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Topological superconductors are predicted to exhibit outstanding phenomena, including non-Abelian anyon
excitations, heat-carrying edge states, and topological nodes in the Bogoliubov spectra. Nonetheless, and despite
major experimental efforts, we are still lacking unambiguous signatures of such exotic phenomena. In this
context, the recent discovery of coexisting superconductivity and ferroelectricity in lightly doped and ultraclean
SrTiO3 opens new opportunities. Indeed, a promising route to engineer topological superconductivity is the
combination of strong spin-orbit coupling and inversion-symmetry breaking. Here we study a three-dimensional
parabolic band minimum with Rashba spin-orbit coupling, whose axis is aligned by the direction of a ferroelec-
tric moment. We show that all of the aforementioned phenomena naturally emerge in this model when a magnetic
field is applied. Above a critical Zeeman field, Majorana-Weyl cones emerge regardless of the electronic density.
These cones manifest themselves as Majorana arc states appearing on surfaces and tetragonal domain walls.
Rotating the magnetic field with respect to the direction of the ferroelectric moment tilts the Majorana-Weyl
cones, eventually driving them into the type-II state with Bogoliubov Fermi surfaces. We then consider the
consequences of the orbital magnetic field. First, the single vortex is found to be surrounded by a topological
halo and is characterized by two Majorana zero modes: one localized in the vortex core and the other on the
boundary of the topological halo. Based on a semiclassical argument we show that upon increasing the field
above a critical value the halos overlap and eventually percolate through the system, causing a bulk topological
transition that always precedes the normal state. Finally, we propose concrete experiments to test our predictions.
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I. INTRODUCTION

Finding robust experimental realizations of topological su-
perconductivity is an important goal, both for fundamental
research of topological matter and for possible applications
to quantum technology [1–3]. However, materials which nat-
urally host such exotic ground states are scarce. Moreover,
measuring nonequivocal signatures of topological supercon-
ductivity is an outstanding experimental challenge [4–6],
because such signatures are often obscured by imperfections
in the sample or probe. Most candidate materials also realize
low-dimensional topological superconducting states. Thus,
new candidate bulk superconductors might help overcome
such challenges.

Over a decade ago Fu and Kane showed how strong spin-
orbit coupling combined with the obstruction of time-reversal
symmetry on the surface of a topological insulator converts
proximity s-wave superconductivity to a topological state [7].
Indeed, the combination of spin-orbit coupling, the lack of
an inversion center, and the breaking of time-reversal sym-
metry are key ingredients in a variety of exotic theoretical
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predictions and phenomena, including Majorana zero modes
[8–11], the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state
[12–15], Majorana-Weyl cones [16–21], and Ising supercon-
ductivity [22–25].

The coexistence of superconductivity and ferroelectric-
ity in low-density systems [26–31] opens opportunities in
this context. A ferroelectric crystal breaks inversion symme-
try spontaneously and therefore can be easily manipulated.
Moreover, such systems are often close to their ferroelec-
tric transition, where the dielectric constant is huge [32,33].
As a consequence, the influence of disorder is dramatically
suppressed [34,35]. These properties make low-density su-
perconductors close to a ferroelectric quantum critical point
prime candidates for engineering unconventional supercon-
ducting states.

The paradigmatic example of such polar superconductors
is lightly doped SrTiO3 (STO) [35,36]. In its natural form,
however, STO is paraelectric [32,33,37]. By doping it with Ca
or Ba [29,35], substituting 16O with 18O [38], or by applying
epitaxial strain [39] one can drive STO to the polar phase,
where inversion is spontaneously broken. It has been shown
that low-density superconductivity exists in the ferroelectric
phase [26,38,40–45] and is even enhanced [29,46].

Motivated by the physics in ferroelectric STO, we revisit
the problem of a Rashba spin-orbit-coupled superconductor
subject to a magnetic field [47,48], where we focus on the
case of three spatial dimensions. Rashba spin-orbit coupling
originates from the combination of inversion breaking by the
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FIG. 1. (a) The Fermi surface (FS) of the free Rashba gas (in the ferroelectric phase). Blue and green arrows denote spin texture of the outer
and inner sheet of the FS, respectively. (b) In the presence of nonzero magnetic field parallel to the polarization, the Fermi surface develops a
gap at the points of overlap of the two sheets of the Fermi surface of the Rashba gas. Blue and green arrows denote the direction of the spins
corresponding to the momenta on the FS lying on the kz axis. (c) The depairing effect of the Zeeman field is maximal along kz, and sufficiently
strong magnetic field destroys superconductivity locally in momentum space, making the spectrum gapless at the specific momenta along kz.
The Weyl points are denoted by the red and blue spheres, which signify positive and negative chiralities, respectively. (d) Bogoliubov Fermi
surfaces appear when the magnetic field is perpendicular to the polarization direction.

ferroelectric moment and atomic spin-orbit coupling [49,50].
Therefore, the axis of the Rashba spin-orbit coupling can vary
in space and may also be externally manipulated.

In the absence of superconductivity and magnetic fields,
the Fermi surfaces are spin split everywhere in momen-
tum except for two pinching points, which lie along
the axis of the polar vector [Fig. 1(a)]. Consequently,
in the superconducting state, pair breaking is strongest
at the vicinity of these points. When the magnetic
field exceeds a critical threshold, the gap closes along this
polar axis causing four Majorana-Weyl points to emerge,
accompanied by surface Majorana arcs. We then show that
the Majorana-Weyl cones can be tilted by tuning the angle
between the polar moment and field, such that the supercon-
ductor becomes type-II Weyl with Bogoliubov Fermi surfaces
[51,52] above a certain critical angle. We also study the Fermi
arcs forming on domain walls between different polarization
directions. We find that chiral surface states do not appear for
all angles of the magnetic field.

Finally, we turn to the more realistic scenario, where the
field is nonhomogeneous and penetrates the sample through
line vortices. We first study the single-vortex problem, where
we show that the magnetic field always exceeds the critical
threshold close enough to the center, forming a topological
halo surrounding the vortex. We show that each such vortex
has a single zero mode in its core with a counterpart at the
boundary of the halo, yielding corresponding signatures in
the tunneling density of states. Then, as the magnetic field is
increased towards Hc2 the density of vortices increases and the
halos begin to overlap, forming larger topological regions. As
a consequence we predict that the trivial-superconducting and
normal states are always separated by a putative topological
phase in any polar superconductor. The topological phase is
characterized by percolation of the halos, akin to a transition
between integer quantum Hall states.

The rest of this paper is structured as follows. In Sec. II,
we describe the model and show in the mean-field pic-
ture, neglecting the orbital effects of the magnetic field, that

Majorana-Weyl superconductivity develops when the mag-
netic field exceeds a certain threshold. In Sec. III, we discuss
the Fermi arcs on surfaces and interfaces between the fer-
roelectric domains. In Sec. IV, we consider a more realistic
model taking into account orbital effects of the magnetic
field. We show that in addition to a Majorana string located
in the core, an isolated vortex is surrounded by a chiral
Majorana mode with the wave function peaked at a finite
distance from the core. Based on semiclassical considerations,
we propose that with the increase of the magnetic field to-
wards Hc2, there is always a percolation-type phase transition
to a bulk Majorana-Weyl superconductivity, at which chiral
modes going around each vortex overlap. In this section we
also calculate contribution from the Majorana modes to the
tunneling density of states. Finally, we give our conclusions
with emphasis on experimental consequences caused by the
physics considered in Sec. V. Throughout the paper we work
in units in which h̄ = kB = 1.

II. MAJORANA-WEYL SUPERCONDUCTIVITY IN
THE PRESENCE OF A ZEEMAN FIELD

We now describe the microscopic model. We start with the
coupling between the optical phonon displacement P and the
conduction electrons [53–57],

Ĥel-ph =
∑
k,q

λ̄ψ
†
k+q/2(k × σ )ψk−q/2 · Pq, (1)

where ψk is an annihilation operator for the electron with mo-
mentum k and λ̄ is a coupling. This term has its microscopic
origin as a consequence of the combined effect of spin-orbit
coupling and interorbital hybridization allowed by inversion
breaking [49].

In the ferroelectric phase, the displacement field P devel-
ops a nonzero expectation value. We emphasize, however,
that this expectation value does not imply the presence of
long-ranged electric fields, which are always screened by the
itinerant electrons beyond the Thomas-Fermi length scale.
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The term “ferroelectricity” is commonly used in the literature
to describe the polar state even when it is metallic. However,
in this case the “ferroelectric” phase transition refers to a
structural transition, where inversion symmetry is broken. As
a result, the coupling in Eq. (1) leads to the celebrated Rashba
spin-orbit coupling ĤSOC =∑k λ ψ

†
k [(k × σ ) · n̂] ψk, where n̂

is a unit vector parallel to the ferroelectric order parameter 〈P〉
and λ = |〈P〉|λ̄.

Additionally, we consider a Zeeman coupling to an exter-
nal magnetic field B, and neglect its orbital effects pro tem
[58]. Without loss of generality we align the z axis with the
local polarization 〈P〉 (hence n̂ = ẑ) and obtain the dispersion
Hamiltonian

H (k) = ψ
†
k εkψk + λψ

†
k (k × σ )zψk − gμB

2
B · σ, (2)

where σ = (σx, σy, σz ) is a vector of Pauli matrices in spin
space and we have assumed the dispersion εk = k2

2m − μ is
spherically symmetric. In the following, we work in units in
which gμB/2 = 1.

We next add an attractive interaction between electrons,
which causes a Cooper instability at low temperature. For
simplicity we restrict ourselves to s-wave superconductivity
[59], which is also reported in the experiments on paraelectric
STO [35].

Finally, writing the Hamiltonian in Bogoliubov–de Gennes
(BdG) form we obtain

Ĥ = 1

2

∑
k

�
†
k HBdG(k)�k

= 1

2

∑
k

�
†
k

(
H (k) �

�† −H∗(−k)

)
�k, (3)

where �
†
k = (ψ†

k , ψT
−k) is the Nambu spinor, � = iσy� in

the s-wave BCS channel, and we choose a gauge in which
� is real. The BdG Hamiltonian above enjoys a particle-hole
symmetry, implemented by P = τxC, where τ j, j = x, y, z,
are Pauli matrices in the particle-hole space and C is the com-
plex conjugation operator. Namely, the Hamiltonian obeys
PHBdG(k)P† = −HBdG(−k). Additionally, when B ‖ P the
Hamiltonian has rotational symmetry about the axis parallel
to the polarization, where the rotation includes both spatial
and spin rotation. In the presence of higher-order terms due to
the lattice, the continuous rotational symmetry is reduced to
discrete fourfold rotations about the polarization axis.

The energy dispersion is determined from the solutions of
a quartic equation [see Eq. (A1)], which for a magnetic field
parallel to the polarization yields

E2
k = ε2

k + B2 + λ2k2
⊥ + �2 ± 2

√
ε2

k

(
B2 + λ2k2

⊥
)+ �2B2,

(4)

where k⊥ = (kx, ky) denotes the projection of the momentum
onto the xy plane.

The three-dimensional (3D) Fermi surfaces of the free
Rashba gas described by Eq. (2) have the shape obtained
by rotating two displaced circles around the axis connect-
ing their crossing points [see Fig. 1(a)]. Consequently, the
crossings form pinching points along the kz axis, where two
Fermi sheets with opposite helicities touch. Upon turning on

a magnetic field in the z direction, the two sheets separate,
and the spins at these points become collinear with the field
direction. Thus, the depairing effect of the magnetic field in
the superconducting phase is expected to be strongest at these
pinching points.

Indeed, a sufficiently strong magnetic field closes the gap
at the pinching points on the kz axis. From Eq. (4), we see that
the gap closes for B2 > �2 at momenta p = (0, 0, pz ), where

B2 = �2 + ε2
pz
. (5)

This equation is satisfied at four points,

p j = ±
√

2m(μ ±
√

B2 − �2), (6)

with j = 1, . . . , 4 labeled in descending order along the kz

axis [see Fig. 1(c)]. The closing of the gap at these mo-
menta can be viewed as a topological phase transition in the
two-dimensional Hamiltonian HBdG(px, py, pz ), where pz is a
tuning parameter. Indeed, for p2 < pz < p1 and p4 < pz < p3

the two-dimensional Bloch bands have nonzero Chern num-
bers ±1 (of equal sign), signaling that the Weyl nodes are
monopoles of Berry charge. It is worth noting that in the
low-density limit there are only two Weyl nodes p1 and p4,
in accord with the finding of previous literature [18–21].

Rotation of B with respect to the ferroelectric moment P
profoundly changes the quasiparticle spectrum. Due to the
rotational symmetry, the dispersion is symmetric for both
k → −k and E → −E separately, when B ‖ P. However,
in the presence of a perpendicular component, the spec-
trum is invariant only under the combined action of these
two operations. This means that when the angle is large
enough, the Weyl cones overtilt and become type II [60,61],
which is accompanied by the development of the Fermi sur-
face of zero-energy Bogoliubov quasiparticles [51,52] [see
Fig. 1(d)]. This mechanism is analogous to the one described
in Ref. [62] for the surface of a 3D topological insulator and
two-dimensional electron gases with Rashba spin-orbit cou-
pling with proximity-induced superconductivity and applied
in-plane magnetic field. For more details see Appendix A.

To make these observations more concrete, we derive the
low-energy effective Hamiltonian in the vicinity of the Weyl
nodes by projecting to the low-energy subspace. This yields
the 2 × 2 Hamiltonian

Heff (k) = C j
0 k jσ0 + Aj

i k jσi, (7)

where

Cx
0 = −λ

B

εp

B
By, Cy

0 = λ

B

εp

B
Bx, Cz

0 = 0,

Ax
x = −λ�

BxBy

B2(B + Bz )
, Ay

x = −λ�
B2 + BzB − B2

x

B2(B + Bz )
, (8)

Ax
y = λ�

B2 + BzB − B2
y

B2(B + Bz )
, Ay

y = λ�
BxBy

B2(B + Bz )
),

Az
z = pz

m

εp

B
,

and all other components of the matrix A are equal to zero.
The chiralities of the Weyl nodes are determined by

χ = sgn(det A) = sgn

(
λ2�2 pz

m

εpz

B

Bz

B3

)
, (9)
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and are controlled by Bz, which is the projection of the mag-
netic field, B, on the polarization vector P.

The σ0 term in Eq. (7), which is proportional to the compo-
nents of B that are perpendicular to P, is responsible for tilting
the Weyl cones when the magnetic field and polarization are
not collinear. This can be seen by noting the energy spectrum
of Hamiltonian (7):

ε(k) = C j
0 k j ±

√∑
i

(
Aj

i k j
)2

. (10)

As mentioned above, the system can even be driven into a
type-II phase, where the cones’ tilt is so strong they dip below
the Fermi energy and form Bogoliubov Fermi surfaces [51].
The condition for Bogoliubov Fermi surfaces to develop is
the existence of nonzero k such that C j

0 k j >
√∑

i(A
j
i k j )2.

Using the expressions in Eqs. (8), we find that this criterion
is satisfied when B2

⊥ > �2. Close to the cone, the Bogoliubov
Fermi surface sheet defined by ε(k) = 0 from Eq. (10) is
a cone with the opening angle in the kxky plane φ = π −
2 arcsin( �

B⊥
). However, inspecting the full Hamiltonian (3)

(see Appendix A), we find that, in fact, the Bogoliubov Fermi
surfaces form the shape of two bananas touching at the Weyl
points [see Fig. 1(d)].

Before proceeding to the physical consequences of the
Weyl nodes, we comment that in our model they appear ex-
actly at zero energy. This is, however, not fixed by symmetry,
but an artifact of the gap function we chose, which is purely
the A1g representation (s wave). The inversion-symmetry
breaking renders this representation indistinguishable from
A2u (pz, which is a triplet). Therefore, the gap is in general
a mixture of the two, which is characterized by nodes shifted
from zero energy, where the sign of the shift for each node
depends on the sign of the momentum along z. Such a shift
will inflate the nodes, leading to small Bogoliubov Fermi
surfaces (see Appendix B).

We finally note that the angle between P and B can be
spatially manipulated, for example, across a domain wall sep-
arating different ferroelectric domains. This opens a path to
control the Weyl nodes, as we discuss in the following section.

III. FERMI ARCS ON SURFACES AND DOMAIN WALLS

In this section we discuss the Majorana Fermi arcs, which
appear on surfaces and domain walls. We first review the well-
known case of an interface between a single domain and the
vacuum. We then turn to the case of internal tetragonal domain
walls.

A. Majorana arcs on the surface of a single domain

We first show that Majorana arc states appear on the bound-
ary between a single domain and the vacuum. Assuming
that the ferroelectric moment P is tilted with an angle θ

to the interface, we pick a coordinate system such that the
yz plane is in the plane of the interface, the z axis aligns
with the projection of P onto the interface, and the x axis
directs into the domain. The Hamiltonian for the domain is
given by Eq. (3) with the replacement kx → −i∂x, yielding
H (−i∂x, k||), where k|| = (ky, kz ) is a momentum in the plane
of interface. We then seek zero-energy eigenstates �k|| (x) =

(uk||↑(x), uk||↓(x), vk||↑(x), vk||↓(x))T satisfying open boundary
conditions:

H (−i∂x, k||)�k|| (x) = 0, (11a)
{
�k|| (0) = 0. (11b)

The Bogoliubov quasiparticle operators are defined as

γ † =
∫

dr
∑

s=↑,↓
[us(r)c†

s (r) + vs(r)cs(r)]

=
∫

dx
∫

dk||
∑

s=↑,↓
[us,k|| (x)c†

k||s(x) + vs,k|| (x)c−k||s(x)].

(12)

Thus, the reality condition γ̃ † = γ̃ , where γ̃ = ei φ

2 γ with a
possibly nonzero phase φ, reads

v∗
s,k|| (x) = eiφus,−k|| (x). (13)

We now look for the solution of Eq. (11) in the form
�k|| (x) = �0,k||e

−αx, where Re(α) > 0 implies decaying so-
lutions as x → ∞. Plugging this into Eq. (11), we obtain the
characteristic equation for α [see Appendix C, Eq. (C1)], the
solutions of which for the parallel momentum k||, denoted αk|| ,
obey αk|| = α∗

−k|| in accord with the reality condition, Eq. (14).
Analysis shows (see Appendix C) that for |By| < � there
are four roots with positive real part. In this case, a general
decaying solution for Eq. (11) is a linear combination of four
solutions: �k|| (x) =∑i=1..4 Ci�k||,i(x). Plugging this into the
boundary condition in Eq. (12) and requiring vanishing of the
determinant of the resulting set of the linear equations with
respect to coefficients Ci, one obtains k|| for which a nontrivial
solution, corresponding to the Majorana Fermi arc, exists. For
|By| > �, when the Weyl cones overtilt in the x direction, we
do not find Fermi arcs on the x = 0 surface.

It is easy to find an analytical solution for By = 0. In this
case, it is expected that Majorana Fermi arcs are formed at
ky = 0. Indeed, in this case Eq. (C1) for α splits into two
simpler ones,(

εkz − α2

2m

)2

− λ2(kz sin θ − iα cos θ )2 − B2 + �2

= −2iηλ�(kz sin θ − iα cos θ ), (14)

where η = ±1, and we find vkz,s = ηukz,s, as required by
particle-hole symmetry. Thus, the problem separates into two
sectors corresponding to η = ±1. The number of roots in the
right half plane depends on the sign of the quantity

� =
(

1

2m

(
k2

z + k2
z tan2 θ

)− μ

)2

− B2 + �2. (15)

Defining a new (primed) coordinate system, rotated such that
its k′

z axis aligns with the ferroelectric moment, kz = k′
z cos θ ,

we see that � < 0 is just the condition for the momenta k′
z

to lie between the two Weyl nodes p1 and p2 or p3 and
p4. Precisely, for � < 0 (� > 0), there are three (two) roots
in the right half plane for η = 1, and one (two) roots for
η = −1. The Dirichlet boundary condition in Eq. (12) and
the normalization of the wave function define three conditions
to be satisfied. Thus, for η = 1 for momenta on the kz axis
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FIG. 2. Interface between the two AFD domains, D1 and D2,
with ferroelectric orders. AFD1,2 denotes the direction of the AFD
distortion in the left (red) and right (blue) domains, respectively; Ai

and Bi denote possible directions of the ferroelectric moments in the
left (red) and right (blue) domains, respectively.

lying between the projections of two nearby Weyl nodes,
a nontrivial solution corresponding to Majorana Fermi arcs
exists [see the dashed lines in Fig. 3(a)]. In Appendix C, we
show that for nonzero Bx and |By| < �, the Majorana Fermi
arcs remain as straight lines connecting the projections of the
Weyl nodes.

B. Majorana arcs on domain walls

In the previous section we showed that Majorana zero
modes (MZMs) connecting into Fermi arcs appear on the
boundary with the vacuum. We now turn to discuss another
situation relevant to experiments in STO: domain walls be-
tween different tetragonal domains. To understand the nature
of such domain walls, we recall that low-temperature STO
has spontaneously broken its cubic symmetry into tetragonal
structure. In this phase each oxygen octahedron rotates about
one of the three cubic axes, clockwise or anticlockwise, al-
ternating from unit cell to unit cell [35,63], which is known
as antiferrodistortive (AFD) order. The rotation axis fixes
the polarization direction when tuning into the ferroelectric
phase. For example, in calcium-doped STO, the polarization
develops in the [1,1,0] or [1, 1̄, 0] directions [64,65] if we
assume the axis of the AFD rotation is [0,0,1]. Without loss
of generality we consider this specific case hereafter.

The AFD phase is notoriously known to break out in do-
mains [66,67], which appear in two types: one endows the
system with the reflection symmetry about the wall and the
other endows the system with the reflection symmetry about
the wall combined with a glide [68]. The AFD order param-
eters in neighboring domains constitute ±π

2 angle with each
other. In turn, the ferroelectric polarization in the neighboring
domains will also differ by direction with a relative angle of
π
3 or − 2π

3 (see Fig. 2).
We fix the polarization vector in the first domain to be A4

(Fig. 2). When the polarization vector in the second domain
is B2 or B4, the Weyl nodes coincide when projected onto
the momentum plane parallel to the wall [see Fig. 3(a)]. In
contrast, if the polarization vector in the second domain is

B1 or B3, the projections of the Weyl nodes from the two
domains are at different points [Figs. 3(b) and 3(c)]. Below
we present a qualitative description of the resulting Fermi arcs
for these scenarios. In both scenarios, the effective low-energy
Hamiltonian is given by [69,70]

Heff (k||) =
(

ε1(k||) a(k||)
a∗(k||) ε2(k||)

)
, (16)

where ε1,2(k||) are the low-energy chiral modes of each of
the domains, D1 and D2, and the off-diagonal matrix compo-
nent a(k||) are the couplings. The eigenvalues of Eq. (17) are
given by x2 − (ε1 + ε2)x + ε1ε2 − |a|2 = 0 and, therefore, the
Fermi arc states obey the equation

ε1ε2 = |a|2. (17)

1. The scenario in which the projections of the Weyl points onto
the interface of both domains coincide

This happens when the polarization vector in D1 is A4,
and the polarization vector in D2 is B2 or B4. We assume the
magnetic field B lies in the xz plane for simplicity. We then
identify two cases.

Case I. The chiralities of the Weyl nodes with coincid-
ing projections are the same. In this case ε2 = −ε1, and the
condition becomes −ε2

1 = |a|2, which can be satisfied only
when |a|2 = 0 for k|| at which ε1 = 0. However, there is no
symmetry that fixes a(k) = 0 for k on that line. Therefore, the
arcs are gapped out in the general case. In Appendix C, we
discuss such unprotected zero-energy solutions.

Case II. The chiralities of the Weyl nodes with coinciding
projections are opposite. Here ε1 = ε2. Consequently, the arcs
are robust and found on the lines for which ε1(k||) = ±|a(k||)|
[see Fig. 3(a)].

An important consequence of the scenario of coinciding
Weyl points when projected to the domain wall is that a
rotation of the magnetic field B about the y axis allows to
continuously tune between case I and case II. Then we expect
arc states to disappear and reappear as a function of angle.

2. The scenario where projections of
the Weyl nodes do not coincide

This happens when the polarization vector in D1 is A4,
and the polarization vector in D2 is B1 or B3. For �2 < B2 <

�2 + μ2 the Majorana-Weyl arcs will “repel” and “attract”
each other as schematically illustrated in Fig. 3(b). For B2 >

�2 + μ2, a more significant reconstruction of the Majorana
Fermi arcs happens. For the point close to the crossing point,
we can write ε1 ≈ v1ky, and ε2 ≈ −v2(kz sin θ + ky cos θ ),
where θ is the angle between the polarizations’ projections
onto the interface. Then, from Eq. (18), we find

kz = − |a|2
v1v2ky sin θ

− ky cot θ, (18)

which defines a hyperbola in the vicinity of the crossing point,
now connecting the projections of the Weyl nodes of the same
chirality [see Fig. 3(c)].
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FIG. 3. Top: A schematic illustration of Majorana Fermi arcs at the interface between the domain walls in the surface-momentum space.
Dashed lines are Majorana Fermi arcs of the isolated domains, and solid lines are reconstructed Majorana Fermi arcs for the interface between
the glued domains; colored circles are projections of Weyl nodes onto the surface: red and yellow, of positive chiralities for domains D1 and
D2, respectively; blue and green, of negative chiralities for domains D1 and D2, respectively. Bottom: A schematic illustration of the way the
isolated domains are glued. Colors of the Weyl nodes (denoted by spheres with a nearby “±” sign denoting the sign of the node’s chirality)
are in accord with the color scheme of their projections onto the surface; red lines on the domain surfaces with arrows depict zero-energy
chiral modes; and P1,2 (cyan-colored vectors) are polarization vectors. (a) Projections of Weyl nodes of different chiralities onto the interface
coincide, which corresponds to the ferroelectric moments along A4 and B2 in the glued domains. (b) Projections of Weyl nodes onto the surface
do not coincide in the regime of four Weyl nodes (per domain), which corresponds to the ferroelectric moments along A4 and B1 in the glued
domains. (c) As the magnetic field increases, the two Weyl nodes at pz = p2 and pz = p3 come closer and eventually annihilate. Here we
consider the case when projections of the remaining Weyl nodes do not coincide, which corresponds to the ferroelectric moments along A4 and
B1 in the glued domains.

IV. WEYL SUPERCONDUCTIVITY IN
THE PRESENCE OF VORTICES

Up to this point we have only considered the Zeeman
coupling to the magnetic field. We now turn to consider the
consequence of the orbital coupling. In a type-II superconduc-
tor, the field can induce vortices when it exceeds the value Hc1.
We distinguish two limits of interest. In the small-magnetic-
field limit Hc1 < B � Hc2 the distance between vortices is
much greater than the coherence length and each vortex can
be treated independently. In the opposite limit, B � Hc2, the
vortices become densely packed, overlap, and significantly
reduce the global average value of the order parameter.

In what follows, we focus on these two limits. We start
with the single-vortex problem. Using the results of Sec. II,
we show that individual vortices in ferroelectric supercon-
ductors can contain nontrivial Majorana bound states, even
when the bulk superconducting state is trivial. Then in the next
step, based on semiclassical considerations (namely, assuming
strong localization of the Majorana states on a scale much
smaller than the coherence length), we find that there is al-
ways a critical magnetic field B∗ < Hc2, marking a percolation
transition to a putative topological state with Majorana-Weyl
nodes in the bulk.

A. The single-vortex problem: Nontrivial bound states

In the solution of the Ginzburg-Landau equations for a
single vortex, the superconducting order parameter �(r) and
magnetic field B(r) both depend on the radial distance from
the vortex core. Starting from the core and moving outwards,
the order parameter is initially zero, and adjusts back to

its bulk value at a distance of the order of the coherence
length ξ . The magnetic field, on the other hand, is maxi-
mal at the core and gradually decays to zero at a distance
given by the penetration depth λL (we assume that λL � ξ ).
The dependence of these two fields is schematically plotted
in Fig. 4.

In light of the discussion in Sec. II, this implies that
somewhere between the vortex core and r → ∞ there is a
“halo” radius rh, where the critical threshold for creating
Majorana-Weyl nodes B(rh) = �(rh) is satisfied (see Fig. 4).
Majorana arc states then appear on a cylinder of radius rh

and at the core of the vortex. Clearly, such states can only be
observed if their localization length lM is significantly smaller
than rh.

To obtain these states we solve the BdG equation explic-
itly (see Appendix D). We consider two models. First we
consider a toy model, which we solve analytically. In this
model B is taken to be constant and we mimic the spatial
dependence of the gap near the vortex core by breaking it
into two steps (see dashed lines in Fig. 4). Namely, the core
region is defined to be in the region r < r1, where the gap
is zero. The second region is the topological “halo” defined
in the region r1 < r < r2 (where r2 is the halo radius rh in
this model). In this region the gap takes a nonzero value �1,
which is smaller than the field, such that the topological crite-
rion �1 < B is satisfied and there are Weyl nodes. The third
region is r > r2, where we assume �(r > r2) = �2 such that
�2 > B and therefore the superconducting state is trivial and
fully gapped.

The explicit solution shows there are two exponentially
localized Majorana bound states, which are slightly split
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FIG. 4. A schematic illustration of the single-vortex problem.
Top: The radial profiles of the modulus of the order parameter and
the magnetic field (dashed semitransparent lines correspond to the
considered toy model with the same color scheme as for the solid
lines). Bottom: Schematic illustration of the locally topological and
trivial regions and MZMs in the xy plane in correspondence with the
upper panel.

in energy due to the finite spatial separation between the
boundaries at r1 and r2. The key result we obtain from
the toy model is an estimate of the localization length of
these states,

lM ∼ 2πξ0
λ

vF

�1�2

B2 − �2
1

, (19)

where ξ0 = vF
π�2

is the Pippard coherence length estimated at
the momentum kz located between the Weyl nodes.

As can be seen, the length scale in Eq. (20) appears in
units of ξ0 and is proportional to the parameter λ/vF . Close
to Hc2, the halo size becomes of the order of the correlation
length. Therefore, the Majorana arc states on the edge of the
halo can be resolved from the core Majorana states in the limit
λ � vF .

Recent theoretical results estimate the electron coupling to
the transverse optical phonon mode in STO [57]. Using the
average displacement in the ferroelectric phase [39,45], this
coupling constant can be estimated to be λ = 254 meV Å.
Using this value of λ, we find that the concentration at which
vF becomes greater than λ (which happens when the Fermi

FIG. 5. Squared absolute value of the wave function (not nor-
malized) of the positive-energy state corresponding to a linear
combination of two Majorana modes. The parameters used for the
simulation are m = 1, �0 = 2, Bz = 1.71, λ = 0.1, μ = 10, ξ =
100, and R = 700, and pz is chosen such that εpz = 0.

surface crosses the Dirac point) is n ≈ 2.3 × 1019cm−3. For
higher densities, the ratio λ/vF diminishes. For reference, this
parameter diminishes to λ/vF = 1/5 at n ≈ 1.3 × 1021cm−3.
It is worth noting, however, that other estimates of λ are
smaller [54].

To confirm the results of the toy model we also solve the
BdG problem numerically using a more realistic profile of
the gap, �(r) = �0 tanh(r/ξ ), where �0 = exp(iφ)|�0| and
|�0| > B. We solve the BdG problem inside the interior of
a cylinder of radius R. As before, the topological criterion
�(r) < B is only satisfied within a finite halo radius rh sur-
rounding the core. The resulting amplitude of one of the two
BdG wave functions with nearly zero energy is shown in
Fig. 5. We observe two peaks, corresponding to the location
of the core and the critical radius rh.

An interesting aspect of the halo is that it realizes a lo-
cal pseudomagnetic field [71]. The continuous variation of
|B(r) − �(r)|, which controls the distance between the Weyl
nodes, therefore acts as a pseudogauge field in the z direc-
tion Az(r). The resulting pseudomagnetic field looks like a
vortex circulating the core of the halo. An important phys-
ical consequence of this field is the emergence of a whole
spectrum of Landau levels, which in this case are labeled
by angular momentum. These states are plotted in Fig. 10
in Appendix D. For more details regarding the analytic and
numeric solutions of the BdG problem we refer the reader to
Appendix D.

B. Local tunneling density of states in
the vicinity of a single vortex

Using our results from the previous section, we now
compute the local tunneling density of states in the vicinity
of a vortex. The resolution of a typical scanning tunneling
microscope is much smaller than the size of the vortex, and
therefore it may be capable of distinguishing the core and
edge states described above. The local density of states, which
is often proportional to the differential conductance [72,73],
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FIG. 6. (a) νpz (E , r) [normalized by νpz ,0 = νpz (0, 0)] for pz =√
2mμ (such that εpz = 0) as a function of energy and distance from

the vortex core. (b) νpz (E , r) [normalized by νpz ,0, the peak value
of νpz (E , r) in the plotted region] for pz = 1.05

√
2mμ as a function

of energy and distance from the vortex core. The parameters used
for the simulations are m = 1, �0 = 2, Bz = 1.71, λ = 0.1, μ = 10,
ξ = 100, and R = 700, and the temperature T = 5 × 10−5�0.

is given by

ν(E , r) =
∫

d pzνpz (E , r) = −
∑

i,σ=1,2

|�σ,i|2(r)n′
F (Ei − E )

−
∑

i,σ=3,4

|�σ,i|2(r)n′
F (Ei + E ).

(20)

Here �σ,i(r) is the radial part of the σ component of the
Nambu wave function corresponding to the ith eigenmode of
energy Ei, νpz (E , r) stands for the contribution to the local
density of states from eigenmodes corresponding to a partic-
ular pz, and we substituted delta functions with the negative
derivatives of the Fermi-Dirac distribution at low temperature.

In Fig. 6(a), we plot νpz (E , r) for pz = √
2mμ, as a func-

tion of energy and distance from the vortex core r. One can
clearly see peaks at zero bias for r = 0 and r ≈ rh. For pz’s
away from

√
2mμ (but for which MZMs still exist), the dis-

tance between the peaks of the MZMs decreases, while the
localization length of MZMs increases. This results in broad-
ening of the peaks in the r direction and further separation in
the E direction; see Fig. 6(b) [74] in which νpz (E , r) is plotted
for pz = 1.05

√
2mμ. Consequently, the full density of states

ν(E , r) (and the differential conductance) will have smeared
zero-bias peaks.

C. The many-vortex problem: Percolation of
the topological phase

The picture presented above, where each isolated vortex
is surrounded by a topological halo, suggests the possibility
of a percolation transition, where the halos overlap and the
topological phase percolates through the system. At large
field, B ∼ Hc2, the ground state of the system is expected to
be a vortex lattice. Therefore, let us assume the magnetic field
is large enough such that the lattice state is formed, yet the
halos are still separated and each vortex is encircled by chiral
Majorana zero modes. Upon increasing the field even further,
the halos grow, and eventually touch, creating a connected sea
of the topological phase. Below we develop a crude estimate
for this percolation threshold B∗ and find that it is always
smaller than Hc2. Full microscopic calculations are required
to verify this scenario more rigorously, especially consider-
ing that the proof for the existence of Majorana zero modes
presented in this paper is strictly valid only at low magnetic
fields.

We use Abrikosov’s theory [75], applicable for magnetic
fields close to the upper critical field Hc2. The harmonic
approximation solution for the first Ginzburg-Landau equa-
tion can be written in the form

�(r) = �0 f (r), (21)

where �0 is the gap function at zero magnetic field and

f (r) =
∞∑

n=−∞
Dneinqye

− (x−x2
n )

2ξ2 (T ) , (22)

where ξ (T ) is the coherence length at temperature T , xn is
the position of the nth vortex core on the x axis, 2π/q is the
periodicity in the y direction, and Dn are dimensionless coeffi-
cients. Substituting Eq. (22) into the second Ginzburg-Landau
equation, one finds an expression for the magnetic field,

B(r) = B0 − Hc2

2κ
f 2(r), (23)

where κ = λL/ξ is the Ginzburg-Landau parameter. We note
that Abrikosov’s theory is valid for small f 2; therefore, in
what follows we will consider B0 � 0.9Hc2 .

To find the next order correction to f in the small parameter
1 − B0/Hc2 one requires that [75]

f 4

(
1 − 1

2κ2

)
− f 2

(
1 − B0

Hc2

)
= 0, (24)

where O stands for the averaging O over one unit cell of the
vortex lattice. Then, using a parameter

β = f 4

f 2
2 , (25)

which characterizes a lattice structure (for the square lattice
β = 1.18, and for the triangular one β = 1.16), the nonzero
solution for f 2 is

f 2 =
1 − B0

Hc2

1 − 1
2κ2

β−1. (26)

The spatial profile f (r) of the order parameter is defined by
the coefficients Dn in Eq. (22). For simplicity, in the following
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(a) (b)

(c) (d)

FIG. 7. Schematic illustration of the percolation of the topological phase. The black line structure is a contour plot for �(r), orange denotes
topologically trivial regions, and blue denotes topologically nontrivial regions. (a) In a relatively small magnetic field, vortices in the Abrikosov
lattice are far away from each other (in units of the coherence length), and topologically nontrivial regions locally surround each of them. (b) At
the critical value B∗, previously bounded topologically nontrivial “puddles” touch the neighboring “puddles” at one point. (c) For large values
of the magnetic field, topologically nontrivial “puddles” around each vortex overlap, creating a topologically nontrivial “sea.” (d) In the more
realistic disordered network of vortices, the percolation will have a disordered character as well. Red lines are Majorana “halos” surrounding
the topological phase.

we consider the case of the square lattice, for which Dn are
constants denoted by D, and xn = nqξ 2.

Percolation of the topological phase will occur when the
magnetic field at the half distance between the neighboring
vortices’ cores, d/2, reaches the critical value for the topolog-
ical phase transition (see Fig. 7), B(d/2) = �(d/2), i.e.,

B0 − Hc2

2κ
D2 f 2

0 (d/2) = �(d/2), (27)

where f0 is given by Eq. (23) in which all Dn are set to one.
An important remark here is that we use the topological crite-

rion B > � derived in Sec. II for a uniform case and which
remains valid for the vortex problem in a small magnetic
field when the vector potential terms in the BdG Hamiltonian
can be neglected. In principle, in high magnetic fields, the
contribution from these terms might modify the topological
criterion. We leave the investigation of this question for future
work.

Combining this equation with Eq. (27), we find the value
of B∗ needed to be applied to reach the percolation point,

B∗ = Hc2(1 − δ), (28)
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FIG. 8. Schematic percolation-phase diagrams [based on Eq. (28)] in the space of B/Hc2,0 vs T/Tc, where Hc2,0 is the upper critical field
at T = 0. The area between B∗ and Hc2 lines corresponds to topological phase and is denoted by shading. The increase of intensity of area
shading corresponds to the overlapping of regions of topological phases corresponding to different values of input parameter �0/Hc2.

where

δ = β f 2
0

(
d
2

)
f 2
0

(
1 − 1

2κ2

)
(
β
(
1 − 1

2κ2

)
f 2
0 + 1

2κ2 f 2
0

(
d
2

))2
{
− 1√

K

�0

2Hc2

ξ (T )

ξ0
+
√√√√ 1

K

�2
0

(2Hc2)2

(
ξ (T )

ξ0

)2

+ β

(
1 − 1

2κ2

)
f 2
0

f 2
0

(
d
2

) + 1

2κ2

}2

.

The field B∗ at which the topological phase percolates
is therefore controlled by two phenomenological parameters.
The first is K = ρs/2�2

0N (0)ξ 2
0 , where ρs is the superfluid

stiffness and N (0) is the density of states of the under-
lying metal. Assuming a full volume fraction, a parabolic
band dispersion ρs = h̄2n/4m [76], and �0 ≈ 1.76Tc [77],
we have K ≈ 0.1(μ/Tc)2/(kF ξ0)2, which can be estimated
directly from experiment (at n = 1018cm−3, μ = 2 meV, Tc =
200 mK [78]) to be between 1 and 5 depending on the value
of ξ0 between 100 and 50 nm, respectively. It is interesting
to compare this result with the prediction of BCS theory,
K = 0.5 [79]. The second parameter controlling B∗ is the ratio
�0/Hc2. Comparing with the experimental data of Ref. [80]
we find that this parameter can be on the order of (and even
larger than) 1.

We plot the resulting schematic [81] phase diagrams in
the space of magnetic field B and temperature T for different
values of �0/Hc2 and K in Fig. 8, where we naively extended
the use of Eq. (28) beyond the region of validity of the
Ginzburg-Landau theory. The value of δ in Eq. (28) does not
depend much on κ for κ > 3, and we fix it to be equal to 10.
As can be seen, for all values of K there is a topological phase
separating the trivial superconducting and normal state. This
result is much more generic than our particular model. We
predict that any noncentrosymmetric superconductor where
inversion is broken by a vector [53] will develop such topolog-
ical halos above Hc1. Consequently, all such superconductors
may undergo a percolation transition to a bulk topological
phase before giving way to the normal state.

V. CONCLUSIONS AND DISCUSSION

We studied Majorana-Weyl superconductivity emerging in
systems with intertwined superconducting and ferroelectric
orders due to the application of a magnetic field. First, we con-
sidered the effect of a uniform Zeeman field. We confirmed
that above the Clogston-Chandrasekhar threshold gμBB >

2�, Weyl cones appear in the Bogoliubov quasiparticle

spectrum along the axis of the polarization moment, regard-
less of the charge density. We also showed that rotating
the magnetic field with respect to the polarization tilts the
Weyl cones and eventually causes Bogoliubov Fermi surfaces
shaped as bananas to appear.

However, the magnetic field is not expected to be uniform
in the superconducting state. Instead it threads through the
sample in the form of vortices. Due to the vanishing of the gap
at the core of each vortex, the critical threshold gμBB > 2�

is always fulfilled in some area surrounding it, which we dub
the “halo.” Such halos are characterized by Majorana strings
at their core and chiral Majorana arc states going around them.
When the magnetic field is increased towards Hc2 the vortices
become denser, the halos merge, and the system undergoes
a percolation-type phase transition to a bulk Majorana-Weyl
superconductivity. This transition always precedes Hc2.

Our predictions have a number of sharp experimental
consequences. The first is the emergence of topological ha-
los surrounding vortices at small magnetic fields above Hc1.
These can be observed in the local tunneling density of states
using an STM. However, we expect a clear separation of
scales between the size of the halo and the arc state’s local-
ization length, only close to Hc2. This is because the magnetic
field at the center of an isolated vortex is of order Hc1, which
is much smaller than the critical threshold. Therefore, the
halo radius is very small when the magnetic field is far from
Hc2. In addition to the zero modes, the nodes also modify the
tunneling density of states away from zero energy. Namely,
due to the bulk nodes there will be a quadratic dependence
on bias. The arc and nodal states can also be observed in
the heat conductivity. For example, we anticipate that close
to Hc2, in the topological phase, the system will become heat
conducting albeit still superconducting. Finally, when tilting
the magnetic field to be perpendicular to the polarization
direction we expect Bogoliubov Fermi surfaces to emerge.
Close to Hc2 these surfaces will contribute a T -linear term to
the specific heat and a constant tunneling density of states.
Finally, it is also possible that the existence of Majorana zero
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modes surrounding vortices will contribute a constant term
to the specific heat close to Hc2, which will manifest itself
as a Schottky anomaly at low temperatures. The size of the
anomaly should diminish by a factor of 1/2 when crossing to
the topological phase.

Full quantum calculations are needed to verify the pro-
posed scenario of the percolation of the topological phase.
In the presence of slowly varying disorder, naively, we may
anticipate a scenario similar to the transitions between integer
quantum Hall states [82], where the topological nature of
the phases is manifested as long as a network of edge states
percolates through the bulk. Furthermore, it is also interesting
to consider the transition between the topological state consid-
ered here and the FFLO state, which is also a relevant ground
state when the magnetic field is perpendicular to the polariza-
tion [12–14]. To that end, one needs to solve self-consistently
for the lowest-energy ground state. We postpone the study of
such questions to future work.
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APPENDIX A: BOGOLIUBOV FERMI SURFACE IN
A TILTED MAGNETIC FIELD

The energy dispersion of Eq. (3) is determined from the
equation

E4
k − 2

(
ε2

k + B2 + λ2k2
⊥ + �2

)
E2

k + 8λ(kyBx − kxBy)εkEk

− 4λ2(kyBx − kxBy)2 + (�2 + ε2
k − B2 − λ2k2

⊥
)2

+ 4λ2k2
⊥�2 = 0. (A1)

For Bx = By = 0, its solutions are easily found and given in
Eq. (4). Here we analyze its zero-energy solution for the case
when the magnetic field is not parallel to the polarization.

We first show that the conditions for the gap closure are
essentially the same as for the case of the perpendicular mag-
netic field. For a generic quartic equation

x4 + bx3 + cx2 + dx + e = 0, (A2)

a product of its roots is
∏4

i=1 xi = e. Considering Eq. (A1)
for k⊥ = 0, e = 0 is satisfied at B2 = �2 + ε2

k , signifying that

there is a zero root. In addition, this root is double, as it can be
readily seen from Eq. (A1): the free term is zero, and the linear
term is zero at k⊥ as well. Thus, the gap closes at k⊥ = 0 for
B2 > �2 at kz determined from the equation B2 = �2 + ε2

k .
Other nondegenerate zero solutions might be determined from
the equation e = 0, where e is the free term in Eq. (A1). With-
out loss of generality, choosing the direction of the magnetic
field such that By = 0, we recast this equation in the form

4λ2B2
xk2

y = (�2 + ε2
k − B2 − λ2k2

⊥
)2 + 4λ2k2

⊥�2, (A3)
which determines the dependence of ky on k⊥ and kz for the
momenta satisfying the condition e = 0. It is indeed a solution
if |ky| � k⊥, which may happen only if B2

x > �2. Also, note
that these roots are nondegenerate, and there are roots of
different sign among those four corresponding to the solution
of Eq. (4). It is easy to see that the solution with k⊥ = 0,
�2 + ε2

k − B2 �= 0 (i.e., away from the Weyl nodes) is impos-
sible. Thus, for B2

x > �2, we infer that the momenta at which
E = 0 form closed surface(s) defining a 3D Bogoliubov Fermi
surface. Numerical investigation shows that these surfaces
connect the Weyl nodes at p1,2 and p3,4, respectively [see
Fig. 1(d)]. In particular, for B2

x = �2, Bz = 0, zero solution
can exist only for kx = 0, and from Eq. (A3) we obtain

ε2
k = λ2k2

y , (A4)

which defines two intersecting circles

k2
z + (ky ± mλ)2 = 2mμ + m2λ2. (A5)

We emphasize that this result is obtained under the assump-
tion that the superconducting order parameter remains s-wave
order.

APPENDIX B: BOGOLIUBOV FS IN THE PRESENCE OF
TRIPLET COMPONENT IN THE GAP FUNCTION

Here we illustrate that the presence of a triplet compo-
nent (kz dependent) leads to the inflation of the Weyl nodes
into Bogoliubov Fermi surfaces. We consider Eq. (3) with
� = iσy(� + �1kzσz ) treating � and �1 as parameters. In
Fig. 9, we plot zero-energy surfaces in k space in the parallel
[Fig. 9(a)] and not parallel (and overtilted) [Fig. 9(b)] to P
magnetic field for the case of B > � � �1. We note that
overtilting of the magnetic field produces large Bogoliubov
Fermi surfaces.

APPENDIX C: ADDITIONS TO THE “FERMI ARCS ON
SURFACES AND DOMAIN WALLS” SECTION OF THE

MAIN TEXT

The characteristic equation for α in the ansatz solution
�k|| (x) = �0,k||e

−αx of Eq. (11) is

[(
εk|| − α2

2m

)2

+ λ2 sin2 θk2
y − B2 + �2 + λ2 cos2 θk2

y + λ2(sin θkz − i cos θα)2

]2

− 4λ2

[(
εk|| − α2

2m

)
sin θky + i(By cos θky − Bx(sin θkz − i cos θα))

]2

− 4

(((
εk|| − α2

2m

)2

− B2
z

)[
λ2 cos2 θk2

y + λ2(sin θkz − i cos θα)2
]
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FIG. 9. (a) Bogoliubov Fermi surface for the mixed singlet-triplet gap function in the parallel magnetic field. (b) Bogoliubov Fermi surface
for the mixed singlet-triplet gap function in the overtilted with respect to P magnetic field. (c) The two plots, (a) and (b), are combined together.

+ 2λ sin θkyBx

(
i

(
εk|| − α2

2m

)
λ(sin θkz − i cos θα) − Bzλ cos θky

)

− 2iλ sin θkyBy

((
εk|| − α2

2m

)
λ cos θky − iBzλ(sin θkz − i cos θα)

)
− λ2 sin2 θk2

y (Bx + By)2

)
= 0. (C1)

One may view this equation as an equation with real coeffi-
cients with respect to iα. Thus, its roots are symmetric with
respect to the imaginary axis; i.e., if α is a root, then −α∗ is
also. Therefore, Eq. (C1) can have four roots with positive real
part.

In the main text, we showed the existence of the Majo-
rana Fermi arcs for the case of B|| = 0. Here, we present a
solution for an arbitrary B. To find a locus of Majorana zero
modes in the kykz plane by substituting the general solution
of Eq. (11) into boundary conditions [Eq. (12)] without any
assumption is quite difficult. Instead, we check if ky = 0, kz ∈
(pz2, pz1)

⋃
(pz4, pz3) is the locus of zero-energy solutions.

For ky = 0 at arbitrary B, as for the case of By = 0, the
characteristic equation for α, Eq. (C1), splits into two simpler
equations,(

εkz − α2

2m

)2

− λ2(kz sin θ − iα cos θ )2 − B2 + �2

= −2iηλ

√
�2 − B2

y (kz sin θ − iα cos θ ), (C2)

where η = ±1, and we find

vkz,s = −
(

i
By

�
+ η

√
�2 − B2

y

�

)
ukz,s. (C3)

Again, the problem separates into two sectors corresponding
to η = ±1, and the further analysis proceeds in analogy to the
presented one in the main text.

In the main text, based on the low-energy theory, we
pointed out that nonprotected Fermi arcs still may exist in case
II of scenario 1, where the Weyl nodes of the same chiralities
in two domains project onto the same points on the interface.

Here we show that such a solution exists in our continuous
model.

We choose the coordinate system as described in the main
text for the case of a boundary between the single domain and
vacuum with x axis pointing into the first domain, D1. The
boundary problem to be solved is

H1(−i∂x, k||)�1,k|| (x) = 0, (C4)

H2(−i∂x, k||)�2,k|| (x) = 0, (C5)

�1,k|| (0) = �2,k|| (0), ∂x�1,k|| (0) = ∂x�2,k|| (0), (C6)

where H1(2) and �1(2),k|| (x) are the Hamiltonian and the wave
function for the first (second) domain.

Again, we are looking the solutions for ky = 0 in the
form �1(2),k|| (x) = �01(2),k||e

−α1(2)x, where α1(2) are deter-
mined from Eq. (C2). We consider λ > 0 in the first domain,
and the flip of the Weyl node chiralities in the second domain
correspond to the flip of the sign of λ, i.e., λ < 0 in D2.
The decaying solutions in D1(2) imply α1(2) > (<)0. For kz ∈
(pz2, pz1)

⋃
(pz4, pz3), there are three α1 with Re(α1) > 0 and

three α2 with Re(α2) < 0 in the case of η = 1. For η = −1,
there is one α1 with Re(α1) > 0 and one α2 with Re(α2) <

0. For kz �∈ (pz2, pz1)
⋃

(pz4, pz3) there are two α1(2) with
Re(α1(2)) > (< 0). Again, the boundary condition in Eq. (C6)
implies that we can stitch solutions in D1 and D2 correspond-
ing to the same η = ±1 only, and that the problem separates
into two sectors η = ±1. This results in the boundary condi-
tions effectively giving us four constraints, and together with
the normalization condition there are five constraints. For kz ∈
(pz2, pz1)

⋃
(pz4, pz3), the general solutions for Eqs. (C4) and

(C5) are linear combinations of three functions, which gives
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us six unknown coefficients to be found. This is one more than
the number of constraints we have, which implies that we get
a family of solutions parametrized by one parameter, which
might be thought of as an angle in two-dimensional vector
space. Thus, this set of solutions can be thought of as a linear
combination of two orthogonal solutions.

APPENDIX D: MAJORANA ZERO MODES IN THE
ISOLATED VORTEX

To obtain MZMs in the presence of vortices in the low-field
regime, we solve the BdG problem in the vicinity of a single

vortex. The corresponding BdG Hamiltonian in cylindrical
coordinates assumes the form

H(pz ) =
(

Ĥpz (r) iσy�(r)

[iσy�(r)]† −Ĥ−pz (r)T

)
, (D1)

where the z component of the momentum remains a good
quantum number and

Ĥpz =
(− 1

2m

(
∂2

r + 1
r ∂r − 1

r2 ∂
2
θ

)+ εpz − Bz(r) λe−iθ
(
∂r − i

r ∂θ

)
−λeiθ

(
∂r + i

r ∂θ

) − 1
2m

(
∂2

r + 1
r ∂r + 1

r2 ∂
2
θ

)+ εpz + Bz(r)

)
. (D2)

Here εpz = p2
z

2m − μ and we have neglected the coupling to the vector potential [83]. The phase of the order parameter winds by
2π around the vortex origin, �(r) = �0(r)eiφ . The cylindrical form of Eq. (D1) suggests to look for the energy eigenstates in
the form

�pzE (r) =
∞∑

l=−∞
alE eilθ

⎛
⎜⎜⎜⎝

�1El (r)

�2El (r)eiθ

�3El (r)

�4El (r)e−iθ

⎞
⎟⎟⎟⎠ =

∞∑
l−∞

al�El (r, θ ). (D3)

Following Ref. [8], in searching for the Majorana modes, we focus on the l = 0 channel, which is also justified by our
numerical calculations. Substitution of Eq. (D3) into Eq. (D1) leads to a system of ordinary differential equations (ODEs)
with real coefficients, and thus the functions �iEl (r), i = 1, . . . , 4, in Eq. (D3) are real. For l = 0, the particle-hole symmetry
implies σx ⊗ σ0�pzE0(r)∗ = η�−pz−E0(r), where η is a phase factor. Given that the Hamiltonian in Eq. (D1) is even in pz, we
obtain σx ⊗ σ0�pzE0(r)∗ = η�pz−E0(r). Combining this with the statement about the reality of �i(r), we conclude η = ±1 and
�3(4)E0 = η�1(2)−E0. Although we anticipate the splitting in energy due to overlapping of Majorana states at r = 0 and r = rh,
we start with seeking the zero-energy solution. In the following, we drop the subindices for the putative E = 0, l = 0 state and
use �i ≡ �i00, and thus we have �3(4) = η�1(2). Then the zero-energy eigenstate equation for BdG Eq. (D1) reduces to the
system of two ODEs, (

εpz − 1
2m

(
∂2

r + 1
r ∂r
)− Bz(r) λ

(
∂r + 1

r

)+ η�0(r)

−λ∂r − η�0(r) εpz − 1
2m

(
∂2

r + 1
r ∂r − 1

r2

)+ Bz(r)

)
× �(r) = 0, (D4)

where �(r) = (�1(r), �2(r))T .
In what follows, we first present an analytic analysis of

Eq. (D4) for a simplified piecewise constant model. Then in
the next step we present a numerical analysis for more realistic
profiles of the gap and magnetic field, which continuously
vary in space.

The gap structure in the simplified model consists of three
regions:

�0(r) =

⎧⎪⎨
⎪⎩

0, 0 � r < r1

�1, r1 � r < r2

�2, r � r2.

(D5)

We also assume the magnetic field is uniform (justified
by the type-II condition λL � ξ ). We then focus on the
limit �1 < Bz, in which case the intermediate region is
“topological.”

In the region 0 < r < r1, where �(r) ≡ 0, we look for the
solution in the form [8]

(
�1(r)

�2(r)

)
=
(

aJ0(αr)

bJ1(αr)

)
, (D6)

where Jn(z) are Bessel functions. Substituting this into
Eq. (D4), we find a characteristic equation for α,

(
α2

2m
+ εpz

)2

− B2
z − λ2α2 = 0, (D7)

which has four solutions: ±α1 and ±α2. Thus, the general
solution in this region is

(
�1(r)

�2(r)

)
= C1

(
a1J0(α1r)

b1J1(α1r)

)
+ C2

(
a2J0(α2r)

b2J1(α2r)

)
. (D8)
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For the regions r1 < r < r2 and r > r2, where �0(r) �= 0, we
look for the solution in the form [8](

�1(r)
�2(r)

)
= eiqr

√
r

∞∑
n=0

1

rn

(
an

bn

)
(D9)

and get a set of algebraic equations for the coefficients
(an, bn). For n = 0, we obtain(

q2

2m
+ εpz − Bz

)
a0 + (iqλ + η�)b0 = 0,

(−iqλ − η�)a0 +
(

q2

2m
+ εpz + Bz

)
b0 = 0,

where � stands for either �1 or �2 depending on the region
under consideration. This gives the following equation for q̃ =
−iq:

q̃4

(2m)2
− 2
( εpz

2m
− λ2

)
q̃2 − 2λη�q̃ + ε2

pz
− B2

z + �2 = 0.

(D10)

The roots q̃i of this equation satisfy the condition

4∏
i=1

q̃i = ε2
pz

− B2
z + �2. (D11)

For the region r > r2, the decaying solutions correspond
to such q̃ that Re(q̃) > 0. For

∏4
i=1 q̃i > 0, there are two such

roots for either η; for
∏4

i=1 q̃i < 0, there are three such roots
for η = −1, and one such root for η = 1.

Two boundaries (at r1 and r2) with smooth continuity con-
ditions for a two-component vector and one normalization
condition bring nine conditions, in total. Now we count the
number of yet unknown coefficients in the constructed solu-
tion to be obtained from these conditions focusing on the case∏4

i=1 q̃i > 0 for the region r > r2 for all pz (which correspond
to �2 > Bz), where the middle region (the halo) r1 < r < r2

is in the topological phase, while the outer and inner regions
are trivial. In the region 0 � r < r1, there are two coefficients;
in the region r1 � r < r2, there are four coefficients; and in
the region r > r2, there are two coefficients. This brings in
total eight coefficients, which is not enough to satisfy nine
conditions. Thus, there are no zero-energy solutions. In fact,
this is anticipated and corresponds to the overlapping of two
Majorana states at r1 and r2. Specifically, removing the “do-
main” wall at r2 (or moving it to infinity), at the boundary
r = r1 we have to satisfy only five conditions at r = r1. In this
case, for r > r1 we have to single out only decaying-at-infinity
solutions, which gives three coefficients in this region. And
in total we have five coefficients to satisfy five conditions.
Analogously, moving r2 to infinity, and requiring that physical
solutions decay far away from r2 in the topological phase, we
look for such q̃ in Eq. (D11) that Re(q̃) < 0. There is one such
root for the η = −1 sector, and three such roots for η = 1.
Then, in the η = 1 sector we again have an equal number
of constraints and coefficients. As we move r2 from large
distance closer to r1, the overlapping of the two Majorana
modes leads to splitting in energy of the states constructed out
of the linear combinations of these Majoranas. Alternatively,
we can think in the following way. For the case Bz > �2, we

FIG. 10. The energy spectrum of the single vortex problem. On
the horizontal axis, l is the angular momentum channel. The parame-
ters used for the simulation are m = 1, �0 = 2, Bz = 1.71, λ = 0.1,
μ = 10, ξ = 100, and R = 700, and pz is chosen such that εpz = 0.

have one Majorana zero mode localized around the vortex
core, which is essentially the case considered in Ref. [8].
But as we decrease Bz to values just below �2, we lose the
zero-energy solution. The only way it can happen is via pair-
ing the Majorana zero mode at the vortex core with another
one at r = r2. We also note that while here we considered a
crudely discretized model, the argument presented extends to
the arbitrary fine discretization. Indeed, the introduction of a
new segment brings in four new boundary conditions and, at
the same time, four new constants to be found, thus leaving
the balance between the number of conditions and the number
of coefficients untouched.

However, because the halo has finite size it is essential to
estimate the splitting of the zero modes due to their overlap.
To this end, at zero temperature, we assume the separation
between the two boundaries r2 − r1 ∼ ξ0 is on the order of the
coherence length ξ0 = vF

π�2
[84]. This length should be com-

pared with the localization length of the zero modes, lM , which
can be estimated from the low-energy effective Hamiltonian in
Eq. (7) (for B = Bẑ),

Heff = vkyσx + vkyσy + Egσz, (D12)

where Eg is the gap at a given kz away from the Weyl point.
We then find that lM ∼ v

Eg
. Comparing with Eq. (7), we find

that v = λ�
B , Eg = pzεpkz

2mB , yielding

lM ∼ λ�

(pzkz/2m)
√

B2 − �2
. (D13)

We then evaluate lM for kz located at the middle point
between the two Weyl points under the assumption μ �√

B2 − �2. Focusing on the region r1 < r < r2, we find that
lM
ξ0

∼ 2π λ
vF

�1�2

B2−�2
1
. Thus, the ratio of the length scales is con-

trolled by the small parameter λ/vF and is therefore expected
to be very small except for very close to the nodes or close to
the transition point.

To confirm our analytical considerations, we perform nu-
merical calculations. For simplicity, we consider a cylinder
of a radius R with a single vortex located at the axis of the
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cylinder and impose zero boundary conditions at r = R. For
r < R, we assume a radial dependence of the order parameter
given by the function �(r) = �0 tanh(r/ξ ), which reflects a
typical behavior in a vortex core center. Also, we assume the
magnetic field is uniform, and smaller than the bulk threshold,
Bz < �0.

We represent the radial part of the spinor �pzEl (r) in the
Bessel-Fourier series form

�pzEl (r, θ ) = eilθ
∞∑

i=1

⎛
⎜⎜⎜⎜⎝

aiJl
(
μl

i
r
R

)
biJl+1

(
μl+1

i
r
R

)
eiθ

ciJl
(
μl

i
r
R

)
diJl−1

(
μl−1

i
r
R

)
e−iθ

⎞
⎟⎟⎟⎟⎠, (D14)

where μl
i is the set of roots of the equation Jl (μl

i ) = 0, which
guarantees that the boundary conditions are satisfied. Substi-
tuting this representation into Eq. (D1) and projecting onto
Jν (μi

r
R ), ν = l − 1, l, l + 1, we obtain an infinite system of

algebraic equations, which is solved approximately by trunca-
tion. In the calculations used for producing plots in this article,
we cut the system of algebraic equations at size 600 × 600.

We plot eigenenergies corresponding to the wave functions
�El (r, θ ) in Fig. 10. Under particle-hole symmetry, l → −l
and E → −E . Thus, in fact, for l = 0, there are two near-
zero energy solutions (for the parameters considered, these
energies are on the order of 10−4�0) that are indistinguish-
able in the plot and correspond to the states that are linear
combinations of Majorana zero modes.
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