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As machine learning (ML) methods continue to be applied to a broad scope of problems in the physical
sciences, uncertainty quantification is becoming correspondingly more important for their robust application.
Uncertainty-aware machine learning methods have been used in select applications, but largely for scalar
properties. In this work, we showcase an exemplary study in which neural network ensembles are used to
predict the x-ray absorption spectra of small molecules, as well as their pointwise uncertainty, from local atomic
environments. The performance of the resulting surrogate clearly demonstrates quantitative correlation between
errors relative to ground truth and the predicted uncertainty estimates. Significantly, the model provides an upper
bound on the expected error. Specifically, an important quality of this uncertainty-aware model is that it can
indicate when the model is predicting on out-of-sample data. This allows for its integration with large-scale
sampling of structures together with active learning or other techniques for structure refinement. Additionally,
our models can be generalized to larger molecules than those used for training, and also successfully track
uncertainty due to random distortions in test molecules. While we demonstrate this workflow on a specific
example, ensemble learning is completely general. We believe it could have significant impact on ML-enabled
forward modeling of a broad array of molecular and materials properties.
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I. INTRODUCTION

Recent years have witnessed the emergence of a thriv-
ing research enterprise directed towards the application of
data-driven science to condensed matter physics, chemistry,
and materials science [1,2]. In particular, machine learning
(ML) models such as artificial neural networks, which are
universal approximators that in principle can fit any function,
have been widely used to model complex relationship among
physical quantities. The intersection of ML tools, emerging
high-performance computing platforms and a growing num-
ber of large open source datasets has made a transformative
impact on research in the physical sciences.

In the context of first-principles simulations, it has been
demonstrated that ML can be used to predict molecular or
materials properties from atomistic structure at comparable
accuracy to the quantum mechanical theories used to produce
their training data, but at only a tiny fraction of their com-
putational cost [1,3–5]. As a result, ML has the potential to
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tremendously accelerate computational studies, bridge first-
principles simulations to a larger time and length scales, and
enable efficient materials discovery pipelines [6]. Similarly,
ML surrogate models can also be used to bypass the numerical
solution [7,8] and to explore the quantum states [9,10] of
model Hamiltonians.

While a trained ML model provides a prediction, it usually
does not provide a measure of its confidence, despite the
crucial importance of model uncertainty for the researchers
who apply them. In particular, ML models are designed to
make accurate predictions on inputs sampled from the same
distribution as the training set. However, they often fail com-
pletely when tasked with predicting on data sampled from a
different distribution. Importantly, it is not always obvious
(or detectable via some heuristic) when a model is perform-
ing inference on an out-of-sample input. In order to detect
when this happens, one needs methodologies that incorporate
uncertainty quantification (UQ). These are broadly classified
as predictive methodologies that include accurate estimates
of different types of statistical uncertainty. In the domain of
ML and surrogate modeling, this often refers to the ability of
trained models to provide some measure of confidence in the
accuracy of their predictions [11]. In research scenarios where
out-of-sample data are likely to be frequently encountered, the
ability of ML models to perform UQ becomes crucial.

Understanding model confidence is a key piece of the
ML pipeline. Most research work simply evaluates model
performance on a testing set, treating that as a proxy for
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understanding on-the-fly model performance. UQ takes this
one step further. For example, UQ is a critical component
of Gaussian process-based [12] and neural network ensemble
(NNE)-based Bayesian optimization, which has been em-
ployed for the autonomous design of experiments in many
different domains, from the design of nanopaticles via flow
reactors [13–15] to the optimization of mechanical proper-
ties of materials [16,17]. Neural network potentials (NNPs)
[3,18–23] often utilize UQ to predict where their models
are failing, and where they require retraining [24,25] (known
as active learning [26]). Other works apply UQ in active
learning for data-efficient prediction of molecular proper-
ties, such as the enthalpy, atomization energy, polarizability,
and HOMO/LUMO energy levels [27]. However, existing
uncertainty-aware (UA) models are mostly limited to several
specific topics and not broadly applied in ML applications.

In this study, we present a NNE method for quantifying
the uncertainty of predicted vector targets. Specifically, we
use local atomic environment information to predict the x-ray
absorption spectra (XAS) of small molecules. From existing
literature on UQ implementations in ML models, very little
can be discerned about their performance on spectral func-
tions and vector targets in general, as it is unclear how the
standard aforementioned applications would generalize from
predicting scalars to a much higher dimensional space. We
consider this XAS problem as a case study, but note that
our approach is completely general. It can be applied in the
broader context of any molecular or materials property. We
will show that our NNEs are not only capable of making
quantitatively accurate predictions of the XAS spectra, but
also of making accurate estimates of the pointwise uncertainty
of said predictions.

XAS is a widely used element-specific materials charac-
terization technique that is sensitive to the local chemical
environment of the absorbing sites [28–33]. However, in-
terpreting XAS data is nontrivial. While some important,
physically motivated heuristics are well known, full under-
standing of the relationship between spectra and underlying
atomic-scale structure is mediated by electronic states. In
particular, first-principles XAS simulations are playing an
essential role in XAS analysis, allowing the interpretation
of precise structure-property relationships otherwise much
more challenging to resolve experimentally. In an XAS
simulation, the spectrum is calculated from the atomic ar-
rangement of the system. Depending on the complexity of
the theory and system, the spectral simulation can be pro-
hibitively time consuming. This limits its use for fast structure
screening/refinement or spectral feature assignment. As a re-
sult, there is a growing interest to develop surrogate models
that can predict XAS spectra, and other types of spectral
targets, from atomistic structures [34].

We focus on the near-edge portion of the x-ray absorp-
tion spectrum, known as x-ray absorption near edge structure
(XANES). Specifically we consider K-edge XANES, corre-
sponding to excitation from a 1s core orbital electron to empty
orbitals or the continuum. We simulate the K-edge XANES
spectra of C, N, and O atoms in small molecular systems
for a large database of density functional theory (DFT)-
relaxed molecular structures: QM9 [35]. Taking a divide-and-
conquer approach, the NNEs are trained only on the local

environments of individual absorbing atoms, and molecular
spectra are constructed by averaging the predictions of the
individual absorption sites. Errors are interpreted as standard
deviations and propagated accordingly. Figure 1 demonstrates
the overall workflow. This allows the NNEs to make predic-
tions on molecules larger than what the models were trained
on (similar to how neural network potentials can generalize to
larger systems if correlations are sufficiently short-range). As
such, this approach could have broad implications in the fields
of inverse design and generalizable surrogate modeling.

Key to any UQ methodology is understanding how trained
models perform when data are pushed out-of-sample during
inference. The addition of UQ to a surrogate model sup-
ports its generalized use. In the context of molecular systems
specifically, we enumerate four physically motivated classes
of generalization in which a UQ methodology can flag adverse
effects of the changing local environment on model perfor-
mance:

(1) chemical, e.g., including larger molecules relative to
the training set,

(2) configurational, e.g., including structural distortions
from equilibrium geometry (such as due to thermal effects),

(3) electronic, e.g., introducing new chemical motifs (such
as aromaticity) that are not necessarily a function of molecular
size,

(4) environmental, e.g., introducing molecule-solvant in-
teraction due to solvation.

In principle, UQ methods should be able to detect when
out-of-sample data due to any of the above situations oc-
curs. In this work, we directly study how new distributions
of testing data due to chemical and configurational changes
affect model and UQ performance. Studies of electronic and
environmental effects are beyond the scope of the current
work.

As noted, to date, incorporation of UQ into ML applica-
tions for materials science and chemistry has been limited
in scope, particularly focusing on scalar target quantities (we
highlight a notable exception, in which various UQ-enabled
ML methods were used to predict the x-ray emission spectra
of transition metal complexes [36]). In the present work, with
our focus on spectroscopy, we explore the challenges associ-
ated with incorporating UQ into models where the target space
is of a substantially higher dimension, corresponding to the
vector of spectroscopic intensity versus x-ray photon energy.
In particular, this is the first time UQ methods and the requisite
analysis have been demonstrated for XAS prediction.

The manuscript is organized as follows. In Sec. II, we
outline the procedures used for constructing our databases,
and describe the featurization and forward modeling. This
includes a brief discussion on our choice of local feature em-
bedding and various forms of UQ. Next, in Sec. III, we outline
our procedures for analyzing the database using unsupervised
and general data-analysis techniques, as well as final data
preparations for machine learning. Section IV contains the
main results of this work, and demonstrates the ability of our
trained models to make accurate predictions and perform UQ
on different subsets of small molecules. Section IV B specif-
ically highlights the power of our models to generalize to
molecules with more atoms than those used during training. In
Section IV C, we also discuss the NNE’s ability to accurately
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FIG. 1. A cartoon of our workflow showcasing the three required steps for inference using the NNE method on a molecule in its optimized
geometry. Featurization: the atom type-resolved local structural information (red, gray and blue highlights) about the absorbing atom (yellow
highlight) is encoded into a fixed-length vector representation. Fluorine and hydrogen are also encoded during featurization (for visual clarity,
these are not shown in this example). Neural Network Ensemble: each of the estimators receives the identical input vector, and each outputs
a spectrum. The results are averaged over the NNE, and the spread determined. Each estimator is depicted above as having 5 inputs and 10
outputs. However, in this work, input vectors have M = 155 elements, and the output spectra have M ′ = 200 elements. Spectrum: the predicted
spectra μ̂ and the estimate for its uncertainty σ̂ are shown, with the ground truth μ for reference.

quantify uncertainty when tested on structures which are not
in their relaxed geometries, a different type of generalization
from the training database. Finally, we conclude and discuss
the outlook and future plans of this work in Sec. V.

II. THEORY

The general theory of ensemble learning and UQ has a rich
history in the ML literature. In this section, we summarize
previous work and highlight the key principles and theory
behind ensemble learning and UQ. Specifically, we provide an
overview of supervised learning (and feed-forward neural net-
works), UQ, and ensembling in Secs. II A–II C, respectively.

A. Supervised learning and feed-forward neural networks

In supervised learning tasks, a model fθ is tasked with
learning a mapping fθ : RM �→ RM ′

, where M is the number of
features (or the length of the input vector) and M ′ is the num-
ber of targets (or the length of the target vector). This mapping
can take many forms, including polynomials, random forests,
nonparametric models such as Gaussian processes, or deep
learning architectures, such as neural networks. For the pur-
poses of this discussion, we focus on parametric models,
where a finite number of parameters θ determine the form of
the approximating function fθ. During the training (or fitting)
process, parameters θ are optimized so as to minimize the loss
function, which is a measure of difference between the ground
truth target values {y(i)} and the model predictions fθ (x(i) ) =
ŷ(i). The data on which the model is fit is referred to as the
training set. Models are fine-tuned on the cross-validation set,
and the final model evaluation is performed on data the model

has yet to see, usually called the testing set. For an in-depth
tutorial on ML techniques and proper use, we refer the reader
to Refs. [37,38].

We use feed-forward neural networks (FFNN) to perform
the supervised learning task in all results to follow. The details
of FFNNs are explained in many other works (and espe-
cially in the context of spectroscopy prediction and analysis
[8,34,39–43]), and are thus not explained here. However, one
key property of FFNNs is that they are universal approxi-
mators, meaning they can, in principle, model any function
provided the model has enough trainable parameters and is
trained on enough data. This is relevant for constructing en-
sembles of neural networks, described in Sec. II C. The details
of our features and targets are explained in Sec. III D.

B. Uncertainty quantification

Generally, ML models are tasked with modeling inputs to
outputs, as described in the previous subsection. However,
there are currently significant ongoing efforts to leverage sta-
tistical principles to model, or quantify, the uncertainty in
these predictions. For example, Gaussian processes (GPs) [12]
are nonparametric generalizations of the multivariate normal
distribution to the continuum, and are finding widespread use
due to their ability to rigorously quantify statistical uncer-
tainty. This uncertainty is derived from assumptions about
correlation lengths embedded in a covariance kernel, allowing
one to draw samples from the GP consistent with the param-
eters of the embedded length scales. For the purposes of this
work, we henceforth outline ways to quantify uncertainty in
parametric models such as FFNNs. We reserve the discussion
of ensembling specifically to Sec. II C.
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Uncertainty-aware models incorporate UQ in order to
address two different types of uncertainty: aleatoric and
epistemic [11,44]. Aleatoric uncertainty is also called “irre-
ducible,” as it is due to natural physical processes (such as
randomness in nature) or inherent instrument error. Intrinsic
broadening processes in spectroscopy or noise in an image
are two examples of aleatoric uncertainty. We highlight that
error bars corresponding to uncertainty in a physical measure-
ment are also examples of aleatoric uncertainty. Epistemic
uncertainty is due to an insufficient model. It is often large
when training data in some region of the input space is not
adequately sampled. Unlike aleatoric uncertainty, epistemic
uncertainty can be improved by using some combination of
a more sophisticated model, incorporating more training data
or prior information. While it is nontrivial, recent work has
demonstrated that both classes of uncertainties can be pre-
dicted using ML techniques [45].

One method for modeling aleatoric uncertainty in partic-
ular is the mean-variance estimation (MVE) [46]. A MVE
model will attempt not only to predict the target value, but also
an estimation for the uncertainty in that prediction as another
output. Concretely, given an input feature dataset X ∈ RN×M

(where N is the number of training examples) and a target
dataset Y ∈ RN×M ′

, a MVE model will attempt to learn a
mapping f : RM �→ R2M ′

. The output space is doubled in size
since for every output prediction, an uncertainty estimate is
also predicted. If we consider the scalar output case M ′ = 1,

we have a single prediction ŷ and a single prediction for the
estimate of the uncertainty σ̂ . The MVE model is trained
to minimize a negative Gaussian log-likelihood (NLL) loss
function,

L(y, ŷ, σ̂ ) = 1

2
ln 2π + 1

2
ln σ̂ 2 + (y − ŷ)2

2σ̂ 2
. (1)

The principle is simple: if the model makes an accurate pre-
diction [i.e., (y − ŷ)2 is small], it can “afford” to also predict a
low uncertainty σ. However, if the prediction error is large
and cannot be improved during training (perhaps due to a
significantly noisy observation) the model will compensate by
increasing σ̂ , despite paying the penalty of the second term in
Eq. (1). The fact that a MVE model trained using the NLL
loss function has the flexibility to make this tradeoff allows
it to estimate the uncertainty in its own predictions, offering
considerable utility when modeling irreducible noise.

In our work, the simulation of a XANES spectrum from
molecular coordinates is deterministic. Hence, we will only
be concerned with modeling epistemic uncertainty. There are
several uncertainty quantification techniques that can model
epistemic uncertainty, such as Bayesian neural networks
(BNN) [47], Monte Carlo dropout (MCD) ensembles [48],
and neural network ensembles [49,50]. Instead of directly
predicting an estimate of uncertainty, BNN’s treat all of their
parameters as random variables, allowing one to sample from
this distribution during inference, leading to a distribution of
predictions. While proven to be extremely effective in cer-
tain cases [51–53], BNN’s are expensive to train, and it has
been argued that they are consistent with simpler, ensemble-
based approaches [50]. MCD ensembles work under a similar
principle, by randomly disabling neurons during inference, al-
lowing for a sampling over many “effective models” and thus

allowing ensemblelike predictions to be obtained. Statistical
bootstrapping can also be used to generate model diversity,
and has been shown to be superior to MCD in similar appli-
cations [36]. In this study, we choose to use NNEs for the
reasons explained in detail below. Similar to Ref. [36], we
also downsample our training set size in a way similar to
bootstrapping, and combine this with ensembling to create
even more model diversity than either would produce on its
own (and also found that MCD is less effective than our
combined downsampling and ensembling method).

C. Neural network ensembles

NNEs are sets of individual models (or estimators, in the
case of this work these are FFNNs) which are usually trained
independently but used together during inference (see Fig. 1).
The working principle of NNEs is that of the wisdom of
the crowd (or “query-by-committee” [26]): each individual’s
prediction is less robust than the aggregate opinion. More
rigorously, any two models that produce an accurate result
will by definition produce predictions that are similar. How-
ever, due to the vast training weight-space of deep learning
models, when any two models both fail, they will usually
fail in different ways. The training weight-space refers to
the complete set of trainable parameters of a neural network.
The values of these weights are randomly initialized between
different estimators, and since this space can be incredibly
high-dimensional (easily >1 million and often many orders of
magnitude larger), there are a vast number of possible sets of
weights corresponding to local minima in the landscape of the
loss function. The ensemble learning approach turns one of
the neural network’s greatest weaknesses into a strength. Each
estimator (in its own local minimum) will produce roughly
the same correct prediction in a well trained neural network
and is partly what allows neural networks to be so flexible.
However, the differences between these sets is also what leads
to different estimator predictions in failure scenarios.

Empirically, the average over the entire ensemble not only
produces better predictive accuracy, but also allows for UQ by
interpreting the spread in the predictions of the individual es-
timators. Theoretically, an ensemble-averaged prediction can
be thought of as an averaging over the space of “reasonable”
possible functions mapping inputs to outputs given a fixed
training set. This space is infinite, of course, and any finite
sampling of models is not sufficient to rigorously cover this
space. However, it is sufficient to provide useful uncertainty
measures. Choosing how many estimators to use remains a
highly problem- and model-dependent open research question
[26]. This is in stark contrast to a GP, which not only provides
an analytic form for the mean and spread of the GP averaged
over an infinite number of estimators, the spread itself is
rigorously the standard deviation of a Gaussian distribution.
A NNE may not adequately approximate the space and the
spread is not strictly interpretable as a proper standard de-
viation (though it can be used in a similar way [21]). We
thus highlight a critical pitfall: like almost all ML techniques,
especially in deep learning, UQ is hyperparameter-dependent.
These methods must be rigorously tested in order to ensure
they are of the appropriate quality given the problem at hand.
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To our knowledge, there is not yet any formal theory for
interpreting the distribution of predictions of NNEs.

In this study, we choose NNEs for their balance of rel-
ative simplicity, predictive power and overall performance.
We also highlight that they operate on essentially the same
paradigm that any individual estimator does, which makes
them straightforward to train, debug and deploy.

III. METHODOLOGY

In this work, we showcase the utility of the NNE method
for UQ on molecular structure-XAS pairings. Molecular
structures are taken from the QM9 database [35], which is a
subset of the GDB-17 chemical universe [54]. QM9 contains
roughly 134k DFT-geometry optimized small molecules, each
with at most 9 heavy atoms (C, N, O, F). Molecular spectra are
computed using the multiple scattering code FEFF9 [55]. We
focus on C, N and O K-edge XANES spectra from individual
absorbing sites, and as such we partition our database into DA

for A = {C, N, O}. For example, DO is a database containing
all oxygen site-XANES pairs. In the following subsections,
we explain how our features and targets are constructed
(Secs. III A and III B, respectively) and analyzed (Sec. III C).
Finally in Secs. III D and III E, we describe the procedure for
setting up the training and testing sets used in the remainder
of the work, and implementing our NNE approach.

A. Feature construction

XANES is sensitive to the local chemical environment
of absorbing atoms. We therefore choose a structural de-
scriptor that is local to each absorbing site: atom-centered
symmetry functions (ACSFs) [3,18]. We also considered other
descriptors (particularly those from the DSCRIBE library [56])
including the smooth overlap of atomic positions [57] and
many-body tensor representations [58], but ultimately decided
to use ACSF.1 The ACSF feature encodings have been very
successful in modeling total energy partitioned into local
atomic contributions. ACSFs were first proposed by Behler
in 2011 in the context of developing neural network potentials
[3,18] (NNPs). The development of NNPs is summarized in
a recent review by Behler [22], along with the utility and
flexibility offered by ACSFs.

ACSF feature vectors are further described at length in
quite a few recent works, including Refs. [34,60], and as
such will not be repeated here. In brief, the ACSF feature
vectors are atom-resolved representations of the local radial
and angular atomic environments of a central atom, which in
this work is the absorbing site.

1We also considered the weighted-ACSF (wACSF) feature encod-
ing [59], which unlike the traditional ACSF, do not scale in size with
the number of unique atom types in the considered data. While this
type of encoding is particularly useful when there are a significant
number of unique atom types (such as when dealing with the vast
spaces of materials or materials complexes [36,39]), it is not neces-
sary for our problem, as we only consider five unique atom types (H,
C, N, O, and F).

FIG. 2. A cartoon depicting two scattering paths from a central
absorbing atom (marked in yellow; other C atoms are black) in an
aniline molecule (with hydrogen atoms implicit, and N is blue). The
first path is C→ N→ C, and the second C→ C→ C → C. The cutoff
region around the central atom marks the geometric information
included in the ACSF feature vectors. Information outside of this
cutoff (which corresponds to relatively long scattering path lengths)
is excluded.

We aim to leverage the locality of XANES in the same way
local atomic energy contributions are in constructing NNPs.
Physically, the argument that XANES is a local probe can
be understood through multiple scattering theory, where the
absorption coefficient at a given incident photon energy is
determined by the interference between the outgoing wave
and the back scattering waves from neighboring atoms. In
the multiple scattering path expansion, the absorption coef-
ficient decays exponentially with path length [61,62]. Overall,
the longer the scattering path length, the smaller the over-
all contribution to the XANES spectrum. Typical paths that
contribute are illustrated in Fig. 2, where r1 and r2 represent
two- and three-atom scattering paths, respectively. Of course,
a much larger number of paths contribute in principle, but
longer paths, mostly those outside of the range rcutoff , do not
contribute significantly.

In preparing our ACSF features, for every absorbing atom
site, we use a radial cutoff of 6 Å, as well as similar parameters
to those used in Ref. [60]. H, C, N, O, and F neighbors were
considered, and for each absorbing atom site, a feature vector
of 155 entries was constructed. The details of our featurization
process can be found in Appendix A 1.

We explored feature reduction/importance ranking, similar
to that done in Ref. [34], in order to reduce the 155-
dimensional input vector to a smaller dimension. We found
that training was somewhat stabilized (i.e., loss functions
decreased monotonically more consistently), but accuracy
overall was not noticeably different from training performed
using the full ACSF vector. Thus we choose to use the ACSF
feature vectors as-is for inputs to our models.
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B. Target construction

As previously mentioned, FEFF9 [55] is used to compute
the XANES spectra using multiple scattering theory. Each
molecule’s FEFF spectrum is computed individually (atom-
by-atom), and the details of these calculations are presented
in Appendix A 2. In brief, we use a cutoff of 7 Å for
self-consistent potential calculations and 9 Å for full multi-
ple scattering calculations, which is commensurate with the
geometric cutoff of 6 Å used for the ACSF descriptor con-
struction. The targets are the XANES spectra interpolated
using cubic splines onto a common grid, which was chosen to
be 200 dimensional, corresponding to a resolution of 0.27 eV.

In brief, the spectral target can be represented as a vector

μ(i) = [
μ

(i)
1 , μ

(i)
2 , . . . , μ

(i)
M

]
(2)

for training example i, where M = 200 is the number of target
values. We consider a spectral range of 50 eV and scale the
intensity to unity at the high energy tail, conforming to the
standard XANES normalization procedure.

C. Principal component analysis

Prior to performing ML modeling, it is always prudent
to explore the data to ensure sensible correlations or pat-
terns exist between features and targets. It also provides the
baseline intuition of what to expect from the ML models.
Linear dimensionality reduction techniques, such as princi-
pal component analysis (PCA), cannot capture the nonlinear
relations that a neural network will, but they are still quite
useful in identifying overall trends and are largely parameter-
independent. More sophisticated nonlinear techniques, such
as t-distributed stochastic neighbor embedding (t-SNE) [63],
can extract more complicated trends, but are usually highly
parameter dependent and thus less robust [64]. We therefore
apply PCA on both the ACSF features and spectra targets in
order to resolve their relations in a tightly controlled manner.

PCA extracts the “directions of principal variance” in a
dataset. The PCA decomposition diagonalizes the M × M
covariance matrix of a dataset X ∈ RN×M (N examples each
with M features). The most significant eigenvectors and eigen-
values (the eigenvectors which correspond to directions of
maximal variance are indicated by the largest eigenvalues) of
the covariance matrix are used to project the data into a lower-
dimensional space. Formally, the (scaled) eigenvalues w j are
the (relative) captured variance ω j along the direction defined
by that eigenvector. For the ith example in the database Xi,
and for the jth eigenvector w j ,

zi j = Xi · w j, (3)

where · is the dot product. For example, zi1 captures the
first principal component (in the direction of maximal vari-
ance) of example i. We also highlight that given a value zi =
[zi1, zi2, . . . , zid ] with d < M, an approximate reconstruction
of Xi can be obtained via

Xi ≈
d∑

j=1

zi jw j . (4)

Using the scikit-learn library [65], we apply PCA to
the feature (the ACSF vectors) and target (spectra) spaces,

TABLE I. The relative variance captured by the first two princi-
pal components of both the ACSF and spectral (μ) spaces.

Absorber ω1(ACSF) ω2(ACSF) ω1(μ) ω2(μ)

C 0.61 0.16 0.34 0.29
N 0.74 0.09 0.41 0.26
O 0.77 0.11 0.60 0.22

independently. Specifically, we perform the dimensionality
reduction on the ACSF feature data as RN×155 → RN×2 and
the spectra target data as RN×200 → RN×2. The values of zi1

and zi2 for the ACSF decomposition are plotted in Fig. 3 on
the x and y axes, respectively. The color value of the points
represents the value of zi1 of the spectra decomposition. Note
that scales are not shown here, as they not important for the
qualitative analysis to follow. Table I tabulates the relative
captured variance of each dimension for both the features and
targets, in the first two principal directions.

Analysis of Fig. 3 shows clear spatial correlations between
the principal values of the ACSF features and spectral targets.
Areas of high color density indicate a spectral feature which
is strongly correlated to a common structural motif. These
regions are indicated by the appropriate labels. For example,
while the C atom clustering is the most poorly resolved,
cluster (a) appears to correspond to aliphatic carbon chains.
For N atoms, (b) clearly corresponds to azides and (c) to
primary ketimines. For O atoms, (d), (e), and (f) correspond to
esters, alcohols, and ethers, respectively. While the clustering
patterns are not definitive on their own, they indicate a high
degree of correlation between the XANES spectra and func-
tional group, a result observed in previous work [40]. Not only
does this further substantiate the locality of XANES, it also
hints that ML techniques will be able to efficiently capture
a more complicated nonlinear relationship between XANES
spectra and local atomistic geometry.

D. Data splits and preparation

We test two hypotheses using the QM9 dataset, each ne-
cessitating different partitionings of the datasets DA. First,
the ACSF feature vectors capture sufficient local structural
information about absorbing atoms for accurate prediction
of sitewise XANES spectra and uncertainty estimations.
Testing our first hypothesis involves evaluating the over-
all effectiveness of a NNE trained using the usual random
train/validation/test split. It corresponds to a use case in
which the trained NNE is expected to perform on a randomly
selected example in the QM9 database. Hence, this first parti-
tioning is referred to as the “random partitioning” (DR

A ). Such
a performance measure is perfectly valid if the distribution of
molecules in the test set is chemically similar to those found
in the QM9 training set.

The second hypothesis is that the XANES spectra are
sufficiently local such that an ensemble can be trained on
data containing molecules with fewer than n heavy atoms, but
still perform on molecules with more than n heavy atoms.
Furthermore, the individual local signals can then be aver-
aged, with NNE error propagated, to estimate the molecular
XANES, and its error. This is indeed a significant challenge.
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FIG. 3. Principal component analysis of the feature(structure)-target (spectrum) relationship for each of the three datasets of C, N, and O
absorbing atoms. z1 and z2 are weights along the first and second principal directions (w1, w2) as constructed on the ACSF feature data. The
color of the markers correspond to the first-principals value of the spectral target data. Regions of significant color density are indicated by
labels (a)–(f).

It is known that neural network potentials, which often also
use ACSF input vectors with similar parameters, can strug-
gle in systems with long-range correlations. This hypothesis
therefore provides a stringent test on both the locality of the
XANES spectra and NNE. If nontrivial long-range correlation
effects exist in the XANES spectra, our models will suffer due
to the intrinsic locality constraint. Similarly, if the chemical
environments captured in QM9 are significantly different than
those contained in a dataset with larger molecules, the NNE
will fail to generalize. As this partitioning will test the ability
of the models to generalize, it is henceforth referred to as the
“generalization test” (DG

A ).2

For each DR
A , a simple random split is employed, where

90% of data are chosen for training and cross-validation, with
the rest held-out as the testing set. For DG

A , multiple splits
are made. The testing sets always contain all of the QM9
molecules with a total of 9 heavy atoms. Training sets are
constructed by choosing molecules with anywhere from 5–8
heavy atoms. For example, in one training set instance for
nitrogen absorbing atoms, we include sites from all molecules
containing at least one N atom, but less than, e.g., total 6 heavy
atoms in the training (and cross-validation) splits. Evaluation
is then consistently performed on atoms originating from
molecules with 9 heavy atoms.

Significantly, the data partition DG
A has a strong impact

on the size of the training set. Binned by the total number
of heavy atoms per molecule, the total number of molecules
increases exponentially in the QM9 database.

In Fig. 4, we show the total number of molecules in DA as a
function of the number of heavy atoms/molecule. As one can
see, the total amount of data for 9 heavy atoms/molecule is
roughly an order of magnitude greater than for 8. If the gen-
eralization test succeeds, an exponential increase in training
data could be avoided.

2Note that the same data/examples are contained in DA, DR
A ,

and DG
A . We distinguish between them to highlight that the

train/validation/test splits are different.

E. Machine learning

We train |E | = 30 independent estimators for all experi-
ments in this work. The details of the training procedures
are given in Appendix B, and we highlight the following
important points. First, each estimator was always trained on
a random 90% sampling (without replacement) of the train-
ing set [66,67], meaning some data was purposely excluded
during training (the dependence on the sampling proportion
is analyzed in Appendix D). Second, each estimator used
a randomly initialized neural network architecture. Both of
these procedures were employed to maximize model diversity,
which as previously discussed, has been shown to be of great
utility for UQ.

During initial cross-validation studies, we observed that
occasionally individual estimators would produce completely
unphysical results. Such results include, but are not limited
to, spikes in the spectral intensity an order of magnitude
larger than the most intense spectrum in our data and “van-
ishing” spectra with mostly zero intensity. Likely due to a
combination of the random model initialization and training
set downsampling, these aberrant results do not contribute
meaningful information to either the overall accuracy of
the prediction or the uncertainty estimate. Therefore, during

FIG. 4. The total number of molecules contained in QM9 as a
function of the number of heavy atoms (C, N, O and F)/molecule for
each of the three datasets considered in this work. Each dataset, DA

(labeled by A for brevity) corresponds to the subset of QM9 in which
each molecule contains at least one atom of type A.
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inference, these faulty prediction-estimator pairs are discarded
when computing ensemble-averaged quantities. We discuss
the details of this procedure in Appendix C.

IV. RESULTS

A. Random partitioning

The NNE predictions for spectrum i on spectral grid point
j is given by an average over the individual estimators,

μ̂
(i)
j = 1

|E (i)|
∑

k∈E (i)

μ̂
(i,k)
j , (5)

where k is the estimator index, and E (i) ⊆ E is the set of
estimator indexes corresponding to nonoutlier, physical pre-
dictions, for example, i (and |E (i)| is the size of this set and E
is the set of all estimators). The ensemble-averaged error is

ε(i) = 1

M

M∑
j=1

ε
(i)
j , (6)

where

ε
(i)
j = ∣∣μ(i)

j − μ̂
(i)
j

∣∣. (7)

We note that the vector representation of the predicted
XANES spectrum is given in a similar form to Eq. (2),

μ̂(i) = [
μ̂

(i)
1 , μ̂

(i)
2 , . . . , μ̂

(i)
M

]
. (8)

During inference, we use the ensemble-averaged quantity
as the overall ensemble prediction. In order to demonstrate the
NNE’s superiority in raw predictive accuracy, we compare the
ensemble prediction above to that of the average prediction
error of each individual estimator,

ε
(i)
est = 1

|E |M
|E|∑
k=1

M∑
j=1

∣∣μ(i)
j − μ̂

(i,k)
j

∣∣. (9)

Equation (9) can be best thought of as a rough measure of how
any single model would perform on average. To quantify this,
we define the average test error on a logarithmic scale over
Ntest structure-spectrum pairs,

ε̄ = 1

Ntest

∑
i

log10 ε(i) (10a)

and

ε̄est = 1

Ntest

∑
i

log10 ε
(i)
est. (10b)

We highlight that ε̄ (−1.45,−1.40, and −1.55) clearly out-
performs ε̄est (−1.36,−1.32, and −1.46) for the C, N, and
O datasets. The details of the distributions of these errors are
discussed in Appendix D (Fig. 11).

In order to ground the discussion of overall model per-
formance, we present waterfall plots in Fig. 5 with samples
randomly chosen from the worst cases in each decile of the
the testing set of DR

C. One of the worst performers (bottom
figure) clearly originates from a rare, challenging (from the
electronic structure perspective) structure: a seven-membered
fully conjugated ring containing five heteroatoms. Given the
chemical space covered in QM9, it is not unsurprising that

FIG. 5. Waterfall plot sampled from the bottom (worst) of each
decile of the testing set results on DR

C, where decile are sorted
from best (top) to worst (bottom). Absorbing carbon atom sites are
indicated by a dashed circle in the molecular diagram. The ground
truth (black), prediction (red), and 3× the spread (shaded red) are
displayed. The value for log10 ε(i) is also shown. The vector predic-
tions and uncertainties are given by Eqs. (8) and (13).

the prediction is not accurate. However, it appears that the
uncertainty estimate yields the qualitatively correct trend, as
the prediction appropriately presents with relatively large er-
ror bars. On the other hand, all other predictions are relatively
accurate, and present with error bars roughly commensurate
with the prediction accuracy.
The pointwise NNE spread for spectrum i is defined as

σ̂
(i)
j =

√√√√ 1

|E (i)|
∑

k∈E (i)

(
μ̂

(i)
j − μ̂

(i,k)
j

)2
, (11)

from which the overall uncertainty of the prediction can be
computed,

σ̂ (i) = 1

M

M∑
j=1

σ̂
(i)
j . (12)

Similar to Eqs. (2) and (8), the vector uncertainty for a single
spectrum can be represented as

σ̂ (i) = [
σ̂

(i)
1 , σ̂

(i)
2 , . . . , σ̂

(i)
M

]
. (13)

It is important to note that Eqs. (11)–(13) are independent of
the ground truth predictions. Additionally, we note that unlike,
e.g., a GP, the spreads σ

(i)
j are not proper standard deviations,

since the distribution of estimator outputs is not guaranteed to
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FIG. 6. Violin plots of the log10-ensemble error as a function of the binned log10 spreads of the ensemble prediction [(a)–(c)], and parity
plots (2D density histograms) of the pointwise log10-ensemble error as a function of the log10-estimator spread [(d)–(f)]. Violin plot colors are
coordinated with the bins in the scatterplots, which are given by {(−∞, −3.5), [−3.5, −2.5], [−2.5, −1.5), [−1.5, −0.5), [−0.5, ∞)}, and
are colored purple, blue, green, orange and red, respectively; the medians of each of the bins are shown for reference as horizontal solid lines.
In the scatterplots, regions of high (low) density are shown in yellow (purple). The best linear fit to the scatterplot data (solid line) is shown
in addition to four guidelines at half orders of magnitude intervals above it (dashed lines). The origins of the systemic outliers in (d) and (f),
those falling about the third and fourth dashed guidelines, are discussed in Appendix E, and do not have a meaningful effect on the presented
analysis.

be Gaussian. They are simply a measure of how different each
output is from the others.

We present a quantitative analysis of the NNE’s capability
of accurately capturing uncertainty measures in Fig. 6 for all
three datasets DR

A . In (a)–(c), violin plots of log10 ε
(i)
j for 5 bins

of log10 σ̂
(i)
j (shown as the background colors of the violin

plots) are presented. From left to right, the average uncer-
tainty estimate (spread) increases. As the spread increases,
so does the estimate of the error, spanning multiple orders
of magnitude on each axis. Critically, the distributions are
mostly nonoverlapping, meaning the uncertainty estimate can
be used to produce a robust estimate for the actual error of the
prediction. A more fine-grained presentation of the same data
is presented in (d)–(f). These are error parity plots comparing
the NNE spread with that of the actual error. To guide the eye,
we show the best linear fit to the log-scaled data (solid), as
well as four successive parallel lines offset by a half an order
of magnitude (dashed). The majority (>88%) of the points
fall below the first of these upper bounds (half an order of
magnitude above the best fit line), suggesting that most of
the time, the error estimate given by this linear trend is an
appropriate representation of the worst case scenario. We also
note that even when using 10% of the overall training set,
the ability of the NNE to accurately quantify uncertainty is
unaffected (see Fig. 13).

It is also noteworthy to analyze why roughly 14% of the
data fall half an order of magnitude below the best fit line.
Even when making accurate predictions, each estimator will
still predict slightly different values given the same input.
These predictions can be accurate overall, but still produce no-
ticeable values for an uncertainty estimate due to their slightly
different predictions. This is a consequence of the way that

neural networks train and make predictions. Each estimator
finds some local minimum in its vast “weight space,” and each
produces slightly different estimations even when the estima-
tors and ensemble as a whole is making predictions to suitable
accuracy. That said, underconfidence in a prediction is not
nearly as problematic as overconfidence, and the amount of
underconfidence as a function of σ̂

(i)
j decreases as uncertainty

increases. In summary, our results suggest that the ensembles
provide a robust, general upper bound for the error.

B. Generalization test

The ability to generalize to previously unseen data is a key
feature of any ML model. Generalization can be understood
through the lens of data distributions: while the data used
during testing must be unseen, the data used to train some
model must, in a distributional sense, “look like” the data it
is expected to perform on. A simple way to test whether or
not two sets of data are in-sample with respect to each other
is to combine them and sample randomly. If a source of truth,
e.g., a domain expert, can tell the distribution of origin given
some random sample, then it is likely that the deployment
case, which hopefully is represented by the testing set, is
out-of-sample and will lead to poor performance. This is not
a catch-all test (e.g., adversarial examples [68]), but it is a
useful thought experiment. For example, the testing sets as
constructed randomly in Sec. IV A were on balance, by the
above definition, in-sample.

There is also a key difference between generalization and
extrapolation which is worth noting. No ML models extrap-
olate beyond the information-theoretic union of the data and
prior information they are trained on [69]. Two examples of
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FIG. 7. Waterfall plots similar to that of Fig. 5 showcasing examples from the middle of each pentile on the testing set predictions of DG
A

for all A = {C, N, O}. The training sets used in these results consists of absorber-spectrum pairs originating from molecules with at most 6
heavy atoms, while the testing set is the entire subset of QM9 with 9 heavy atoms. The molecules of origin are shown in addition to the log10

error between the predicted molecular spectrum and the ground truth, along with the NNE predicted spread.

“information-theoretic extrapolation” in our work would be
(a) predicting on a molecule containing zwitterionic species
and (b) predicting on un-relaxed structures. In case (a), the
model has not seen any molecules with major charge gradi-
ents, and thus it will not understand how to treat those cases.
Stated differently, it will neither understand which structural
motifs correspond to a zwitterion nor how to treat them once
detected. Similarly, in case (b), while it is possible that many
structural configurations found in unrelaxed structures are
captured in QM9 due to the large diversity of molecules in
the dataset, there is no guarantee, since QM9 contains only
relaxed geometries.

In this section, we push the boundaries of our NNEs to gen-
eralize to new data in a specific way, by training on sites from
smaller molecules than what we test on. To do this, we train
and cross-validate on subsets of the C, N, and O databases
in which there are at most 8 heavy atoms per molecule, and
then test on sites originating from molecules containing 9
heavy atoms per molecule (see Sec. III D for details). The
specifics of the training and evaluation procedures is identical
to those presented in Sec. IV A, except for the particular
training/validation/testing split used.

Furthermore, the true test of the ability of the NNEs to
generalize is to evaluate performance on molecular spectra,
defined as the average of the sitewise spectra [see Eq. (14)]
(in Sec. IV A, we only present results on site-spectra). For any
DG

A , a molecule is given by M ∈ DG
A , and is defined by a

collection of sites. We define the subset of theses sites of atom
type A as MA ⊂ M. Given these definitions, the pointwise

ground truth molecular XANES spectrum is

μ
(MA )
j = 1

|MA|
∑

i∈MA

μ
(i)
j , (14)

where |MA| is the number of absorbing sites of type A in
the molecule. Furthermore, the pointwise molecular XANES
spectrum prediction is the average of each of the ensemble
predictions for each site,

μ̂
(MA )
j = 1

|MA|
∑

i∈MA

μ̂
(i)
j . (15)

The estimate of the pointwise spread for the molecular
XANES prediction can be calculated using propagation of
errors,

σ̂
(MA )
j = 1

|MA|
√ ∑

i∈MA

[
σ̂

(i)
j

]2
, (16)

with an analogous vector representation to that of Eq. (13),

σ̂ (MA ) = [
σ̂

(MA )
1 , σ̂

(MA )
2 , . . . , σ̂

(MA )
M

]
. (17)

Finally, the error of the molecular spectrum is similarly given
by a straightforward analog of Eqs. (6) and (7). For brevity,
we will often suppress the subscript A where it is clear which
atom type/database is being referred to.

We present waterfall plots of the ground truth molecular
spectra, and the NNE predictions and spreads in Fig. 7 in
the DG

A databases. To demonstrate the ability of the NNE to
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generalize, we train only on absorbing site-spectrum pairs
originating from molecules with at most 6 heavy atoms,
but the presented testing set results come from absorbing
site-spectrum pairs originating from molecules with 9 heavy
atoms. This experiment demands an extreme degree of gen-
eralization from the NNE: the subsets of QM9 with only 6
heavy atoms is extremely small, containing only ≈103 total
structures, three orders of magnitude less than the testing set
in this case (see Fig. 4). The dependence of the testing set error
on the maximum number of atoms per molecule used in the
training data (along with a similar analysis to that presented
in Fig. 6) is explored in Appendix D. The key result is that
adding orders of magnitude more data results in only slight
improvement in testing set error. For example, using the DG

C
dataset with up to 5 heavy atoms in the training set includes
437 data points, and produces an error of ε̄ ≈ 0.09. training
with up to 8 heavy atoms uses a training set of 102 253 data
points, three orders of magnitude more data, and produces
an error of 0.03 on the same testing set. Using roughly 103

times as much data produces only a factor of 3 improvement
in the testing error. Combined with the results in Fig. 7, this
indicates that the NNE is already able to generalize to larger
molecules at a relatively low training cost, and is incredibly
data-efficient. These results are further rigorously quantified
in Appendix D (Fig. 12).

In particular the results for DG
C present with impressive

accuracy given that each spectrum is an average over many
carbon atoms (as many as 9 in one of the presented cases).
Qualitatively, peak heights and locations are predicted to rea-
sonable accuracy. In contrast, the results for DG

N and DG
O

showcases where the NNE struggles to make accurate predic-
tions for the number of absorbing atoms per molecule. This
is largely due to there being far fewer training examples in
these two cases relative to DG

C . Even so, while some peaks are
occasionally missed, the spectral trends are still reproduced,
and uncertainties are captured.

C. Out-of-equilibrium geometry analysis

To further study how the NNE responds to out-of-sample
data, we used the 10 molecules corresponding to sites whose
spectra were presented in Fig. 5, and randomly distorted the
geometries of the molecules to see how the NNE performs.
Our procedure is as follows. First, given a distortion parameter
δ, for each coordinate direction and atom in some molecule
M, a direction on the unit sphere is chosen at random, scaled
by δ, and then used to perturb that atom’s coordinate. For
each of the 10 molecules and each value of δ, we sample 50
distorted molecules. Second, FEFF calculations are then run
on each of these new geometries. Finally, the trained NNE
used in the DR

C experiments is then used to predict the XANES
spectrum and spread for each of the site-molecule pairs.

We use δ ∈ {0.01, 0.02, . . . , 0.1} Å, and present averaged
results analogous to Eq. (10) in Fig. 8 as a function of δ.

Most importantly, as the average error increases across the
average of all results for a given δ, so does the uncertainty
measure. This trend is significant and covers roughly a half
of an order of magnitude. This shows quantitatively that on
average, the uncertainty estimate tracks how out-of-sample a
dataset is with respect to its training data. However, it does not

FIG. 8. The average log10 errors and uncertainties (across the 10
example molecules listed in Fig. 5 and 50 random distortions per
molecule per value of delta) plotted as a function of δ.

quantify the relative difference between a certain and uncer-
tain prediction. To address this, we sample a single example
for each molecule-δ pair, and plot the ground truth, NNE
prediction and spreads in Fig. 9. Appendix F contains more
fine-grained details relating to this analysis, including density
parity plots of the errors and uncertainty measures (Fig. 15),
and a waterfall plot of distorted spectra (Fig. 16).

While it is only a small sample of the dataset of distorted
molecules, the results in Fig. 9 clearly show that on aver-
age, the NNE is able to detect when distorted geometries are
sufficiently out-of-sample to render a prediction inaccurate.
Overall accuracy varies visually as the distortion increases,
but the uncertainty estimate gets significantly larger after
δ = 0.03. In most cases, this uncertainty stays relatively large
compared to e.g. δ = 0.01, indicating the NNE recognizes
that the geometry is likely unseen. We highlight that detect-
ing when a geometry is out-of-sample is not a trivial task,
since while the ACSF vectors are human-interpretable, they
are not easily so. Defining necessary heuristics to detect an
out-of-sample geometry is likely not feasible. The fact that
the NNE can perform this task verifies its potential usefulness
in situations where detecting, e.g., change points [70] (where
the statistical distribution of data changes) is required. This
could be of particular use in active learning loops, where new
training data are sampled based on the uncertainty measure of
the ML model.

V. CONCLUSIONS AND OUTLOOK

In this work, we use NNEs to make quantitatively accurate
predictions of molecular XANES spectra from local atomistic
geometry, and to accurately quantify the uncertainty of those
predictions under a variety of conditions. Simulating XANES
spectra of a large number of molecules and clusters at a high
level of theory is computationally demanding, and UA sur-
rogate modeling provides an avenue for greatly accelerating
the simulations while reliably quantifying model confidence.
Often, for comparison with experimental measurements it
requires an expensive averaging over a large number of struc-
tures, such as when computing a thermal average, which
necessitates the use of surrogate model acceleration. We an-
ticipate that the NNE approach, and UA modeling in general,
can be particularly useful for large, complex systems, such as
the dynamical evolution of protein structures, organic liquids,
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FIG. 9. Predicted XANES spectra (red) and uncertainty estimations (red shaded regions) compared with the ground truth (black) for single
examples for each site-δ pairing. Predictions on the same molecule-site pairs as Fig. 5 were computed in inference mode using models trained
on the DR

C dataset.

and solvated molecules, allowing users to make predictions
efficiently and with confidence.

Although our work falls into the space of ML-driven
spectral function prediction, an accurate surrogate also has
important implications for the inverse problem, where phys-
ical descriptors are extracted from the spectral function. For
example, one strategy to solve the inverse problem in XAS
is to identify candidate structures that produce results consis-
tent with a target. This is more broadly known as structure
refinement. Various sampling methods are widely used for
this purpose, such as reverse Monte Carlo [71,72] and genetic
algorithms [73]. Combining these sampling methods with an
accurate and efficient forward surrogate model opens new
avenues to tackle the inverse problem.

Beyond the problems presented in this manuscript, we
believe that the general principles of UQ methods could have
broad implications not only for the case of datasets from in
silico experiments, but also for laboratory measurements in
experimental science. While modeling aleatoric noise in ex-
perimental data is required for statistically robust predictions,
UQ techniques can also be applied to, e.g., quality assurance
and control. For example, the detection and elimination of
data that results from a variety of experimental sources such as
misalignment and errors in control settings (similar to Appen-
dices C and E). UQ-enabled models could also be useful for
predicting experiment-quality data. As long as noise and other

sources of uncertainty can be accurately modeled, it would
mitigate the risk otherwise posed by the immense challenge
of modeling experiments with these types of data-driven tech-
niques.

As problems become more complicated, and calculations
become more expensive (and thus the stakes become higher),
ensuring model confidence becomes evermore important.
Conveniently, there exists a vast array of UA models and
methodologies for quantifying uncertainty, each with their
own strengths and weaknesses. In the case of NNEs, the cost
of training multiple models is more than worth the payoff.
The application of UQ techniques to vector targets, and to a
wider variety of problems in the physical sciences is certainly
still an open problem in general. However, we have found
that one can gain a significant amount of utility through the
straightforward use of a NNE: an ensemble of independent
estimators. In this case, if you can train one model, you can
train a sufficient number of models to produce a reasonable
measure of uncertainty with a low overhead.

In conclusion, our case study demonstrates the ro-
bust performance of a NNE with uncertainty quantification
for predicting complex targets (XANES spectra of small
molecules) from the descriptors of local chemical and struc-
tural information. More generally, this expands the scope of
uncertainty-aware machine learning methods to the case of
predicting vector quantities in physical modeling, an area that
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is largely unexplored to date. UQ modeling offers compelling
advantages over traditional more boilerplate machine learning
techniques at an acceptable cost.

All software used in this work, as well as all data used in
this work, including FEFF spectra input/output files, featured
data, and the neural network ensembles, can be found in
Ref. [74].
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APPENDIX A: DATABASE CONSTRUCTION

1. ACSF feature vector details

Molecular geometry files were read directly from the QM9
[35] database, which is freely available for download at
Ref. [75]. We utilize the PYMATGEN [76], DSCRIBE [56], and
ASE [77] libraries to construct our ACSF feature vectors.
Zwitterionic molecules, those which contain an equal number
of positively and negatively charged motifs, are discarded and
not included in the machine learning databases. The initializa-
tion of the ACSF object is shown below.

1 from dscribe.descriptors import ACSF # v
1.2.1

2 neighbors = [’’H’’, ‘‘C’’, ‘‘O’’, ‘‘N’’,
‘‘F’’]

3 rcut = 6.0 # Angstroms
4 g2_params = [
5 [1.0, 0],
6 [0.1, 0],
7 [0.01, 0]
8 ]
9 g4_params=[
10 [0.001, 1.0, -1.0],
11 [0.001, 2.0, -1.0],
12 [0.001, 4.0, -1.0],
13 [0.01, 1.0, -1.0],
14 [0.01, 2.0, -1.0],
15 [0.01, 4.0, -1.0],
16 [0.1, 1.0, -1.0],
17 [0.1, 2.0, -1.0],
18 [0.1, 3.0, -1.0]
19 ]
20 acsf = ACSF(
21 species=neighbors,

22 rcut=rcut,
23 g2_params=g2_params,
24 g4_params=g4_params
25 )
We iterate through every possible atom in each molecule,

and construct the atom’s ACSF vector if it matches an absorb-
ing atom used in this work (C, N, or O).

2. Spectra target vector details

Sitewise spectra for each of C, N, and O absorbing atoms
were computed using the FEFF9 code [55]. A common pream-
ble to a FEFF calculation is shown below. Particularly, we use
a corehole approximation at the random phase approximation
(RPA) level of theory, full multiple scattering up to 9 Å, and
self-consistency up to 7 Å.

1 TITLE...
2
3 EDGE K
4 S02 1.0
5 COREHOLE RPA
6 CONTROL 1 1 1 1 1 1
7
8 XANES 4 0.04 0.1
9
10 FMS 9.0
11 EXCHANGE 0 0.0 0.0 2
12 SCF 7.0 1 100 0.2 3
13 RPATH -1
Once the initial spectral databases were constructed, we

screen for extreme outliers or unphysical spectra using meth-
ods similar to those described in Ref. [39] (though we note
that these screening procedures are not entirely robust, see
the discussion corresponding to Fig. 14). Spectra are then
interpolated onto common grids using cubic splines. The
grids for each absorbing atom type are shown below using
Python+NumPy.

1 import numpy as np
2 M = 200
3 grids =
4 ‘‘C’’: np.linspace(275, 329, M),
5 ‘‘N’’: np.linspace(395, 449, M),
6 ‘‘O’’: np.linspace(528, 582, M)
7

APPENDIX B: TRAINING DETAILS

In this Appendix, we highlight the important details of our
training procedures which can be used to reproduce the work
presented in this manuscript. All training was performed on
Tesla V100 GPUs using Pytorch+PyTorch Lightning, and the
summary of the training and software used for our machine
learning pipeline are shown in Table II.

Each estimator, a FFNN, was trained independently. Each
estimator in the ensemble was randomly initialized, with a
minimum of 4 layers, a maximum of 20 layers, a minimum
of 160 neurons/layer, and a maximum of 200 neurons/layers.
The Adam optimizer, L1 loss function, Leaky ReLU activa-
tions (except the last layer, which is a softplus) and batch
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TABLE II. Machine software and hardware details.

GPU Tesla V100-SXM2-32GB

CUDA 11.4
PyTorch [78] 1.11.0 + cu113
PyTorch Lightning [79] 1.6.4

normalization (except the last layer) were used for every in-
stance of training.

During training, learning rates were multiplied by a factor
of 0.95 after 20 successive epochs in which the validation
loss failed to decrease. A maximum of 2000 epochs proved
sufficient with early stopping criteria monitoring when the
validation loss plateaued during training (with a patience of
100 epochs).

APPENDIX C: ENSEMBLE PREDICTION DETAILS

In Sec. IV A, we defined the set of estimator indexes to be
E, and the set of estimator indexes corresponding to “reason-
able” predictions to be E (i). We now define precisely how we
determine whether or not a prediction is reasonable.

We utilize three criteria to screen for unreasonable
predictions.

(1) For a set of predicted spectra (with fixed i) {μ̂(i,k)}|E|
k=1,

we define the estimator spread σ̂ (i). Any spectra in which 70%
of the total grid points fall outside a region defined by μ̂(i) ±
2σ̂ (i) are discarded.

(2) Given a predicted spectrum μ̂(i,k), if any point μ̂
(i,k)
j is

greater than 20 (a.u.; roughly an order of magnitude greater
than the largest spectral intensity in our datasets) that predic-
tion is discarded.

(3) If more than half of the predictions μ̂
(i,k)
j for a given

i, k fall below an intensity of 0.05, that prediction is discarded.
These three rules are purely empirical and capture three

different kinds of model failure scenarios, each of which is
completely independent of the ground truth data. In point 1,
we screen for statistical outliers. The spread of the estimator
predictions is treated as a Gaussian standard deviation (we
note again that this treatment is purely empirical), and any
spectra in which a substantial portion of the predicted values
fall outside of an ≈95% confidence interval are discarded.
Points 2 and 3 screen on physical grounds. We know from
experience and quantum mechanical principles that the FEFF

code will only output predictions of certain intensities. Model
failure situations routinely included single estimators pre-
dicting intensities of μ > 100, which are clearly unphysical.
Similarly, it is known that the XAS is mostly positive. While
model outputs are hard-constrained to be non-negative by the
Softplus activation functions, they can be approximately zero.
If a sufficient portion of the spectrum is close to zero, we know
that prediction is unphysical and hence it is discarded.

The set of estimator indexes that correspond to reasonable
predictions is thus defined as E (i), and is inherently depen-
dent on the training example. It is worth highlighting that if
estimator k is discarded for training example i, it likely will
not be discarded, for example, i′ 
= i.

APPENDIX D: TRAINING SET SIZE DEPENDENCE
OF DR

A AND DG
A

A useful sanity check when performing any ML model-
ing is to ensure that error decreases as the training set size
increases. For any single estimator, this is usually tested by
downsampling the training set by some proportion p and
evaluating on a fixed testing set. The value for p is then
scanned and the testing set error as a function of p evaluated.
We evaluate this metric for both DR

A and DG
A , by randomly

downsampling and showcasing how testing set error changes
as a function of the number of atoms per molecule used during
training.

Instead of training a single estimator, we evaluate these
metrics on the ensembles. For the random partitioning datasets
DR

A , we randomly downsample the fixed training set by pro-
portion p independently for each of the 30 estimators, train
them on the pNtrain training examples, and evaluate on the
fixed testing set (the same testing set used in the random parti-
tioning dataset, see Sec. IV A). Each ensemble was randomly
initialized for each p. Ensemble predictions are made in ac-
cordance with the protocol described in Appendix C, and the
results averaged over all Ntest testing examples. Similarly, for
the generalization test databases DG

A , we follow the procedure
as outlined in Sec. IV B, and for each instance of the number
of atoms per molecule, compute the amount of training data
used. All of these results are plotted in Fig. 10.

Immediately, it is clear that the testing set error trend is
decreasing with increasing p and with increasing amounts of
training data, exactly as expected. However in Fig. 10(a), the
decrease is not monotonic for the N and O datasets, though it
is for the C dataset. Given that the C dataset is much larger
(see Fig. 4), it is more probable that even small samples of
the training dataset capture general trends, even for small p.
The N and O datasets are significantly smaller, and hence for
small p it is less likely that significant trends are captured
on balance. Finally, the relative decrease in the testing error
as a function of p is surprisingly small. For example, the
percent change in the N results from p = 0.1 to 0.9 is only
roughly 12%. While this is a relatively small change (see, e.g.,
Supplementary Material in Ref. [40]), it is actually an encour-
aging result. It is likely that failures of individual estimators
in certain regions of the input parameter space at small p are
compensated for by other estimators in the ensemble, making
the overall inference procedure at low p surprisingly robust.

In Fig. 10(b), the trend is much more clear because the
amount of training data spans multiple orders of magnitude.
However, a key takeaway is that the decrease in the error is
incredibly small relative to the amount of training data used:
roughly a single order of magnitude compared to 3 orders
of magnitude increase in the amount of training data. As
discussed in the main text, this is a testament to the NNE
method’s ability to generalize when trained on absorbing
site data, and the diversity of the chemical space of QM9’s
molecules containing even ∼103 heavy atoms per molecule.

We present the error histograms for most of the relevant
training procedures in this work in Fig. 11. Subfigures (a)–
(c) depict the log10 sitewise testing set error distributions for
DR

A , both for the ensemble-averaged error (black) and the av-
erage single estimator error (red). One can see clearly that the
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FIG. 10. (a) The testing set error on DR
A as a function of the downsampling proportion p, which determines the random proportion of the

training set actually used during training. (b) The testing set error on DG
A as a function of the training set size, |M| (which is tied to the number

of atoms per molecule in the training set).

ensemble predictions are systematically better than any single
estimator on average, as expected of ensemble-based models.
Subfigures (d)–(f) showcase the log10 molecular testing set
error distributions for DG

A , as a function of the total number
of atoms per molecule used during training (see legend). Fig-
ure 12 is the analog of Fig. 6 for the molecular data. It shows
the same trends and overall behavior as the aforementioned
site-spectrum figure in the main text.

Finally, we present a qualitative analysis of how the error
and standard deviations correlate as a function of training
set size pNtrain in Fig. 13. Even for p = 0.1, we see that
the correlation between the average errors and standard de-
viations remains intact. This is an indication that even with
limited training data, uncertainty-quantifying models can still
accurately gauge when they are out of sample, and provide a
reasonable estimate as to their own uncertainty.

APPENDIX E: EXPLANATION OF FIG. 6 OUTLIERS

The C and O results in Fig. 6 present with some interest-
ing outlier behavior (for example, the data above the fourth
dashed lines). These patterns clearly indicate something has
gone systematically wrong, and as such, as a pedagogical
exercise we investigate the cause of such significant under-
estimation of the errors. As an example, we look at the O
results; it turns out that most of the outliers (captured by taking
log10 σ̂

(i)
j < −2 and log10 ε̂

(i)
j > −1 in Fig. 6) come from a

single spectrum. This failure case is plotted in Fig. 14.
The significant underestimation of the error is visually

obvious by comparing the spread of the predictions (red)
with the supposed ground truth (black). However, this ground
truth spectrum is actually an outlier with respect to other
training data, suggesting the possibility that the ground truth
is incorrect. To test this hypothesis, we also plot the closest

FIG. 11. Histograms of the log10 testing set error of the molecular predictions between the predicted and ground truth spectra for the DR
A

and DG
A , (a)–(c) and (d)–(f), respectively. Results in (a)–(c) showcase the distribution of ensemble errors (black) and distribution of the average

estimator errors (red), which correspond to Eqs. (6) and (9), respectively. The median values for these results are also shown. Results in (d)–(f)
are resolved by the number of heavy atoms/molecule |M| ∈ {5, 6, 7, 8} in the training set. All plots show the respective “dummy model”
prediction (average of the testing set spectra) in dashed blue.
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FIG. 12. Parity density plot for the DG
A datasets in which molecules with at most 6 heavy atoms were used for training.

ground truth spectrum to the mean of the predicted spectra
from the training set (dashed black, μ�). These two spectra are
in almost perfect agreement. We then compare the molecular
structures of the inputs, which are also shown in Fig. 14. The
SMILES string corresponding to the ground truth and best
training set example, CCCC1(C)COC=N1 and CCCC1COC=N1,
respectively, are chemically almost identical, differing by a
single methyl group. Additionally, the top 3 closest spectra to
the ensemble-averaged prediction all contain a N=C-O motif
contained in a five-membered ring, strongly suggesting that
the FEFF calculation used to generate the ground truth spec-
trum failed to properly converge, and indicating that the NNE
prediction, and low uncertainty estimate, are actually correct.

In order to confirm this hypothesis, we performed two
sanity checks. First, we reran the FEFF calculations to see
if the convergence failure was systemic. Second, we double
checked that a different computational spectroscopy software
(we chose to use the Vienna ab initio simulation package,
or VASP [80]), produced similar spectra for these absorbing
sites as well. In summary, our original FEFF calculation failed
to converge, the rerun produced the expected result (simi-
lar to μ� in Fig. 14), and the two VASP calculations (VASP

calculations were performed using PBE pseudopotentials a
2 × 2 × 2 grid for the k-points, and a square supercell volume
of 20 × 20 × 20; all quantities are in units of angstroms) also
produced qualitatively similar spectra, confirming that indeed

FIG. 13. Violin plots similar to that of Fig. 6 in the main text
(with the same bins), but resolved by the proportion of the training
set size, p. Results are presented for DR

C .

the O-XANES spectrum of each of these molecules is essen-
tially the same, and that the NNE prediction is correct.

Of course, for a real world deployment scenario, any piece
of ground truth data that ends up being unphysical would be
removed from the training datasets. However, in this case, we
highlight that the NNE model was robust to these outliers.
Future work could be dedicated to exploring how robust NNEs
or related methods are for outlier detection in a database in
general, especially in cases where it is suspected the source of
truth can actually be incorrect.

APPENDIX F: SUPPLEMENTARY ANALYSIS OF
OUT-OF-EQUILIBRIUM DISTORTION TESTS

In this Appendix, we present two useful figures for the
analysis of the out-of-equilibrium geometry tests. First, in
Fig. 15, we present a parity plot of the pointwise log10 errors
vs. the log10 uncertainty estimates. The same positive linear
trend found in Figs. 6 and 12 is realized here. Additionally, it
is subtle, but as the distortion amount increases, so does the
overall error and uncertainty estimate, continuing to substan-
tiate the results in Sec. IV C.

FIG. 14. An example from DR
O of the NNE making an accurate

prediction even when the source of ground truth used to train the
ensemble was incorrect. The supposed ground truth (solid black) and
the predictions of each estimator (red) are compared to the closest
spectrum to μ̂(i) in the training database (dashed black, μ�). The log10

error between μ� and the prediction μ̂(i) is −2.16, corroborating the
relatively low log10 uncertainty estimate −1.79.
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FIG. 15. Parity density plots similar to those in Figs. 6 and 12. Each column is indexed by a distortion value δ, which is given in units of
angstroms and represents the maximum value of uniformally sampled random noise used to distort the locations of each atom along the x, y,
and z axes. Approximately 50 random samples for each value of δ were used (less than 1% of the time a FEFF calculation would fail). Each
row corresponds to a different site from the DR

C dataset, specifically those of Fig. 5.

Second, to provide an idea of what distorted spectra look
like, in Fig. 16, we showcase a waterfall plot of random sam-
pling of the database of distorted spectra, resolved once again
by values of δ and molecule (in the same order as the previous
related figures). As a result of the geometry distortion, every

molecule begins to exhibit significant new spectral trends.
Given that these new geometries are necessarily not in their
equilibrium state, they will be much more challenging (if not
infeasible) for the NNE to predict, and provide a good test for
the NNE’s ability to quantify epistemic uncertainty.
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FIG. 16. Waterfall plot of the XANES spectra corresponding to the distorted geometries as outlined in Sec. IV C. Each row corresponds to
a specific site on a different molecule (the molecules are in the same order as presented in Fig. 5), and each column corresponds to a different
degree of distortion, δ ∈ {0.01, 0.02, . . . , 0.1} Å.
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