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Stochastic threshold in cell size control
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Classic models of cell size control consider that cells divide when reaching a threshold, e.g., size, age, or size
extension. The molecular basis of the threshold involves multiple layers of regulation as well as gene noise. In
this paper, we study the cell cycle as a first-passage problem with a stochastic threshold and discover that such
stochasticity affects the intergeneration statistics, which bewilders the criteria to distinguish the types of size
control models. The analytic results show that the autocorrelation in the threshold can drive a sizer model to
the adderlike and even timerlike intergeneration statistics, which is supported by simulations. Following the
picture that the autocorrelation in the threshold can propagate to the intergeneration statistics, we further show
that the adder model can be driven to the timerlike one by a positively autocorrelated threshold, and even to the
sizerlike one when the threshold is negatively autocorrelated. This work highlights the importance of examining
gene noise in size control.
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I. INTRODUCTION

Cell size homeostasis requires microbes to tightly control
the fluctuations in exponential size growth and cell division
[1,2]. The mechanism of cell size control has been a puzzle
for half a century since the discovery of the cell growth
law by Schaechter, Maaløe, and Kjeldgaard [3]. Modern
experiments integrating the techniques of microfluidics and
advanced imaging analysis shed light on the puzzle, which
allows direct measurements of cell cycles in a branch of the
lineage [4]. The size control dynamics have been investigated
since then in the phenomenological styles [5–10], focusing
on the intergeneration series of birth size xb, division size xd ,
and intergeneration time τ . According to the intergeneration
correlations, the experimental data are classified into three
types as follows: the sizer, wherein the division size xd is
independent of the birth size xb; the adder, wherein the size
extension � = xd − xb is independent of xb; and the timer,
wherein τ is independent of xb. Concerning the underlying
mechanisms of the classes, three types of models have been
proposed [1,11–13], assuming that cell division happens when
a certain accumulating division indicator reaches a character-
istic threshold. Different indicators are assumed for different
types of intergeneration correlation, which could be the cell
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size for the “sizer,” the added size since birth for the adder,
and the cell age since birth for the timer [5,14–16], where the
simplified principle can be hence summarized by Figs. 1(a)
and 1(b).

The intergeneration correlations have been important cri-
teria for biologists to search for the signal molecule that
regulates cell division [1]. Since the adder correlation is
widely reported by experiments for bacteria such as Es-
cherichia coli [1,15,17–19], the indicator of size extension
has been intensively investigated [18,20–26]. An attractive
mechanism arises from the previous studies that the formation
of the division ring plays a key role in communicating cell
mass accumulation and cell division. The accumulation of the
related FtsZ protein then becomes a strong candidate as the
indicator of size extension [18,23,24,26]. The accumulation
mechanics of the adder mechanism hence draws attention
from the theoretical side [27–33], while experiments search-
ing for the molecular mechanics of cell size control are still in
progress.

Recent experiments reported conflicting data that the statis-
tics shifts from the adderlike correlation to the sizerlike one
in the slow-growth condition [7,29,34]. The correlation as a
mixture of adder and sizer seems to be demanding more com-
plicated regulatory mechanisms. There have been candidates:
Mixed models have been proposed in which the DNA replica-
tion initiates with the sizer or adder control mechanism while
the replication requires roughly constant time [18,20,22,34].
Concurrent models state that the cell divides only when both
indicators reach the threshold [25,26,35]. Models based on
the dynamics of biochemical reactions also seem to work
[8,28,32]. All of the models respect the principle of the cor-
respondence between the indicator and the intergeneration
correlation. It is, however, not necessarily true. In the recent
study by Berger and ten Wolde [36], it was discovered that a
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FIG. 1. The intergeneration correlation observed in experiments reflects both the regulatory mechanism and the correlation in the stochastic
threshold. The three mechanisms with cell size, size extension, and cell age as the cell cycle indicator [see (a)] led to the native intergeneration
correlation as sizer, adder, and timer [see (b)]. The accumulation model describes the cell cycles as the first-passage process, as illustrated in
(c) with sizer mechanism as an example. The birth size xb, the division size xd , the added size �, and the intergeneration time (or generation
time) τ are depicted. (d) The autocorrelation of the stochastic threshold s(t ) could drive the intergeneration correlation either from sizer to adder
to timer [with positive autocorrelation, i.e., 〈s(t )s(t + τ )〉 − 〈s〉2 > 0] or the reverse [with negative autocorrelation, i.e., 〈s(t )s(t + τ )〉 − 〈s〉2 <

0].

sizer model can also have an adderlike intergeneration corre-
lation in the case of a fluctuating threshold.

We realize that the molecular determinants of the di-
vision threshold would be involved in complex regulatory
networks, e.g., DNA replication, divisome formation, or mass
accumulation [23,24,34]. Imposed on noise in the regulatory
networks, the division threshold would surely follow a cer-
tain stochastic process, in which not only the magnitude of
fluctuation but also the autocorrelation matters. The autocor-
relation in the stochastic threshold may thus propagate into the
intergeneration correlation, which breaks the principle of the
correspondence between the indicator and the intergeneration
correlation. This paper aims to clearly demonstrate that the
hidden correlation in the stochastic threshold would lead to
a significant shift of the observed intergeneration correlation,
which can be dramatically different from the native one.

In this paper, a first-passage framework for the cell cycle
is developed, which includes all three regulatory mechanisms.
We analytically demonstrate that the mechanism with cell size
as division indicator would lead to the adderlike and even
timerlike intergeneration correlation, due to the autocorrelated

stochastic threshold s(t ). In the case of limited statistics, as
is usual in experiment, the adderlike state can hardly be dis-
tinguished from that from the native mechanism with added
size as the indicator. We then demonstrate that the mechanism
regulating the added size would be driven to the timerlike one
by positively correlated s(t ), and even back to the sizerlike
one by the negatively correlated s(t ). This allows a continuous
shift from adderlike to sizerlike correlation in slow-growth
conditions, which has been reported in recent experiments.
A comprehensive picture is hence created showing how the
autocorrelation in the threshold modifies the intergeneration
correlation type.

II. THEORETICAL FRAMEWORK FOR BACTERIAL
CELL CYCLES

In this section, we introduce the theoretical framework for
the dynamics of bacterial cell cycles, which has been estab-
lished in the recent decade [5,6,27,31,37]. The main idea is
that the dynamics can be decomposed into two processes of
different scales. On the single-cell scale, the intrageneration
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process focuses on the dynamics from cell birth to cell di-
vision. On the population scale, the intergeneration process
can be modeled as a random walk of the birth size xb over
the generations (or the division size xd , the generation time
τ ). The two processes are bridged by the propagator of the
cell state from the mother of generation i to the daughter of
generation i + 1, which can be written as the conditional prob-
ability density P(x(i+1)

b , τ |x(i)
b ), assuming that the cell state

can be well characterized by the birth size alone. The feature
of the propagator has been the center of the previous inves-
tigations, either on the connection between the propagator
and the time series observed in experiments [5,10], or on the
theoretical constraints on the propagator [6]. Aiming to build
a bridge from the intracellular dynamics to the intergeneration
statistics, the propagators are constructed for various cell size
control mechanisms [27,31,38], in which studies cell cycles
are solved as first-passage processes to a certain threshold for
cell division, which threshold has been simply assumed as a
fixed value. The assumption would be inadequate, concerning
the molecular basis of biological processes. The abundance of
proteins, including the key ones controlling division thresh-
old, generally fluctuate and are usually autocorrelated in a
certain time scale. We extend here the first-passage framework
for the cell cycle [31] to the case of a fluctuating and autocor-
related division threshold. The intergeneration propagator is
obtained from the intracellular dynamics in this framework.

The intrageneration processes under various size control
mechanisms can be included in the accumulation model. The
model assumes that the cell accumulates a certain material
as the index of its growth. The cell divides when the index
reaches the fluctuating threshold s controlled around the ex-
pected value s0, which dynamics can be written in the fashion
of the Langevin equation as

ds

dt
= g(s) + ηs, (1)

where the function g(s) controls the dynamics of s and ηs is the
noise term. The sizer mechanism can be described by setting
the index as the exponentially growing cell size x [36,38], i.e.,

dx

dt
= λx + ηx, (2)

with the initial size x(t = 0) = x(i)
b . The cell divides once

its size x reaches the size threshold s. The birth size of the
daughter cell can be linked to the division size xd by the
distribution P(x(i+1)

b |x(i)
d ). For the reader’s intuition, the model

is illustrated in Fig. 1(c). We assume perfect even division
in this paper for simplicity, by directly setting x(i+1)

b = x(i)
d /2.

Generalization to cases of uneven division [30,39] would be
straightforward.

The adder mechanism can be similarly embraced in the
accumulation model [27,31] by including the additional dy-
namics of the adder index u. The index increases with the
exponential cell growth but is set to zero at birth as

du

dt
= λ

x0
x + ηu, (3)

where u(t = 0) = 0. The cell divides when the index u
reaches the threshold s for the first time. Assuming that s

fluctuates around s0 = 1, the parameter x0 gives the expected
added size in each cell cycle.

The timer mechanism can be modeled by setting the index
as the cell age τ , which is of course set to zero at birth and
linearly increases in the time course, dτ/dt = 1. The cell
divides when the age τ reaches the threshold s for the first
time. It has been acknowledged that this control mechanism is
not stable in the case of exponentially growing cell size [1,13].

Figure 1(a) illustrates the three mechanisms. Previous anal-
ysis suggests that the three mechanisms lead to different
correlations between the birth size and the size extension over
the cell cycle [1,13], as shown in Fig. 1(b). Let us refer to the
correlations as “sizerlike,” “adderlike,” and “timerlike” ones
in this paper.

In the above accumulation model, the cell cycle is formu-
lated as the first-passage process (FPP) to the threshold. Due
to the additional ending condition, the FPP is in general a
more difficult problem than the original stochastic process. In
the framework of the Fokker-Planck equation concerning the
evolution of the probability density function P(x, u, s, t ), the
ending condition can be translated as the absorbing boundary
[31,40,41]. Let us consider the sizer mechanism as an exam-
ple. In the Langevin form, it is given by Eqs. (1) and (2) with
the first-passage condition x = s. Assuming white noise, the
equivalent Fokker-Planck counterpart is written as

∂P

∂t
= − ∂

∂x
(λxP) + Dx

∂2P

∂x2
− ∂

∂s
(g(s)P) + Ds

∂2P

∂s2
. (4)

The second-order diffusion terms are from the noise. Dx and
Ds are the corresponding diffusion coefficients. For a cell with
birth size xb and known threshold value sb, the initial condition
is written as

P(x, s, t = 0|xb, sb) = δ(x − xb)δ(s − sb). (5)

The first-passage condition is set by the absorbing (Dirichlet)
boundary condition

P(x, s, t |xb, sb)|� = 0, (6)

where the boundary � = {(x, s)|x = s}. As the cell grows, the
probability current is absorbed by the boundary. The survival
probability can be introduced as

S(t |xb, sb) =
∫∫

s>x
dx ds P(x, s, t |xb, sb), (7)

where the initial condition with the birth size and the initial
value of s is emphasized and the integration is over the re-
gion constrained by the boundary �. It gives the probability
that the cell has not divided till time t , which probability
constantly decreases from the initial value S(t = 0) = 1. The
first-passage time distribution can be evaluated as

F (t |xb, sb) = −∂S(t |xb, sb)

∂t
. (8)

In the language of the cell cycle, Eq. (8) gives the distribu-
tion of the intergeneration time P(τ = t |xb, sb) = F (t |xb, sb)
conditioned by the given xb and sb. Concerning also the divi-
sion size, the joint distribution P(xd , τ |xb, sb) is given by the
probability current over the absorbing boundary

P(xd , τ |xb, sb) = Ŵ P|x=xd ,s=xd ,t=τ , (9)

where the operator Ŵ = λx − Dx∂/∂x + g(s) − Ds∂/∂s.
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In principle, the solution P(x, s, t ) contains the full in-
formation of the FPP, from which one can evaluate all the
distributions concerned. It is, however, nontrivial to obtain
P(x, s, t ), since it constantly deforms around the absorbing
boundary. To be precise, the dynamics of x and s are inde-
pendent in the Fokker-Planck equation [Eq. (4)], while the
absorbing boundary [Eq. (6)] introduces the coupling between
the two processes. It is fortunate that the coupling can be
ignored while the first-passage current is mostly contributed
by the effect of cell growth. We note that the size x is expected
to be increasing in exponential fashion, x = xb exp(λt ) + x′,
where x′ comes from the growth noise with zero mean. The
problem can hence be translated as the first-passage process
of the fluctuating x′ and s to the moving boundary �′ =
{(x′, s)|s = x′ + xb exp(λt )}. The first-passage current hence
has contributions from both the moving boundary and the
diffusion of x′ and s. We assume here that the former one
dominates the problem and neglect the latter one. Translating
the problem back to the growing x and the fixed boundary, this
assumption neglects the deformation of P(x, s, t ) around the
absorbing boundary. The survival probability equation (7) is
approximated as

S(t |xb, sb) =
∫∫

s>x
dx ds G(x, s, t |xb, sb), (10)

where G(x, s, t |xb, sb) is the solution of the Fokker-Planck
equation (4) with the initial condition (5) but with no
boundary constraint. It can be further decomposed as
G(x, s, t |xb, sb) = G(x)(x, t |xb)G(s)(s, t |sb), where

∂G(x)

∂t
= − ∂

∂x
(λxG(x) ) + Dx

∂2

∂x2
G(x), (11)

∂G(s)

∂t
= − ∂

∂x
(g(s)G(x) ) + Ds

∂2

∂x2
G(s), (12)

with the initial condition G(x)(x, t = 0|xb) = δ(x − xb) and
G(s)(s, t = 0|sb) = δ(s − sb). The dynamics of x and s are
hence decoupled, which makes the following analytic solution
possible. A similar treatment has also been applied by Redner
for the first-passage process to a fast-moving cliff [40].

In principle, all the cellular processes are stochastic, in-
cluding cell growth, index accumulation, and partition of cell
division. Noise from these processes is surely important. For
the clarity of the theory, this study focuses on the effects of
autocorrelation in the stochastic threshold, while other noise
is ignored. Other noise can be integrated in the theoretical
framework in future studies, which would not harm the key
insight of this paper. In this assumption, the cell cycle with
the birth size xb can be decomposed into the deterministic
growth x = xb exp(λt ) and the stochastic process of s follow-
ing Eq. (12) with the free-boundary condition. The survival
probability that a cell with the given birth size xb = sb has not
divided till time t can be expressed as

S(t |sb) =
∫

s>x
ds G(s)(s, t |sb). (13)

The first-passage time can then be evaluated as

F (t |sb) = −∂S(t |sb)

∂t
. (14)

Assuming perfect even division, xb = sb/2. The distribution
of intergeneration time follows

P(τ |xb) = F (t = τ |sb = 2xb). (15)

Noting xd = xb exp(λτ ) and P(xd |xb)dxd = P(τ |xb)dτ , the
division size distribution can be expressed as

P(xd |xb) = 1

λxd
P

(
τ = 1

λ
ln

xd

xb
|xb

)
, (16)

which gives the full information of the correlation between the
birth size and the division size. The added size distribution can
be written as

P(�|xb) = P(xd = xb + �|xb). (17)

The joint probability would be convenient in comparison with
the experimental data, which avoids the issue of insufficient
sampling on extreme xb. In the case of known steady distribu-
tion P(xb), it can be written as

P(�, xb) = P(�|xb)P(xb). (18)

As a first taste of the above framework, we consider the
noise-free limit with the fixed size threshold s(t ) = s0. In this
case,

G(s)(s, t |sb) = δ(s − s0), (19)

where the Dirac delta is used. The survival probability

S(t |sb) =
∫ ∞

s0
2 eλt

ds δ(s − s0),

= H

(
1

λ
ln 2 − t

)
, (20)

where H (x) is the Heaviside step function. It leads to

P(τ |xb) = δ(τ − τc) (21)

with the expected intergeneration time τc = ln 2/λ. The divi-
sion size distribution follows as

P(xd |xb) = 1

λxd
δ

(
1

λ
ln

xd

2xb

)
= δ(xd − s0), (22)

where xb = s0/2 is applied. This is the typical behavior of a
deterministic sizer.

III. SIZER MECHANISM WITH
STOCHASTIC THRESHOLD

The stochastic size threshold s(t ) is in general controlled
by certain feedback circuits around the mean value s0. Let
us consider the simplest case that g(s) = −γ (s − s0). We
arrive at the Ornstein-Uhlenbeck (OU) process following the
Fokker-Planck equation

∂G(s)

∂t
= ∂

∂s
(γ (s − s0)G(s) ) + D

∂2G(s)

∂s2
. (23)

The diffusion coefficient is simply marked as D since it is
the only diffusion term. In the long-time limit, the stationary
distribution follows the Gaussian style as

Pst (s̃) =
√

1

2πσ 2
exp

[
− s̃2

2σ 2

]
, (24)
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FIG. 2. The distribution of interdivision time P(τ̃ |x̃b) for the
Ornstein-Uhlenbeck case with ε = 1, σ = 0.1, and various birth
sizes x̃b. The solid lines are given by Eq. (27), and the symbols are
from simulations.

where s̃ = s/s0 − 1, and the variance is controlled by the dif-
fusion coefficient D as σ 2 = D/(γ s2

0). γ reflects the strength
of the feedback control on s to the mean value s0, which
determines the typical correlation time as tc = 1/γ . Introduc-
ing the rescaled time t̃ = t/tc, the Green’s function of the
Ornstein-Uhlenbeck process [42] can be written as

G(s)(s̃, t̃ |s̃′) =
[

1

2πσ 2(1 − e−2t̃ )

] 1
2

exp

[
− (s̃ − s̃′e−t̃ )2

2σ 2(1 − e−2t̃ )

]
.

(25)

One can see the OU process is positively correlated in the time
scale of tc. In the case that the generation time τ is also in
this scale, the correlation can propagate into the intergenera-
tion size correlation, which eventually changes the correlation
classes.

The cell cycle is equivalent to the first-passage process of
the fluctuating s̃ to a shifting absorbing boundary at x̃(t ) − 1,
where the exponentially growing size is rescaled by

x̃(t ) = xb

s0
exp(λt ). (26)

Equations (13)–(15) lead to the distribution of rescaled inter-
generation time τ̃ = λτ/ ln 2 as

P(τ̃ |x̃b) =
(

1

2πσ 2

)1/2

(1 − e−2τ̃ )−3/2[εx̃beετ̃ (1 − e−2τ̃ )

+ (1 − x̃beετ̃ )e−2τ̃ − (1 − 2x̃b)e−τ̃ ]

× exp

[
− ((1 − 2x̃b)e−τ̃ − (1 − x̃beετ̃ ))2

2σ 2(1 − e−2τ̃ )

]
, (27)

where x̃b = xb/s0. ε = λ/γ reflects the ratio of two key time
scales, i.e., the expected intergeneration time τc and the typical
correlation time tc. Equation (27) has good agreement with the
simulation, as shown in Fig. 2. This confirms the availability
of the above approximation for this first-passage problem.
One can further obtain the other distributions concerned. Let
us consider the ratio α = x̃d/x̃b, the distribution of which

follows

P(α|x̃b) =
(

1

2πσ 2

)1/2 1

αε
(1 − α−2/ε )−3/2[εαx̃b(1 − α−2/ε )

+ (1 − αx̃b)α−2/ε − (1 − 2x̃b)α−1/ε]

× exp

[
− (α−1/ε (1 − 2x̃b) − (1 − αx̃b))2

2σ 2(1 − α−2/ε )

]
. (28)

In the ε � 1 limit, s(t ) and s(t + τc) have little correlation
because τc � tc. The above distribution turns into a Gaussian
one as

Pε→0(α|x̃b) = 1√
2πσ 2

x̃b exp

[
− (αx̃b − 1)2

2σ 2

]
. (29)

Noting xd = αs0x̃b, one can see that the division size fluctu-
ates around s0 with the distribution

Pε→0(xd |xb) = 1√
2πσ 2s2

0

exp

[
− (xd − s0)2

2σ 2s2
0

]
. (30)

The variance is inherited from s(t ) as 〈(xd − s0)2〉 = D/γ . It
is typical “sizer” behavior that the division size is governed
by the threshold but independent of the birth size, as shown in
Fig. 3(a) (see the line corresponding to ε = 0.1).

In the ε � 1 limit, s(t ) and s(t + τc) are strongly corre-
lated. Equation (28) turns into

Pε→∞(α|x̃b) =
√

εx̃2
b

4πσ 2

2 − α + 2α ln α

2α(ln α)3/2

× exp

[
−εx̃2

b (α − 2)2

4σ 2 ln α

]
. (31)

It is a distribution peaked around α = 2 with the variance
proportional to σ 2/εx2

b . The division size xd is always about
twice the birth size xb. The intergeneration time τ = 1

λ
ln α

is largely independent of xb, as shown on the right side of
Fig. 3(c) (see the line corresponding to ε = 10). In simple
words, it behaves as a typical “timer.” The above two limit
cases can also be plotted as a usual practice on a diagram of
� = xd − xb versus xb, according to two straight lines with
slope k = −1 (sizer correlation) and k = 1 (timer correlation),
as shown by the ε = 0.1 case and the ε = 10 case in Fig. 3(b).

The crossover between the sizer and timer limits arises
around ε ∼ 1, which behaves like the adder as shown below.
For general ε, the full expressions of the distributions are
rather complicated. The analytic estimation of the mean value
is hard, if achievable. In the current case of small variance, one
can turn to the mode of the distribution as an approximation.
Take the division size x̃d as an example, the distribution of
which can be obtained from Eq. (28) via the relation α =
x̃d/x̃b. We note that the peak of the distribution is governed
by the factor

P(x̃d |x̃b) ∝ exp ( − z2/(2gσ 2)), (32)

where g = (x̃d/x̃b)2/ε − 1 mainly modulates the peak width
and z = (2x̃b − 1) + (x̃d/x̃b)1/ε (1 − x̃d ). Setting z = 0, one
can estimate the position of the peak x̂d by

(2x̃b − 1) + (x̂d/x̃b)1/ε (1 − x̂d ) = 0. (33)
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FIG. 3. The intergeneration correlation in the Ornstein-Uhlenbeck case. (a) The mean division size 〈x̃d 〉 conditioned by the given birth size
x̃b for σ = 0.1 and various ε. The dashed lines show the typical value x̂d solved from Eq. (33), which almost collapse to the mean values.
(b) Same as (a), but for the mean added size 〈�̃〉. The dash-dotted line shows the perfect adder correlation for guidance. (c) Same as (a), but
for the mean intergeneration time 〈τ̃ 〉.

In the ε � 1 limit, the above equation is satisfied only if
2x̃b − 1 = 0 and x̂d − 1 = 0, which gives the sizer behavior
shown above. In the ε � 1 limit, Eq. (33) requires x̂d = 2x̃b,
which is the timer case discussed above. Concerning the rela-
tion between the typical added size �̂ ≡ x̂d − x̃b and the birth
size x̃b, the crossover between the above two limits can be
characterized by the slope k ≡ d�̂/dx̃b. In the regime with
which we are concerned around x̃b = 1/2, Eq. (33) suggests

k = 21−1/ε − 1, (34)

which smoothly shifts from k = −1 for the ε � 1 sizer limit
to k = 1 for the ε � 1 timer limit, as shown in Fig. 3(b). One
may immediately note that k = 0 when ε = 1. In this case,
the typical added size �̂ gently depends on the birth size and
slightly deviates from the expected value 1/2, as shown in
Fig. 3(b). The model hence behaves like the adder one, bearing
small errors.

The reader may concern about the deviation of the ε = 1
case from the perfect adder shown as the dash-dotted line
in Fig. 3(b). However, the deviation can hardly be identified
in experiments, where the statistics is commonly limited. To
illustrate this, we performed a simulation with 104 cell cy-
cles. Figure 4(a) shows the xb-� scatterplot, which looks just
like that of the adder model. The mean added size slightly
deviates for the extreme birth sizes. However, the deviation
might be ignored by the eye due to the poor statistics in these
regions. The collapse of the added size distribution P(�|xb)
for various xb is another key observation in experiments [15],
which has been an important support to the accumulation me-
chanics [27,31]. In the current model, the distribution slightly
changes for various birth sizes, but the distributions look very
similar in the range xb/s0 ≈ 0.4–0.6, where one can merely
observe insignificant differences of peak heights, as shown in
Fig. 4(b).

All of the above analysis is based on the model with s(t )
following the OU process. To confirm that the transition be-
tween the correlation types is induced by the autocorrelation

in the threshold s(t ) but is not induced otherwise, we modified
s(t ) from the OU process to a Gaussian-distributed random se-
ries. The positive autocorrelation is introduced into the series
by a filter in Fourier space. The adderlike correlation arises
again when the correlation time and the generation time match
(not shown here).

In this section, we have demonstrated that the posi-
tive autocorrelation in the threshold can propagate into the
intergeneration statistics, driving the sizer-type intergenera-
tion correlation between size extension and birth size to an
adderlike and even timerlike correlation. This can be the con-

FIG. 4. The statistics of simulation of 104 cell cycles of the sizer
mechanism with the threshold s(t ) following the OU process with
ε = 1, s0 = 1, and σ = 0.1. (a) A scatterplot of the birth sizes vs
the added sizes is shown by the gray circles. The mean added sizes
for the given birth size are shown by the red circles. The black
dash-dotted line indicates the added size for the perfect adder. (b) The
distribution of the added size conditioned by various birth sizes,
P(�̃|x̃b) for ε = 1 and σ = 0.1. The solid lines are the analytic
results. The symbols are from the simulation.
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FIG. 5. The intrinsic correlation modifies the intergeneration correlation of the accumulator mechanics, shown by the xb-� scatterplot of
simulation data (gray circles). The red circles denote the mean added size 〈�〉 for the given xb. The dash-dotted lines show the perfect sizer,
adder, and timer correlations for guidance. (a) The oscillating threshold s(t ) drives the native adder correlation to the sizerlike one when the
oscillation period T � 2τc. (b) The native adder correlation of the accumulator with stochastic threshold s(t ) in the uncorrelated limit with
ε = tc ln 2/τc = 0.1. (c) The positively correlated threshold s(t ) drives the native adder correlation to the timerlike one in the strong-correlation
limit with ε = 10.

sequence of a more general scheme. The observables, such as
the division size, are sampled from a hidden stochastic process
s(t ) by the time interval τc. The correlation of s(t ) may hence
be inherited by the observables when τc is smaller than the
correlation time of s(t ). This scheme can be generalized to the
mechanism regulating other quantities, such as the added size
shown in the next section.

IV. ADDER MECHANISM: THE EFFECTS OF POSITIVE
CORRELATION AND NEGATIVE CORRELATION

The adder mechanism has been defined in Sec. II by intro-
ducing additional dynamics of the adder index u in Eq. (3).
The cell divides when the adder index u reaches the threshold
s for the first time. In the deterministic limit with s = 1,
one can easily see that xd = xb + x0. This is the native adder
correlation of the adder mechanism. In the stochastic version
ignoring the correlation in noise, the adder correlation is kept
as shown in Fig. 5(b), as is well known in the literature. In
the presence of the correlation in threshold s, the type of
intergeneration correlation may be modified either to timerlike
or to sizerlike.

To introduce the positive correlation, one can again assume
s following the OU process with the intrinsic correlation time
tc. In the tc � τc limit, s(t ) and s(t + τc) are strongly pos-
itively correlated. This modifies the type of intergeneration
correlation towards the more positively correlated case, i.e.,
the timerlike correlation, as shown in Fig. 5(c). To drive an
adder to the sizerlike one, the additional negative correlation
is required.

We expect that negative autocorrelation in s(t ) would drive
the adder mechanism to the sizerlike correlation. The nega-
tive correlation can arise in the oscillating threshold s. To be
explicit, the autocorrelation of s(t ) and s(t + τ ) is negative
when the periods of the oscillator T � 2τc. In this paper, we

have applied the oscillating dynamics of gene circuits given
by Ref. [43] for demonstration. The dynamics considers the
repressilator of three genes following

dmi

dt
= −mi + α

1 + pn
j

+ α0,

d pi

dt
= −β(pi − mi ), (35)

where mi is the mRNA concentration of gene i, pi is the
protein abundance in the cell, n is the Hill index, i = 1, 2, 3,
and j = mod(i, 3) + 1. In the unstable regime of the pa-
rameter space, the dynamics oscillates. Supposing an adder
mechanism with the threshold controlled by such oscillating
circuits, a negative correlation appears when the generation
time is roughly half the period. The negative correlation prop-
agates into the intergeneration size correlation via negatively
regulated generation time. The cell sizes are hence more
tightly controlled, leading to a sizerlike correlation shown
in Fig. 5(a), where the randomness is introduced by the ad-
ditional white noise on the threshold. In general, negative
autocorrelation can arise from oscillating dynamics as long
as the sampling interval is around half the period, τ � T/2. It
is, however, sensitive to the noise in the threshold. Due to this
concern, the simulation data shown in Fig. 5(a) are more com-
pactly distributed, while the picture that the autocorrelation
in the threshold modifies the intergeneration size correlation
remains valid. We have also performed the simulation on the
deterministic oscillating threshold and stochastic index accu-
mulation. It is more robust to yield the sizerlike correlation,
while the distributions look more similar to the experiment
data. To avoid confusion and distraction, the results are not
shown here. We would like to note that Berger and ten Wolde
have discovered similar phenomena in their model (see Sup-
plemental Material of Ref. [36]).
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FIG. 6. The autocorrelation in the threshold modifies the in-
tergeneration correlation of the sizer mechanism. The slope k =
d�/dxb as a function of ε = λ/γ = tc ln 2/τ . The symbols are from
the experimental data of Tanouchi et al. [7], Taheri-Araghi et al. [15],
and Wallden et al. [34], assuming tc = 1.2 h. The black dashed lines
show the perfect sizer, adder, and timer correlations for guidance.

V. DISCUSSION AND SUMMARY

This study represents a general picture of cell size control
integrating randomness and autocorrelation in the stochastic
threshold. It includes the naive deterministic model as the
zero-noise limit, and the previously studied stochastic models
as the uncorrelated limit. In the presence of gene noise and
autocorrelation, we show that the positive autocorrelation in
the stochastic threshold would drive the intergeneration size
correlation, which has been the key observation in experi-
ment, shifting smoothly from sizerlike to adderlike and then
to timerlike, while the negative autocorrelation drives it in the
reverse direction, as indicated by the arrows in Fig. 1(d).

The adderlike correlation appears in the sizer mechanism
when the correlation time of the process, tc, matches the
generation time τ . When the two times differ, the correlation
shifts to either the sizer or the timer one. The robust adder
correlation is, however, observed in most experiments of fast-
growth conditions, as shown by the symbols in Fig. 6. The
question hence arises as to how the two time scales would
match in these experiments. A conjecture follows. It has been
noticed that the partition of cytoplasm in cell division is rather
stochastic (see, e.g., Refs. [30,39]). The partition noise may
disturb the hidden process s(t ) and shorten its correlation to
the generation time τ . In simple words, tc is capped by τ . The
intergeneration correlation is hence locked in the adderlike
one in fast-growth conditions. If this conjecture stands, one
may expect in the slow-growth case that τ would be much
longer than the intrinsic correlation time tc and the cell size
control would slip from the adder to the sizer. It is surprising
to us that experiments [7,34] did observe the significant shift
to sizerlike behavior in slow-growth cases, as shown in the
region of ε < 1 in Fig. 6.

Noting the shift between adderlike and sizerlike correla-
tions, Tanouchi et al. [7] have proposed a phenomenological
model by assuming the relation between the birth size and
division size xd = axb + b + η, where η is uncorrelated white
noise. This kind of model [7,8] decomposes the randomness

and the correlation into η and the slope a, which helps to
capture the features of the experimental data. In the xb vs �

diagram, one can immediately read a = k + 1, which slope k
is evaluated in this paper by Eq. (34). We noticed that the devi-
ation from the adderlike correlation has also been investigated
in the framework of the accumulation model since Ref. [27].
It was suggested that in the case where the division index
is accumulated in the bursting style with the bursting size
depending on the cell volume, the intergeneration correlation
is more sizerlike. Nieto et al. [29] extended the accumulation
model to the accumulation rate depending on the cell volume
in a nonlinear way, which can also continuously bridge the
sizerlike and adderlike behavior. In spite of the theoretical
attempts, the reason for the shift between adder and sizer
is still unclear. It may be a key to fully understanding the
bacterial cell size control mechanism, which requires more
hints from further experiments.

The recent wave of investigations on cell cycle control
has largely been energized by modern techniques and experi-
ments, which directly observe the cell cycles on the single-cell
level. On the cell level, the phenomenological models are
promising for consistent description of the observation. The
biologists may go further, asking about the biological mecha-
nism behind the phenomenological model. The accumulation
model [27,29,31] has been utilized in this paper to build a
bridge from the phenomenological description to its physical
basis, i.e., the accumulation of a certain index. Although we
still have no definitive answer on the molecular process, the
accumulation models show more structures of the regulated
cell cycles [27,31]. It is suggested that cell division is not a
trivial Markovian process governed by a single rate, which
leads to consequences on the population level [44,45]. It is
also only in a model concerning more fundamental processes
[36] that one may realize that the autocorrelation of the in-
tracellular processes can propagate into the intergeneration
observation, as also shown in this paper. The current study
hence emphasizes the understanding of cell size control on
the circuit level, in which direction there have been rapid
advances [30,46–51].

Cellular noise is ubiquitous. Other stochastic processes
(e.g., mass accumulation, uneven partition during division)
would also contribute to the modification of intergeneration
statistics [39]. We have already found the noise in accumula-
tion would increase the variance of the birth size and the added
size in the case of adder mechanics with oscillating threshold,
yielding sizerlike correlation. It is worthwhile to further inves-
tigate the quantitative details of the models studied, such as
the variance of the added size conditioned by the given birth
size or other higher moments. Here, for simplicity, we only
consider the influence of the noisy threshold to qualitatively
illustrate the propagation of the correlation from intracellular
process to intergeneration statistics.

Control of cell division and control of DNA replication
are both important to a stable cell cycle. This paper focuses
on the former one, while the latter one is surely interesting,
even more crucial in the view from the biological side. The
studies on the control of DNA replication also benefit from
the mother machine experiments. The phenomenological de-
scription [18,26,34] has been obtained. The molecular basis
was proposed even earlier. As a prominent example, the DNA
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replication that determines the later cell division is initiated
when cells reach a critical threshold of active DnaA protein
[52]. Experimental evidence was reported for the possible
regulation of active DnaA protein such as negative feedback
of datA sites [53] or dnaA boxes [54], which could generate
autocorrelated stochasticity in the threshold. The recent study
by Berger and ten Wolde [36] was indeed aimed at a cell cycle
model controlling DNA replication initiation, which leads to
their observation of the emergence of adderlike correlation
from a sizer controlling mechanism. The connection between
the control of cell division and the control of DNA replication
[18,23,26,35,55] is a matter of serious debate, which requires
further investigation, especially from the experiment side.

In short summary, this study clearly shows how the auto-
correlation of the intracellular process can modify the type
of intergeneration correlation. As a consequence, the con-
trolling mechanisms cannot be directly inferred from the

intergeneration correlation. This calls for more careful infer-
ence based on the experimental observations. We highlight
that simultaneous measurements of the intergeneration corre-
lation and the stochasticity of the intracellular variables are
important to validate the cell cycle control models.
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