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Avoidance of error catastrophe via proofreading innate to template-directed polymerization
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An important issue for the origins of life is ensuring the accurate maintenance of information in replicating
polymers in the face of inevitable errors. Here, we investigated how this maintenance depends on reaction
kinetics by incorporating the elementary steps of polymerization into the population dynamics of polymers.
We found that template-directed polymerization entails an inherent error-correction mechanism akin to kinetic
proofreading, potentially generating the tolerance of long polymers to an error catastrophe at the cost of a slow
polymerization process. As this mechanism does not require enzymes, it is likely to operate under broad prebiotic
conditions.
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I. INTRODUCTION

Template-directed polymerization is a fundamental chem-
ical step for the sustained evolution of prebiotic systems.
However, as in any chemical reaction, polymerization is
subject to thermodynamically inevitable errors. Eigen [1]
investigated the impact of such errors on the population
dynamics of replicating polymers. Using the so-called quasis-
pecies (QS) model, Eigen [1] showed that if the rate of error
exceeds a certain threshold (i.e., error threshold), polymers
cannot carry information in their sequence because of the
presence of several incorrect (i.e., mutant) sequences, which
compete with a correct (i.e., master) sequence, a phenomenon
called “error catastrophe” [2–9].

Error catastrophe poses a serious issue for understand-
ing the origin of life, because prebiotic systems most likely
lack sophisticated error-correction mechanisms. By contrast,
cells possess energy-driven mechanisms such as kinetic
proofreading (KPR) [10–17] that increase the accuracy of
template-driven replication beyond expectations due to free
energy differences between correct and incorrect monomer
pairs [1,10,18,19]. However, such mechanisms require mul-
tiple evolved enzymes, which may not exist in prebiotic
systems. Therefore it remains unknown whether a proofread-
ing mechanism can operating under prebiotic conditions.
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In this paper, we propose a prebiotic proofreading mech-
anism based on positive feedback between polymerization
kinetics and the population dynamics of replicating templates.
We propose a kinetic model of polymerization, wherein
monomers are sequentially added to a primer in a template-
directed manner. Using this model, we examined whether
polymerization kinetics improves the tolerance of replicating
templates to replication errors. We found that the effect of
proofreading is maximized at the limit of infinitely fast dilu-
tion of the replicator system and, at this limit, the achievable
accuracy of sequence information in replicating templates in-
creases with the length of templates, in stark contrast with the
prediction of Eigen’s QS model.

II. MODEL

We consider a polymer (denoted by Xl,s) comprising
a primer (denoted by “p”) linked to a sequence of l bi-
nary monomers (denoted by s ∈ {0, 1}l ) (e.g., “p000” and
“p101010”) [20]. The polymer is extended by the addition
of a monomer (denoted by m ∈ {0, 1}) using another polymer
(denoted by XL,S) as a template [Fig. 1(a)]:

Xl,s + XL,S
r(l,s,m,S)−−−−−→ Xl+1,sm + XL,S.

For the sake of comparison with the QS model, we assume that
only polymers of length L can serve as templates (hereinafter
referred to as the templates), polymers cannot be longer than
L, and polymers and templates immediately separate after
the addition of a monomer. The rate of monomer addition,
r(l, s, m, S), comprises three factors [Fig. 1(b)]:

r(l, s, m, S) = β(l, s, S)ν(l + 1, m, S) f (S). (1)

The first factor, β(l, s, S), depends on the binding energy
between Xl,s and XL,S . We assume that only a polymer bound
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FIG. 1. (a) Schematic of the polymerization model (up to two
joined monomers). Polymers comprise a primer (gray) and two
types of monomers (blue and red). The thick arrow represents the
monomer-addition reaction. In every reaction, a polymer with any
sequence of length L (represented as a sequence of white monomers)
is used as a template. (b) Schematic of the monomer-addition re-
action using a template. In the reaction, a monomer (“0” or “1”)
joins a substrate polymer (e.g., “p00”), which forms pairings with
a template (e.g., “p010”). The rate of the reaction is determined by
the efficiency of the template f , the factor associated with the binding
energy between the template and substrate β, and the joining rate of a
monomer ν. β depends on whether the pairings between the substrate
and the template are correct (filled circles) or not (open circles) (a
pair of primers is depicted as a gray circle), and ν depends on the
pairing between the added monomer and that at the corresponding
position in the template.

to a template can be extended. Thus r(l, s, m, S) is propor-
tional to such fraction of Xl,s bound to XL,S . This fraction
is expressed as e−Êa , where Êa is the free energy. As the
binding of “correct” pairs reduces the energy, we assume
Êa = E0 − n̂(l, s, S)�, where n̂(l, s, S) (�l) is the number of
correct pairs of monomers between Xl,s and XL,S [Fig. 1(b)],
whereas E0 is the energy in case of no pairings (i.e., n̂ = 0).
A pair is defined as correct if the monomers are of the same
type [21], and � (�0) is the difference in free energy between
correct and incorrect monomer pairs [22]. We assume the
ideal condition that the fractions of the bounded polymers are
small and free from saturation, that is, E0 is large enough
such that Êa > 0 for any possible n̂ (�L) [23]. This ideal
condition [24] is also assumed in the QS model without the
product-inhibition problem, as discussed later at the end of
this paper. Furthermore, we rescale the time scale with e−E0

for simplicity. Note that, under this condition, the time scale
should be exponentially slower with the template length L.
Therefore we set β(l, s, S) = exp (n̂(l, s, S)�).

The second factor in Eq. (1), ν(l + 1, m, S), depends on
the binding energy between the incoming monomer m and
the (l + 1)th monomer of the template sequence S. If this

monomer pair is correct, ν(l, m, S) is set to e�; otherwise, it is
set to unity [25]. We assume that both the monomer species,
“0” and “1,” exist at a constant concentration. Accordingly,
μ = 1/(1 + e�) gives the “error rate” of each monomer addi-
tion in template replication.

The third factor in Eq. (1), f (S), represents the efficiency
of the sequence S as a template, which can be interpreted
as the fitness of S. For comparison with Eigen [1], we as-
sume a single-peak fitness landscape: f (S) ≡ f0 if S = {0}L

(denoted by S0 and called the master sequence); otherwise,
f (S) ≡ f1 < f0 (we set f0 = 1 and f1 = 0.1 unless otherwise
noted).

We assume a chemostat condition, where a free primer
(denoted by X0,p) was supplied at rate φ, and all chemical
species were diluted at the same rate φ:

∅
φ→ X0,p, Xl,s

φ→ ∅.

Thus the total concentration of all primers is unity at the
steady state,

∑
l

∑
s∈{0,1}l xl,s = 1. We use the boundary con-

dition in which the concentration of X0,p (denoted by x0,p) is
fixed, and the dilution rate φ is determined by x0,p.

In summary, the equation for the rate of concentration of
Xl,s (denoted by xl,s) is

ẋl,s = xl−1,s′
∑

S∈{0,1}L

r(l − 1, s′, m, S)xL,S

− xl,s

∑
S∈{0,1}L

(r(l, s, 0, S) + r(l, s, 1, S))xL,S − φxl,s,

(2)

where s′ denotes the sequence obtained by removing the lth
monomer from s and the dilution rate φ is determined as φ =

x0,p

1−x0,p
(1 + e�)

∑
S∈{0,1}L f (S)xL,S [26]. If l = L (the maximum

length), there is no second term in Eq. (2).
In the present model, the accuracy of replicated informa-

tion (denoted by A) is defined as the average similarity of all
templates to the master sequence S0 [4].

A =
∑

S∈{0,1}L

(
1 − 2

hS0,S

L

)xL,S

xL
, (3)

where xL = ∑
S∈{0,1}L xL,S and hS0,S is the Hamming distance

between S0 and S. For example, A = 1 if all the templates
are the master sequence, and A = 0 if the templates are com-
pletely random sequences.

III. RESULTS

First, we demonstrate that if the dilution rate (or, equiva-
lently, the supply of a primer) φ is sufficiently lower than the
polymerization rate (i.e., φ ∼ 0 and x0,p � 1), the model is
reduced to the QS model. Therefore the rate equation for xL,S

is reduced to

ẋL,S =
∑

S′∈{0,1}L

ωS,S′xL,S′ − φxL,S, (4)

where ωS,S′ = (1 + e�)x0,p f (S′)μhS,S′ (1 − μ)L−hS,S′ and μ is
the error rate (i.e., μ = 1

1+e� ) (see Appendix A for the deriva-
tion). This is because, for low φ, a primer is extended to the
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FIG. 2. (a) Dependence of the accuracy of the replicated infor-
mation A [defined as Eq. (3)] on the fixed concentration of free
primers, x0,p for template length L = 6. Different error rates μ are
shown in different colors. (b) Dependence of A on μ for different
x0,p, as plotted with different colored curves. The black dashed curve
represents the result of the QS model, whereas the solid black curve
represents A in the case of an infinite dilution rate, x0,p ∼ 1, calcu-
lated by Eq. (8).

maximum length L immediately after binding to a template,
and fast polymerization does not affect the slow population
dynamics of the templates.

Hence, in this low-dilution-rate limit, our model produces
the same error catastrophe and the threshold as provided by
the QS model: The accuracy of the replicated information A,
defined as Eq. (3), decreases monotonically with the increase
in μ, and the decrease is accelerated as the sequence length
of templates L increases. Based on the correspondence of
Eqs. (4) and the QS model, the error rate μ has to be smaller
than the error threshold in order to maintain A ∼ 1:

μ � ln(W )/L, (5)

where W ≡ f0

f1
is the advantage of the master sequence. This

is the error threshold derived by Eigen [1].
Then, we consider the situation wherein the dilution rate

φ is comparable to the polymerization rate. In this case, the
model is not reduced to the QS model, and the polymerization
kinetics significantly affect the accuracy of replicated infor-
mation A. We computed A in the steady state in Eq. (2),
varying the concentration of the free primer (x0,p) by tuning
the dilution rate φ [Fig. 2(a)] [27]. If x0,p (i.e., φ) is low,
the accuracy A approaches that of the QS model, as ex-
pected [Fig. 2(b)]. As x0,p (i.e., φ) increases, A monotonically
increases for any error rate μ. In other words, slow polymer-
ization relative to dilution improves the accuracy A.

The increased accuracy is attributed to the polymerization
process, which works toward achieving multistep error cor-
rection for each monomer site in the template sequence. Here,
we derive the maximally achievable accuracy in the limit of
an infinite dilution rate φ (i.e., x0,p ∼ 1).

First, we consider how the concentrations of polymers
depend on the monomer at a specific site. Let the concen-
tration of the polymers of length l whose ith monomer is
m ∈ {0, 1} be expressed as ξ

(i)
l,mxl , where ξ

(i)
l,0 + ξ

(i)
l,1 = 1, xl =∑

s∈{0,1}l xl,s, and i � l � L. Using Eq. (2), we can show that
as φ → ∞,

ξ
(i)
l,0

ξ
(i)
l,1

= F (i)
0

F (i)
1

ξ
(i)
l−1,0

ξ
(i)
l−1,1

, (6)

where F (i)
m is the relative rate at which the polymers of length

l − 1 are extended to the polymers of length l whose ith
monomer is m (see Fig. 5 in Appendix B). The values of F (i)

m
are estimated as

F (i)
0 = e�ξ0 f0 + e�

(
ξ

(i)
0 − ξ0

)
f1 + ξ

(i)
1 f1,

F (i)
1 = ξ0 f0 + (

ξ
(i)
0 − ξ0

)
f1 + e�ξ

(i)
1 f1, (7)

where ξ (i)
m = ξ

(i)
L,m and ξ0 is the fraction of the master sequence,

i.e., ξ0 = ∏
j ξ

( j)
0 (see the derivation in Appendix B). To derive

Eq. (7), we assumed that monomer additions at different posi-
tions in a sequence are independent of each other [28]. In both
equations in (7), the first term represents the rate of monomer
addition using the master sequence (i.e., the sequence with all
0s) as a template, and the second and third terms represent
rates using other templates with the ith monomer “0” and “1,”
respectively.

Next, polymer sequences of length i − 1 must undergo
L + 1 − i steps of monomer-addition reactions in order to
complete the synthesis of a template with length L. Using
Eq. (6) recursively, the fractions ξ

(i)
0 and ξ

(i)
1 are derived by

self-consistently solving

ξ
(i)
0

ξ
(i)
1

=
(
F (i)

0

)L+1−i

(
F (i)

1

)L+1−i . (8)

As shown in Fig. 2(b), we calculated the accuracy A using
this estimate for ξ

(i)
0 as A = 2

L

∑
i ξ

(i)
0 − 1, which agrees well

with the simulation result for x0,p = 0.9.
The effective error rate ξ

(i)
1 given by the solution of Eq. (8)

is less than the original error rate μ as described below,
which suggests a proofreading effect working. By assuming
the dominance of the master sequence (ξ (i)

0 ∼ ξ0, ξ
(i)
1 ∼ 0),

ξ
(i)
1 is approximated as

ξ
(i)
1 ∼ 1

1 + e(L+1−i)�
∼ e−(L+1−i)�, (9)

because F (i)
0 /F (i)

1 is approximated by e�. Equation (9) agrees
with the minimum error rate that can be achieved in the
KPR model with L + 1 − i steps, when the binding energy
between the enzyme and correct or incorrect substrate differs
by � [10,13]. Furthermore, even if the fraction of the master
sequence ξ0 is close to zero (i.e., � is small), the small dif-
ference between F (i)

0 and F (i)
1 is amplified with the powers

of L + 1 − i, possibly resulting in a significant difference
between ξ

(i)
0 and ξ

(i)
1 , and high A accordingly.

Given the effective error rate in Eq. (8) at each monomer
site, we calculated the error threshold for the correct infor-
mation and found it to be dominant. In Fig. 3(a), we have
plotted the dependence of the information accuracy A on the
error rate μ with various template lengths L. At the limit of
an infinite dilution rate, the error threshold for μ, at which
the information is lost (A ∼ 0), increases with the length of
the template L [Fig. 3(b)] [29]. This is in sharp contrast with
the QS model, wherein the fraction A declines sharply with L
under any condition, and the error threshold for μ approaches
zero with an increase in L, as expressed by Eq. (5).

The increase in accuracy of the information with length
L in Fig. 3 is achieved because increasing L increases the
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FIG. 3. (a) Maximum achievable accuracy of the information
plotted as a function of the error rate μ (μ = 1

1+e� ) for different
lengths of polymer L in the case with x0,p ∼ 1. The accuracy was
calculated using Eq. (8). (b) Dependence of the error threshold on
the length of template L. The threshold is calculated as the error rate
μ, satisfying A = 0.25.

number of reaction steps a monomer site in the sequence un-
dergoes before template synthesis is completed. The effective
error rate at each monomer site in the template is exponen-
tially reduced with the number of steps, as in multistep KPR.
Although the variety of incorrect sequences increases expo-
nentially with L, as in the QS model, this can be overcome by
the proofreading effect (see Appendix C).

Finally, we discuss the trade-off relationship between the
accuracy and template yield. This trade-off is inevitable, be-
cause the accuracy of the KPR is generally achieved at the
expense of synthesis efficiency [12,13]. In our model, we
computed the yield as the actual concentration of the master
sequence xL,S0 . In Fig. 4(a), the yield is plotted against the
accuracy of information A by varying the dilution rate φ.
With an increase in φ, the accuracy increases, but the yield

FIG. 4. (a) Trade-off between the accuracy of the replicated in-
formation A and the template yield defined as the master sequence
concentration xL,S0 . The solid curves represent the dependence of
xL,S0 on A. The dilution rate φ is varied by controlling the fixed
concentration of the free primer x0,p in the chemostat, from ∼0 to
∼1. The dashed vertical lines represent the accuracy A in the QS
model, and the solid vertical lines represent the case with x0,p ∼ 1.
We set � = 1 [i.e., μ = 1/(1 + e)]. (b) The yield xL,S0 varies with
the length of the template L at fixed accuracy A = 0.3, 0.5, 0.7 (note
that some values of A cannot be achieved for lower L, and so some
data points are missing). The yield decreases with length L faster
than exponential decay.

decreases. A similar trade-off exists between the accuracy and
energy influx (see Appendix E).

IV. SUMMARY AND DISCUSSION

In summary, in our template-polymerization system, the
proofreading effect reduces the effective error rate as long as
the dilution is not too slow. The effective error rate decreases
with the template length (in sharp contrast with the QS model)
in the slow dilution limit, whereas the error increases with the
length. This proofreading effect entails a trade-off between the
accuracy of replicated information and the production yield,
as in the KPR scheme.

We made the following four major assumptions to make
our model comparable with the QS model. However, most of
these assumptions can be relaxed for proofreading to work in
our model.

First, we assumed immediate separation of the templates
after complete full-length polymerization, as is also assumed
in the QS model; thus the separation of shorter sequences is
immediate based on thermodynamic reasoning [30]. Without
this assumption, the so-called “product inhibition” problem
occurs, as already pointed out for the QS model [31,32].
However, the product-inhibition problem could be circum-
vented by assuming the binding energy of monomer pairing
to be weak while maintaining accurate replication due to the
proofreading effect discussed in this paper; there are physic-
ochemical conditions that are free from this problem [33].
Experimentally, this condition can be realized by the mode of
driving template separation (e.g., fast environmental, thermal
or tidal, or oscillation [34–37]).

Second, only the longest polymers were assumed to work
as templates. However, this assumption is not essential in
contrast to the QS model, if the shorter templates rebind to
the longer templates and are consumed to produce them [38].
Even if the shorter polymers act as templates, our results do
not significantly differ over certain parameter regions (see
Appendix F). A similar effect has also been observed in
experimental templated ligation systems [37]. Because the
proofreading in our model works better for a larger L, our
results suggest that a mechanism for selecting longer poly-
mers (e.g., Refs. [39,40]) would resolve the error-catastrophe
problem because of the proofreading effect.

Third, we considered the simplest “fitness landscape” f (S),
wherein only the master sequence has high fitness. Here, “fit-
ness” represents the efficiency of a template for incorporating
monomers. It is also possible to consider the arbitrary fitness
landscape in our model (e.g., a multimodal or more rugged
landscape) [4,6]. We examined a few alternate landscapes,
which supported that the proofreading effect is relevant to
avoid the error catastrophe (see Appendix G) [41].

Fourth, we assumed that sequences always bind to tem-
plates at the same position. However, our proofreading
mechanism holds even if sequences could rebind to any site
in a template; that is, rebinding to wrong locations is insignif-
icant because such cases are rare due to a small number of
correct pairings. In most cases, a polymer extends by binding
to the correct site resulting in more correct pairings.

However, our proofreading scheme has a few limitations
in cases with longer template lengths. Although the accuracy
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A monotonically increases with length L under the conditions
assumed in our study [Fig. 3(b)], the time scale to complete
the replication reaction increases and the yield of the product
drastically decreases with L [Fig. 4(b)]. We assumed the ideal
condition wherein the bond between polymers separates im-
mediately after the reactions, and no saturation of the fraction
of bounded polymers exists. To achieve this condition, the
time scale of the reactions must be exponentially slower with
an increase in the template length, because the unbinding of
longer polymers would take a longer time. This corresponds to
the rescaling of the time by e−E0 as explained in the model de-
scription, where E0 must be larger than �L. In addition, as we
assumed fast dilution during polymerization, the product tem-
plate yield decreases faster than exponential with its length,
as highlighted in Fig. 4(b). Therefore, with a sufficiently long
template, the reaction speeds and yields of products could be
too low to work in real experimental systems.

Note, however, that such a limitation could be avoided by
considering a more realistic and detailed model. As discussed
above, sites in a template closer to the primer undergo more
error-correction steps, resulting in fewer errors in the product
template. The proofreading effects for those sites are exces-
sive. In this paper, we consider the ideal condition where a
mismatch at every site equally affects the extension rate of the
sequence, which entails a long time scale for the reactions.
However, if a more realistic and detailed model is considered
wherein the effect of mismatches at each site on the extension
rate depends on their proximity to the ends of the sequence,
the reduction of errors while increasing the yields of produc-
tion and speeds of the replication process up to the realistic
regime might be maintained.

In principle, our scheme works even in synthetic replicat-
ing systems without complex reaction pathways such as a
nonenzymatic primer-extension system [42,43] or a template-
directed ligation system [37] (see Refs. [44,45] for reviews).
Finally, we briefly compare other schemes with the proposed
model. The standard KPR currently used in biological sys-
tems requires the specific design of the reactions at each
monomer-addition step during the replication process: a reac-
tion pathway involving several intermediate states associated
with polymerases [10] or a reverse reaction catalyzed specifi-
cally by exonucleases [12]. Recently, proofreading based on a
detailed polymerization mechanism coupled with cyclic pro-

tocols was proposed [46]. By contrast, our scheme is based
on general thermodynamics and the multistep nature of tem-
plate replication [47]. The error-correction effect works at
each polymerization step, which is reinforced by the positive
feedback from the template population, thus enabling long
templates to avoid error catastrophe. This model can therefore
serve as a guide for designing accurate template-replication
systems and can further provide a plausible scenario for the
transmission of sequence information in the prebiotic world.
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APPENDIX A: REDUCTION OF THE MODEL INTO THE
QS MODEL IN A CASE WITH SLOW DILUTION (x0,p ∼ 0)

We assume that polymerization is completed on a much
faster time scale than that for the dilution (and the supply
of primers) (i.e., φ ∼ 0, which is realized when x0,p � 1).
Because the last term is negligible in Eq. (2), using the
steady-state condition ẋl,s = 0 allows adiabatic elimination of
variables xl,s, where l � L − 1, as

xl,s = xl−1,s′

∑
S∈{0,1}L f (S)β(l − 1, s′, S)ν(l, m, S)xL,S

(1 + e�)
∑

S∈{0,1}L f (S)β(l, s, S)xL,S
.

(A1)
Because s′m and s are identical sequences in Eq. (2), it follows
that β(l − 1, s′, S)ν(l, m, S) = β(l, s, S). Therefore

xl,s = xl−1,s′/(1 + e�). (A2)

Using this equation, we can transform the rate equation for
template polymers (i.e., polymers of length L) as follows:

ẋL,s = xL−1,s′
∑

S∈{0,1}L

f (S)β(L − 1, s′, S)ν(L, m, S)xL,S − φxL,s

= x0,p

(1 + e�)L−1

∑
S∈{0,1}L

f (S)β(L − 1, s′, S)ν(L, m, S)xL,S − φxL,s. (A3)

Because β(L − 1, s′, S)ν(L, m, S) = β(L, s, S), it follows that

ẋL,s = x0,p

(1 + e�)L−1

∑
S∈{0,1}L

f (S)β(L, s′, S)xL,S − φxL,s = x0,p

(1 + e�)L−1

∑
S∈{0,1}L

f (S)en̂(l,s,S)�xL,S − φxL,s

= x0,p(1 + e�)
∑

S∈{0,1}L

f (S)
e(L−hs,S )�

(1 + e�)L
xL,S − φxL,s, (A4)

where hi, j is the Hamming distance between sequences i and j. Using μ = 1
1+e� , Eq. (4) in the main text is obtained.
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APPENDIX B: DERIVATION OF THE UPPER LIMIT OF THE ACCURACY OF THE INFORMATION
IN A CASE WITH FAST DILUTION (x0,p ∼ 1)

First, we assume that the frequencies of “0” and “1” at different locations along the polymers are independent of each other.
Let ξ

(i)
l,0 and ξ

(i)
l,1 denote the relative frequencies of polymers of sequence length l whose ith bit is “0” and “1,” respectively, where

ξ
(i)
l,0 + ξ

(i)
l,1 = 1. The concentration of polymers of sequence length l and sequence s is then expressed as follows:

xl,s = xl

l∏
i=1

ξ
(i)
l,mi

, (B1)

where mi is the ith bit of sequence s and xl is the sum of the concentrations of the polymers of sequence length l (xl =∑
s∈{0,1}l xl,s).
From the steady state of Eq. (2), xl,s is calculated as follows:

xl,s = xl−1,s′
∑

S∈{0,1}L

r(l − 1, s′, m, S)xL,S/φ, (B2)

where we assumed that the first and last terms are dominant in Eq. (2), because we assumed x0,p ∼ 1 to allow a large φ. s′
represents a sequence in which the end monomer of sequence s is deleted. Here, substituting Eq. (B1) and summing all the
concentrations of the sequences whose ith bit is “0” gives

φ
∑
s∈s(i)

0

xl,s =
∑
s∈s(i)

0

xl−1

l−1∏
j=1

ξ
( j)
l−1,mj

∑
S∈{0,1}L

r(l − 1, s′, ml , S)xL

L∏
k=1

ξ
(k)
L,Mk

,

= xl−1xL

∑
s∈s(i)

0

ξ
(i)
l−1,0

l−1∏
j=1, j 	=i

ξ
( j)
l−1,mj

∑
S∈{0,1}L

r(l − 1, s′, ml , S)
L∏

k=1

ξ
(k)
L,Mk

, (B3)

where
∑

s∈s(i)
0

denotes the summation of all of the sequences where the ith monomer is “0” and mj and Mj denote the jth bits of

the sequences s and S, respectively. Note that if l = i, we should read ξ
(i)
l−1,0 as ξ

(i)
l−1,0 = 1. Here, we assume that f (S) = f0 if S

is the master sequence and f (S) = f1 if S is the other sequence. This gives

φ
∑
s∈s(i)

0

xl,s = xl−1xL

∑
s∈s(i)

0

ξ
(i)
l−1,0

l−1∏
j=1, j 	=i

ξ
( j)
l−1,mj

( ∑
S∈{0,1}L

f1ν(l, ml , S)β(l − 1, s′, S)
L∏

k=1

ξ
(k)
L,Mk

+ ( f0 − f1)ν(l, ml , S0)β(l − 1, s′, S0)
L∏

k=1

ξ
(k)
L,0

)
. (B4)

By applying the definition of β(l − 1, s′, S) and ν(l, ml , S) for each pair of polymers, xl,s = xl
∏l

i=1 ξ
(i)
l,mi

and a template

xL,S = xL

L∏
i=1

ξ
(i)
l,Mi

= xl−1xL f1ξ
(i)
l−1,0

(
e�ξ

(i)
L,0 + ξ

(i)
L,1

) l∏
j=1, j 	=i

(
e�ξ

( j)
l−1,0ξ

( j)
L,0 + ξ

( j)
l−1,0ξ

( j)
L,1 + ξ

( j)
l−1,1ξ

( j)
L,0 + e�ξ

( j)
l−1,1ξ

( j)
L,1

)

+ xl−1xL( f0 − f1)e�ξ
(i)
l−1,0

L∏
k=1

ξ
(k)
L,0

l∏
j=1, j 	=i

(
e�ξ

( j)
l−1,0 + ξ

( j)
l−1,1

)
, (B5)

where we define ξ
(l )
l−1,0 = ξ

(l )
l−1,1 = 1. By using ξ

(i)
L,0 + ξ

(i)
L,1 = 1,

e�ξ
( j)
l−1,0 + ξ

( j)
l−1,1 = e�ξ

( j)
l−1,0

(
ξ

(i)
L,0 + ξ

(i)
L,1

) + ξ
( j)
l−1,1

(
ξ

(i)
L,0 + ξ

(i)
L,1

)
= e�ξ

( j)
l−1,0ξ

( j)
L,0 + e�ξ

( j)
l−1,0ξ

( j)
L,1 + ξ

( j)
l−1,1ξ

( j)
L,0 + ξ

( j)
l−1,1ξ

( j)
L,1

= e�ξ
( j)
l−1,0ξ

( j)
L,0 + e�ξ

( j)
l−1,0ξ

( j)
L,1 + ξ

( j)
l−1,1ξ

( j)
L,0 + ξ

( j)
l−1,1ξ

( j)
L,1

+ ξ
( j)
l−1,0ξ

( j)
L,1 − ξ

( j)
l−1,0ξ

( j)
L,1 + e�ξ

( j)
l−1,1ξ

( j)
L,1 − e�ξ

( j)
l−1,1ξ

( j)
L,1

= (
e�ξ

( j)
l−1,0ξ

( j)
L,0 + ξ

( j)
l−1,0ξ

( j)
L,1 + ξ

( j)
l−1,1ξ

( j)
L,0 + e�ξ

( j)
l−1,1ξ

( j)
L,1

) + (1 − e�)
(
ξ

( j)
l−1,1 − ξ

( j)
l−1,0

)
ξ

( j)
L,1. (B6)
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FIG. 5. Schematic of reaction pathways from the addition of the ith monomer to the completion of the template of length L whose ith
monomer is “0” or “1.” As in Fig. 1(a), each arrow represents the monomer addition to a substrate polymer using a template.

In the last line, we assume that the last term is much smaller than the first term, because (1 − e�)(ξ ( j)
l−1,1 − ξ

( j)
l−1,0) ∼ 0 if � is

small and ξ
( j)
L,1 ∼ 0 if � is large; thus

e�ξ
( j)
l−1,0 + ξ

( j)
l−1,1 ∼ (

e�ξ
( j)
l−1,0ξ

( j)
L,0 + ξ

( j)
l−1,0ξ

( j)
L,1 + ξ

( j)
l−1,1ξ

( j)
L,0 + e�ξ

( j)
l−1,1ξ

( j)
L,1

)
. (B7)

Similarly, we obtain the expressions for the sequences whose ith monomer is “1,”
∑

s∈s(i)
1

xl,s. Thus the relative production
rate of a polymer with ith monomer “0” and “1” is given by

φ
∑
s∈s(i)

0

xl,s = φxlξ
(i)
l,0 = A(i)

l

[
e�ξ0 f0 + e�

(
ξ

(i)
0 − ξ0

)
f1 + ξ

(i)
1 f1

]
xl−1ξ

(i)
l−1,0,

φ
∑
s∈s(i)

1

xl,s = φxlξ
(i)
l,1 = A(i)

l

[
ξ0 f0 + (

ξ
(i)
0 − ξ0

)
f1 + e�ξ

(i)
1 f1

]
xl−1ξ

(i)
l−1,1, (B8)

where A(i)
l is a constant that satisfies A(i)

l =
xL

∏l
j=1, j 	=i(e

�ξ
( j)
l−1,0 + ξ

( j)
l−1,1). Here, we define F (i)

0 and

F (i)
0 as

F (i)
0 = e�ξ0 f0 + e�

(
ξ

(i)
0 − ξ0

)
f1 + ξ

(i)
1 f1,

F (i)
1 = ξ0 f0 + (

ξ
(i)
0 − ξ0

)
f1 + e�ξ

(i)
1 f1, (B9)

respectively, which are interpreted as the relative rates of the
monomer addition to the sequence whose ith monomer is “0”
and “1,” respectively (Fig. 5). Note that F (i)

0 and F (i)
0 do not

depend on the length of the sequence. Recursive application
of this process allows the fraction of the template sequence
with ith “0” or “1” monomer, ξ

(i)
0 or ξ

(i)
1 , to be given by a

self-consistent solution of

ξ
(i)
0

ξ
(i)
1

=
(
F (i)

0

)L+1−i

(
F (i)

1

)L+1−i , (B10)

as explained in the main text. The numerical solution for
Eq. (B10) in a case with L = 4 is plotted in Fig. 6.

APPENDIX C: THE ERROR THRESHOLD FOR A
REPLICATING TEMPLATE WITH ERROR CORRECTION

The threshold value for the error catastrophe is roughly
estimated in the case with a fast dilution limit (i.e., x0,p ∼
1). Based on the discussion in the main text, for multi-
step reactions, the effective error rate at the ith bit of the
template during replication is modified as μL+1−i

μL+1−i+(1−μ)L+1−i (=
1

1+exp (−(L+1−i)�) ). In this case, the error threshold at which the
growth rate of the master sequence is overwhelmed by that of

the others is estimated from the condition

f0

L∏
i=1

1

1 + e−i�
∼ f1, (C1)

where f0 and f1 are the fitness of the master sequence and
the others, respectively. If we assume that L is infinitely
large, then the threshold for μ is derived numerically as μ∗ ∼
0.4268 (Fig. 7). It should be noted that although the fraction
of the master sequence ξ0 is small if μ > μ∗, the threshold for

FIG. 6. The fraction of the error at each bit in the template se-
quence with length L = 4. The solid curves represent the fraction of
the template polymer, ξ

(1)
1 , ξ

(2)
1 , and ξ

(3)
1 . The dotted curves represent

the minimum error rate that can be achieved in the KPR scheme of
steps 2, 3, and 4, respectively. The inset shows the same plot with
log-log axes.
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FIG. 7. The dependence on the error rate μ of the fraction of the
master sequence among all of the templates ξ0 in a case with x0,p ∼ 1.
The dashed line represents the error-rate value μ∗ in the solution of
Eq. (C1) in a case with a large L limit.

A is higher than μ∗, because the difference between ξ
(i)
0 and

ξ
(i)
1 is magnified exponentially.

APPENDIX D: RELAXATION DYNAMICS
TOWARD THE STEADY STATE

In the main text, we discussed the steady state of the
templates. Here, we discuss the relaxation dynamics toward
reaching such a state.

In our model, a monomer incorporation reaction does not
occur without a template. Hence long templates would not
spontaneously appear if they are absent initially. Such tem-
plates are produced when including “spontaneous ligation
reactions” from smaller monomers or polymers, as discussed
previously [48,49]. Once this occurs, even if extremely rare,
the same population of polymers and templates is reached,
independent of their initial concentration.

Therefore we adopted the initial condition for the dynam-
ics in which all template sequences exist uniformly in small
amounts. We calculated the time course of the template dis-
tribution [Fig. 8(a)] and the accuracy A [defined in Eq. (3);
Fig. 8(b)]. As expected, the dynamics eventually reached the
steady state at which the master sequence is dominant, with
A ∼ 1 (if the error rate is below the threshold). Notably, the

relaxation is slowed down under the fast dilution regime (i.e.,
large xp). Accordingly, this suggests a trade-off between the
“evolution speed” and the strength of the proofreading effect.

APPENDIX E: ENERGY FLUX TO DRIVE REPLICATION
AND PROOFREADING

For kinetic proofreading [10] to work, energy influx is
needed to drive the system toward the nonequilibrium con-
dition; similarly, in our system, the supply of the primer and
dilution corresponds to such energy influx. Then, the energy
influx per template production is given as the inverse of the
yield of the template, 1/xL (recall that if the primer supply
rate is φ and the total production rate of templates with length
L is F , then F = xLφ at the steady state).

As shown in Fig. 9, with an increase in the energy influx
(per template production), 1/xL, the accuracy A increases
until it saturates toward its maximum value.

APPENDIX F: CASES IN WHICH SHORTER POLYMERS
CAN ALSO ACT AS TEMPLATES

In the main text, we assumed that only the longest poly-
mers with length L act as templates. Here, we show that this
assumption is not essential: Even if shorter polymers also act
as templates, the maintenance of accuracy of the information
is essentially preserved.

In this revised system, the addition of a monomer using
templates with arbitrary lengths is represented as

Xl,s + XL′,S −→ Xl+1,sm + XL′,S,

where l � L′ � L. Then, we define the efficiency of sequence
S with length L′ as a template as f (L′, S). Here, we assume a
single-peak fitness landscape: f (L, S) ≡ f0 if S = {0}L (de-
noted by S0), and f (L′, S) ≡ f2 if 1 � L′ < L; otherwise,
f (L, S) ≡ f1 < f0.

We plotted the total concentration of sequences with length
l , xl = ∑

s∈{0,1}l xl,s by varying the error rate μ (i.e., the bind-
ing energy �), as shown in Fig. 10(a). With the increase in μ

(i.e., the decrease in �), the total concentration of the longest
sequences xL decreases, and the sequences with length L go
extinct at a certain value of μ. Below this critical value of μ,
the accuracy A of the information among the sequences with
L [defined by Eq. (3)] does not significantly differ from that

FIG. 8. (a) Time course of the fraction of sequences with the Hamming distance k from the master sequence S0, ξk . We set the
concentrations of the templates to be uniform (xL,S = 10−4 for all S) as the initial condition. We set L = 6, μ = 1/(1 + e), and x0,p = 0.9.
(b) Time course of the accuracy A. Each curve represents the difference in x0,p.
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FIG. 9. Accuracy A [defined by Eq. (3) in the main text] vs the energy influx per template production 1/xL . We set � = 0.5, 1, and 2.

found for the case in which only the sequences with L act as
templates (i.e., f2 = 0), as shown in Fig. 10(c). Note that even
if the fitness for a shorter template f2 is higher (i.e., f1 < f2),
as long as f1 < f0, the results do not significantly differ,
although the critical μ decreases, as shown in Figs. 10(b) and
10(d).

APPENDIX G: GENERAL FITNESS LANDSCAPES

In the main text, we considered only a single-peaked
function as the fitness landscape f (s). Here, we consider
more complex functions as f (s), which are discussed by
Tarazona [4].

FIG. 10. (a) and (b) Total concentration of sequences with length l , plotted as a function of the error rate μ. We set L = 3, x0,p = 0.5,
and f2 = 0.1 (a) or f2 = 1 (b). The dashed curves represent the case in which only the longest sequences with L are templates (i.e., f2 = 0),
and the solid curves represent the results for the case in which shorter polymers with length l (l < L) also work as templates. In the latter
case, the longest sequences with L go extinct at μ ∼ 0.42 in (a) and at μ ∼ 0.29 in (b), as indicated by vertical lines. (c) and (d) The dashed
curves represent the accuracy A [defined as Eq. (3)] for the case in which only the longest sequences act as templates, varying the error rate μ,
whereas dotted curves represent the results for the case in which shorter polymers also work as templates [ f2 = 0.1 in (c) and f2 = 1 in (d)].
The difference in the colors represents the difference in the free primer concentration x0,p (i.e., the dilution rate φ). The vertical lines represent
the error rate at which the longest sequences go extinct when x0,p = 0.5 (green) and x0,p = 0.9 (blue).
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FIG. 11. (a) Fitness landscape for each sequence as a function of the Hamming distance from the master sequence S0, defined by Eq. (G1)
when L = 6. (b) The accuracy A [defined as Eq. (3)] calculated from the steady-state concentrations of templates under the quasidegenerate
fitness landscape defined by Eq. (G1), plotted by varying the error rate μ. The difference in the colors represents the difference in the free
primer concentration x0,p (i.e., the dilution rate φ). The black dashed curve represents the result derived from the quasispecies model under the
same fitness landscape. We set L = 6.

1. Quasidegenerate fitness landscape

As the first example, we investigate the following fitness
function:

f (s) ≡

⎧⎪⎪⎨
⎪⎪⎩

f0 (hS0,s = 0)
fL (hS0,s = L)
fL−1 (hS0,s = L − 1)
f1 (otherwise),

(G1)

where hS0,s is the Hamming distance from the master
sequence S0.

If we set f0 = 1, f1 = 0.1, fL = 0.99, and fL−1 = 0.2,
this fitness landscape has two peaks: The sequence S0 (all
0) has the highest fitness, whereas the sequence SL (all
1) has the second-highest fitness with the local maximum
[Fig. 11(a)].

Applying this fitness landscape to the QS model [Eq. (4) in
the main text], there are three phases depending on the error

rate μ [Fig. 11(b)] [4]: For low μ, the sequence S0 dominates
(the accuracy A ∼ 1, as in the single-peak fitness landscape).
A sudden jump occurs at a certain rate of μ, and the sequence
SL takes over as the dominant sequence (A ∼ −1). The next
jump (i.e., the error catastrophe) then occurs at larger μ, at
which the distribution of the sequences becomes uniform, and
information is lost (A ∼ 0).

Similar phases appear by varying μ when applying this
fitness landscape to our polymerization model [Eq. (2) in the
main text]. However, for the intermediate μ value, the steady
state is not monostable but rather is bistable [Fig. 11(b)];
that is, both the S0-dominant (A ∼ 1) and the SL-dominant
(A ∼ −1) states are stable. Notably, the region of μ where the
S0-dominant state is stable expands as x0,p increases. Due to
the innate proofreading effect, the dominance of the (master)
sequence S0 is maintained even if the error rate is higher, and
the error threshold is increased even under a two-peak fitness
landscape.

FIG. 12. (a) Fitness landscape for each sequence as a function of the Hamming distance from the master sequence S0, defined as Eq. (G2)
when L = 6. (b) The accuracy A [defined as Eq. (3)] calculated from the steady-state concentrations of templates under the smooth fitness
landscape defined as Eq. (G2) by varying the error rate μ. The difference in the colors represents the difference in the free primer concentration
x0,p (i.e., the dilution rate φ). The black dashed curve represents the result derived from the quasispecies model under the same fitness landscape.
We set L = 6, and exp(K/2) = 10.
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FIG. 13. The accuracy A [defined as Eq. (3)], which maintains
the state of the dominance of the all-0 sequence, under the rugged
fitness landscape defined as Eq. (G3) plotted as a function of the
error rate μ. The colors represent the results for x0,p, the free primer
concentration (i.e., the dilution rate φ). We set L = 6. The sets
of sequences with local maximum fitness f (s) are given by Sk =
{000000, 000101, 010101, 101010, 110100, 110110}.

2. Smooth fitness landscape

As the second example of an alternative fitness landscape,
we consider

f (s) ≡ exp

⎛
⎝ K

2L2

L∑
i 	= j

(1 − mi )(1 − mj )

⎞
⎠

= exp

(
K

2L2
((L − hS0,s)2 − L)

)
, (G2)

where mi represents the ith portion of sequence s. This fit-
ness landscape is inspired by the ferromagnetic Ising model,
where the sequences closer to homologous sequences (i.e., all

0) have higher fitness values [see Fig. 12(a) for the fitness
landscape].

Compared with the general fitness landscape assumed in
the model described in the main text, this fitness landscape is
not sharp, although the master sequence S0 still has the highest
fitness. However, as shown in Fig. 12(b), the behavior of the
accuracy when varying μ does not differ substantially from
that under the sharp landscape [Fig. 2(b) in the main text].

3. Rugged fitness landscape

As the last example, we consider the rugged landscape
derived from the Hopfield model for neural networks that
embeds p patterns Sk (= 1, . . . , p) [50].

f (s) ≡ exp

(
1

2L2

p∑
k

Kk

L∑
i 	= j

× (
1 − 2m̂k

i

)(
1 − 2m̂k

j

)
(1 − 2mi )(1 − 2mj )

)

= exp

(
1

2L2

p∑
k

Kk ((L − 2hSk ,s)2 − L)

)
, (G3)

where m̂k
i is the ith portion of the sequence Sk , which is

randomly chosen among all sequences with length L. We set
the master sequence S0 = S0 to have the highest fitness, and
p − 1 sequences Sk also have local maximum fitness values.
Recall that mi is the ith portion of sequence s. Kk is the weight
of sequence Sk : We set Kk = 1 if k = 0 and Kk = 1

3 otherwise.
Under this rugged landscape, the accuracy A is plotted

by varying the error rate μ in Fig. 13. Similar to the results
obtained for the previous examples of fitness landscapes, the
threshold value of μ increases with the increase in x0,p. This
threshold increase is observed independently of the specific
choice of Sk .
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