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Magnetic topological transistor exploiting layer-selective transport
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We propose a magnetic topological transistor based on MnBi2Te4, in which the “on” state (quantized
conductance) and the “off” state (zero conductance) can be easily switched by changing the relative direction
of two adjacent electric fields (parallel vs antiparallel) applied within a two-terminal junction. We explain that
the proposed magnetic topological transistor relies on a novel mechanism due to the interplay of topology,
magnetism, and layer degrees of freedom in MnBi2Te4. Its performance depends substantially on film thickness
and type of magnetic order. We show that “on” and “off” states of the transistor are robust against disorder
due to the topological nature of the surface states. Our work opens an avenue for applications of layer-selective
transport based on the topological van der Waals antiferromagnet MnBi2Te4.
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I. INTRODUCTION

Topological insulators (TIs) are bulk insulators with
topological Dirac surface states protected by time-reversal
symmetry [1–3]. Soon after the realization of TIs, various
efforts have been made to exploit the role of topology in fab-
ricating field-effect transistors [4,5]. Breaking time-reversal
symmetry by magnetic doping in TIs, this opens a sizable
gap in the spectrum of the Dirac surface states. This gap al-
lows for the realization of topological transistors [6–8], which
could be elementary building blocks in topological electron-
ics. Topological transistors may also be realized by exploiting
topological phase transitions [9–14].

Recently, the intrinsic antiferromagnetic TI MnBi2Te4

has been discovered [15–36], which exhibits large mag-
netic surface gaps (∼70 meV) [16] and high mobilities
(>1000 cm2/Vs) [37,38]. While extensive research efforts
have been devoted to the topological electronic structure of
the MnBi2Te4 family [16–18,39–47], their transport proper-
ties remain largely unexplored despite some magnetotransport
measurements [36–38,48–55]. Recent studies have revealed
that electric fields work as convenient knobs to control the
transport properties of MnBi2Te4 [33,36,37].
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In this work, we propose a new on/off switching mech-
anism to realize a magnetic topological transistor based on
the antiferromagnetic TI MnBi2Te4. This mechanism explores
three crucial ingredients in MnBi2Te4: (i) topological Dirac
surface states, (ii) intrinsic exchange fields, and (iii) layer
degrees of freedom. To elucidate the physical picture, we
first construct an effective model for MnBi2Te4 thin films
in presence of external electric fields. We then show that
manipulating the direction of electric fields allows us to selec-
tively address the transport of top and bottom Dirac surface
states. Exploiting this layer degree of freedom, we propose a
two-terminal magnetic topological transistor. The “on” state
(quantized conductance) and the “off” state (zero conduc-
tance) of this device are selected by the relative directions
of two adjacent electric fields [Figs. 1(a)-1(b)]. The physical
reason is that we are able to guide the electron transport from
the top surface state of the left region to either the top surface
state of the right region (“on” state) or to the bottom surface
state of the right region (“off” state). We show below that high
on-off ratios (∼107) of the magnetic topological transistor
can be achieved when the antiferromagnetic MnBi2Te4 films
satisfy one of two criteria: (i) The films are thick enough to
avoid hybridization of top and bottom surface states. (ii) The
films have compensated antiferromagnetic order. In the latter
case, the transistor can tolerate a considerable hybridization
of top and bottom surface states due to their opposite Berry
curvature. Our proposal requires electric control of MnBi2Te4,
which has been demonstrated in recent experiments [36,37].

II. EFFECTIVE MODEL FOR SURFACE STATES

To demonstrate the control of layer degrees of freedom
by electric fields, we first construct an effective model of
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FIG. 1. (a) Schematic of a magnetic topological transistor based
on magnetic TIs. The magnetic TI (yellow) is grown on a substrate
(grey). Two independent electric fields are applied to two neighbor-
ing regions. The middle region marked by two dashed lines is free
of external electric fields. The external electric field in the left region
is fixed along z direction. The angle θ describes the relative angle of
the two independent electric fields. For case I, the electric field in the
right region is parallel to that in the left region and the transistor is
in the “on” state. For case II, the electric field in the right region is
antiparallel to that in the left region and the transistor is in the “off”
state. The purple and green colors represent the dominant surface
states crossing the Fermi level at top and bottom of the sample,
respectively. (b) Two-terminal conductance of the magnetic topolog-
ical transistor that switches from “on” (quantized conductance) to
“off” (zero conductance) as the relative direction of the electric fields
changes from parallel (θ = 0) to antiparallel (θ = π ).

antiferromagnetic MnBi2Te4 thin films in presence of an elec-
tric field. MnBi2Te4 can be viewed as a TI with intrinsic
antiferromagnetic order due to an exchange field [15,24,56],
which breaks time-reversal symmetry. In practice, the electric
field can be applied by dual gate technology [37]. Without
loss of generality, we assume that the electric field is applied
along z direction and can be described by an electric potential
VE , which is an odd function of z, i.e., VE (−z) = −VE (z). This
corresponds to symmetric gating at top and bottom surfaces.
Asymmetric gating affects our results quantitatively but not
qualitatively.

We start from the bulk Hamiltonian of three-dimensional
(3D) TIs and derive the four lowest-energy eigenstates at the
� point as a basis [57–60]. Then, we project the antiferro-
magnetic order and the electric potential into this basis. The
resulting effective model for the MnBi2Te4 thin films in pres-
ence of the electric field can be written as [see Appendix A
for more details]

H = H0 + Hex + HV , (1)

where H0 describes the Dirac surface states of TIs given by

H0 = h(k)τz ⊗ σz − γ τ0 ⊗ (kxσy − kyσx ), (2)

with h(k) = �/2 − Bk2 and k2 = k2
x + k2

y . τ0 and σ0 are 2 × 2
identity matrices and τi and σi with i = x, y, z are Pauli matri-
ces. The basis is {|+,↑〉, |−,↓〉, |−,↑〉, |+,↓〉} with |±,↑
(↓)〉 = 1√

2
(|t,↑ (↓)〉 ± |b,↑ (↓)〉), where t (b) represents top

(bottom) surface states and ↑ (↓) represents spin up (down)
states. �, B, and γ are model parameters that depend on the
thickness of the films [see Appendix A]. For thick films, both
� and B approach zero.

The second term in Eq. (1), i.e., Hex, corresponds to the
effective exchange field of the surface states. It opens a band
gap in the spectrum of the Dirac surface states. Notably, the ef-
fective exchange field is different for even- and odd-layer thin

FIG. 2. (a) Spectra for antiferromagnetic MnBi2Te4 films color-
coded by the position expectation value 〈z〉 along z direction in
presence of opposite electric field directions. (b) Berry curvature
distributions for even-layer films. Here we set ky = 0. The chosen
parameters are adopted to the material MnBi2Te4 as described in
Appendix A.

films because of the antiferromagnetic order in the bulk. For
even-layer films, the magnetization is compensated, whereas
there is net magnetization for odd-layer films. As a result, Hex

reads

Hodd
ex = m1τ0 ⊗ σz (3)

for odd-layer films, and

H even
ex = m2τx ⊗ σz (4)

for even-layer films, where m1 and m2 are the corresponding
strengths of the effective exchange field. The last term HV in
Eq. (1) stems from the electric field. It reflects the structure
inversion asymmetry (SIA) of the two surfaces described by

HV = V τx ⊗ σ0, (5)

with V being the SIA strength.
The SIA term HV induced by external electric fields can

shift top and bottom surface states relative to each other in
energy due to the potential difference at opposite surfaces,
illustrated by the color-coded position expectation value 〈z〉
for the low-energy bands in Fig. 2(a). Reversing the direction
of the electric field, this alters the shift pattern in an opposite
way. Note that the shift patterns of the surface energy bands
are the same in films with odd and even layers. This can be
understood by recasting the effective model in the basis of top
and bottom surface states [see Appendix A for more details],
i.e.,

hs = sV + mjs
j−1σz + sγ (kyσx − kxσy), (6)

where s = ± denote top and bottom surfaces, respectively,
and j = 1(2) indicates odd(even)-layer films. The new basis
is {|t,↑〉, |t,↓〉, |b,↑〉, |b,↓〉}. Note that the spin-momentum
locking term in Eq. (6) is crucial for the robustness of surface
state transport. For simplicity, we assume in Eq. (6) that the
films are thick enough such that the hybridization of top
and bottom surface states can be ignored (i.e., � = B = 0).
Evidently, the SIA strength V has opposite signs for top and
bottom surface states. Hence, it shifts the Dirac bands in an
opposite way. If the Fermi level is placed to cross the lowest
conduction band, then flipping the direction of the external
electric field (changing the sign of V ), this selects topological
surface states from opposite surfaces.

Furthermore, the Berry curvature distributions of the sur-
face states are strongly influenced by the SIA term HV . For
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even-layer films, in the absence of an electric field (V = 0),
the Berry curvature of the lowest-energy band is zero due to
the presence of PT symmetry (i.e., combined space inversion
and time-reversal symmetry) [33]. When the electric field is
present (V 	= 0), PT symmetry is broken. Hence, the degen-
eracy of the energy bands is lifted and the Berry curvature
of each band becomes finite. In contrast, for odd-layer films,
the Berry curvature is always nonzero due to the breaking
of PT symmetry [19] no matter whether the electric field is
present or not. Moreover, the Berry curvature of the even-layer
films is layer-locked for conduction (or valence) bands [37],
illustrated in Figs. 2(a) and 2(b).

III. MAGNETIC TOPOLOGICAL TRANSISTOR

We propose a magnetic topological transistor based on
the unique properties described above [see Fig. 1(a) for a
schematic]. The two side regions of the junction under the
influence of external electric fields are connected to source
and drain of the transistor. The middle region is free of ex-
ternal fields. Considering a finite-size 3D slab geometry, the
topological surface bands evolve to quasi-1D spectra along
the longitudinal direction. The relative energy separation of
top and bottom quasi-1D spectra can be controlled by electric
fields. This feature selects the layer degrees of freedom. The
transistor can switch between “on” and “off” states depending
on the relative direction of the electric fields, as illustrated in
Fig. 1(b). When the electric fields are parallel, the transistor
is in the “on” state with quantized conductance G ≈ e2/h
considering a single quasi-1D spectrum at the Fermi level. In
contrast, when the electric fields are antiparallel, the transistor
is in the “off” state with vanishing conductance G ≈ 0.

The working principle of this transistor is based on layer
degrees of freedom. At a given Fermi level, the top or bot-
tom surface quasi-1D spectrum can solely be responsible for
transport since the electric field separates different bands in
energy [see Fig. 3(a)]. We set the direction of electric field
on the left-hand side along +z direction such that the Fermi
level only crosses the spectrum of the top surface. For the
middle region of the transistor, the Fermi level crosses the
spectrum of both top and bottom surfaces. Eventually, the
nature of the conducting surface spectrum at the Fermi level
on the right-hand side matters. If the top surface state on the
right-hand side is responsible for transport [case I in Fig. 1(a)],
then electrons traverse the junction easily and the conductance
approaches G ≈ e2/h. Otherwise [case II in Fig. 1(a)], the
conductance G approaches zero if the thickness of the middle
region is large enough such that hybridization of top and
bottom surface states is negligible. Note that although the
surface states are gapped by the magnetic order, they inherit
spin-momentum locking described by Eq. (2). Therefore, the
back scattering from impurities is substantially suppressed.

IV. NUMERICAL SIMULATIONS

Up to now, we have analyzed the mechanism for our
proposed magnetic topological transistor from a thick-film
perspective. To directly analyze the performance of the
transistor for any film thickness, we perform numerical cal-
culations based on the discretized 3D bulk Hamiltonian on a

FIG. 3. (a) Spectrum of even-layer 3D slab with Nz = 12. The
black and purple dashed lines represent Fermi energies at EF =10,
50 meV, respectively. (b) Conductance G of the magnetic topological
transistor as a function of Fermi energy for different external field
configurations with Nz = 12 (even layers). The symbols E ↑↑ and
E ↑↓ represent the relative directions of the electric field for left
and right leads to be parallel and antiparallel, respectively. The black
and purple dashed lines represent Fermi energies at EF =10, 50 meV,
respectively. (c) Conductance G as a function of junction thickness
Nz with EF =30 meV. The inset shows the on-off ratio r ≡ Gon/Goff

as a function of Nz. (d) Conductance G as a function of magnetic
and nonmagnetic disorder strength W0 with Nz = 10. The spin po-
larization of the magnetic disorder is along z direction. The Fermi
level is fixed at EF =25 meV. Open (periodic) boundary conditions
are imposed in z(y) direction. The other parameters in all plots are
specified in [61].

cubic lattice [see Appendix B], by employing the Landauer
formalism [62–64]. We choose typical bulk parameters that
are adopted to the material MnBi2Te4 based on ab initio
calculations [15]. The chosen sample geometry consists of a
cuboidal central region and two semi-infinite leads as source
and drain. Exploiting the recursive Green function technique
[65], the conductance of the setup can be evaluated by

G = e2

h
Tr[�LGr�RGa], (7)

where �L/R = i(	r
L/R − 	a

L/R) are the linewidth functions
with 	L/R the self-energy due to the coupling to the left/right
lead. Gr (Ga) is the retarded (advanced) Green function of the
central region.

Figures 3(a) and 3(b) illustrate that the magnetic topolog-
ical transistor works perfectly in a wide energy window, in
which the conductance G approaches e2/h for the “on” state
(parallel configuration E ↑↑) and decreases to nearly zero for
the “off” state (antiparallel configuration E ↑↓). Importantly,
the range of this effective energy window is controllable by
the strength of electric fields. This result is consistent with the
phenomenological expectations discussed before. The on-off
ratio r ≡ Gon/Goff of this transistor can reach 107, as shown in
the inset of Fig. 3(c). When the Fermi level lies at the bottom

013179-3



HAI-PENG SUN et al. PHYSICAL REVIEW RESEARCH 5, 013179 (2023)

of the quasi-1D spectrum, the value of r decreases due to
diminishing spin-momentum locking.

To obtain a large on-off ratio r, the thickness of the
junction Nz should be large enough (i.e, Nz � 10) to avoid
hybridization of top and bottom surface states, as shown in
the inset of Fig. 3(c). The on-off ratio r increases as Nz grows.
Odd-layer devices only perform well for thick films while
even-layer devices are less sensitive to the film thickness.
Moreover, to illustrate the robustness of the magnetic topolog-
ical transistor against perturbations, Anderson-type disorder
is introduced through random on-site potential with a uni-
form distribution within [−W0/2,W0/2], where W0 denotes
the disorder strength. It is evident from Fig. 3(d) that the
proposed magnetic topological transistor persists to perform
well in presence of disorders. The strong protection against
perturbations comes from spin-momentum locking inherited
from topological surface states. Moreover, the conductance
is also robust against weak magnetic disorder. Note that the
magnetic disorder in antiferromagnetic MnBi2Te4 may be
formed by Mn sites filled with Bi atoms or Bi sites occupied
by Mn atoms [66–68]. Therefore, the spin polarization of
the magnetic disorder is considered along z direction in the
calculation. For simplicity, we discuss the functionality of the
magnetic topological transistor with a single conducting chan-
nel. When more channels are involved, the transistor works
even better with higher on-off ratios [see Appendix C]. In
our simulations, all the parameters are based on the ab initio
calculations [15], which should apply to MnBi2Te4.

V. BERRY CURVATURE FEATURES

For thick films, the hybridization of top and bottom surface
states is negligible. However, as the film thickness decreases,
the hybridization of top and bottom surfaces becomes pro-
nounced. The tunneling of the surface electrons from top to
bottom diminishes the functionality of the magnetic topo-
logical transistor. Figure 4(a) shows that the conductance G
oscillates (as a function of Nx) with finite amplitude as the
thickness of the transistor Nz decreases in odd-layer thin films.
In striking contrast, the conductance G of the even-layer thin
films stays close to zero (of the order of 10−7 e2/h) even
when Nz is quite small [Fig. 4(b)]. The different behaviors
between odd and even layer cases originate from the spin po-
larization of top and bottom surface states. For a given Fermi
energy intersecting the conduction band, the spin polarization
is the same for odd-layer films but opposite for even-layer
case in agreement with the direction of the magnetization.
This is featured by the same Berry curvature distribution for
odd-layer system [Fig. 4(c)] and the opposite Berry curvature
distribution for even-layer system [Fig. 4(d)]. We show in
Appendix C that this difference of the Berry curvature dis-
tribution crucially affects the transport properties in the “off”
state. Consequently, even-layer thin film devices are superior
as compared to odd-layer thin film devices.

VI. CONCLUSION

We have developed an effective model for the antifer-
romagnetic TI MnBi2Te4 in presence of electric fields to
demonstrate that electric fields can be exploited to selec-

FIG. 4. (a) Conductance G as a function of Nx for case II in
Fig. 1(a) with Nz = 9, 11, and 13, respectively. (b) Conductance G
as a function of Nx for case II in Fig. 1(a) with Nz = 8, 10, and
12, respectively. We choose Fermi energy EF =30 meV, and other
parameters are the same as in Fig. 3. (c) Illustration of the Berry
curvature for top surface (purple region) and bottom surface (green
region) for antiparallel configuration E ↑↓ for odd-layer thin films.
Red arrows and blue arrows represent opposite Berry curvature. Nx

is the length of the middle region and Nz is the thickness of the
thin films. (d) Illustration of the Berry curvature for top surface and
bottom surface for antiparallel configuration E ↑↓ for even-layer thin
films.

tively guide surface state transport. We have proposed a
magnetic topological transistor based on three crucial ingredi-
ents: topology (for the emergence of surface states with strong
spin-momentum locking), exchange fields (to gap the surface
states), and electric-field-controllable layer degrees of free-
dom (to select top and bottom surface states). The proposed
magnetic topological transistor is robust against disorder due
to strong spin-momentum locking of the surface states. It
shows large on-off ratios when the magnetic TI films are
thick enough to avoid hybridization or have fully compensated
magnetic order. Our work suggests a new switching mecha-
nism for transistors exploiting layer-selective transport.
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APPENDIX A: EFFECTIVE MODEL FOR
SURFACE STATES

1. 3D bulk Hamiltonian for antiferromagnetic topological
insulators MnBi2Te4 in presence of an electric field

The 3D bulk Hamiltonian in presence of an external elec-
tric field for antiferromagnetic MnBi2Te4 reads

H(k) = HN (k) + HX (z) + VE (z), (A1)

where HN (k) is the nonmagnetic part, HX (z) is the exchange
field that accounts for the out-of-plane antiferromagnetic or-
der, and VE (z) is the electric potential induced by the external
electric field. The nonmagnetic part is given by [15]

HN (k) = ε0(k) +

⎡⎢⎢⎣
M(k) A1kz 0 A2k−
A1kz −M(k) A2k− 0

0 A2k+ M(k) −A1kz

A2k+ 0 −A1kz −M(k)

⎤⎥⎥⎦,

(A2)

with k± = kx ± iky, ε0(k) = C0 + D1k2
z + D2(k2

x + k2
y ), and

M(k) = M0 − B1k2
z − B2(k2

x + k2
y ). C0, Di, M0, Bi, and Ai are

model parameters with i = 1, 2. The basis of the Hamiltonian
is {|P1+

z ,↑〉, |P2−
z ,↑〉, |P1+

z ,↓〉, |P2−
z ,↓〉}.

The exchange field reads

HX (z) = mz(z)σz ⊗ τ0, (A3)

where mz(z) = −m0 sin(πz/d ) is the magnetization energy
along z direction with m0 the amplitude of the intralayer
ferromagnetic order. d is the thickness of a septuple layer. σz

is the Pauli z matrix for spin degrees of freedom, and τ0 is a
2 × 2 identity matrix for orbital degrees of freedom.

We assume the electric potential VE (z) is an odd function
of z, namely, VE (−z) = −VE (z), which corresponds to sym-
metric gating. The qualitative findings of ours are not affected
by this choice.

2. Wave functions and eigen energies for MnBi2Te4 thin films

Consider a MnBi2Te4 thin film with thickness L along z
direction and label bottom and top boundaries as −L/2 and
L/2, respectively. First, we derive the surface eigenstates of
the nonmagnetic part at the � point (kx = ky = 0), which form
the basis for the effective model. Replacing kz by −i∂z, since
kz is no longer a good quantum number, and taking kx = ky =
0 in HN (k), we arrive at HN (−i∂z ), where

HN (−i∂z ) =
[

hN (A1) 0
0 hN (−A1)

]
, (A4)

with hN (A1) = C − D1∂
2
z + (M + B1∂

2
z )σz − iA1∂zσx. The

general eigenstate for hN (A1) reads

ψ (z) = Cα,βψα,βeβλαz, (A5)

where

ψα,β =
[−D+λ2

α + l− − E
iA1βλα

]
, (A6)

λα =
√

−F + (−1)α−1
√

R

2
(
D2

1 − B2
1

) , (A7)

with α = 1, 2, β = ±, D+ = D1 + B1, l− = C0 − M0,
F = A2

1 − 2B1M0 + 2D1(E0 − C0), and R = F 2 − 4(D2
1 −

B2
1)(E − C0 − M0)(E − C0 + M0).

Using open boundary conditions at z = ±L/2, namely,
ψ (±L/2) = 0, we obtain the transcendental equations for the
eigenenergies

E+ =
( − D+λ2

1 + l−
)
λ2tanh(λ1L/2) − ( − D+λ2

2 + l−
)
λ1tanh(λ2L/2)

λ2 tanh(λ1L/2) − λ1 tanh(λ2L/2)
, (A8)

E− =
( − D+λ2

1 + l−
)
λ2tanh(λ2L/2) − ( − D+λ2

2 + l−
)
λ1tanh(λ1L/2)

λ2 tanh(λ2L/2) − λ1 tanh(λ1L/2)
. (A9)

Moreover, we find the wave functions from the general solu-
tion as

ϕ(A1) = C+

[−D+ f +
− (z)η+

iA1 f +
+ (z)

]
, (A10)

χ (A1) = C−

[−D+ f −
+ (z)η−

iA1 f −
− (z)

]
, (A11)

with

f ±
+ (z) = cosh(λ1z)

cosh
(
λ1

L
2

) − cosh(λ2z)

cosh
(
λ2

L
2

) ∣∣∣∣∣
E=E±

, (A12)

f ±
− (z) = sinh(λ1z)

sinh
(
λ1

L
2

) − sinh(λ2z)

sinh
(
λ2

L
2

) ∣∣∣∣∣
E=E±

, (A13)

η+ = λ2
2 − λ2

1

λ2coth
(
λ2

L
2

) − λ1coth
(
λ1

L
2

) ∣∣∣∣∣
E=E+

, (A14)

η− = λ2
2 − λ2

1

λ2tanh
(
λ2

L
2

) − λ1tanh
(
λ1

L
2

) ∣∣∣∣∣
E=E−

. (A15)

C+ and C− are the normalization coefficients. Thus, the wave
functions for HN (−i∂z ) in Eq.(A4) read

�1 =
[
ϕ(A1)

0

]
, �2 =

[
χ (A1)

0

]
, (A16)

�3 =
[

0
ϕ(−A1)

]
, �4 =

[
0

χ (−A1)

]
. (A17)
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3. Effective model for MnBi2Te4 thin films in presence of an
electric field

Projecting the 3D bulk Hamiltonian for MnBi2Te4 to the
basis {�1,�4,�2,�3}, we obtain the effective model as

H =
∫ L

2

− L
2

dz[�1,�4,�2,�3]†H(k)[�1,�4,�2,�3]

= H0 + Hex + HV , (A18)

where

H0 = h(k)τz ⊗ σz − γ τ0 ⊗ (kxσy − kyσx ), (A19)

with h(k) = �/2 − Bk2, � = E+ − E−, k2 = k2
x + k2

y ,
B = (B̃1 − B̃2)/2, D = (B̃1 + B̃2)/2 − D2, B̃1 =
B2〈ϕ(A1)|σz|ϕ(A1)〉, B̃2 = B2〈χ (A1)|σz|χ (A1)〉, γ = −iÃ2,
and Ã2 = A2〈ϕ(A1)|σx|χ (−A1)〉. For simplicity, we have
ignored the energy shift E0 and the particle-hole asymmetry
term Dk2, which implies that ε0(k) = 0 in Eq. (A2).

The effective exchange field Hex(z) for odd-layer thin films
reads

Hodd
ex =

∫ L
2

− L
2

dz[�1,�4,�2,�3]†HX (z)[�1,�4,�2,�3]

= m1τ0 ⊗ σz, (A20)

where m1 = (−1)
Nz−1

2 m0〈ϕ(A1)|cos( π
d z)σ0|ϕ(A1)〉 with Nz the

number of layers.
The effective exchange field Hex(z) for even-layer thin

films reads

H even
ex =

∫ L
2

− L
2

dz[�1,�4,�2,�3]†HX (z)[�1,�4,�2,�3]

= m2τx ⊗ σz, (A21)

where m2 = (−1)
Nz
2 −1m0〈ϕ(A1)|sin( π

d z)σ0|χ (A1)〉 with Nz

the number of layers. In Eqs. (A20) and (A21), m1 and m2

are the strengths of the effective exchange field for the surface
states of odd- and even-layer thin films, respectively. Hodd

ex and
H even

ex are not the same because of the different profiles of bulk
magnetization.

Structure inversion asymmetry (SIA) induced by the elec-
tric field is described by

HV =
∫ L

2

− L
2

dz[�1,�4,�2,�3]†VE (z)[�1,�4,�2,�3]

= V τx ⊗ σ0, (A22)

where V = 〈ϕ(A1)|VE (z)σ0|χ (A1)〉 is the strength of SIA.
In summary, the effective model for odd-layer MnBi2Te4

thin films in presence of electric fields reads

Hodd =

⎡⎢⎢⎣
h(k) + m1 iγ k− V 0
−iγ k+ −h(k) − m1 0 V

V 0 −h(k) + m1 iγ k−
0 V −iγ k+ h(k) − m1

⎤⎥⎥⎦,

with h(k) = �/2 − Bk2, and k2 = k2
x + k2

y .
Likewise, the effective model for even-layer MnBi2Te4

thin films reads

Heven =

⎡⎢⎢⎣
h(k) iγ k− V + m2 0

−iγ k+ −h(k) 0 V − m2

V + m2 0 −h(k) iγ k−
0 V − m2 −iγ k+ h(k)

⎤⎥⎥⎦.

Note that the basis of the model is a mixture of top and
bottom surface states as {|+,↑〉, |−,↓〉, |−,↑〉, |+,↓〉} with
|±,↑ (↓)〉 = 1√

2
|t,↑ (↓)〉 ± |b,↑ (↓)〉.

The parameters of the effective model for antiferromag-
netic MnBi2Te4 thin films used in Fig. 2 are shown below.
Note that the parameters for the effective model are obtained
from the bulk parameters extracted from ab initio calculations
[15]. For the even-layer film with Nz = 10, the parameters are
� = −0.34 meV, B = 1.31 meV · nm2, γ = 319.64 meV ·
nm, m1 = 0 meV, m2 = 35.02 meV, V = 20 meV. For
the odd-layer film with Nz = 11, the parameters are � =
−0.16 meV, B = 0.67 meV · nm2, γ = 319.64 meV · nm,
m1 = 35.02 meV, m2 = 0 meV, V = 20 meV.

4. Effective model for MnBi2Te4 thick films

For MnBi2Te4 thick films, the parameters � and B
approach zero, which implies that h(k) = 0. The unitary trans-

formation is used to transform the basis as

Ĥ =
∑

ψ
†
1 Hψ1 =

∑
(Uψ1)†UHU −1(Uψ1), (A23)

with U †U = 1. Thus, the new basis is ψ2 = Uψ1. Here, the
unitary operator reads

U = 1√
2

⎡⎢⎢⎣
1 0 1 0
0 1 0 1
1 0 −1 0
0 −1 0 1

⎤⎥⎥⎦. (A24)

Thus the new basis is {|t,↑〉, |t,↓〉, |b,↑〉, |b,↓〉}. The ef-
fective model for odd-layer MnBi2Te4 thick films in the new
basis reads

UHoddU † =

⎡⎢⎢⎣
V + m1 iγ k− h(k) 0
−iγ k+ V − m1 0 h(k)

h(k) 0 −V + m1 −iγ k−
0 h(k) iγ k+ −V − m1

⎤⎥⎥⎦.

Similarly, the effective model for even-layer MnBi2Te4

thick films in the new basis reads

UHevenU † =

⎡⎢⎢⎣
V + m2 iγ k− h(k) 0
−iγ k+ V − m2 0 h(k)

h(k) 0 −V − m2 −iγ k−
0 h(k) iγ k+ −V + m2

⎤⎥⎥⎦.
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FIG. 5. (a) Spectrum and Berry curvature distribution for odd-
layer film with Nz=9 and V =30 meV. The dashed line indicates the
Fermi energy EF . (b) The spin texture of the energy cut in (a) with
EF =40 meV.

5. Spin texture of the effective model

The spectrum of the four-band effective model for odd-
layer thin films color-coded by the Berry curvature is shown
in Fig. 5(a). We can see the Rashba-type spin texture in kx-ky

plane in Fig. 5(b), inherited from gapless topological surface
states.

APPENDIX B: LATTICE MODEL FOR MAGNETIC
TOPOLOGICAL INSULATORS IN PRESENCE OF

ELECTRIC FIELDS

The effective Hamiltonian of Eq. (A1) can be regular-
ized on a cubic lattice by the substitutions k j → 1

a0
sin(k ja0),

k2
j → 2

a2
0
[1 − cos(k ja0)], where a0 is the lattice constant and

j = x, y, z. For simplicity, we take a0 = 1 nm. The three lat-
tice translation vectors are defined as a1 = (1, 0, 0)T , a2 =
(0, 1, 0)T , a3 = (0, 0, 1)T . The lattice model for antiferro-
magnetic MnBi2Te4 reads

H (k) = H0(k) + Hex + VE , (B1)

where

H0(k) =
3∑
0

di(k)�i, (B2)

with �i = σi ⊗ τ1 for i = 1, 2, 3, and �0 = σ0 ⊗ τ3. σi and τi

are Pauli matrices for the spin and orbital degrees of free-
dom, respectively, d0 = M0 + 2B1[1 − cos(kz )] + 2B2[2 −
cos(kx ) − cos(ky)], d1 = A2 sin(kx ), d2 = A2 sin(ky), and d3 =
A1 sin(kz ). The exchange field reads

Hex =
[ 
MA · 
σ ⊗ τ0 0

0 
MB · 
σ ⊗ τ0

]
. (B3)

For the antiferromagnetic MnBi2Te4, we introduce a sub-
layer index i = A, B to describe the unit-cell doubling
and characterize the magnetization in sublayer i by Mi =
m(cos φi sin θi, sin φi sin θi, cos θi ) with angles φi and θi. The
A-type antiferromagnetic order is described by (θA, θB) =
(0, π ) and (φA, φB) = (0, 0), where

Hex =
[

m σz ⊗ τ0 0
0 −m σz ⊗ τ0

]
. (B4)

FIG. 6. (a) Conductance G as a function of Fermi energy for odd-
layer thin films with Ny=20 and Nz=13. (b) Conductance G for the
multimode case as a function of energy for even-layer thin films with
Ny=50 and Nz=12.

The electric potential is VE = V (z) σ0 ⊗ τ0, where V (z) de-
picts the strength of the electric field. In the lattice model, the
electric potential difference of neighboring layers is Vz.

APPENDIX C: MORE TRANSPORT RESULTS

1. More results for intrinsic antiferromagnetic
topological insulators

Figure 6(a) shows that the magnetic topological transistor
works well in the odd-layer thin film of antiferromagnetic
TIs MnBi2Te4. Figure 6(b) shows that when the size of Ny

increases, compared with Fig. 3(b), more modes get involved
and the transistor still works well.

2. Scattering matrix theory

By combining the scattering matrices St , Sm, and Sb illus-
trated in Fig. 7(a), we obtain the scattering matrix connecting
the states �+

t , �−
b , �+

b , �−
t . We solve the scattering problem

using the one-dimensional effective Hamiltonian. As shown in
Fig. 7(a), the right-moving mode in the top layer is reflected at
the right edge, while the left-moving mode is reflected at the
left edge. These scattering processes are described by St and
Sb. Namely, St and Sb model the barriers in the middle region.

The scattering matrix Sm is obtained by solving two copies
of the scattering problem: one is between �+

t , �−
b and the

other is between �+
b , �−

t , each with the Hamiltonian vkxσz +

FIG. 7. (a) Schematic of the scattering process for the “off”
state of the magnetic topological transistor with �±

t and �±
b the top

and bottom right-moving and left-moving modes, respectively. Sm

and St/b are the scattering matrices. (b)Two scattering paths for the
transmission T (E ). Quantum interference occurs between two paths
(red and blue thick lines).
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mσx. Consequently, Sm is⎡⎢⎢⎣
�+

t
�−

b
�−

t
�+

b

⎤⎥⎥⎦
out

=

⎡⎢⎢⎣
t −r 0 0
r t 0 0
0 0 t −r
0 0 r t

⎤⎥⎥⎦
⎡⎢⎢⎣

�+
t

�−
b

�−
t

�+
b

⎤⎥⎥⎦
in

, (C1)

where r and t are the scattering amplitudes. The scattering
matrix St connects only the scattering states �±

t with St =
eiγt . Similarly, the scattering states on the bottom layer �±

b
are connected by Sb = eiγb .

Combining the partial scattering matrices St , Sm, and Sb,
the full scattering matrix S becomes[

�−
t

�+
b

]
out

=
[

eiγt t2 − eiγbr2 −(eiγt + eiγb )rt
(eiγt + eiγb )rt eiγbt2 − eiγt r2

][
�+

t
�−

b

]
in

.

The transmission probability T (E ) for the incoming state
�+

t on the top layer to be transmitted to the outgoing mode
�+

b on the bottom layer reads

T (E ) = |(eiγt + eiγb )rt |2 = 4|rt |2 cos2[�γ/2], (C2)

with �γ = γt − γb. Therefore, T (E ) can be understood in
terms of quantum interference illustrated in Fig. 7(b).

We solve the scattering problem to obtain the phase differ-
ence �γ = γt − γb. The reflection phase at the top layer γt

is obtained by solving χt,I + rtχt,R = χt,E . In particular, the
reflection phase is

γt = π + arg{χ†
t,Rχ̄t,E χ̄

†
t,Eχt,I}, (C3)

where the spin state χ̄ refers to the oppositely polarized state
of χ . The second term can be interpreted as a geometric
phase calculated by integrating the Berry connection along
the geodesic connecting three spin states χt,I , χ̄t,E , and χt,R on
the Bloch sphere. Similarly, for the bottom layer, we solve the
scattering problem χb,I + rbχb,R = χb,E . The reflection phase
γb is

γb = π + arg{χ†
b,Rχ̄b,E χ̄

†
b,Eχb,I}. (C4)

In total,

�γ = arg{χ†
t,Rχ̄t,E χ̄

†
t,Eχt,Iχ

†
b,I χ̄b,E χ̄

†
b,Eχb,R}. (C5)

Finally, we obtain the quantum phase

�γ =
{

0 odd layers,
π even layers. (C6)

Hence, the transmission probability is

T (E ) =
{

4|rt |2 odd layers,
0 even layers.

The interference at odd and even layers occurs constructively
and destructively, respectively. Hence, the transmission is fi-
nite for the odd layers. On the contrary, for the even layers,
the destructive interference suppresses the transport.
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