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Emergence of non-Gaussian coherent states through nonlinear interactions
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Light-matter interactions that are nonlinear with respect to the photon number reveal the quantum nature of
coherent states. We characterize how coherent states depart from Gaussian by the emergence of negative values
in their Wigner function during the evolution while maintaining their characteristic Poissonian photon statistics.
Such states have nonminimum uncertainty yet present a metrological advantage that can reach the Heisenberg
limit. Non-Gaussianity of light arises as a general property of nonlinear interactions, which only requires a
polarizable media, resonant or dispersive. Our results highlight how useful quantum features can be extracted
from the seemingly most classical states of light, a relevant phenomenon for quantum optics applications.
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I. INTRODUCTION

Oscillating charges, antennas, and lasers naturally radiate
electromagnetic (EM) waves in coherent states [1,2]. These
states have a well-defined phase and amplitude, and, for in-
tense sources, they are represented by nearly a point in the
quadrature (phase) space, giving the deceiving impression of
being classical states of light. However, their quantumness is
buried in their phase and amplitude noise, i.e., their quantum
fluctuations. Such inherent, albeit hidden, quantum nature can
be unveiled upon interaction with matter [3,4], leading to
squeezed or non-Gaussian phase-space representations, more
evident signatures of quantum features. Historically, states
with such features are broadly dubbed nonclassical.

Nonclassical states of light can be harvested for a range
of uses, from increasing the precision of a measurement to
processing information beyond what is possible with classical
resources [5–9]. However, such quantum states are naturally
uncommon, and generating them requires a variety of special-
ized experimental settings that rely on nonlinear interactions
between the EM field and matter [10–13]. Considering the
applications and demand for intense, macroscopic, nonclas-
sical light across different platforms, it becomes relevant to
understand the minimal conditions to extract useful quantum
properties from the more common, yet still quantum, coherent
states of light.

This paper describes light-matter interactions via a model
Hamiltonian that is nonlinear in the photon number operator.
We define a family of states of the EM field that fully char-
acterizes the evolution of a macroscopic coherent state under
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such interactions. The state of the field becomes highly quan-
tum and non-Gaussian upon evolution, while maintaining its
Poissonian photon statistics and average intensity. We analyze
the non-Gaussianity and metrological advantage of such states
through the negativity of the Wigner function [14,15] and
the quantum Fisher information [16], respectively. The results
show that any nonlinear interaction universally leads to highly
quantum non-Gaussian coherent states of light, regardless of
the specifics of the matter subsystem. Finally, we discuss the
implications and outlook of our results before the concluding
remarks.

II. MODEL

The light-matter interaction Hamiltonian in the dipole
approximation is given by Ĥint = −P̂a · Ê, where Ê is the elec-
tric field and P̂a is the total atomic dipole moment. Depending
on the atomic susceptibility, the interactions are generally
nonlinear in the electric field, as P̂a ∝ ∑

i χ
(i)Ê i, where the

ith-order susceptibility χ (i) characterizes the ith-order non-
linear response of the medium [17]. For an initial coherent
state of the field in the large intensity limit, atoms and field
evolve almost as separable states [18–21]. In such case, the
interaction Hamiltonian in the interaction picture and rotating
wave approximation can be approximated by a product of the
atomic operator and a field operator proportional to the square
root of the photon number, Ê ∼ √

n̂, as Ĥint = h̄giŜxn̂
i+1

2 ,
where gi includes the information of the ith-order suscepti-
bility, Ŝ(x,y,z) is the collective atomic spin operator, and we
have assumed the atomic frequency to be i + 1 times the field
frequency [22]. To study a range of nonlinear light-matter in-
teractions for single-mode macroscopic states of the EM field,
independently of the details of the matter subsystem, we con-
sider the following interaction Hamiltonian in the interaction
picture:

Ĥint = h̄gn̂εÔa, (1)
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where h̄ is the reduced Planck constant, g is the coupling
frequency, Ôa is an atomic operator, and ε is the nonlinear
parameter, determined by the type of interaction.

Although Eq. (1) excludes some nonlinear interactions,
such as the squeezing Hamiltonian, it represents the simplest
form of nonlinearities and provides a useful representation
of a range of physical interactions. For example: the Jaynes-
Cummings Hamiltonian in the dispersive limit, when ε = 1
and Ôa = Ŝz [9]; the Kerr Hamiltonian, when ε = 2 and Ôa

is a nonzero constant number [23]; and the Jaynes-Cummings
Hamiltonian in the resonant intense field limit, when ε = 1/2
and Ôa = Ŝx [4,18–21]. Particularly, ε = (i + 1)/2 is related
to a resonant ith-order susceptibility when Ôa = Ŝx, and its
definition helps to show that nonclassical light emerges for
nonlinearities in the photon number operator.

We assume that the initial state of the light-matter system
|ψ (0)〉 is the outer product of the field in a coherent state
|α〉 and an arbitrary atomic pure state

∑
j c j |λ j〉, where |λ j〉

are the eigenstates of Ôa. The Schrödinger equation for the
evolution of |ψ (t )〉 leads to the state [24]

|ψ (t )〉 =
∑

j

c j |αθ j ,ε (t )〉 ⊗ |λ j〉, (2)

where

|αθ,ε (t )〉 =
∑

n

αne−|α|2/2

√
n!

Exp{−iθnεt}|n〉, (3)

and θ j = gλ j is a function of the light-matter coupling
strength and the eigenvalues of the atomic operator.

The states |αθ,ε (t )〉 constitute a subset of the previously
called generalized coherent states (GCSs) [25–28], and in
this work we refer to them as such. As we will show next,
they represent the evolution of the EM field from a Gaussian
(standard) to a non-Gaussian coherent state, maintaining the
photon statistics while offering a metrological quantum ad-
vantage.

III. GENERALIZED COHERENT STATES

The GCSs represent a family of states that fully char-
acterizes the evolution of a coherent state under nonlinear
light-matter interactions of the form of Eq. (1). They re-
duce to well-known states depending on the details of the
interaction. For example, |α0,ε (t )〉 = |α〉, |αθ,0(t )〉 = e−iθt |α〉,
|αθ,1(t )〉 = |αe−iθt 〉, and |αθ,2(t )〉 represent Kerr states [23],
which have been largely studied for their potential applica-
tions in quantum metrology. Figure 1 exemplifies two possible
evolutions of the Wigner function of GCSs for ε = 0.5 and 2.
The figures share the same scale, which exemplifies how a
minimum-uncertainty, nearly localized state can spread over
the quadrature space creating an, evidently quantum, non-
Gaussian field.

GCSs are nonorthogonal and they form an overcom-
plete basis, with

∫
dα|αθ,ε (t )〉〈αθ,ε (t )| = π1, where 1 is the

identity operator. Their mean photon number is constant
throughout the evolution, 〈αθ,ε (t )|n̂|αθ,ε (t )〉 = |α|2. In gen-
eral, the expectation value of any power of the photon number
operator with respect to the GCSs is the same as the one with
respect to a coherent state, meaning 〈αθ,ε (t )|n̂m|αθ,ε (t )〉 =

FIG. 1. Examples of possible evolutions of an intense, macro-
scopic, coherent state of the electromagnetic field upon nonlinear
interaction with matter. The Wigner functions represent the state of
the field |α〉, with |α|2 = 50, that evolves from a coherent to a highly
quantum non-Gaussian coherent state, depending on the nonlinear
parameter ε. The color red (blue) represents positive (negative) val-
ues of the Wigner function.

〈α|n̂m|α〉[29]. In particular, their Mandel Q parameter [30]
and its generalization to higher-order statistics [31,32] corre-
sponds to the same photon statistics of a coherent state. More
properly defined, given the n-order correlation function of the
field G(n), a state is said to have coherence of the m order
if |G(n)|2 = 	2n

j=1G(1) for n � m [1,33], which is equivalent
to saying that the nth-order normalized correlation function
is equal to one. Such condition is satisfied to all orders for
the GCSs, earning them the name coherent. Furthermore,
GCSs do not show minimum uncertainty or squeezing in any
quadrature [27,29]. This means that any non-Gaussianity or
quantum advantage that they might present does not come
from removing or adding a quanta of light to the field or
changing its Poissonian photon statistics. It rather comes from
the evolution of the quantum fluctuations of the electric field.

The underlying physical mechanism can be easily inter-
preted using the Wigner function representation of the field:
While a linear evolution simply rotates a coherent state in
quadrature space, a nonlinear evolution (in the radial direc-
tion) unevenly spreads the minimal uncertainty region of a
coherent state throughout the quadrature space [34]. Since
all radial components of the field evolve periodically cir-
cling the phase space, periodic structures emerge (see Fig. 1).
The unitary evolution preserves the phase coherence among
the EM field components, producing high visibility fringes in
the Wigner representation, and therefore its negative values.
The metrological advantage is related to the size of such
fringes since small displacement of the fields lead to a no-
ticeable displacement of the fringe pattern.

IV. NON-GAUSSIANITY OF GENERALIZED COHERENT
STATES

We characterize the non-Gaussianity of the EM field by the
condition of a negative value in its Wigner function [14,15],
which indicates quantum features. The Wigner negativity
is defined as Nφ = ∫

dβ[|W |φ〉〈φ|(β )| − W |φ〉〈φ|(β )], where
W |φ〉〈φ| is the Wigner function of |φ〉.
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FIG. 2. (a) Wigner negativity N̄ as a function of the evolution
parameter θ for different nonlinear parameters ε considering an
initial coherent state with an average photon number of n̄ = 10. The
evolution parameter is rescaled by eε(ε−1) for visualization purposes.
(b) Maximum Wigner negativity as a function of the nonlinear pa-
rameter. The red (blue) dots represent nonzero (zero) negativity. N̄
is normalized to that of a Fock state with n = 10 for both figures.

The Wigner functions of the GCSs, given by Eq. (3), are

W |αθ,ε 〉〈αθ,ε |(β ) = 2e−α2−2r2

π

⎧⎨
⎩e−α2+4αr cos δ − 4

∑
m,n,m>n

(−1)n

× αm+n

m!
sin

[
(m − n)δ + θ

2
(mε − nε )

]

× sin

[
θ

2
(mε − nε )

]
(2r)m−nLm−n

n (4r2)

}
,

(4)

where Lm
n are the generalized Laguerre polynomial and β =

reiδ is a complex number that represents every point in quadra-
ture space.

While a linear evolution leaves the phase-space representa-
tion of a coherent state unchanged, nonlinearities will create a
nontrivial superposition of different components of the prob-
ability distribution of the field. The Wigner representation of
such a superposition of states of the field would then be non-
Gaussian, showing fringes and negative values. Figure 2(a)
shows the evolution of the Wigner negativity N of GCSs
for different values of the nonlinear parameter ε, numerically
calculated from Eq. (4). We normalize the negativity by that of
a Fock state with the same mean photon number. We observe
that as long as there is a degree of nonlinearity (ε /∈ {0, 1}),
the field will eventually become nonclassical [35]. Figure 2(b)
shows the maximum Wigner negativity reached through the
entire evolution for different values of ε. For all nonlinear
interactions, the negativity of the GCSs can surpass that of

a Fock state. This result opens a discussion about the interpre-
tation of the negativity of the Wigner function and how, or if,
quantumness could be quantified, which is beyond the scope
of this paper.

V. QUANTUM ADVANTAGE OF COHERENT STATES

The metrological advantage of the GCSs can be quantified
by their quantum Fisher information FQ [16]. It relates to the
minimum attainable uncertainty in estimating a parameter δx
via the Cramer-Rao bound

√
〈δx2〉 � 1/

√
n̄FQ, where n̄ is

the mean number of photons involved in the measurement.
When the quantum Fisher information scales with the average
number of photons, one achieves the minimum uncertainty√

〈δx2〉 ∝ 1/n̄, which is the optimum scenario for quantum
metrology known as the Heisenberg limit [36,37]. GCSs are
good candidates to detect small displacements of the field
[38,39]. The quantum Fisher information for displacements
in the phase space of a pure state is given by the variance of
the quadrature in the direction orthogonal to the displacement,
namely, FQ = 4〈(X )2〉 [37].

The quadrature variance of a GCS is (see Appendix A)

〈(X )2〉αθ,ε
(t ) = 4n̄

(〈
Re

[
z1/2

n,2 (t )
]2〉

α

− 〈Re[zn,1(t )]〉2
α

) + 1, (5)

where we define the expectation value 〈on〉α = ∑
n |〈α|n〉|2on

and the function zn, j (t ) = Exp{−iθ (t )[(n + j)ε − nε]}. GCSs
evolve between states of large and small Fisher information,
with 1 � 〈(X )2〉αθ,ε

� 4n̄ + 1. The n̄ dependence in the vari-
ance and, consequently, FQ leads to the Heisenberg limit.
We highlight that the maximum Fisher information for GCSs
is equivalent to that of a squeezed state with a squeezing
of −10Log10[4n̄ + 1] dB [40], while displaying nonminimum
uncertainty and Poissonian photon statistics.

Figure 3(a) shows the evolution of the quantum Fisher
information F̄Q for different nonlinear parameters, normal-
ized by its highest value. The quantum Fisher information
from the variance of the orthogonal quadrature is equivalent,
but with the red-to-blue fringes in the figure completely out
of phase. Figure 3(b) shows the maximum quantum Fisher
information reached through the entire evolution for different
nonlinear parameters. We observe a metrological advantage
over a coherent state for all nonlinear parameters, reaching an
optimum F̄Q

max = 1.
Both Figs. 2 and 3 show the evolution of a coherent state

with an average photon number of n̄ = 10. Nonetheless, the
overall behavior of N̄ and F̄Q is independent of n̄. For the
range of numerically tested parameters, N̄max > 1 for all non-
linear interactions. Similarly, the dynamic behavior of F̄Q

max
always oscillates between 0 and 1 for even values of ε and
offers a metrological advantage over a coherent state for
ε 	= {0, 1}. This result shows that nonclassicality emerges for
arbitrarily large, i.e., macroscopic, initial coherent states of the
EM field.

VI. ROLE OF THE ATOMIC SUBSYSTEM

So far, we have analyzed the case of the EM field inter-
acting with a medium consisting of one or many atoms in a
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FIG. 3. (a) Quantum Fisher information F̄Q and as a function
of the evolution parameter θ for different nonlinear parameters ε

considering an initial coherent state with an average photon number
of n̄ = 10. The evolution parameter is rescaled by eε(ε−1) for visu-
alization purposes. (b) Maximum quantum Fisher information as a
function of the nonlinear parameter. The red (blue) dots represent
metrological advantage (or lack thereof). F̄ is normalized to its
maximum value, 4(4n̄ + 1).

pure state that is the eigenstate of the collective atomic spin
operator represented by Ôa in Eq. (1). Such description leaves
out the effects of the atomic state on the EM field. To address
this issue, we consider that the atomic subsystem starts in an
arbitrary mixed state ρa(0) = ∑

i, j ρi j |λi〉〈λ j |. Then, the state
of the EM field evolves to ρ f (t ) = ∑

j ρ j j |αθ j ,ε (t )〉〈αθ j ,ε (t )|,
a statistical mixture of the GCSs. Such mixed states have
diminished quantum properties compared to pure GCSs since
the field can get entangled with the atoms upon evolution [9],
but they can still be nonclassical.

To quantitatively assess the role of quantum correlations in
the initial state of the atomic subsystem, we consider it to be
a Werner state defined as [41,42]

ρa(0) = p|�〉〈�| + (1 − p)
1 ⊗ 1

d
, (6)

where d is the dimension of the Hilbert space of the atomic
subsystem, and |�〉 = ∑

j c j |λ j〉 is an arbitrary pure state
written in terms of the eigenstates |λ j〉 of the collective atomic
operator Ôa. The parameter p allows one to continuously vary
the initial state from fully mixed (p = 0) to pure (p = 1).
Tracing over the atomic subsystem, the state of the EM field
after its evolution is

ρ f (t ) =
∑

j

(
p|c j |2 + 1 − p

d

)
|αθ j ,ε (t )〉〈αθ j ,ε (t )|. (7)

FIG. 4. Maximum Wigner negativity N̄max of the EM field and
purity P of the initial atomic state (solid black) as a function of
the Werner parameter p. The negativity for the nonlinear parameters
ε = {0.5, 1.5, 2, 3} is shown with circles, triangles, diamonds, and
squares, respectively. The Wigner negativity is normalized to that of
a Fock state with the same average photon number.

Since the Wigner function is a linear transformation, we get
that

W ρ f (β, t ) =
∑

j

(
p|c j |2 + 1 − p

d

)
W |αθ j ,ε (t )〉〈αθ j ,ε (t )|(β ). (8)

Figure 4 shows the maximum normalized Wigner nega-
tivity N̄max during the EM field evolution as a function of
the Werner parameter p. The initial atomic state in the case
of highest purity (p = 1) corresponds to an eigenstate of the
atomic operator, leading to a pure GCS state of the EM field.
The Wigner negativity increases monotonically with p, the
same as the purity of the initial atomic state P = Tr{ρa(0)2}.

From Eq. (8), one sees that for |c j |2 = 1/d , the Wigner
function of the EM field does not depend on p. This means
that the obtained state of the field is the same whether the
initial atomic state is fully mixed or a pure state with an
equal superposition of eigenstates of the atomic operator Ôa.
Moreover, for d = 2, the maximally entangled states are equal
superpositions of the eigenstates of the collective atomic oper-
ators Ŝ(x,y,z). This suggests that quantum correlations between
the atoms are not just unnecessary, but can be detrimental for
obtaining a nonclassical EM field. Although Werner states, as
in Eq. (6), might not constitute the most general scenario, they
serve to prove by counterexample that quantum correlations
in the atomic subsystem do not aid the emergence of quantum
correlations in the field.

We notice that even for p = 0, the resulting mixed state
of the EM field still presents a nonzero Wigner negativity
for ε 	= {0, 1}, evidencing the ubiquity of nonclassical light
emerging from nonlinear interactions. We highlight the uni-
versal aspect of the evolution into nonclassicality since the
maximum negativity of the resultant state of the EM field is
relatively insensitive to the nonlinear parameter ε, especially
towards high purity of the initial atomic state.
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VII. DISCUSSION AND OUTLOOK

Macroscopic coherent states of light are commonly consid-
ered the most classical ones. However, nonlinear interactions
can be used to extract their quantum resources even in a closed
system with no initial quantum correlations and unaffected by
measurements [43,44]. Our results are another example of this
phenomenon.

This phenomenon offers new possibilities for engineering
the EM field. For example, different linear combinations of
the GCSs can lead to useful states. In particular, by combining
two GCSs with ε = 1/2, one could obtain a macroscopic
Fock state, as Ref. [4] discusses. For a different approach,
one can study the metrological advantage gained by applying
a broader class of nonlinear interactions to an initial state
beyond a coherent one, for example, a squeezed state.

We believe our results have natural applications in quantum
metrology based on cavity QED platforms, for example, to
precisely measure electromagnetic fields [38,39]. However,
the phenomenon is general enough to be extended to other
quantum optics platforms.

VIII. CONCLUSIONS

We studied an effective Hamiltonian for light-matter in-
teractions that are nonlinear in the photon number operator.
When the electromagnetic field begins in an intense coherent
state, it evolves into a macroscopic highly quantum state. We
present a family of states that characterizes the field evolution
for all degrees of nonlinearity. We described some of their
properties: (i) invariant Poissonian photon statistic, (ii) non-
Gaussianity, characterized by negative values of their Wigner
function, and (iii) metrological advantage, which can reach
the Heisenberg limit. We finally show that initial correla-
tions in the atomic subsystem are unimportant, and maximally
mixed states also lead to non-Gaussian coherent states of
light. Any degree of nonlinearity is enough to extract quantum
features from a coherent state, regardless of the details of the
interaction and the medium. In that sense, non-Gaussianity
emerges from nonlinearity as a universal phenomenon. We be-
lieve that understating the details of this process can contribute
towards improving the engineering of quantum states of the
electromagnetic field for quantum metrology and quantum
information science applications.
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APPENDIX A: VARIANCE OF GENERALIZED
COHERENT STATES

To obtain the variance of a GCS, we first calculate the
following expectation values of the creation and annihilation
operators:

〈â〉 = 〈α|eiθt n̂ε

âe−iθt n̂ε |α〉 = α〈α|e−iθt{(n̂+1)ε−n̂ε }|α〉
= α

∑
n

C2
n e−iθt{(n+1)ε−nε },

〈â†〉 = α∗ ∑
n

C2
n eiθt{(n+1)ε−nε },

〈â2〉 = 〈α|eiθt n̂ε

â2e−iθt n̂ε |α〉 = α2〈α|e−iθt{(n̂+2)ε−n̂ε }|α〉
= α2

∑
n

C2
n e−iθt{(n+2)ε−nε },

〈â†2〉 = α∗2
∑

n

C2
n eiθt{(n+2)ε−nε },

with C2
n = |〈α|n〉|2, and where we used the relation â f (n̂) =

f (n̂ + 1)â, with f (n̂) an arbitrary function of the number
operator [45].

Considering the generalized quadrature operator and its
square,

X̂φ = âe−iφ + â†eiφ,

X̂ 2
φ = â2e−2iφ + â†2e2iφ + 2n̂ + 1,

we compute their expectation values as

〈X̂φ〉 = 2Re

[
α

∑
n

C2
n e−iθt{(n+1)ε−nε }e−iφ

]

= 2
∑

n

C2
n Re[αe−iθt{(n+1)ε−nε }e−iφ], (A1)

〈
X̂ 2

φ

〉 = 2
∑

n

C2
n Re[α2e−iθt{(n+2)ε−nε }e−2iφ] + 2|α|2 + 1.

(A2)

Defining zn, j (t ) = e−iθt{(n+ j)ε−nε }, we can write the expec-
tations values of X̂φ and X̂ 2

φ as

〈X̂φ〉 = 2
∑

n

C2
n Re[αzn,1(t )e−iφ], (A3)

〈
X̂ 2

φ

〉 = 2
∑

n

C2
n Re[α2zn,2(t )e−2iφ] + 2|α|2 + 1

= 4
∑

n

C2
n Re

[
αz1/2

n,2 (t )e−iφ
]2 + 1. (A4)

Combining both terms, the variance is given by

〈(X̂φ )2〉 = 4
〈
Re

[
αz1/2

n,2 (t )e−iφ
]2〉

α

− 4
〈
Re[αzn,1(t )e−iφ]

〉2
α

+ 1. (A5)

In the particular case that we analyze in the main text, we
consider α real and φ = 0, obtaining

〈(X̂ )2〉 = 4α2
{〈

Re
[
z1/2

n,2 (t )
]2

〉
α

− 〈Re[zn,1(t )]〉2
α

}
+ 1.

(A6)

013165-5



M. URIA et al. PHYSICAL REVIEW RESEARCH 5, 013165 (2023)

[1] R. J. Glauber, The quantum theory of optical coherence, Phys.
Rev. 130, 2529 (1963).

[2] R. J. Glauber, Coherent and incoherent states of the radiation
field, Phys. Rev. 131, 2766 (1963).

[3] B. Hacker, S. Welte, S. Daiss, A. Shaukat, S. Ritter, L. Li,
and G. Rempe, Deterministic creation of entangled atom-light
Schrödinger-cat states, Nat. Photon. 13, 110 (2019).

[4] M. Uria, P. Solano, and C. Hermann-Avigliano, Deterministic
Generation of Large Fock States, Phys. Rev. Lett. 125, 093603
(2020).

[5] J. M. Arrazola et al., Quantum circuits with many photons on
a programmable nanophotonic chip, Nature (London) 591, 54
(2021).

[6] C. A. Casacio, L. S. Madsen, A. Terrasson, M. Waleed,
K. Barnscheidt, B. Hage, M. A. Taylor, and W. P. Bowen,
Quantum-enhanced nonlinear microscopy, Nature (London)
594, 201 (2021).

[7] B. E. Anderson, P. Gupta, B. L. Schmittberger, T. Horrom, C.
Hermann-Avigliano, K. M. Jones, and P. D. Lett, Phase sensing
beyond the standard quantum limit with a variation on the
SU(1,1) interferometer, Optica 4, 752 (2017).

[8] V. Giovannetti and S. Lloyd and L. Maccone, Advances in
quantum metrology, Nat. Photon. 5, 222 (2011).

[9] S. Haroche and J. M. Raimond, Exploring the Quantum: Atoms,
Cavities, and Photons (Oxford University Press, Oxford, 2013).

[10] D. V. Strekalov and G. Leuchs, Nonlinear interactions and non-
classical light, in Quantum Photonics: Pioneering Advances and
Emerging Applications, edited by R. W. Boyd, S. G. Lukishova,
and V. N. Zadkov (Springer International, Cham, 2019),
pp. 51–101.

[11] Z.-H. Yan, J.-L. Qin, Z.-Z. Qin, X.-L. Su, X.-J. Jia, C.-D.
Xie, and K.-C. Peng, Generation of nonclassical states of light
and their application in deterministic quantum teleportation,
Fundamental Res. 1, 43 (2021).

[12] C. J. Villas-Boas, K. N. Tolazzi, B. Wang, C. Ianzano, and
G. Rempe, Continuous Generation of Quantum Light from a
Single Ground-State Atom in an Optical Cavity, Phys. Rev. Lett.
124, 093603 (2020).

[13] A. S. Prasad, J. Hinney, S. Mahmoodian, K. Hammerer,
S. Rind, P. Schneeweiss, A. S. Sørensen, J. Volz, and A.
Rauschenbeutel, Correlating photons using the collective non-
linear response of atoms weakly coupled to an optical mode,
Nat. Photon. 14, 719 (2020).
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