz. The dashed line is a fit from the data: −1.713 + 0.393/N
and the approximated ground-state energy at the N → ∞ limit is
−1.713 ± 0.046, which is compared to the exact result from the
Bethe ansatz solution 4(ln 2 − 1) ≈ −1.773.

VI. SUMMARY

In this work, we have analyzed physics-motivated ansatzes
for the Heisenberg and the XXZ spin chains and showed
their potential use to simulate the ground-state wave function
and extract the ground-state energy. The accuracy improves
substantially by increasing the ansatz layers. We have also
developed efficient and scalable methods for measuring the
energy and mitigated the experimentally measured values. By
carrying out the cloud realization and measurement of the
ansatz states, we have demonstrated that short-depth varia-
tional circuits could be applied to large systems of qubits,
with up to 102 qubits performed on real devices. Despite the
presence of substantial noise and errors in current devices, we
have been able to improve and implement efficient error mit-
igation schemes to deduce accurate ground-state energy from
experiments on large systems. For example, from the data
obtained from our cloud experiments, we were able to exact
the estimated ground-state energy density value that agrees
with the exact Bethe ansatz solution to within 4% of error. We
note that for our Heisenberg and XXZ models, the reference
state is chosen to be a product of singlet pairs. For other
models, the choice of the reference states may be important.

Our work thus opens up the potential practical use of error
mitigated VQE on large quantum computing backends for
improved accuracy. One first applies our rZNE (combining
readout mitigation and possibly further mitigation) to obtain
the extracted observable value(s) and/or its gradients from
quantum devices, then uses classical computers to search for
variational parameters to be used in the subsequent iteration
of experiments with mitigation. The procedure is then iterated
until the mitigated observable value(s) converge to within cer-
tain accuracy. Such an error-mitigated, rZNE VQE approach,
though not yet practical for large systems in the current
cloud-based setting, due to limited allocated time and long
job queues, seems plausible in dedicated experiments. Our

cloud experiments using randomly chosen parameters already
demonstrated agreement with the expected ansatz energy. To
enter a regime where quantum advantage may be realized,
we will likely need to go beyond one dimension, e.g., two
dimensions, where classical simulations of quantum many-
body systems become intractable as the system size increases.
Toward this goal, we have also analyzed a two-leg ladder and
showed the applicability of our ansatz.
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APPENDIX A: EXACT 4-QUBIT GROUND STATE
FOR THE OPEN CHAIN

For four-qubit XXZ model with the open-boundary condi-
tion, we could assume the ground state to be of the form

|ψ0〉 = a
1√
2

(|0101〉 + |1010〉) + b
1√
2

(|0011〉 + |1100〉)

+ c
1√
2

(|1001〉 + |0110〉), (A1)

and evaluate the energy, giving

〈ψ0|HXXZ |ψ0〉 = 4a(b + 2c) + (b2 − c2 − 3a2)�. (A2)

To minimize the energy with the constraint that a2 + b2 +
c2 = 1, we can introduce a Lagrange multiplier to enforce the
constraint to the optimization of a quadratic function of a, b
and c. It can be formulated as solving an eigenvalue problem
for a 3 × 3 matrix, and we find that the exact ground-state
energy E0(�) can be obtained from the lowest real root of a
third-order polynomial,

(12� − 3�3) − (20 + �2)x + 3�x2 + x3 = 0. (A3)

The coefficients (a, b, c) in the ground-state wave function
can be obtained as follows:

ã(�) = [−� + E0(�)]/2, (A4)

b̃(�) = 1, (A5)

c̃(�) = [−4 − 3�2 + 2�E0(�) + E0(�)2]/8, (A6)

with (a, b, c) = (ã, b̃, c̃)/
√

ã2 + b̃2 + c̃2.
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FIG. 7. The mitigated energy results for XXZ spin chains. (a) A 40-qubit XXZ chain on ibmq_brooklyn and (b) an 80-qubit XXZ chain
on ibm_washington. The information about which physical qubits were used is listed in the Appendix.

One can also write down the equation for the parameters
in the one-layer ansatz to arrive at the above four-qubit state
(A1), up to a global phase, and in principle solve for the
optimal parameters for the ground state. However, we could
not find a closed form expression for the parameters.

For the periodic boundary condition, one can use the
anastz,

|ψ0〉 = a
1√
2

(|0101〉 + |1010〉) + b
1

2
(|0011〉 + |0110〉

+ |1100〉 + |1001〉), (A7)

FIG. 8. The anastz for the two-leg ladder. (a) We initialize the
state in a product of singlets which are formed between the upper
spins and the lower spins. One-layer ansatz includes (b)–(d), where
the gates are indicated by shaded rectangles.

and the problem reduces to solving a 2 × 2 matrix, which
was previously presented in the Supplemental Material of
Ref. [54], and the analytic expression for the four-qubit
ground state is available there. Given that we know from
numerics that the one-layer ansatz contains the exact ground-
state wave function, we can similarly solve for the optimal
parameters by identifying the ansatz and exact wave functions.

APPENDIX B: PROPERTIES OF QUANTUM BACKENDS
AND THE CHOICE OF QUBITS

The average properties of the nine quantum backends of
IBM are listed in Table IV and there are three different lay-
outs, as illustrated in Fig. 4. Seven of the backends have
27 qubits, the backend ibmq_brooklyn has 65 qubits, and
ibm_washington has 127 qubits, with the last also shown
in Fig. 1(b). As it is not possible to list all the detailed in-
formation in this Appendix, we have downloaded complete
device properties for individual qubits, as well gate errors and
readout errors in the Supplemental Material [45]. Before cloud
experiments were performed, we examined the detailed error
rates reported on the service website and chose a path with a
desired total number of sites along those connected qubits so
as to avoid CNOT links with high error rates. For large system
sizes, it is inevitable that we encounter a few CNOT links that
may have somewhat higher error rates than others. We note
that the detailed noise and error rates may drift over time as
the devices are regularly calibrated and this impact large paths
more than small ones. For example, to perform the 80-qubit
XXZ model cloud experiments in Fig. 7(b), we had to use a
different path from the one used previously for the Heisenberg
model (reported in Table II) to avoid certain CNOT links with
large error rates.

APPENDIX C: DATA ANALYSIS

1. Measurement mitigation

In the main text, we have described details of
measurement/readout mitigation, including the standard
one and our Bell-state measurement mitigation. In the
Supplemental Material [45], we have provided a Python
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FIG. 9. The fidelity (a) and relative energy error (b) of the optimal ansatz state and the exact ground state of the two-leg Heisenberg model
with the total number of qubits N using one to three layers in the ansatz. The bond dimension we used in the MPS is χ = 64.

notebook that implements the Bell-measurement mitigation,
as well as an exemplary data output from an actual
cloud experiment. With sufficient repetitions of energy
measurements (see Tables II and III for the numbers,
ranging from 25 to 146 on different selections of qubits and
backends), we can then estimate the average and uncertainty
of the energy.

2. Zero-noise extrapolation

In fitting the energy data (e.g., after measurement miti-
gation is applied), as described in the main text, we use an
exponential function

fE (m) = a exp(−bm) + c, (C1)

where m = 2n + 1 is the total number of U or U−1 in the
circuit to prepare the ansatz state. For most experiments we
used n from 0 to 4; for some we had n from 0 to 5. In all
the experiments we did, the uncertainty from extrapolations
is significantly larger than the statistical uncertainty from the
energy measurements. The error bars from the extrapolated
values are estimated from the extreme fit parameters values
within the 68.27% confidence interval, corresponding to one
sigma standard deviation. In the Supplemental Material [45],
we have provided a Mathematica notebook that illustrates the
analysis.

3. Reference-state gate-error mitigation

After we get the fitted energy curves for both experiment
energy fe(m) and reference-state energy fr (m)

fe(m) = ae exp(−bem) + ce, (C2)

fr (m) = ar exp(−brm) + cr, (C3)

we use the theoretically known value of the reference-state
energy Eref to calibrate the “experimental” energy Eexp,

Eexp = ae
Eref − cr

ar
+ ce, (C4)

where the uncertainty of the Eexp comes from combining the
uncertainties of all the fit parameters in the equation. In the
same Mathematica notebook, we also implement this analysis
for two different sets of data.

APPENDIX D: ADDITIONAL CLOUD
EXPERIMENTAL RESULTS

1. Results on Heisenberg chains

The nine IBM Q backends we use have three different
layouts, as illustrated in Fig. 4. The complete list of the re-
sults from the cloud experiments for the Heisenberg model
on various backends and with various number of qubits is
shown in Tables II and III. These were carried out using the
Bell-measurement approach.

2. Results on XXZ chains

We have also performed cloud experiments for 8-qubit
XXZ model on ibmq_montreal, with � ranging from −0.8
to 1.4, and we use two different measurement methods to
calculate the energy, as shown in the Fig. 10. The two methods
of the XY Z measurement and of the Bell measurement agree
with each other. In addition, we have also used quantum state
tomography to measure the total energy at two different values
of � (0 and 1); the energy values obtained from tomography
also agree with the other two approaches. In particular, the
energy results from the state tomography give −13.46 ± 0.31
at � = 1 and −9.3 ± 0.8 at � = 0.

3. Concurrence results

With the tomography approach, we have obtained addi-
tionally the concurrence for all the bonds, and the cloud
experimental results are compared to those of the ansatzes
and the exact solution in Fig. 11. Due to the open bound-
ary condition, the concurrence alternates from large to small
between odd and even bonds. The entanglement on all even
bonds is identically zero for the one-layer ansatz. This is due
to the initial state being product of singlet pairs on odd bonds
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FIG. 10. The energy results for an 8-qubit XXZ chain on ibmq_montreal. (a) The energy is obtained using the Bell-measurement
approach on physical qubits [15,12,13,14,16,19,22,25]; (b) The energy is obtained using the XY Z measurement approach on physical qubits
[11,14,16,19,22,25,24,23]. We have also performed energy measurement using quantum state tomography for � = 0 and 1. The three methods
for measuring energy agree very well in our cloud experiments.

and the one-layer entangling operation on even bonds is not
strong enough to make the pairs on even bonds entangled. For
odd bonds, the concurrence values inferred from the clound
experiments are {0.890372, 0.767076, 0.683096, 0.768255}
at � = 1 and {0.850059, 0.663988, 0.648982, 0.812279} at
� = 0. As the quantum phase transition at the Heisenberg
point � = 1 is infinite-order, the concurrence does not exhibit
singularity across the transition, so we did not perform cloud
experiments for the concurrence over a wide of �, but only for
� = 0&1 as an illustration. These concurrence values were
obtained by use our rZNE approach with the naive extrapola-
tion using Bell pairs as the reference. In doing ZNE, we had to
repeat (UU−1) several times, but the resulting reduced density

matrices become unentanlged for n � 2 and this makes a fit-
ting not possible. The error bar is thus not directly accessible,
but can be estimated from the energy curves.

4. Information for Fig. 7 in the main text

(a) A 40-qubit XXZ chain on ibmq_brooklyn with
physical qubits being [38,41,42,43,52,56,57,58,59,60,53,47,
46,45,39,31, 30,29,24,15,16,17,11,4,5,6,7,8,12,21,20,19,25,
33,34,35,40, 49,50,51]. (b) An 80-qubit XXZ chain on
ibm_washington, with physical qubits being [97,96,95,
94,90,75,76,77,71,58,57,56,52,37,38,39,33,20,21,22,23,24,25,
26,27,28,29,30,31,32,36,51,50,49,48,47,46,45,44,43,42,41,53,
60,61,62,63,64,65,66,67,68,69,70,74,89,88,87,93,106,107,108,

FIG. 11. Ground-state entanglement property—concurrence—for a chain of 8-spin XXZ model with the open-boundary condition: (a) � =
1 and (b) � = 0. The concurrence is calculated for two neighboring qubits ( j, j + 1) on jth bond ( j ∈ [1, 7]) using quantum states obtained
from optimizing one-layer, two-layer, and three-layer ansatzes, as well as from exact diagonalization of the XXZ Hamiltonian and from the
cloud experiment done on ibmq_montreal with the one-layer ansatz. Note that with just one layer, the concurrence on the even bonds is zero.
From these we observe that the entanglement is decreasing from the one-layer optimal ansatz to two- and to the three-layer one, toward the
exact solution. The reason is that the initial state of the ansatz is a product of singlet Bell states on odd bonds, which possesses a very high
global entanglement. The gates on even bonds act to decrease the entanglement of Bell states (on odd bonds) to increase the entanglement on
even bonds.
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FIG. 12. The decay coefficient b from extracting the ansatz
energy (bE ) and from the Bell pairs energy (bB) vs the
anisotropy parameter � in the 80-qubit XXZ model, performed
in ibm_washington. The QOD is related to the decay rate b as
QOD = 7/b.

112,126,125,124,123,122,111,104,103,102,101,100,110,118,
117,116,115,114].

APPENDIX E: QUANTUM OBSERVABLE DEPTH

In fitting the energy data, we use an exponential func-
tion fE (m) = a exp(−bm) + c, where m = 2n + 1 is the total
number of U or U−1 in the circuit to construct the state. We
note that each U contains seven layers of CNOT gates. When
such an exponential-decay fitting works, the quantity 7/b,
roughly speaking, represents the decay depth in the quantum
circuit for the total energy, which we will refer to as the quan-

tum observable depth (QOD), with the observable being the
total energy here. It basically provides a practical way to mea-
sure how the experimental observable value degrades with the
number of CNOT layers (as CNOT gates have the largest error
rates in basis gate set). From the ansatz energy data of the 102-
qubit cloud experiment on ibm_washington, we obtain its b
parameter to be bE = 0.567 ± 0.03 and hence about 12.3 ±
0.7 value of the QOD. For the Bell pairs data, we extract that
its b parameter to be bB = 0.53 ± 0.05 and hence a value of
13.1 ± 1.2 for the QOD. These two values seem to agree and
we average them to yield a QOD of 12.7 ± 0.7. (The other
set of 102-qubit cloud experiments gives a QOD of 12.59 ±
0.34.) The QOD depends on the qubits used in the cloud
experiment and possibly on the number of qubits as well.
The 50-qubit cloud experiments on ibmq_brooklyn give a
QOD of 18.7(1.5). Among all the cloud experiments carried
out on the backend ibm_washington, we find the cloud ex-
periment using the 10 qubits [30,31,32,36,51,50,49,48,47,35]
gives the best QOD value of 44 ± 7. For the QOD from other
cloud experiments and other backends, see Tables II and III.
The QOD serves as a quality measure of those qubits in
the quantum processor involved in the benchmark, analogous
to but different from the metrics, such as the randomized
benchmarking and the quantum volume. We note the QOD
will depend on the choice of the observable and the model
used, in particular, its value varies across different values
of � in the XXZ model; see, e.g., the decay coefficient b
extracted for the 80-qubit XXZ model in Fig. 12. Moreover,
the form of the fitting function may be different; e.g., for
some prior cloud experiments with small number of qubits,
both linear and quadratic fits were used in the CNOT-gate
mitigation [10–12]. In these cases, we may need to use other
quantities (such as the slope) to define the notion similar to
the QOD.
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