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Phenomenological model of superconducting optoelectronic loop neurons
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Superconducting optoelectronic loop neurons are a class of circuits potentially conducive to networks for
large-scale artificial cognition. These circuits employ superconducting components including single-photon
detectors, Josephson junctions, and transformers to achieve neuromorphic functions. To date, all simulations of
loop neurons have used first-principles circuit analysis to model the behavior of synapses, dendrites, and neurons.
These circuit models are computationally inefficient and leave opaque the relationship between loop neurons
and other complex systems. Here we introduce a modeling framework that captures the behavior of the relevant
synaptic, dendritic, and neuronal circuits at a phenomenological level without resorting to full circuit equations.
Within this compact model, each dendrite is discovered to obey a single nonlinear leaky-integrator ordinary
differential equation, while a neuron is modeled as a dendrite with a thresholding element and an additional
feedback mechanism for establishing a refractory period. A synapse is modeled as a single-photon detector
coupled to a dendrite, where the response of the single-photon detector follows a closed-form expression. We
quantify the accuracy of the phenomenological model relative to circuit simulations and find that the approach
reduces computational time by a factor of ten thousand while maintaining an accuracy of one part in ten thousand.
We demonstrate the use of the model with several basic examples. The net increase in computational efficiency
enables future simulation of large networks, while the formulation provides a connection to a large body of work
in applied mathematics, computational neuroscience, and physical systems such as spin glasses.
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I. INTRODUCTION

A technological platform capable of realizing networks at
the scale and complexity of the brains of intelligent organisms
would be a tool of supreme scientific utility. Neuromorphic
hardware based on conventional silicon microelectronics has
a great deal to offer in this regard [1–5]. Yet challenges
remain, primarily concerning bottlenecks in the shared com-
munication infrastructure that must be employed to emulate
the connectivity of biological neurons. Alternative hardware
may bring new benefits, and multiple techniques have been
pursued over the years. The use of optics within neural
systems has been pursued [6], beginning with free-space op-
tics to realize Hopfield networks [7], integrated photonics
to implement inference in a deep-learning framework [8,9],
and waveguide approaches to three-dimensional optical in-
terconnectivity [10,11]. Superconducting electronic circuits
have also been pursued [12–14], with recent work targeting
deep learning [15–17] and spiking neural networks [18,19].
We have argued elsewhere for the advantages of a super-
conducting optoelectronic approach [20,21]. In brief, light
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for communication enables high fan-out with low latency
across spatial scales from a chip to a many-wafer system.
Superconducting electronics provide single-photon detection
coupled to high-speed, low-energy analog neuromorphic com-
putational primitives.

While the components of these superconducting op-
toelectronic networks (SOENs) have been demonstrated
[11,22–24], full neurons have not. Prior to undertaking the
effort and expense of realizing the requisite semiconductor-
superconductor-photonic fabrication process, it is prudent to
gain confidence that SOENs are indeed ripe for further inves-
tigation. This confidence can be gained through simulations
of device, circuit, and system behavior using numerical simu-
lations on digital computers. The constituent devices are most
commonly modeled with circuit simulations carried out on a
picosecond timescale to accurately capture the dynamics of
Josephson junctions (JJs). Simulation of networks of large
numbers of these neurons becomes computationally intensive.
From the perspective of the neural system, the picosecond
dynamics of the JJs are not of primary interest, and one would
prefer to treat each synapse, dendrite, and neuron as an input-
output device with a model that accurately captures the circuit
dynamics on the nanosecond to microsecond timescales while
not explicitly treating the picosecond behavior of the underly-
ing circuit elements.

Here we introduce a phenomenological model of loop neu-
rons and their constitutive elements that accurately captures
the transfer characteristics of the circuits without solving the
underlying circuit equations. Dendrites are revealed to be
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central to the system. Each dendrite is treated with a single,
first-order ordinary differential equation (ODE) that describes
the output of the element as a function of its instantaneous
inputs and internal state. These equations take the form of a
leaky integrator with a nonlinear driving term. The input to
each dendrite is flux, and the output is an integrated current,
which is coupled through a transformer into another dendrite.
Synapses are dendrites with a closed-form expression for the
input flux following each synapse event. The soma of a neuron
is also modeled with the same equations as a dendrite with
two modifications. First, when the output current reaches a
specified level, threshold is reached, and an electrical signal
is sent to a transmitter circuit, which produces a pulse of
light. Second, a refractory dendrite triggered off this output is
coupled back to the soma inhibitively to achieve a refractory
period.

By working at the phenomenological level, the time to sim-
ulate single dendrites is decreased by a factor of ten thousand
while maintaining an accuracy of one part in ten thousand.
The speed advantage grows with the size of the system being
simulated and the duration of the simulation. The functional
form of the speedup with size and duration has not been
fully investigated, as solving the full system of circuit equa-
tions becomes very time consuming for even small systems. In
addition, the model makes transparent the qualitative behavior
of all components of the system, including the similarities to
biological neurons as well as other physical systems such as
Ising models, spin glasses, and pulse-coupled oscillators.

We begin by motivating the form of the model based on
circuit considerations. We then describe the means by which
the form of the driving term in the leaky integrator is obtained.
Error is quantified by comparison with full circuit simulations,
and convergence is investigated as a function of time step size.
Numerical examples of dendrites, synapses, and neurons are
presented. An example of a neuron with a dendritic arbor per-
forming an image-classification task is given to illustrate the
utility of the model. Further extensions to enable theoretical
treatment of very large systems are discussed.

II. OVERVIEW OF LOOP NEURONS

A schematic diagram of a loop neuron is shown in Fig. 1,
depicting the complex dendritic tree that appears central to
the computations of loop neurons [25,26]. In these neurons,
integration, synaptic plasticity, and dendritic processing are
implemented with inductively coupled loops of supercurrent.
It is due to the prominent role of superconducting storage
loops that we refer to devices of this type as loop neu-
rons [20]. Operation of loop neurons is as follows. Photons
from upstream neurons are received by a superconducting
single-photon detector (SPD) at each synapse. Using a super-
conducting circuit comprising two JJs coupled to the SPD,
synaptic detection events are converted into an integrated
supercurrent which is stored in a superconducting loop. The
amount of current added to the integration loop during a
photon detection event is determined by the synaptic weight.
The synaptic weight is dynamically adjusted by another cir-
cuit combining SPDs and JJs, and all involved circuits are
analog. When the integrated current of a given neuron reaches
a (dynamically variable) threshold, an amplification cascade
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FIG. 1. Schematic of a loop neuron with an elaborate dendritic
tree. The complex structure consists of excitatory and inhibitory
synapses (Se and Si) that feed into dendrites (D). Each dendrite
performs computations on the inputs and communicates the result
to other dendrites for further processing or on to the cell body of
the neuron (N). The neuron cell body acts as the final thresholding
stage, and when its threshold is reached, light is produced by the
transmitter (T), which is routed to downstream synaptic connections
via photonic waveguides.

begins, resulting in the production of light from a waveguide-
integrated semiconductor light emitter. The photons thus
produced fan out through a network of dielectric waveguides
and arrive at the synaptic terminals of other neurons where the
process repeats.

The core active component of loop neurons is a circuit
known as a superconducting quantum interference device
(SQUID), which comprises two JJs in parallel. A circuit di-
agram is shown in Fig. 2(a). The SQUID is a three-terminal
device with a bias, ground, and an input which couples flux
into the loop formed by the two JJs and inductors. For the
present purpose, the flux input is the active signal. When the
SQUID is current-biased below the critical current of the two
JJs and the flux input is below a bias-dependent threshold, the
SQUID remains superconducting, and the voltage across the
device is zero. When the applied flux exceeds the threshold at
a given bias point, the JJs will begin to emit a series of voltage
pulses known as fluxons, and the time-averaged voltage across
the device will become nonzero.

To form a dendrite from a SQUID, we first ensure that it
is biased below the critical current of the JJs so it is quiescent
when no flux is applied. The output of the SQUID is captured
by an L-R loop that performs current integration with a leak
[Fig. 2(b)]. When sufficient flux is input to the SQUID to
drive the JJs to begin producing voltage pulses, the pulses
drive current into the L-R loop, these pulses are summed in
the inductor, and the accumulated signal leaks with the L/R
time constant of the loop. This configuration of a SQUID
coupled to an L-R loop is referred to as a dendrite, the SQUID
that receives input flux is referred to as the receiving (R)
loop, and the L-R component is referred to as the integration
(I) loop. The current stored in the integration loop produces
the signal that will be communicated to other dendrites. To
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FIG. 2. Circuit diagrams. (a) A two-junction SQUID that forms the dendritic receiving loop. (b) A dendrite with receiving (R) and
integrating (I) loop. The integrating loops of two other dendrites are input to a collection coil (C) that delivers flux to the receiving loop.
(c) A synapse formed with an SPD input to a dendrite. (d) A soma realized as a dendrite with thresholding component in the integration loop
and initial stage of the transmitter (T).

receive signal from multiple input dendrites, a passive collec-
tion coil (C) is used. A circuit diagram of a dendrite with two
inputs, a collection coil, a receiving loop, and an integrating
loop coupled to an output is shown in Fig. 2(b). All coupling
between dendrites is through magnetic flux communicated
through mutual inductors. The use of transformers for this
purpose mitigates cross talk and enables high fan-in [26].

To form a synapse from a dendrite, we attach an SPD to
the flux input to the receiving loop. This circuit is shown in
Fig. 2(c). When an SPD detects a photon, it rapidly switches
from zero resistance to a large resistance, diverting the bias
current to the other branch of the circuit. This current is cou-
pled into the receiving loop of the dendrite as flux, driving the
dendrite above threshold and adding current to the dendrite’s
integration loop.

To form a neuron from a dendrite, two modifications are
required. First, the integration loop must be equipped with a
thresholding element that drives a transmitter circuit to pro-
duce light when the integrated signal reaches this threshold.
This thresholding element coupled to the transmitter is shown
in Fig. 2(d); it is referred to as a tron and is described in more
detail in Sec. V. Second, an additional dendrite is attached to
the neuron that provides negative feedback to achieve a refrac-
tory period (not shown in the circuit diagram for simplicity).
The refractory period is a brief period of quiescence following
a neuronal spike event. When the neuron’s integration loop
reaches threshold, this refractory dendrite is driven, accumu-
lates signal in its integration loop, and this signal suppresses
the state of the neuron’s receiving loop. The time constant of
the refractory dendrite establishes the refractory period of the
neuron.

To summarize, a dendrite is a SQUID with a flux input
adding current to a leaky integration loop. A synapse is a
single-photon detector coupled to a dendrite. The soma of
a neuron is a dendrite with a thresholding element in the
integration loop as well as a second dendrite that provides
feedback for refraction. To construct full loop neurons, many

synapses are coupled into a dendritic arbor which feeds for-
ward into the soma. The output of the soma is an optical pulse
that couples light to a network of waveguides and delivers
faint photonic signals to downstream synapses where they
are received with single-photon detectors. This construction
is illustrated schematically in Fig. 1, and the basic circuits
are shown in Fig. 2. The current in a dendritic integration
loop is analogous to the membrane potential of a biological
dendrite [27,28], and these signals are the principal dynamical
variables of the system. Inhibitory synapses can be achieved
through mutual inductors with the opposite sign of coupling.
Complex arbors with multiple levels of dendritic hierarchy
can be implemented to perform various computations [25] as
well as to facilitate a high degree of fan-in [26].

We see that dendrites are central to loop neurons. The
states of current in all dendritic integration loops specifies
the state of the system. A phenomenological model of loop
neurons must therefore capture the temporal evolution of these
currents as well as the coupling between dendrites. With these
concepts in mind we proceed to construct the model.

III. DENDRITE MODEL

As mentioned in Sec. II, a SQUID is the primary active
element of a dendrite. To motivate the phenomenological den-
drite model we require a quantitative understanding of SQUID
operation. The two-junction SQUID of Fig. 2(a) with symmet-
rical inductances was modeled using a first-principles circuit
model [29], and the results are shown in Fig. 3. Figure 3(a)
shows a time trace of the voltage across the SQUID when
it is in the voltage state. The peaks corresponding to fluxon
production are evident, and the time-averaged voltage is also
shown. While the voltage is a rapidly varying function of time
on the picosecond scale, the time-averaged voltage is steady.

This behavior is analyzed systematically in Fig. 3(b). The
time-averaged voltage of a symmetric SQUID is plotted as
a function of the applied flux for several values of the bias
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FIG. 3. The response of a SQUID. (a) Time trace of a SQUID
biased in the voltage state. Fluxon peaks are marked with crosses of
different colors for the two JJs. The time average is also shown as
calculated by taking the average of the time trace between two flux-
ons produced by the same junction. (b) The time-averaged voltage
across the SQUID as a function of applied flux, φ, normalized to
the magnetic flux quantum, �0, for several values of normalized bias
current, ib.

current, which has been normalized to the critical current
of a single junction (ib = Ib/Ic). The time-averaged voltage,
plotted on the left y axis, is proportional to the rate of
flux-quantum production, plotted on the right y axis. The
relationship results from the single-valued nature of the su-
perconducting wave function around the closed SQUID loop,
which requires that ∫ tfq

0
Vsq(t )dt = �0. (1)

Equation (1) informs us that the time required to produce a
single fluxon, tfq, is related to the voltage across the squid, Vsq.
For constant voltage, we obtain rfq = 1/tfq = Vsq/�0. When
viewed over timescales appreciably longer than tfq, it makes
sense to speak of a rate of flux-quantum production, rfq, and
this is the first element of our model: when driven to the active
state, a dendrite will begin to produce fluxons, which carry
current, and we can track this current by monitoring the rate
of fluxon production while ignoring the picosecond dynamics
by which the JJs produce the fluxons.

Several features of Fig. 3(b) are pertinent to the present
study. First, for a given value of ib, a finite value of flux
is required before the SQUID enters the voltage state. This

provides a nonzero threshold that is relevant to dendritic
computation. This threshold can be adjusted with the bias
current. Second, the response is periodic in applied flux, with
the period being �0/2, where �0 = h/2e ≈ 2×10−15 V s =
2 mV ps is the magnetic flux quantum. To maintain a mono-
tonic response, the applied flux must be limited to this value
[26]. Third, if the inductors L1 and L2 are equal, the response
of the SQUID is symmetric about � = 0. These features will
be discussed further as the study proceeds.

The second element of the model captures the integration
and leak of the current generated when the SQUID is driven
above threshold. These behaviors are accomplished by adding
an L-R loop to the output of the SQUID, as shown by the
integration loop labeled I in Fig. 2(b). The current integrated
in this branch of the circuit is the quantity of interest for the
dendrite. It is this quantity that will couple to other dendrites
or the neuron cell body, and it is this quantity we wish to track
with our phenomenological model. Dendrites comprising a
receiving loop coupled to an integrating loop [Fig. 2(b)] are
referred to as RI dendrites. We know from elementary circuit
theory that the L-R loop will result in exponential decay of
signal with a time constant of the dendritic integration loop
given by τdi = Ldi/Rdi.

We can now write down a postulated expression for the
signal s stored in the integration loop of a dendrite:

β
ds

dτ
= r(φ, s; ib) − α s. (2)

Equation (2) states that the signal s grows in time due to the
driving term, which is the rate of flux quantum production,
denoted by r. This function r depends on the applied flux
to the receiving loop of the dendrite, φ = �/�0, as well as
of the signal present in the integration loop, s. The rate also
depends on the bias current, ib, as a parameter that throughout
this work is assumed to be held constant over times much
longer than the inter-fluxon interval. In Eq. (2), we have for-
mulated the model in dimensionless units, where s = Idi/Ic,
and Idi is the current present in the dendritic integration loop.
β = 2 π Ic Ldi/�0 is a dimensionless parameter that quantifies
the inductance of the loop, and α = Rdi/Rj, where Rj is the
shunt resistance of each JJ in the resistively and capacitively
shunted junction model [29–32]. The signal s decays at a rate
related to α and β. Specifically, the time constant for decay is
given by τdi = Ldi/Rdi = β/ωcα, where ωc is the Josephson
characteristic frequency discussed in Appendix A, and we
include the subscript on τdi to refer to the dendritic integration
loop and distinguish that quantity from the dimensionless time
variable entering Eq. (2). Equation (2) is a leaky integrator
ODE. The drive term is the rate of flux quantum production,
and the leak term gives simple exponential decay, as expected
from an L-R circuit.

Dendrites are coupled to each other through flux. The cou-
pling flux from dendrites indexed by j to dendrite i is given
by

φi =
n∑

j=1

Ji j s j, (3)

where Ji j is a coupling term proportional to the mutual in-
ductance that includes contributions from all the transformers
present on the collection coil in Fig. 2(b). Equation (3) shows
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FIG. 4. Rate arrays for the dendrite with a receiving and integrating loop for three values of ib. The normalized bias current (a) ib = 1.35,
(b) 1.65, and (c) 1.95.

that coupling between dendrites is due to the signal in the
integration loop of one dendrite being communicated as flux
into the receiving loop of a subsequent dendrite. The signal in
the subsequent dendrite is then obtained through the evolution
of Eq. (2) with the flux from the first dendrite providing the
flux φ in the function r and the signal from the second dendrite
providing the s term. The ib term entering r refers to the bias
on the second dendrite and is treated here as a parameter
rather than a dynamical variable. Further details regarding the
derivation of these expressions is given in Appendix C.

Equations (2) and (3) constitute the phenomenological
model of a dendrite. A neuron or network can be simulated by
solving these coupled equations for all dendrites in the system.
However, we have not specified the form for the rate function,
r(φ, s; ib), which is central to the model.

We have arrived at Eq. (2) as a postulate; this expression
is not directly obtained from the underlying circuit equations.
The postulate is that there will be a function r(φ, s; ib) such
that Eq. (2) provides an accurate account of the signal present
in a dendrite’s integration loop under the circumstances of
interest for loop neurons, provided we only inquire about the
signal over timescales appreciably longer than the interfluxon
interval, which is on the order of 10 ps. We aim to interrogate
dendrites on timescales of 100 ps or longer, with neuron and
network activity of interest on timescales from nanoseconds to
the longest timescales that can be simulated under the limits
of computational resources.

Our procedure for obtaining r(φ, s; ib) is as follows. A
dendrite with a SQUID as a receiving loop and an L-R branch
as an integrating loop is numerically modeled with the circuit
equations given in Appendix A. A constant value of flux is
applied to the receiving loop, and the rate of flux-quantum
production is monitored as a function of time while current
accumulates in the integration loop. For these simulations, the
resistance of the integration loop is set to zero. This procedure
is repeated for many values of φ and ib to obtain what we refer
to as “rate arrays,” which are shown in Fig. 4, where r(φ, s; ib)
is plotted as a function of φ and s for three values of ib. Here
we work in dimensionless units, so the units of r are fluxons
generated per unit of dimensionless time τ , which is related
to the JJ characteristic frequency (Appendix A). It can be seen
that the value of r(φ, s; ib) is monotonically increasing with
φ over the range considered here, while accumulation of s
decreases the rate of flux-quantum production. This decrease
is because addition of current to the integration loop diverts

the bias away from the SQUID, so the voltage is decreased,
and the rate is reduced in accordance with Eq. (1). When
sufficient signal is accumulated in the integration loop, the rate
of flux quantum production drops to zero, and we say the loop
is saturated.

For a small value of ib [Fig. 4(a)] a large amount of flux
is required to drive the dendrite above threshold to the active
state, and a small signal s is present at saturation. As ib is
increased [Figs. 4(b) and 4(c)] the threshold is reduced, and
the saturation level is increased. The qualitative shape of r for
different values of ib is similar, and the surfaces for smaller
ib are seen to fit inside those for larger ib. For this reason,
we refer to these surfaces as r-shells, with each shell corre-
sponding to a fixed value of ib. Network adaptation, training,
and learning consist in finding the values of ib that achieve the
desired input-output relationships for a given computational
or control task.

While Fig. 4 shows r for 0 � φ � 1/2, these surfaces are
symmetric about zero for the circuit of Fig. 2(b) with symmet-
ric inductances in the SQUID [as is also the case in the SQUID
response of Fig. 3(b)], and they are periodic in normalized
flux φ with period of unity (period of �0 in SI units). One
consequence of this response is that it may be necessary to
restrict the applied flux to φ � 1/2 to retain a monotonic
response [26], and if inhibition is applied to a dendrite (φ < 0)
it may be necessary to limit this flux below the threshold for
activity so that inhibition does not drive the dendrite to the
active state. These concepts are discussed further in Sec. VI.

From the rate arrays, we obtain several quantities of inter-
est that facilitate dendrite design. In particular, the value of φ

for which r becomes nonzero as a function of ib determines
the dendrite threshold. This function is shown in Fig. 5(a) for
both positive and negative flux. These traces can be leveraged
to anticipate when a dendrite will become active as well as the
maximum value of inhibitory flux that can be applied before
activity results, which is necessary in design of the refractory
dendrite that quenches activity of a soma. The saturation val-
ues of s as a function of applied flux and bias current are also
important for anticipating the maximum value of signal that
a dendrite will accumulate, and therefore the maximum value
of flux it will couple into another dendrite. We refer to this
value as smax, and Fig. 5(b) shows its behavior as a function
of both positive and negative applied flux (s+/−

max ). The inset
shows the value versus ib for the maximum absolute value of
applied flux, |φ| = 1/2.
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FIG. 5. Response parameters of the RI dendrite extracted from
the rate arrays. (a) The thresholds to positive and negative applied
flux as a function of the dendritic bias current. (b) The value of
saturation signal as a function of the normalized flux applied to the
receiving loop for several values of the normalized bias current, ib.

Obtaining the rate arrays is somewhat computationally in-
tensive, requiring a large number of numerical simulations of
the dendrite circuit. However, these computations only need to
be carried out once. Calculation of the rate arrays used in the
present work took roughly 72 hours using a 3.7 GHz central
processing unit with 10 cores and 20 logical processors. The
rate arrays are then accessed by the phenomenological model
as a look-up table, and the same arrays are used for all values
of the integration loop inductance and leak rate. Using the
same arrays for all values of inductance is possible because in
all cases the inductance of the integration loop is much larger
than that of the receiving loop, so the fraction of current bias
that initially goes into the integration branch of the circuit is
small in all cases of interest here. If properties of the receiving
loop—the SQUID—are changed, new rate arrays will need
to be calculated. Examples include changing the value of βc
of the JJs or changing the asymmetry of the inductances.
However, there appears to be little advantage from employing
SQUIDs with a variety of βc values. Leveraging different
asymmetry designs may be fruitful, but a small number of
variants will likely suffice. We anticipate a symmetric SQUID
and a highly asymmetric SQUID will be the two cases of
primary interest.

Equipped with the phenomenological model [Eqs. (2) and
(3)] as well as the rate arrays, we can compare the model

FIG. 6. Comparing the phenomenological model to circuit equa-
tions in the case of a linearly ramping drive. The time step for
the phenomenological model was 100 ps. (a) The flux drive signal.
(b) The smallest integration loop with β/2π = 102. (c) Integration
loop with β/2π = 103. (d) β/2π = 104. In (a)–(d), the black traces
show the values for the circuit simulations while the dashed colored
traces show the values for the phenomenological model. The error of
the drive signal was χ 2

drive < 5×10−11 for all cases shown here.

performance to explicit solution of the circuit equations.
Throughout this work, we numerically solve systems de-
scribed by Eqs. (2) and (3) using a forward Euler method
to facilitate computational speed. In discrete form, Eq. (2)
becomes

sτ+1 = sτ

(
1 − 
τ

α

β

)
+ 
τ

β
r(φτ , sτ ; ib). (4)

We solve the circuit equations given in Appendix A using
a Runge-Kutta method implemented with the PYTHON SCIPY

function solve_ivp for initial-value problems, which uses an
adaptive time mesh.

As a first test, Fig. 6 compares the phenomenological
model to the circuit equations in the presence of a linear
ramp function as the applied flux. The form of the applied
flux into the receiving loop (φ) is shown in Fig. 6(a). The
rate arrays are obtained only for discrete values of applied
flux (200 values between 0 and 1/2), so this applied drive is
relevant to quantify performance when the applied flux takes
intermediate values between those explicitly present in the
rate arrays. No interpolation was used. At each time step, the
three inputs to the rate array (φ, s, and ib) are rounded to
the closest value for which the rate array has been evaluated,
and that value of r is used in Eq. (4) at that time step. The
dendrite signals are shown in Figs. 6(b)–6(d) for three values
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of the inductance parameter, β, from β/2π = 102–104. For
each value of β, four time constants are considered from
10 ns to 1.25 µs. The value of β/2π quantifies the number
of fluxons that can be accommodated in the storage loop, and
the time constant is converted to the dimensionless parameter
α for simulation in the dimensionless model. All data from
the phenomenological model in Fig. 6 were obtained using
a time step of 100 ps [converted to dimensionless time for
Eq. (4)]. The circuit model time traces are shown as black
lines, while the traces obtained with the phenomenological
model are shown as various dashed colored lines. Accuracy
of the phenomenological model is quantified with a χ2 of the
form

χ2 =
∑nsoen

t −1
i=1

∣∣ssoen
(
t soen
i

) − sinterp
ode

(
t soen
i

)∣∣2

t soen

i∑node
t −1

i=1

∣∣sode
(
tode
i

)∣∣2

tode

i

. (5)

The subscript or superscript “soen” refers to the phenomeno-
logical model, while “ode” refers to the first-principles circuit
model of Appendix A. In Eq. (5), nsoen

t is the number of time
steps in a given SOEN simulation, ssoen is the state quantity
obtained with the SOEN phenomenological model, t soen

i is the
time of the given simulation at time step i, sinterp

ode is the state
quantity obtained with the ODE circuit model solved with
an adaptive time mesh and interpolated to the coarser phe-
nomenological model time mesh, and 
t soen

i = t soen
i+1 − t soen

i .
In the denominator, node

t is the number of time steps in the
ODE solution with the adaptive mesh, sode(tode

i ) is the ODE
solution on the nonuniform time grid without interpolation,
and 
tode

i = tode
i+1 − tode

i . In all cases shown in Fig. 6, the
value of χ2 is less than 7×10−5, and the time required to
run the ODE model exceeded that to run the SOEN model
by a factor of more than one thousand. The accuracy is worst
for the smallest storage loop (β/2π = 102) and the shortest
time constant (τdi = 10 ns). All values of χ2 and ratios of
simulation times are given in Table I in Appendix D.

As another test case, a series of square flux pulses was
input to a dendrite for the same values of β and τdi, as shown
in Fig. 7. The heights of these pulses were drawn randomly
from the interval between the flux threshold [Fig. 5(a)] and
the maximum value of 1/2. The pulse durations were drawn
randomly from the interval between 5 and 40 ns, while the
pauses between pulses were drawn randomly from the interval
between 10 and 100 ns. In Fig. 7, 10 such pulses were applied.
The largest value of χ2 was 3.32×10−4, again in the case
of smallest β and τdi, while the time to complete the ODE
simulations was longer than that for the SOEN simulations by
at least 103 in all cases. Complete data for the square pulses is
given in Table II in Appendix D. To push the limits of speed,
the same linear ramp and square pulse cases were carried out
using a time step of 1 ns in the phenomenological model. The
results for the square-pulse drive are shown in Fig. 8 for the
same values of β and τdi. In all cases, the agreement between
the two models is good, except for the smallest inductance
of β/2π = 102. Poor performance in these cases results from
the fact that the term 
τ α

β
in Eq. (4) becomes large, leading

to numerical instability. More detail is shown in Fig. 9 where
a temporal zoom on just the first input square pulse is pre-
sented. The numerical performance is seen to be unacceptable

FIG. 7. Comparing the phenomenological model to circuit equa-
tions in the case of a random sequence of square pulses. The time
step for the phenomenological model was 100 ps. (a) The flux drive
signal. (b) The smallest integration loop with β/2π = 102. Integra-
tion loop with (c) β/2π = 103 and (d) 104. The error of the drive
signal was χ 2

drive = 5.03×10−5 for all cases shown here.

for the smallest value of β and only marginally acceptable
for values above that. To determine the largest acceptable
time step, square-pulse-input simulations were conducted for
numbers of input pulses ranging from 10 to 160 with time
steps ranging from 10 ps to 10 ns for the same values of β

as above. To keep the computation time manageable, only
τdi = 250 ns was considered, but individual test cases were
conducted with other values to ensure the conclusions were
insensitive to this number. The results of the χ2 values for
each simulation as well as the ratio of computational run
times were stored, and the results for the case of 160 random
square pulse inputs is shown in Fig. 10. Further data on the
other cases is given in Fig. 27 in Appendix D. The χ2 values
again show that the lowest value of β is the most difficult to
match, and the χ2 converges close to 10−4 with a time step
of 200 ps. All other β values approach χ2 = 10−5 with this
same time step. The simulated time interval in this case was
12 µs, and with a time step of 200 ps it took over ten thousand
times longer to solve the system of circuit ODEs as to step
through the phenomenological model. Based on this analysis,
a time step of 200 ps appears an optimal compromise between
speed and accuracy. This time step is likely the convergence
point in these simulations as 200 ps is the rise and fall time
of the square pulses. To simulate 12 µs of activity of a single
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FIG. 8. Similar comparison as Fig. 7 except the time step
was 1 ns. The error in reproducing the drive signal was χ2

drive =
7.35×10−3.

FIG. 9. The same simulations as Fig. 8 except zoomed on the
time window around the first input pulse.

FIG. 10. Quantification of the phenomenological model vs the
circuit model. For the dendrite considered here, τdi = 250 ns and ib =
1.702. These simulations included 160 random square pulses, and the
circuit model was set to converge to a relative and absolute accuracy
of 10−5 in the solve_ivp function. (a) The values of χ 2 as a function
of time step dt for three values of β. (b) The ratio of the time required
to run the simulations for the two numerical approaches as a function
of time step dt .

dendrite with the phenomenological model required 1.02 s,
while simulating the same time interval with the ODE model
required 2.78 hours. Attempting to simulate longer time in-
tervals with the circuit model becomes impracticable. Before
proceeding to treat synaptic inputs to dendrites, we note an
extension of the model to dendrites with additional circuit
complexity.

The response function of the two-JJ dendrite is useful for
many operations, but in certain cases it is desirable for the
value of the saturation current to be less sensitive to the
applied flux. This can be accomplished by adding a Joseph-
son transmission line between the receiving and integrating
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FIG. 11. The RTTI dendrite. (a) Circuit diagram showing the
addition of two transmission loops. (b) An example r-shell for the
RTTI dendrite.

loops of the dendrite, as shown in Fig. 11(a). Due to the
presence of two transfer loops between the receiving and
integrating loops, we refer to this as the RTTI dendrite
(receive-transfer-transfer-integrate). An example rate array for
the RTTI dendrite is shown in Fig. 11(b). While it is similar
to the RI dendrite in that it has a threshold of applied flux and
decreases with integrated s, the overall shape is more com-
plicated, with appreciable structure close to saturation. The
details of this structure can be used for various computations.
In particular, the fact that the response is relatively flat for
certain ranges of φ can be used to achieve a digital response
in which the output is insensitive to the exact input value of φ.
This attribute will be exploited below to achieve the OR gate.
As for the case of the RI dendrite, we extract the thresholds
and saturation values from the rate arrays. These functions
are shown in Fig. 12. In Fig. 12(a), it can be observed that
the thresholds for positive and negative applied flux are now
slightly asymmetric due to the breaking of the symmetry of
the circuit with the low-inductance transfer loop to the right
of the receiving loop. More importantly, the values of s+/−

max

shown in Fig. 12(b) are seen to have several regions of nearly
flat response where the saturation level of the dendritic inte-
gration loop does not depend on applied flux. Such a response
is useful for obtaining digital behaviors, as we show below
when discussing logic gates in Sec. IV. The peak value of s+

max
as a function of ib is shown in the inset to Fig. 12(a).

To simulate the RTTI dendrite with a conventional model,
nine coupled ODEs are used, making the simulations even
slower than the RI dendrite with its five coupled equations.
With the phenomenological model, the RTTI dendrite reduces
to a single ODE, just as the RI dendrite. The only difference
is the form of the r-shells that provide the driving term.

FIG. 12. The values of flux thresholds (a) and saturation levels
(b) for the RTTI dendrite extracted from the rate arrays, analogous to
these quantities shown in Fig. 5 for the RI dendrite.

IV. SYNAPSES

As described in Secs. II and III, the dendritic receiving loop
is a SQUID. In many applications in science and technology,
a SQUID is used as a measurement device with unmatched
sensitivity for detecting magnetic flux. Based on the response
curves of Fig. 3(b), it can be seen that a SQUID can be used as
a flux-to-voltage transducer. Such a device can also be used to
measure very low current levels when the current is coupled
into the SQUID as flux using a transformer. It is in this mode
of operation that we convert a dendrite into a synapse.

When an SPD detects a photon, a current pulse is diverted
out of the circuit, and that current returns with an L/R time
of around 35 ns, which sets the recovery time and maximum
rate of synapse events (≈30 MHz). To couple an SPD into a
dendrite to form a synapse, this current output can be coupled
into the SQUID that forms the receiving loop through a trans-
former, as shown in Fig. 2(c). The equations of motion for the
SPD can be solved exactly under a simple model [33] to obtain
the currents as a function of time. In this model, the resistance
of the SPD is zero until a photon is detected, at which point
it switches to a finite resistance for a finite duration. We are
interested in the flux applied to a dendrite by the SPD receiver
circuit; this flux is the product of the current I2 with the mutual
inductance of the transformer, which is a quantity we can
select in design. Therefore obtaining the currents is sufficient
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to obtain the flux, which we write as

φr = φpeak

(
1 − τrise

τfall

)

×
{

[1 − e−t/τrise ], for 0 � t � t0,
[1 − e−t0/τrise ] e−(t−t0 )/τfall , for t > t0.

(6)

In Eq. (6), it is assumed a synapse event occurred at time
t = 0, which is the time at which the SPD entered the resistive
state, and t0 is the duration for which the SPD stays in the
resistive state following the absorption of a photon, which
we take to be 200 ps, following the model of Ref. [33]. This
duration is commensurate with the 200 ps time step that we
found to be optimal in Sec. III. The resistance r1 [Fig. 2(c)]
is the resistance of the SPD in the time window t0 after
absorbing a photon, while r2 is a fixed resistance chosen to
obtain a sufficiently long L/R recovery time to prevent the
SPD from latching [34]. The total inductance of the circuit is
Ltot = L1 + L2 + L3, which includes the kinetic inductance of
the SPD itself (L1), the inductance of the transformer input
coil (L3), and any additional parasitic inductance in the circuit
L2. In terms of these parameters, τrise = Ltot/(r1 + r2) and
τfall = Ltot/r2. Typically τrise is a few tens of picoseconds and
τfall is 30–50 ns [24]. The quantity φpeak can be chosen in
design and set by the transformer between the SPD and the
dendrite. Throughout this work we take φpeak = 0.5 in units
of �0.

We now consider several examples of the phenomenolog-
ical model with the output of an SPD coupled as input to a
dendrite. In Fig. 13, we show the response of the dendrite to a
single synaptic pulse. The time course of the total applied flux
to the receiving loop, φ, is shown in Fig. 13(a), and four values
of β are shown in Figs. 13(b)–13(e), each for four values
of τdi. In each case, the dashed line corresponds to using a
time step of 1 ns in the phenomenological model, while the
solid line corresponds to 100 ps. Again we see that the worst
performance occurs with small β and small τdi. Similar data
is shown in Fig. 14 for an arbitrary sequence of five synapse
events. Dendritic integration is evident, and the effects of β

and τdi can be seen: for smaller β and larger τdi, the integration
loop reaches saturation after a small number of input pulses,
while for larger β and/or smaller τdi, the integrated signal does
not reach saturation even by the end of the train of five pulses.

Using synapses and dendrites to perform various temporal
extensions of basic logic operations is a primary function of
biological neural computation. Here we consider four basic
logic operations: AND, OR, AND-NOT, and XOR. Each of
these operations is accomplished with a single dendrite receiv-
ing input from two synapses. The AND operation is shown
in Fig. 15. The flux from the two synapses independently is
shown in Fig. 15(a), their sum is shown in Fig. 15(b), and the
signal in the dendritic integration loop is shown in Fig. 15(c).
In Figs. 15–18, the flux from a single SPD to the dendrite is
referred to as φspd, while the combined flux from both SPDs
to the receiving loop of the dendrite is labeled φ. To achieve
the AND response, the dendrite is configured such that the
flux from a single synapse is insufficient to drive the dendrite
above threshold, but the flux from two synapses together is
adequate, and signal is added to the integration loop only
when the pulses are coincident.

FIG. 13. Output of the phenomenological model for the case of
a synapse. (a) Flux output from the SPD. (b) Signal s in the dendritic
integration loop for the case of β/2π = 102. The solid lines result
from a time step of 100 ps, while the dashed lines used 1 ns. [(c)–(e)]
β/2π = 103, 104, and 105, respectively.

Because the synaptic flux and the dendritic signal are both
functions of time, it is important to know how the accumulated
signal will vary with the delay between the arrival of the
two synapse events. These data are shown in Fig. 15(d) for
multiple values of the bias to the dendrite, ib. Such a circuit
can be used as a temporal coincidence detector, as described
in Ref. [25]. The OR operation is shown in Fig. 16. The
challenge with OR is that we would like the amplitude of
the signal in the dendritic integration loop to be identical
whether one or both synapses are active. Because both the
rate of fluxon production and the value of saturation depend
on the applied flux for the RI dendrite, this is difficult to
accomplish. However, the flat response of the RTTI dendrite
can generate this input-output relationship, and that type of
dendrite has been used to generate Fig. 16. In Fig. 16(b), we
can see that when both synapses are active the applied flux
to the receiving loop has twice the amplitude as when only a
single synapse is active, yet the integrated signal in Fig. 16(c)
is nearly identical whether one or both synapses are active.
The response is possible due to the flat-top behavior of the
RTTI dendrite. We have biased the dendrite at a point such
that when the flux from one synapse is present the dendrite
just enters the plateau of the response, and when the flux from
both is present it remains on the plateau.

The response as a function of the delay between the
two synapse events is shown in Fig. 16(d). For lower bias
points the flat-top response only occurs for a relatively short
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FIG. 14. Similar data to Fig. 13 except signals are in response to
a train of five input synapse events.

coincidence window, providing a response more like the AND
gate. Yet for higher bias points the response is very flat,
independent of temporal delay between the synapse events,
just as we desire for the OR gate. We will see in Sec. V
that this response is useful in achieving the desired classifi-
cation task. The AND-NOT operation is shown in Fig. 17.
This logic gate produces a logical one at the output if and
only if the first input is a logical one and the second input
is a logical zero. This is distinct from the NAND gate. For
AND-NOT, we return to the RI dendrite. In this case, synapse
one is excitatory, while synapse two is inhibitory with the
opposite sign of flux applied as well as a reduced amplitude.
Figure 17(c) shows that the dendrite only becomes active
when synapse one receives a pulse in the absence of synapse
two receiving a pulse. Extension to various temporal delays
in Fig. 17(d) shows the effect of the asymmetric coupling of
the two synapses. The XOR operation is shown in Fig. 18.
XOR is accomplished in much the same manner as AND-
NOT, except the coupling between the two synapses is equal.
Thus, when either synapse is active in the absence of the other
the dendrite becomes active. In this instance, we are making
use of the fact that the RI dendrite response is symmetric
with respect to positive or negative flux. The response as a
function of relative delay between the synapse events is shown
in Fig. 18(d), and it is evident that cancellation of the two
pulses requires relatively high timing precision. The response

FIG. 15. Operation of the AND gate. (a) Input flux from the two
synapses separately. (b) Combined input flux. (c) Dendrite output
signal. (d) Analysis of the gate response as a function of time delay
between the two synapse events for several values of ib.

over longer delays is shown as an inset. The requisite timing
precision can be adjusted with the L/R time of the SPD. This
implementation of XOR in a single dendrite is analogous to
that observed in human pyramidal neurons in cortical lay-
ers two and three [35]. In addition to discrete responses to
few synapse events, the phenomenological model can help
us understand the transfer functions performed by synapses
coupled to dendrites when many pulses are incident.

In Fig. 19, we analyze these responses for various bias
conditions, revealing the role of ib for sculpting dendritic
behavior. Figure 19(a) shows the peak of the accumulated
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FIG. 16. Operation of the OR gate. (a) Input flux from the two
synapses separately. (b) Combined input flux. (c) Dendrite output
signal. (d) Analysis of the gate response as a function of time delay
between the two synapse events for several values of ib.

signal in the dendritic integration loop as a function of the
number of synapse events input in a burst. Traces from the
same color family correspond to the same value of ib. Lighter
traces correspond to pulses input at a slower rate relative to
the time constant of the dendrite, while darker traces show
the response for higher-frequency inputs. The response is
unsurprisingly larger for higher input frequencies and can
be broadly adjusted with the bias current. The sigmoidlike
response with threshold and saturation has been useful in
various machine learning applications. Similar responses are
seen in Fig. 19(b) where the frequency of the burst is now

FIG. 17. Operation of the AND-NOT gate. (a) Input flux from
the two synapses separately. (b) Combined input flux. (c) Dendrite
output signal. (d) Analysis of the gate response as a function of time
delay between the two synapse events for several values of ib.

the quasicontinuous variable on the x axis, and various curves
have different numbers of input pulses. Similar thresholding
and saturation behavior is evident, and the same qualitative
behavior has been demonstrated in experiments of related cir-
cuits [24]. If generated with conventional circuit models, the
plots of Fig. 19 would have required so much computational
time as to be impracticable with the computer used for this
study. With the phenomenological model they are produced
in minutes so that many scenarios may be investigated and
insight across parameter space can be quickly gained.
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FIG. 18. Operation of the XOR gate. (a) Input flux from the two
synapses separately. (b) Combined input flux. (c) Dendrite output
signal. (d) Analysis of the gate response as a function of time delay
between the two synapse events for several values of ib. Here the time
axis is narrower than Figs. 15–17. The inset shows the full time axis
of the other logic gate figures.

V. NEURONS

Whereas a synapse was shown to be a formed where a
single-photon detector couples to a dendrite, a loop neuron
can be as simple as a dendrite with a transmitter circuit provid-
ing output. Such a soma circuit is shown in Fig. 2(d). While all
dendrites have a bias-dependent threshold for activation in the
receiving loop below which applied flux elicits no response,
the soma is distinguished in that it also has a threshold in
the integration loop at its output. Embedded in the integration
loop is a superconducting thresholding element referred to

FIG. 19. Transfer functions for the RI dendrite. (a) Peak of in-
tegrated signal as a function of the number of synapse events in a
burst for several values of ib and frequency of burst inputs. (b) Peak
of integrated signal as a function of the frequency of input pulse train
for several values of ib and number of pulses in the train.

as a tron that switches from a zero-resistance state below
threshold to a high-resistance state when the current in the
integration loop reaches a critical value. Such comparators
have been demonstrated as an interface between superconduc-
tor and semiconductor electronics [23,36]. In the present case,
accumulation of sufficient signal in the soma’s integration
loop will drive the tron to the voltage state, at which point
a semiconductor-based transmitter circuit will generate pho-
tons from a light-emitting diode (LED). This is a spike event
or action potential of a superconducting optoelectronic loop
neuron. When this threshold is reached and the tron switches,
the current in the somatic integration loop is purged, and
integration must begin again. In most dendrites in the system,
any accumulated signal in the integration loop is immediately
coupled as flux into other dendrites. However, the soma has
no output other than the transmitter circuit, so its state is
only communicated to other elements of the network when
threshold is reached and light is produced.

Several approaches to transmitter circuits for loop neurons
have been explored [20], and here we base the phenomeno-
logical model on a circuit concept that leverages MOSFETs
in an essentially digital configuration. Upon reaching thresh-
old, activity is transferred to these semiconductor circuits,

013164-13



SHAINLINE, PRIMAVERA, AND KHAN PHYSICAL REVIEW RESEARCH 5, 013164 (2023)

FIG. 20. Schematic of a monosynaptic point neuron with ex-
citatory synapse (Se), neuron cell body (N), transmitter (T), and
refractory dendrite (Dr).

and to understand their operation we must work backward
from the light source itself. To maintain “brevity” in the main
thread of this article, we relegate the details to Appendices.
Appendix E describes a rate-equation model to capture the pri-
mary behavior of the light emitters, while Appendix F treats
the transmitter circuit from the thresholding element through
the LED. Because the subject of this work is to establish a
phenomenological model, here we simply extract the key mes-
sage from those Appendices: when a soma reaches threshold,
photons are produced with a few nanosecond delay followed
by an exponential probability distribution. The distribution is
obtained numerically through simulation of the transmitter
circuit combined with the source rate equation model. In
the reduced phenomenological model that is the subject of
this work, each time a somatic integration current reaches
threshold, a specified number of photon-production times are
drawn randomly from this distribution of a delay followed by
an exponential decay. These photon times are then assigned
randomly to the neuron’s downstream synapses and added to
a list of times of input synapse events. With this approach, the
number of ODEs which must be treated remains unchanged,
and the added computational burden of treating the transmitter
circuit and sources is reduced to dealing with random num-
ber generation only on the time steps at which the soma’s
threshold is reached. The indefatigable reader is directed to
Appendices E and F for more details.

In addition to this output thresholding behavior, a loop
neuron requires a means of establishing a refractory period
so that spike events are indeed discrete and their rate does
not exceed the roughly 30 MHz at which the synaptic SPDs
can respond. A refractory period is accomplished by adding
a second dendrite to the soma. A schematic of this minimal
point neuron is shown in Fig. 20, where the refractory dendrite
is labeled Dr. This refractory dendrite is driven by a flux
pulse identical in form to the SPD response [Eq. (6)] when
the soma reaches threshold, and the signal accumulated in
the refractory integration loop is coupled back to the soma’s
receiving loop as inhibition. The time constant of the refrac-
tory dendrite’s integration loop therefore sets the refractory
period and maximum neuronal firing rate. To achieve robust
refraction, the coupling from the refractory dendrite back to
the soma is designed so that the inhibitory flux is as strong as
possible without driving activity on the negative-flux side of
the r-shell. This can be accomplished with knowledge of the
values of smax for the refractory dendrite at its bias point as
well as the values of threshold flux φ+

th and φ−
th . The refractory

dendrite is chosen to have a relatively small value of β so
that it saturates quickly at smax each time the soma fires. The

FIG. 21. Neuron firing rate versus applied flux. (a) Comparing
several values of the neuronal integration loop inductance parameter,
βni. (b) Comparing several values of neuronal integration loop time
constant and bias current. For ib = 1.6 and 1.8, βni/2π = 5×103. For
ib = 1.4, βni/2π = 1.6×104.

coupling from the refractory to the somatic dendrite is then
given by J = (φ+

th − φ−
th )/smax.

The role of the refractory dendrite is to inhibit the neu-
ron for a brief duration after the neuron spikes. Yet similar
inhibition in response to activity is often desirable on longer
timescales. Homeostatic plasticity [37–39] is one means by
which the activity of neurons can be maintained in a useful
dynamic range. This self-regulatory behavior can be ac-
complished with feedback analogous to refraction if further
dendrites receive input when the soma fires and couple in-
hibitively to the soma’s receiving loop. Such a homeostatic
dendrite is likely to have a longer time constant and also a
larger integration loop inductance than the refractory dendrite.
In this way, each time the neuron fires, a small inhibitory
signal is fed back to the soma, effectively increasing the
threshold for the next firing. This signal will decay over a
longer time period, on the order of many interspike intervals.
Such a plasticity mechanism can be treated with the same
phenomenological model presented here.

To begin analysis of neurons with this framework, we
consider a neuron with no dendritic tree in which all inputs
are received directly at the soma. Such a neuron is referred
to as a point neuron. As a first means of gaining intuition
about the design of a point neuron, we consider the spiking
behavior of a simple loop neuron with a steady-state flux
coupled directly into the soma and a single refractory dendrite
to induce pulsatile behavior at the transmitter. In Fig. 21, we
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show the rate of neuron spiking as a function of the steady-
state applied flux φ. Figure 21(a) shows the response for five
values of the neuronal integration loop inductance parameter,
βni. In all cases, the time constant of the refractory integration
loop was 50 ns and the value of the somatic integration loop
threshold was set to 0.3 smax. Smaller values of βni lead to
rapidly refilling of the integrated signal after it is purged upon
reaching threshold, while larger values require more time to
accumulate signal back to threshold, leading to slower firing
activity for the same flux drive.

By contrast, in Fig. 21(b), the somatic integration loop
inductance was fixed at an intermediate value, while the oper-
ating bias point and somatic integration loop time constant
were adjusted. Lower biasing requires higher input flux to
achieve threshold and also leads to slower firing rates, while
higher bias reduces threshold and increases the output rate.
Such a control parameter is the primary means by which
the soma can be reconfigured dynamically during network
operation, either in an unsupervised manner by activity within
the system or in a supervised manner by a user or control
system. The time constant cannot be changed dynamically, as
it is set by the resistance and inductance of the loop, which
are fixed in fabrication. However, the time constant can have
an appreciable effect on the transfer characteristics, as is most
pronounced for the low-bias case where reducing the time
constant to 50 ns dramatically increases the flux threshold and
reduces the output rate at a given value of applied flux. All of
these parameters must be considered when designing neurons
to play various roles in a network.

As in the transfer functions of Fig. 19, the responses in
Fig. 21 would have been quite cumbersome to obtain with
the conventional circuit equation approach. Even at this basic
level, the phenomenological model provides utility in guiding
the design principles of loop neurons across a broad parameter
space.

We now consider an example of employing the phe-
nomenological model to treat a loop neuron with a more
elaborate dendritic arbor to solve the standard benchmark
problem of the nine-pixel image classifier [40]. Figure 22
shows the nine-pixel input and the manner in which the pix-
els can be argued to depict three letters: “z”, “v”, and “n”.
This benchmark problem was chosen to illustrate the use of
some of the machinery developed in this paper, including the
two-input dendrites. This nine-pixel classification task can
be readily handled with digital systems employing Boolean
operations, so it is not meant to illustrate the supremacy of
neural systems for this type of computation. Consideration
of more complex problems exploiting the analog circuits,
temporal dynamics, and highly interconnected networks of
superconducting optoelectronic neurons will be the subject of
future work.

This nine-pixel classification problem is typically formu-
lated for small neural networks with the goal of training the
network to identify the image as the correct letter even when
the state of any one pixel is allowed to switch. The prob-
lem is often solved with small neural networks trained with
conventional techniques such as backpropagation. Here we
solve the problem using a single neuron with a small dendritic
tree, showing that such a tree can serve a similar role to a
feed-forward neural network [41] and to illustrate how even

FIG. 22. Schematic of the nine pixel classifier. The dendritic tree
is illustrated as are the three classes of inputs, z, v, and n.

relatively simple loop neurons become sophisticated computa-
tional processors, as inspired by their biological counterparts
[42]. Also in contrast to published approaches [40,43], we
achieve the desired neural operation through inspection with-
out a training algorithm, meaning we analyze the active pixels
in each of the three letters, including the cases with one-pixel
variation, and write down the logic that allows identification
of the letter based on two-pixel gates. This approach to com-
pletion of the task is in the spirit of biological vision systems
that “hard-code” basic computational primitives, such as Ga-
bor filters matched to common spatial frequencies in natural
scenes [44]. While this approach of solution by inspection
is sufficient for this small problem, more powerful learning
techniques are required to train spiking neural networks in
general. We discuss some of these techniques in Sec. VI.

The arbor that solves the problem is shown in Fig. 22. Each
pixel is input to a synapse as a single spike event: a spike
event occurs at synapse i if pixel i is active in the image under
consideration, and no spike event is input at that synapse if the
corresponding pixel is not active. The various dendrites are
labeled by the logic operations they perform (Sec. IV). The
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FIG. 23. Time traces for the nine-pixel classifier neuron for the
case of n4, the image of n with pixel four switched. (a) The input
synaptic flux from all four active synapses. The inset shows higher
temporal resolution to display the timing jitter due to the model of the
quantum-dot light source. (b) The total applied flux to the neuronal
receiving loop, including the refractory contribution. (c) The inte-
grated current in the neuronal integration loop. (d) The flux generated
by the downstream SPD receiving photons upon neuronal firing.

knowledge accessible at various stages of the tree is written
above the dendrites whose signal represents that information.
The basic reasoning that solves the problem can be followed
by stepping through the tree. For example, starting at the top
left, if pixel two or five is active but pixels four and six are not
both active, the letter cannot be v. Similar reasoning can be
applied to rule out n. If it is not v and it is not n, it must be
z. At the last stage of the tree before the soma, three different
dendrites know whether their letter is present. By assigning
these three dendrites different time constants [α parameters in
Eq. (2)], they each evoke different numbers of pulses from the
neuron. An output of one spike event from the neuron informs
us a z has been presented, two correspond to v, and three to
n. The neuron under consideration is shown to accomplish the
task even in the presence of 1 ns timing jitter due to the trans-
mitter circuit and quantum dot light source (Appendices E
and F). Time traces from a single classification instance (n4)
are shown in Fig. 23. The four input synapse events are shown
in Fig. 23(a), and the timing jitter due to the transmitter circuit
and light source is evident in the inset. The total flux input to
the neuronal receiving loop is shown in Fig. 23(b), as are the
thresholds for activity due to positive and negative flux. The
accumulated signal in the neuronal integration loop is shown
in Fig. 23(c), along with the value of the neuronal integration
loop threshold. The times of neuronal spike events are shown
as black crosses. In this model, the neuron is given one output
synapse, and the flux present at the output of that synapse due
to photon detection events from neuronal firing are shown in
Fig. 23(d). The full set of 30 inputs is shown in Fig. 31 in
Appendix G. The results of all instances of the classification
task are shown in Fig. 24. The maximum level of integrated
signal in all three final dendrites is shown in Fig. 24(a) for
all thirty presented images. The number of spikes produced

FIG. 24. Output of the nine-pixel classifier neuron versus input
image. (a) The peak of the integrated signal in the final dendrites that
represent the three letters. (b) The number of spikes out as a function
of the input image.

by the neuron is shown in Fig. 24(b). It can be seen that
no signal is generated in any of the dendrites except the one
corresponding to the presented letter, even in the presence of
one-pixel noise, and the neuron correctly produces the number
of spike outputs to communicate the result of its calculation to
other neurons that may be present in the network.

VI. DISCUSSION

We have seen that the computational circuitry of loop neu-
rons consists of a network of interacting dendrites. Within
this framework, a dendrite is a SQUID with output coupled
to a current-storage loop. The bias point of the SQUID deter-
mines the threshold input flux required to initiate activity, and
the storage capacity of the output loop provides a saturating
nonlinearity. The various circuit parameters provide means
to adjust the response characteristics across broad operating
ranges. Learning and homeostatic adaptation can be accom-
plished with similar circuits providing feedback, dynamically
adjusting bias points through coupled flux that can be stored
perpetually and adjusted in small or large increments. The
final stage of dendritic processing culminates in the soma, the
neuron cell body. When this final dendrite reaches threshold,
something different happens with regard to physical hardware:
an amplifier drives a semiconductor light source. The thresh-
old signal is the final stage of the computational process;
the production of light is a binary action potential, and the
physical transduction to photons is chosen to enable com-
munication to many destinations across length scales that
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result in wiring parasitics that render electronic signals im-
practicable. A neuron is a network of coupled dendrites with
local electronic communication. A spiking neural network
extends interconnectivity to longer distances with optical
communication.

Simulating loop neurons with the phenomenological model
brings significant speed increases relative to the conventional
method of simulating the first-principles circuit model. The
speed of simulation can increase by a factor of ten thousand
while retaining a χ2 of 10−4 when simulating a single dendrite
for 12 µs. When simulating a large network, the circuit-model
approach is impracticable due to the time required to run
calculations over even a relatively short duration of network
activity. The phenomenological model thus enables design of
more components, exploration of a wider range of parameter
space, and treatment of larger networks than would other-
wise be possible. Still, simulating 12 µs of activity from a
single dendrite requires around 1 s of CPU time. A phys-
ically instantiated network on a small chip (roughly 1 cm
× 1 cm) would comprise roughly 10 000 neurons and half
a million synapses and dendrites. Linearly extrapolating the
time requirements, it would take over a year to simulate
1 ms of activity of this network on the same workstation
used in this work. Two conclusions can be drawn: (1) the
phenomenological model must be used as a tool to facilitate
further increases in speed of design and (2) constructing the
physical hardware of loop neurons could bring a computa-
tional platform of immense power and utility. Regarding the
first point, by using the phenomenological model to design a
variety of dendrites, coupled-dendrite computational blocks,
and a variety of neurons, libraries of optimized components
can be assembled. The model can be used to efficiently design
these components and reduce their behavior to stored transfer
functions to achieve a further level of abstraction that can be
used to model behavior of larger networks without explicitly
stepping through the ODEs, as was done for the logic gates,
burst, and rate transfer functions in Sec. III. Regarding the
second point, it would take a year on a workstation with a
3.7 GHz processor to simulate one millisecond of a network
that would fit on a chip of similar size and power consumption
to the processor, including cryogenic cooling. The increase in
computational speed that would result from realizing SOEN
hardware would be 32 billion for even a modest network.
SOENs therefore appear to offer a path to neuromorphic
supercomputing.

If the aspiration of loop neurons is to constitute systems
of exceptional scale and complexity, might the simplicity of
the dendritic building block limit the dynamical repertoire?
We hope this model helps answer this question. It is known
that even simple systems with simple rules for propagation,
such as cellular automata, can give rise to behavior of great
sophistication [45,46]. It has been argued that similar con-
cepts can be applied as a starting point for physics, with
the rich, natural world emerging based on the interactions
of fundamental nodes [47]. Similarly, elements as simple as
two-state spins interacting with nearest neighbors (Ising mod-
els) can give rise to phase transitions and critical phenomena,
including crucial long-range correlations [48,49] as well as
attractor dynamics for associative memory storage and re-
trieval [50–53]. By comparison, the dendrites studied here are

multidimensional and nuanced. The nonlinear spatiotempo-
ral convolutions occurring in each neuron’s synaptodendritic
tree provide a deep repository that can inform the neuron’s
behavior. Transmission of action potentials to many destina-
tions at light speed enables complex network topologies far
beyond nearest-neighbor interactions. The use of supercon-
ducting circuits allows signal retention across a broad range
of timescales through the choice of the τdi parameters (the τ

distribution) that specify the leak rates in Eq. (2), as has been
demonstrated experimentally [24]. The range of integration
loop inductances (the β distribution) in conjunction with the
bias currents will establish the dynamic range of the network.
With near and distant connectivity as well as a wide spec-
trum of dissipation times and an enormous dynamic range,
SOENs are likely to achieve the long-range spatiotemporal
correlations present in the critical states that optimize neu-
ral information processing [54–57]. The hierarchy of spatial
connectivity in conjunction with the hierarchy of information
retention times and response magnitudes appears excellent for
enabling the fractal use of space and time that supports infor-
mation integration and cognition [58–63]. Yet the simplicity
of constructing the majority of computational grey matter
from similar building-block components brings an advantage
in modeling and technological implementation.

The significance of dendrites in neural computation is
well documented [41,64–69], yet the incorporation in neuro-
morphic hardware has received proportionally less attention
[70–74]. The dendrites studied here are capable of achieving
many of the computational functions known from neuro-
science, and they may also be capable of implementing
numerous learning functions. As mentioned above in the
context of the nine-pixel classification problem, general tech-
niques are required to train spiking neural networks to solve
diverse computational problems. Superconducting optoelec-
tronic neurons and networks appear equipped to implement
many of the training algorithms introduced for spiking neural
networks in the literature [75–78], yet we have a keen focus on
algorithms employing dendrites, as these allow simple circuit
implementation, adaptation with only local information, and
are commensurate with the concepts of reinforcement learn-
ing known to be employed by the brain [79]. In particular, den-
drites may provide valuable means for implementing credit
assignment in training algorithms that utilize spike-timing
signals in conjunction with population activity [80–84], po-
tentially leveraging much of what is known from neuroscience
about the key role of dendrites in learning [85–92] and over-
coming a major obstacle to widespread adoption of spiking
neural networks for artificial intelligence. Further, the pres-
ence of dendritic signals that are continuous in time without
erasure following a spike may provide new methods for train-
ing spiking neural networks that are not available based on
spiking activity alone. Perhaps these continuous signals will
be useful for constructing cost functions and training networks
with variants of the backpropagation technique, a feat which
has been difficult in the case of spiking neurons outside of
the rate-coding domain, and a subject which is significant in
bridging machine learning and neuroscience [93].

While the model presented here is interesting to explore,
it is intended as a tool in a larger project. The objective
of such research at this stage is to determine if SOENs are
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indeed as promising for future study and worthy of appre-
ciable investment as our hypothesis contends. We hope this
model will help answer several questions: do the neuromor-
phic circuit principles demonstrated in these superconducting
optoelectronic embodiments bestow systems with the dy-
namic interplay of structure and function that scaffolds
successful neural systems? Do device and circuit features
such as the achievable breadth of the τ and β distributions,
the particular dendritic nonlinearities, and the available forms
of plasticity bring benefits in support of cognition? Does
refraction of the neuron without erasure of information in
the dendritic tree offer advantages in information processing,
lead to new forms of neural coding, or offer new means of
training? How should the structure of the dendritic trees and
the structure of the network be co-designed to achieve desired
operations? The objective of the model presented here is to
enable computational studies that answer these questions.

With the phenomenological model as a guide, we can
compare and contrast loop neurons with other complex sys-
tems. Spin systems have received considerable attention over
decades due to both their simplicity as well as the emergence
of interesting phenomena such as phase transitions and spon-
taneous symmetry breaking. Common spin models include the
Ising model, where each spin s takes a binary, scalar value
of −1 or 1. Coupling is typically between nearest neighbors
and is also a scalar value, Ji j , typically with the symmetry
Ji j = Jji. The x − y model and the Heisenberg model extend
the spin to have two or three vector components, maintaining
|s| = 1. In the present context, we can think of the current
stored in the integration loop of dendrite i, si, as a spin. It is
more like an Ising model than an x-y or Heisenberg in that it
is a scalar value, but in general it is analog instead of binary
and can take a large number of values between zero and one.
Coupling is through the scalar quantities Ji j [Eq. (3)] and is
manifest through transformers. In this case, there is no re-
quirement that Ji j = Jji, and the spatial limitations regarding
which spins can couple are relaxed. Coupling is mediated by
a transformer circuit rather than an exchange interaction, so
flexibility in the adjacency matrix is available. The values of
Ji j are fixed in time, but the sign can be positive or negative
so that excitation or inhibition are possible. While the Ji j are
fixed in circuit fabrication, the interaction between any two
spins is dynamically reconfigurable either by an external in-
fluence (experimenter) or through network activity (plasticity)
by changing applied bias currents to change the r-shell on
which the dendrite resides. Furthermore, the magnitude of
the spins in loop neurons is not fixed in time, but is a dy-
namical quantity that grows through interactions and decays
passively, following the leaky integrator formalism. In gen-
eral, the threshold for one spin to induce another is nonzero,
an important nonlinearity familiar from neuroscience.

Perhaps the most interesting connection to spin systems
is to glasses in which disorder and frustration play central
roles. Frustration in spin glasses occurs when any spin cannot
achieve a configuration in which the interaction energy to
all of its neighbors is minimized. This phenomenon leads
to energy landscapes with many peaks and valleys and a
large number of metastable configurations [94]. Competing
interactions are a hallmark of complex systems and result in
interesting and often computationally useful dynamics as the

system traverses the landscape of metastable states [95]. In
the present case, the dendritic tree of each loop neuron can be
compared to a spin glass in which each dendrite has multiple
interactions with competing signs of coupling. Frustration can
be quantified for dendrite i as

fi =
(∑n+

j=1 Ji j s j
) (∑n−

j=1 |Ji j | s j
)

(∑n+
j=1 Ji j smax

j

) (∑n−
j=1 |Ji j | smax

j

) , (7)

where the sum to n+ runs over the excitatory inputs, the sum
to n− runs over inhibitory inputs, and smax

j is the saturation
level of the signal in dendrite j. This value for frustration is
zero when the sum of excitatory or inhibitory inputs is zero
and reaches a maximum value of one when all excitatory and
inhibitory inputs are at their maximum values. The frustration
of neuron p can be quantified by summing over its arbor, Fp =∑

i fi. Each neuron’s dendritic tree has qualitative features
in common with a dynamical spin glass, with randomness
and transitory inhibitory and excitatory interactions leading to
ever-shifting states of competition and frustration, as is also
evident in biological neural systems [96]. The frustration of
the network can be obtained by summing once more over neu-
rons, FN = ∑

p Fp. Future work will explore the relationship
between frustration, critical phenomena, and useful neural
computation in the context of SOENs.

Above the level of the dendritic tree, at the level of cou-
pled neurons, analogies to spin systems are less relevant,
and comparison to pulse-coupled oscillators and their more
complex cousins, spiking neurons, are straightforward. Super-
conducting optoelectronic loop neurons are spiking neurons
that produce binary, pulsatile communication signals upon
being driven to an internal threshold. The optical communi-
cation signals that facilitate inter-neuron interaction are not
strictly based on spatial location (nearest neighbors, next-
nearest neighbors, etc.), but can be engineered with great
flexibility through an adjacency matrix physically realized by
photonic interconnects. As compared to typical point neurons,
a complex, active dendritic tree appears central to the function
and construction of loop neurons [26]. Yet at the base of that
tree resides a soma that sums inputs and registers a threshold.
While the signal in that final integration loop of the soma is
purged upon reaching threshold, the signals stored in the loops
of the rest of the arbor need not change upon neuronal firing.
As compared to archetypal leaky integrate-and-fire neurons,
the lack of erasure following firing is distinct. This trait allows
a single synapse event to push a neuron into a dynamical orbit
and allows information retention regardless of firing state.

In computational neuroscience, a list of discrete spike
times is sometimes considered a complete description of the
behavior of a neuron or population in a given context. Such
a list is available for networks of loop neurons, yet continu-
ous variables specifying the states of all dendritic loops can
also be used to gain more granular information about the
system, much like retaining the time-continuous values of the
membrane potentials on all dendrites of all neurons through-
out the network. While loop neuron spike times, bursts, and
rates are crucial to network activity, the state of any given
neuron or population may also be specified by the signal
in all loops, providing richer depiction of state space, high
temporal resolution even between spike events, and continu-
ous time-series representation suitable for defining distances
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and overlaps between network states as well as correlation
functions between components at different times. The state
of dendrite i attached to neuron p is specified by si. This state
description can be extended to neurons as Sp = [s1, . . . , sn]p:
The state of the neuron is the state of all of its dendrites
arranged as a vector. The state of the network can then be
defined in full detail as the full vector including the state of all
dendrites, S = [S1, . . . , SN ], or the state of the each neuron
can be reduced to an average for computational efficiency
when necessary. The distance between two states can then
be defined as the Euclidean distance between two vectors,
applicable to single neurons or networks. Such a metric is
valuable in many contexts, including in quantifying sensitivity
to variation in initial conditions to determine when a network
is in a chaotic regime.

We can then discuss correlations between dendrites with
themselves at different times, with other dendrites in the same
neuronal arbor, and with other dendrites attached to different
neurons. For example, a self-correlation function of the form

Gi(t, t ′) = si(t ) si(t
′) (8)

may be useful for identifying temporal coherence related to
recurrent activity. Similarly, a cross-correlation function be-
tween two dendrites,

Gi j (t, t ′) = si(t ) s j (t
′), (9)

may be useful in identifying functional coalitions within a
neuron with dendrites i and j within the same arbor, or it
may be useful for identifying synchronized activity across the
network when they are attached to different neurons. Extend-
ing this concept to neurons, we can write down a temporal
correlation function of a neuron with itself,

Gp(t, t ′) = Sp(t ) · Sp(t ′), (10)

or with other neurons,

Gpq(t, t ′) = Sp(t ) · Sq(t ′). (11)

In Eqs. (10) and (11), the vector dot product can be taken to
reduce the information to a single, scalar metric for temporal
correlations. The cross-correlation function of Eq. (11)
contains information about correlations across space and
time, as does the dendritic cross-correlation function of
Eq. (9) on a shorter length scale. Such functions inform us
as to how inputs are represented and stored in correlations,
and from these functions we can obtain quantities analogous
to the susceptibility which provide information about phase
transitions and critical phenomena. These concepts may be
further extended to a continuum field theory, potentially
conducive to formal analysis that is gaining traction in
neural-network applications [97,98].

In spin [49], neural [99], and other complex systems, free
energy is a powerful concept capturing a system’s compet-
ing drives to minimize energy and maximize entropy. In an
elementary construction, the free energy is given by F =
U − TS , with U the total energy of the system, T the tem-
perature, and S the entropy. Within the present framework,
the energy of a single dendrite is given by L I2/2 ∝ βs2,
and the total energy can be obtained by summing over den-
drites. The entropy can be obtained from the logarithm of
the number of microstates at a given value of total energy,
which is a well-defined if tedious problem in combinatorics.
Alternatively, an approach in terms of a partition function may

be tractable. The temperature of the system may be conceived
as the actual, physical temperature in units of kelvins, with
the TS term growing due to stochastic switching of JJs close
to Ic, or temperature may be engineered as a more abstract
quantity introduced via random photonic inputs to synapses.
The conceptual foundation of the loop-neuron system in terms
of simple component state variables as formulated with this
phenomenological model offers multiple routes to connect to
a deeper free-energy formulation.

From this list of comparisons and extensions, it is evident
that loop neurons and superconducting optoelectronic net-
works have potential to lead to physical systems of immense
complexity and useful computational functionality. The phe-
nomenological model developed here may serve in the near
term to facilitate design of useful circuits and networks for
computation. In the longer term, the framework may enable
more complete theoretical development of the hardware as a
complex physical system, as a tool for artificial intelligence,
as a platform for hypothesis testing in neuroscience, and as a
means to devise systems with intelligence exceeding our own.
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APPENDIX A: CIRCUIT EQUATIONS
FOR THE RI DENDRITE

A circuit diagram of the RI dendrite is shown in Fig. 25.
Kirchoff’s current law gives Ib = I1 + I2 + Idi. Summing volt-
ages around the R loop gives

�0

2π

d δ1

dt
+ L1

d I1

dt
− L2

d I2

dt
− �0

2π

d δ2

dt
− d �r

dt
= 0, (A1)

where δi is the phase of the superconducting wave function
across the ith junction. We introduce the following dimension-
less variables [29]:

ix ≡ Ix/Ic, βx ≡ 2πLxIc

�0
, φ ≡ �r/�0,

α ≡ Rdi/Rj, τ ≡ 2πRjIc

�0
t ≡ ωct . (A2)

ωc is the characteristic Josephson frequency, and Rj is the
Josephson junction shunt resistance in the resistively and
capacitively shunted junction (RCSJ) model [29–32]. A di-

FIG. 25. Circuit diagram of the RI dendrite with relevant circuit
parameters labeled.
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mensionless current ix is defined for each branch of the circuit
(ib, i1, i2, and idi), while a dimensionless screening param-
eter, βx, is defined similarly for each inductor. We also use
the notation βr = β1 + β2 and β̄ = β1β2 + β1βdi + β2βdi. We
assume all JJs have identical critical current, Ic. Algebraic
manipulation of Eq. (A1) leads to

d i1
dτ

= 1

βr

(
d δ2

dτ
− d δ1

dτ
+ 2π

d φ

dτ

)
+ β2

βr

(
d ib
dτ

− d idi

dτ

)
,

(A3)

where the relation d/dt = ωcd/dτ has been used. Summing
voltages around the I loop gives

�0

2π

d δ2

dt
+ L2

d I2

dt
− Ldi

d Idi

dt
− RdiIdi = 0. (A4)

Moving to dimensionless units and making use of Eq. (A3) we
can state the primary equation of motion governing the circuit
of Fig. 25:

β̄
d idi

dτ
=β1

d δ2

dτ
+ β2

d δ1

dτ
−2πβ2

d φ

dτ
+ β1β2

d ib
dτ

− αβridi.

(A5)

Equation (A5) must be solved in a system with an ODE for
each of the JJs of the form

βc
d2 δx

dτ 2
= ix − sin(δx ) − d δx

dτ
. (A6)

Here βc = 2π IcR2
j Cj/�0 is the Stewart-McCumber parame-

ter, with Cj the capacitance of a JJ in the circuit. Such an
expression can be derived in the framework of the RCSJ
model [29–32]. This second-order ODE must be converted
to two first order ODEs for each of the JJs. The system of
coupled ODEs combining Eqs. (A5) and (A6) thus results in
a system of five ODEs that can be solved numerically for
arbitrary parameter values, bias conditions, and flux drives.
After the system of ODEs has been integrated in time, i1 can
be obtained as

i1 = 1

βr
(δ2 − δ1 + 2πφ) + β2

βr
(ib − idi ), (A7)

and i2 = ib − i1 − idi. This numerical model has been imple-
mented in PYTHON and the system of ODEs solved with the
solve_ivp function from SCIPY, employing a Runge-Kutta
integration method with fifth-order accuracy and an adaptive
time grid.

In constructing the phenomenological model, we have es-
sentially replaced Eq. (A5) with the leaky integrator Eq. (2)
and abstracted away the driving terms into the phenomenolog-
ical rate function. By comparing Eqs. (A5) and (2) and noting
that in the main text, we have made the replacement idi → s,
we see that, roughly speaking,

1

2

(
d δ2

dτ
+ d δ1

dτ

)
− π

d φ

dτ
→ r(s, φ; ib), (A8)

if we let β1 = β2, take the limit βdi � β1, and ignore the tem-
poral derivative of the bias current. While the two differential
equations tracking the current in the dendritic integration loop
are qualitatively similar, by moving to the phenomenological
model we no longer require tracking the time derivatives of

FIG. 26. Full circuit diagram for the RI dendrite labeling ad-
ditional parameters relevant to the derivation of the model in
dimensionless units.

the phases of the JJs and the applied flux, which evolve on
the picosecond timescale, and instead require only the use
of previously calculated rate arrays as look-up tables. The
demonstrated speed benefits arise from this replacement.

APPENDIX B: CIRCUIT EQUATIONS
FOR THE RTTI DENDRITE

The primary equation of motion for the RTTI dendrite is

βdi
d idi

dτ
= d δ4

dτ
− α idi. (B1)

Equation (B1) must be solved in a system with an ODE of
the for given by Eq. (A6) for each of the four JJs in the circuit.
Upon reducing the second-order odes to first order, the system
comprises nine coupled ODEs. The remaining currents in the
circuit can be obtained from

i4 = β−1
4 (δ3 − δ4) + ib3 − idi,

i3 = β̄−1[β1(δ2 − δ3) + β2(δ1 − δ3 − 2πφ) + β1 β2 ib1]

+ ib2 + ib3 − i4 − idi,

i2 = 1

β1 + β2
(δ1 − δ2 − 2πφ)

+ β1

β1 + β2
(ib1 + ib2 + ib3 − i3 − i4 − idi ),

i1 = ib1 + ib2 + ib3 − i2 − i3 − i4 − idi. (B2)

APPENDIX C: OBTAINING THE PHENOMENOLOGICAL
MODEL IN DIMENSIONLESS UNITS

In this Appendix, we begin with slightly different and more
explicit variable names than used in the main text. We proceed
with cluttered notation through the derivation to reduce ambi-
guity, and all notation will be simplified at the end. The key
dynamical variable of each dendrite is the integrated current
in the DI loop, Idi (see Fig. 26). The foundational postulate of
this work is that time evolution of this quantity can be captured
in a phenomenological model of the form

d Idi

dt
= Ifq Rfq(�r, Idi; Ib) − Idi

τdi
, (C1)
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where Ifq = �0/Ldi is the current associated with each fluxon,
Rfq is the rate of fluxon production as a function of �r, the
flux applied to the receiving loop, and Idi, the current accumu-
lated in the integration loop. τdi = Ldi/Rdi is the time constant
governing the leak of the integrated signal. As in Appendix A,
we convert this equation to dimensionless units:

βdi
d idi

dτ
= rfq(φ, idi; ib) − αdi idi. (C2)

The dimensionless parameters idi, βdi, αdi, and τ have been de-
fined in Eq. (A2). The dimensionless rate of fluxon production
is given by

rfq = Rfq

ωc/2π
, (C3)

with ωc = 2πRjIc/�0.
Each dendrite in the system will obey an equation of the

form of Eq. (C2), and knowledge of the system is complete
when the values of idi for all dendrites are obtained. However,
to solve the complete system of coupled ODEs, we need to
calculate how the values of idi from input dendrites convert to
coupling flux in the receiving dendrite. Thus the next step is to
determine the total applied flux to the DR loop of dendrite i in
terms of the values of idi present in the input dendrites, which
we index with j. To make space for indices, we move the part
labels to superscripts.

The total applied flux to the DR loop of dendrite i is

�dr
i = Mdr|dc

i Idc
i . (C4)

The notation Mdr|dc
i refers to the mutual inductance coupling

from the DC loop to the DR loop on dendrite i. Explicitly,
Mdr|dc

i = kdr|dc
i (Ldr

i Ldco
i )1/2, with kdr|dc

i the transformer ef-
ficiency. In Eq. (C4), Idc

i is the net induced current in the
collection coil input to dendrite i. This current obeys the
differential equation

d �dc
i

dt
− Ldc

i

d Idc
i

dt
= 0, (C5)

which can be integrated to obtain

Idc
i = 1

Ldc
i

�dc
i , (C6)

where Ldc
i = Ldcp

i + Ldco
i + ∑n

j=1 Ldc
j , with Ldc

j the inductance
of the transformer input to the DC coil connecting dendrite
j to dendrite i, Ldco

i the output inductance of the DC loop,
which is the input to the transformer to the DR loop, and Ldcp

i
any additional parasitic inductance on the DC coil. The sum
is over the n inputs to the DC loop of dendrite i. The total flux
applied to the DC loop is

�dc
i =

n∑
j=1

Mdc|do
j Idi

j , (C7)

with Mdc|do
j = kdc|do

j (Ldc
j Ldo

j )1/2. Inserting Eq. (C7) into
Eq. (C6), we have

Idc
i = 1

Ldc
i

n∑
j=1

kdc|do
j

(
Ldc

j Ldo
j

)1/2
Idi

j . (C8)

Now inserting Eq. (C8) into Eq. (C4), we obtain

�dr
i = kdr|dc

i

(
Ldr

i Ldco
i

)1/2

Ldc
i

n∑
j=1

kdc|do
j

(
Ldc

j Ldo
j

)1/2
Idi

j . (C9)

We now define the dimensionless quantities

si ≡ idi
i = Idi

i

Ic
,

φi ≡ φdr
i = �dr

i

�0
,

Ji j ≡ kdr|dc
i kdc|do

j

2π

(
βdr

i βdco
i βdc

j βdo
j

)1/2

βdc
i

, (C10)

where the various β parameters are related to the inductances
as in Eq. (A2). For simplicity of notation we also specify
βdi

i → βi and rfq → r, and we drop the subscript i. We can
now recast the phenomenological model of Eq. (C2) in its final
form:

β
ds

dτ
= r(φ, s; ib) − α s, (C11)

where the coupling flux from the n dendrites indexed by j into
dendrite i is given by

φi =
n∑

j=1

Ji j s j . (C12)

Equations (C11) and (C12) are the complete phenomeno-
logical model of a system of coupled superconducting loop
dendrites. The Ji j are coupling parameters that can be chosen
across a broad range in the circuit layout. To extend the model
to account for neurons, certain dendrites are assigned to be
somas, wherein a transmitter circuit is activated and light is
produced when the value of s reaches a specified threshold.
The times of these threshold events are spike times and lead
to synapse events on that neuron’s downstream synapses. To
extend the model to account for synapses, certain dendrites
are assigned to receive input flux from an SPD as in Eq. (6) at
a time corresponding to the input neuron’s spike times plus a
delay to account for the activity of the transmitter circuits and
light sources, as discussed in Appendices E and F.

APPENDIX D: ADDITIONAL DATA COMPARING
PHENOMENOLOGICAL AND CIRCUIT MODELS

Table I relates to Fig. 6, Table II relates to Fig. 7, and
Table III relates to Fig. 8. Figure 27 shows further data from
square pulse driving functions. The data points come from
cases of 10, 20, 40, 80, and 160 square pulses. The x axis
is the duration of the simulated time.

APPENDIX E: RATE EQUATIONS FOR
THE TRANSMITTER LIGHT SOURCE

To accurately model a superconducting optoelectronic loop
neuron, the formalism of the computational circuitry—the
dendrites—must be accompanied by a treatment of the trans-
mitter circuit and light source that produce photons when
a soma reaches threshold. We begin by treating the light
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TABLE I. Values obtained from the simulation of Fig. 6, the case
of the linear ramp input with 100 ps time step.

βdi/2π τdi χ 2 tode/tsoen

102 10 ns 6.76×10−5 1.40×103

102 50 ns 8.01×10−5 1.29×103

102 250 ns 9.95×10−5 1.17×103

102 1.25 µs 8.14×10−5 1.16×103

103 10 ns 3.83×10−6 1.78×103

103 50 ns 5.07×10−6 1.59×103

103 250 ns 1.35×10−6 1.71×103

103 1.25 µs 9.78×10−7 1.37×103

104 10 ns 2.44×10−6 3.29×103

104 50 ns 1.37×10−6 2.90×103

104 250 ns 7.26×10−7 2.48×103

104 1.25 µs 8.75×10−7 2.20×103

emitters themselves in a rate-equation framework and sub-
sequently consider the transmitter circuit that will provide
current to the emission medium. We consider two types of
light emitters: quantum dots and silicon emissive centers. The
quantum dots we have in mind are group III-V self-assembled
dots grown by molecular beam epitaxy or metallorganic
chemical vapor deposition. Such emitters have the advantages
of high efficiency and fast radiative lifetime. However, for
the application at hand scalable manufacturing and integra-
tion with semiconductor and superconductor electronics are
crucial considerations, and III-V light emitters have a long
history of difficulty integrating with silicon. The quantum dot
model is also applicable to group IV, Ge-based quantum dots
[100], which may prove adequate for the present application.
We additionally consider a rate-equation model of silicon
emissive centers, as they are easy to fabricate and integrate
with electronics, although to date their efficiency is low.

1. Quantum dots

The areal density of quantum dots is nD (600/µm2). We
define the concentration (number per area which can be con-
verted to volume) in the uncharged, unpopulated, ground state

TABLE II. Values obtained from the simulation of Fig. 7, the
case of the square pulse inputs with 100 ps time step.

βdi/2π τdi χ 2 tode/tsoen

102 10 ns 3.32×10−4 1.66×103

102 50 ns 1.86×10−4 1.48×103

102 250 ns 1.17×10−4 1.69×103

102 1.25 µs 7.87×10−5 1.49×103

103 10 ns 6.53×10−5 2.31×103

103 50 ns 2.20×10−5 2.00×103

103 250 ns 1.74×10−5 1.53×103

103 1.25 µs 1.82×10−5 1.62×103

104 10 ns 4.06×10−5 2.77×103

104 50 ns 1.12×10−5 2.47×103

104 250 ns 1.04×10−5 2.11×103

104 1.25 µs 9.18×10−7 1.87×103

TABLE III. Values obtained from the simulation of Fig. 8, the
case of square pulse inputs with 1 ns time step.

βdi/2π τdi χ 2 tode/tsoen

102 10 ns 3.60×10−2 5.09×103

102 50 ns 2.34×10−2 5.43×104

102 250 ns 2.70×10−2 1.41×104

102 1.25 µs 2.45×10−2 1.48×104

103 10 ns 2.84×10−3 1.75×104

103 50 ns 9.25×10−4 1.41×104

103 250 ns 2.50×10−4 >4×104

103 1.25 µs 1.20×10−4 1.37×104

104 10 ns 2.32×10−3 2.54×104

104 50 ns 6.62×10−4 2.82×104

104 250 ns 3.07×10−4 2.14×104

104 1.25 µs 1.72×10−4 1.92×104

as n0. The concentration that have trapped a hole is np
1, while

the concentration that have a trapped electron is nn
1. The

concentration that have trapped a hole and an electron is n2.
Assuming quantum dots are not created or destroyed during
operation, we have

nD = n0 + np
1 + nn

1 + n2. (E1)

FIG. 27. Summary of errors in comparing the phenomenological
model to the circuit equations as a function of the simulated time,
Tsim. In these simulations, τdi = 250 µs, and the drive signals were
random square-pulse inputs with 10, 20, 40, 80, and 160 pulses.
(a) The values of χ 2 for several values of time step and integration
loop inductance. (b) The ratio of required time for the computation.
tsoen is the time required to step through the phenomenological model,
while tode is the time required to solve the system of circuit ODEs.
The longest simulation treated Tsim = 12.32 µs of simulated time.
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The population of quantum dots in these states is modeled by
the following rate equations:

d n0

dt
= −n0 p cp

01 − n0 n cn
01 + n2 e20,

d nn
1

dt
= n0 n cn

01 − nn
1 p cp

12,

d n2

dt
= nn

1 p cp
12 + np

1 n cn
12 − n2 e20. (E2)

In Eqs. (E2), cp
01 is the capture coefficient for an unpopulated

dot to obtain a hole, and cn
01 is the capture coefficient for an

unpopulated dot to obtain an electron. The quantities cp
12 and

cn
12 are defined analogously, and e20 is the emission proba-

bility, related to the radiative lifetime by τrad = 1/e20. The
populations of free electrons and holes in the semiconductor
medium are given by

dn

dt
= ηinj I

q VLED
− n0 n cn

01 − np
1 n cn

12

− vs ALED

VLED
n − (Cn n2 p + Cp p2 n),

d p

dt
= ηinj I

q VLED
− n0 p cp

01 − nn
1 p cp

12

− vs ALED

VLED
p − (Cn n2 p + Cp p2 n). (E3)

In Eqs. (E3), ηinj is the injection efficiency, which could be de-
termined by a spatial carrier transport model, vs is the surface
recombination velocity, ALED is the surface area of the LED,
VLED is its volume, and Cn and Cp are the Auger recombination
coefficients. Throughout Eqs. (E2), np

1 can be eliminated with
np

1 = nqd − n0 − nn
1 − n2.

The rate of photon production from electroluminescence
under current injection is given by

dNph

dt
= VLED e20 n2(t ). (E4)

The total number of photons emitted is obtained by integrat-
ing:

Nph = VLED e20

∫ t f

t0

n2(t )dt . (E5)

The primary quantity of interest for our application is the
efficiency of light production. In the context of the present
model, we can define the efficiency as the number of pho-
tons generated divided by the number of electron-hole pairs
injected into the structure:

ηi = Nph

Neh
, (E6)

where Neh is the total number of electron-hole pairs injected
into the intrinsic region of the diode.

To simulate the QDs we use a radiative lifetime of 1 ns,
giving e20 = 1 GHz. The capture coefficients are expected to
be quite fast for quantum dots, and we take c01 = c12 = 10−10

m3/s. The precise values of c01 and c12 have only minor
impact on the numerical results as the capture rates are always
much smaller than the recombination times. For the parame-
ters governing nonradiative recombination, we vs = 2.5×103

cm/s [101] and Cn = Cp = 7×10−30 cm6/s [102].

The system of ODEs given by Eqs. (E2) and (E3) was
again solved using solve_ivp. Complete analysis of these
light sources is beyond the scope of the present work. The
important takeaway is that the efficiency of the source can
be quite high, provided the number of carriers injected is
commensurate with the number of dots in the diode. For this
spiking neuromorphic application, we are interested in cases
wherein an initial pulse of electrons and holes is injected into
the diode and left to decay. If the pulse of injected carriers con-
tains appreciably more electrons and holes than the number
of quantum dots, the excess carriers recombine nonradiatively
through surfaces or Auger before the populated dots have time
to emit photons and trap additional carriers. Thus, for a neuron
to efficiently produce light upon reaching threshold, the light
source must have a number of quantum dots that is chosen
in accordance with the number of synapses that are intended
to receive photons, and the transmitter circuit that injects the
light source must be designed to inject the appropriate number
of electrons and holes in a brief burst of charge. Such a trans-
mitter circuit is summarized in Appendix F. Time-domain
simulations of quantum dots being driven by such a driver
circuit will be presented in that Appendix. First, we briefly
introduce the rate equation model of silicon emissive centers.

2. Silicon emissive centers

We can expand the quantum dot model to treat silicon
emissive centers. A similar model was presented in Ref. [103],
but in that work, steady state emission was investigated to
seek a continuous-wave laser. He we require the full dy-
namical equations to investigate transient behavior. The total
concentration of the particular emissive center of interest is
nD. We define the concentration (number per volume) in the
uncharged, unpopulated, ground state as n0. The concentration
that have trapped a hole is n1. The concentration that have
trapped a hole and an electron is n2. Following Ref. [103], we
focus on W centers [22] and assume a hole is always trapped
before an electron. Assuming emissive centers are not created
or destroyed during operation, we have

nD = n0 + n1 + n2. (E7)

The equations governing the population of emissive centers
are

dn0

dt
= −n0 p c01 + (nD − n0 − n2)c01k01 + n2 e20,

dn2

dt
= −n2 (e20 + c12 k12) + (nD − n0 − n2) n c12. (E8)

In Eqs. (E8), c01 is the capture coefficient for an unpopulated
center to obtain a hole. As was argued in Ref. [103], W
centers appear to always trap a hole before an electron. The
capture coefficient for trapping an electron after the center
has been populated with a hole is c12. e20 is the emission
coefficient. The emission coefficients are related to the capture
coefficients through the relations

e10 = c01 k01 = c01
n∗

0n∗
c

n∗
1

,

e21 = c12 k12 = c12
n2

1n∗
c

n∗
2

. (E9)
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Asterisks refer to equilibrium values. The relations can be
further specified by

k01 = n∗
0n∗

c

n∗
1

= Nv

gn
e−Eh/kT ,

k12 = n∗
1n∗

c

n∗
2

= Nc

ge
e(Ee−Eg)/kT . (E10)

Here Nv and Nc are the valence and conduction band densities
of states, gn and ge are the degeneracies of the states of the
emissive center, Eg is the band gap, and Eh and Eg − Ee are the
hole and electron binding energies. The energy of the emitted
photon is Ee − Eh. For the case of the W center, this equals
1.018 eV. The top of the valence band is set to zero energy.
See Ref. [104], Ch. 5 for further explanation.

In the second of Eqs. (E8), the term e20 + c12 k12 plays
a prominent role in determining the efficiency of emission.
This term represents competition between emission (e20) and
release of the electron in the bound exciton back to the con-
duction band (c12 k12). The ratio e20/(c12 k12) is roughly
105 at 4.2 K, so emission is much more likely than exciton
dissociation at this temperature.

In addition to the rate equations for the emissive center
populations, the model for Si light sources should include
the effects of a population of nonradiative centers that will
inevitably be produced when the implants for the emissive
centers are performed. Currently, knowledge of the number
of different types of nonradiative centers, their capture coeffi-
cients, and their lifetimes is limited. For simplicity, we assume
there is one type of dominant nonradiative recombination cen-
ter, we assume it can be populated first by an electron or hole,
we assume the capture cross section is c01, and we assume the
secondary capture of a hole or electron is governed by c12.
We also assume after capture of an electron, hole, or both, no
carriers are ever re-emitted to the bands, which is reasonable
at the low temperatures necessary for the superconducting
electronics present in the system. The total concentration of
nonradiative defects is nnr

D = nnr
0 + nnr

1 + nnr
2 . The population

rate equations for nonradiative centers then can be written as

dnnr
0

dt
= −nnr

0 c01(p + n) + nnr
2 enr

20,

dnnr
2

dt
= −nnr

2 enr
20 + c12

(
nnr

D − nnr
0 − nnr

2

)
(p + n). (E11)

The coefficients ci j are different here than in the emissive
center equations, but we expect them to be fast, so this is of
little consequence. The lifetime of the nonradiative transition
of the center (which may be a trap-assisted Auger process or,
more likely, phonon recombination) is given by τnr = 1/enr

20.
Equations (E8) and (E11) are coupled to the charge-carrier

rate equations. For the electron concentration, we have

dn

dt
= ηinj I

q VLED
− (nD − n0 − n2) n c12 + n2 c12 k12

− nnr
0 n c01 − (

nnr
D − nnr

0 − nnr
2

)
n c12

− vs ALED

VLED
n − (Cn n2 p + Cp p2 n), (E12)

and for the hole concentration, we have

d p

dt
= ηinj I

q VLED
− n0 p c01

− nnr
0 p c01 − (

nnr
D − nnr

0 − nnr
2

)
p c12

− vs ALED

VLED
p − (Cn n2 p + Cp p2 n). (E13)

To numerically solve Eqs. (E8), (E11), (E12), and (E13),
we need to specify c01, c12, and e20. For the process of pho-
ton emission, related to e20, we take e20 = τ−1

ec = 1/40 ns =
2.5×107 [22,105]. To our knowledge, c01 c12 have not
been measured. We take c01 = 5×10−14 m3/s and c12 =
1.8×10−11 m3/s. These numbers are motivated by a simple
geometrical model as well as a hydrogenic model of an impu-
rity screened by the dielectric [106]. Numerical studies show
that the results are not sensitive to these values across several
orders of magnitude.

To specify the nonradiative terms in the rate equations, we
take the Auger recombination coefficients as Cn = 2.8×10−31

cm6/s and Cp = 1×10−31 cm6/s. These are the values at
300 K [102], and they will reduce slightly at low temperature
(scaling with temperature as T 0.6 [107]), but this is not appre-
ciable given the low level of accuracy in the present model,
so we ignore the temperature dependence of Auger and use
300 K values. The surface recombination can be made quite
low in properly treated Si and Si-SiO2 interfaces, with values
as low as 0.25 cm/s in the literature [108]. Throughout these
simulations we use vs = 2.5 cm/s.

Time-domain simulations of silicon emissive centers based
on Eqs. (E8), (E11), (E12), and (E13) provides a similar
message to that learned for quantum dots: the emitters will
populate rapidly, but if the level of carrier injection is too
large, excess carriers will go to waste. In the case of sili-
con emissive centers, loss is not due to surfaces or Auger,
but rather to nonradiative centers. The relative concentration
of nonradiative centers formed during the ion implantation
used to realize W centers is likely to be a crucial quantity
determining the ultimate efficiency of such a light source.
Given the competing populations of emissive and nonradiative
centers, it is not sufficient to inject the same number of carri-
ers as emissive centers and desired photons; one must inject
enough carriers to populate both the nonradiative centers and
the emissive centers. However, if the concentration of non-
radiative centers can be limited to something like 10 times
the concentration of emitters, total light-production efficiency
may stay within a useful range.

We next describe transmitter circuits capable of providing
brief pulses of injected current to produce the desired number
of photons necessary to serve a neuron’s downstream synaptic
connections.

APPENDIX F: CIRCUIT EQUATIONS FOR
THE TRANSMITTER DRIVER CIRCUIT

The transmitter circuit under consideration is shown in
Fig. 28. The circuit combines JJs, an hTron thresholding el-
ement [23], MOSFETs (PMOS and NMOS), and an LED.
The hTron serves as the interface between the superconduct-
ing and semiconducting domains, enabling low-voltage JJs to
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FIG. 28. Diagram of the transmitter circuit with relevant components labeled. (a) The neuronal integration loop (NI) and tron thresholding
element. (b) The superconductor-semiconductor interface where the tron switches the first inverter. (c) The inverter pair that produces the
digital drive signal. (d) The LED driver MOSFET and the LED itself.

switch a CMOS inverter. The basic operation of the circuit
is as follows. Signal moves from left to right. When the JJ
in the neuronal integration (NI) loop has added sufficient
current to drive the hTron gate above threshold, the hTron
channel switches from zero resistance to high resistance. The
current bias to the hTron channel (Ib) is thus shunted from
the hTron channel (Itron) to the passive reset branch (Lr,
rr), temporarily inducing a voltage at node V1 sufficient to
switch the first CMOS inverter (M1, M2). The two inverters
serve to produce a digital signal with voltage Vdd applied to
MOSFET MLED when the neuronal threshold is reached and
the hTron switches. This digital behavior ensures the super-
conducting components are well separated from the LED,
providing consistent current biasing of the LED decoupled
from the performance of the thresholding element. The LED
driver MOSFET (MLED) can then be designed with a width-to-
length ratio and doping level commensurate with the number
of photons desired from the LED, which is chosen based on
the number of synaptic connections made by the neuron. MLED

will deliver a pulse of current to the LED while the hTron is
keeping the voltage V1 high, and when that voltage drops as
the passive reset circuit performs its operation, the current to
the LED will cease. As is shown below, the MOSFETs are
active for a few nanoseconds. With this qualitative description
of the circuit operation in mind, we now present the circuit
model used in this work to provide a phenomenological treat-
ment of the behavior.

To treat the thresholding component where the current
added to the integration loop drives an hTron above threshold,
we model the hTron as a device that switches from a zero
resistance to a high-resistance state when a certain current
is reached. Accurately modeling the electrothermal dynamics
of the hTron is difficult and will do little to improve the
model for the present purpose, so a simple resistive switch is
employed.

To simulate the behavior of the MOSFETs, we
use a charge-control model [109] with current-voltage

characteristics given by

Ids(Vds,Vgs) = W μnci

L

×
{

(Vgt − Vds/2)Vds, for Vds � Vsat,

V 2
gt/2, for Vds > Vsat.

(F1)

Vgt is the voltage above threshold: Vgt = Vgs − Vt . We assume
the drain-source current is zero for Vgs < Vt , i.e., we ignore
subthreshold behavior. In this model, Vsat = Vgt. We treat the
LED with a conventional diode model of the form

ILED = eA[(Dp/Lp)pn + (Dn/Ln)np]

× [exp(eV/kBT ) − 1]. (F2)

In the present work, we have considered two classes of LEDs.
One is based on silicon emissive centers [22], as have been
considered in the context of SOENs due to their unique
process compatability and feasibility for enabling low-cost
manufacturing of large systems. The other is based on III-V
quantum dots, specifically with material parameters for In-
GaAs quantum dots on a GaAs platform. For integration with
SOENs, wafer bonding of such substrates may be employed.
The model presented here can take into account either of
these light sources. Both will obey an equation of the form
given by Eq. (F2), with the diode placed in parallel with a
capacitor and a resistor as shown in Fig. 28. In reality the
capacitance and parasitic shunt resistance will both be func-
tions of applied voltage, but for simplicity, we fix these values.
Based on the source rate equation model in Appendix E, we
know that we would like to have one emitter (quantum dot
or emissive center) per photon to be generated by the light
source per neuronal firing pulse. We assume the emitters will
have a specified density ρec, so the value of the capacitance
will depend on the number of emitters through the geometry
of the junction. The number of emitters is in turn specified
by the number of synaptic connections made by the neuron.
Therefore we consider two values of capacitance per unit
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FIG. 29. Time traces from the transmitter circuit. (a) The resistance of the tron as a function of time. (b) The voltages of the MOSFETs.
(c) The currents in the tron and related circuit elements. (d) Currents through the LED. (e) Temporal zoom of the MOSFET voltages.
(f) Temporal zoom of the LED currents. (g) Currents into the LED and capacitor when different numbers of quantum dots are present in
the light source.

area (Ca = 1×10−7 and 1×10−5 F/µm2) to cover a range of
values that may be found in various devices. The value of the
capacitor, CLED, is determined by CLED = Ca Nph/ρec with ρec

specified as a number of emitters per unit area. Given these
models for the hTron, MOSFETs, and LED the following
circuit equations can be derived:

d V1

dt
= Ib − I1 − I3

CI
,

d V2

dt
= −1

CI
[Ip(V2 − Vdd,V1 − Vdd ) + In(V2,V1)],

d V3

dt
= −1

CD
[Ip(V3 − Vdd,V2 − Vdd ) + In(V3,V2)],

d V4

dt
= 1

CLED

[
In(Vdd − V4,V3) − ILED(V4) − V4

rLED

]
,

d2 I1

dt2
= Ib − I1 − I3

LtCI
− ṙt

Lt
I1 − rtI1

Lt

d I1

dt
,

d I3

dt
= rt

Lr
I1 + Lt

Lr

d I1

dt
− rr

Lr
I3. (F3)

Here, Ip(Vds,Vgs) and In(Vds,Vgs) are the PMOS and NMOS
forms of Eq. (F1) (i.e., current flows from source to drain in
PMOS and drain to source in NMOS), CI is the capacitance of

an inverter, and CD is the capacitance of the MOSFET driver to
the LED. The time-dependent resistance of the hTron is rt and
its temporal derivative is ṙt . Time domain circuit simulations
of the transmitter model given by Eqs. (F3) have been carried
out using solve_ivp. A sample of results is given in Fig. 29.
The resistance pulse of the hTron is shown in Fig. 29(a), and
the relevant voltages are shown in Fig. 29(b). The currents
are shown in Figs. 29(c) and 29(d). A temporal zoom of the
voltage traces is shown in Fig. 29(e), where the MOSFET
threshold is shown by the grey dotted line. The gates of the
first inverter stage quickly rise above threshold, and a nearly
ideal square pulse is delivered to the gate of MLED, the driver
MOSFET to the light source, as can be seen in the temporal
zoom of the LED currents of Fig. 29(f). It is for this reason that
the two-inverter digital circuit is employed. After the voltage
to the first inverter drops below threshold, MLED quickly shuts
off, and the voltage across the LED block decays with the RC
time constant of that circuit. The resistance, rLED, has been
chosen to establish a 100 ns time constant, and the actual value
in a fabricated circuit will need to be investigated.

In the temporal zooms of Figs. 29(e) and 29(f), the time
at which the hTron switches to the resistive state is labeled
(15 ns), and the total delay of the circuit from the time of the
resistance to the time that current begins to enter the diode
is 5 ns, with delays accrued due to charging up the various
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FIG. 30. Time traces for the light source model. [(a)–(d)] The quantum-dot model. [(e)–(i)] The emissive center model. (a) The current
pulse injected from the transmitter circuit. (b) The populations of quantum dots in the ground and excited states normalized to the concentration
of quantum dots in the LED volume. (c) The concentrations of free electrons and holes normalized to the total number injected into the
LED volume. (d) The simulated electroluminescence signal, the cumulative distribution, and a histogram of sampled emission times. (e) The
current pulse injected from the transmitter circuit. (f) The populations of emissive centers in the ground and excited states normalized to the
concentration of emitters in the LED. (g) The populations of nonradiative recombination centers in the ground and excited states normalized
to the concentration of nonradiative recombination centers in the LED. (h) The concentrations of free electrons and holes. (i) The simulated
electroluminescence signal, the cumulative distribution, and a histogram of sampled emission times.

MOSFET and LED capacitances. The MOSFET model
treated here assumed a 1 µm minimum feature size, com-
patible with the cleanroom at NIST, and shorter delays are
achievable with the reduced capacitance of advanced CMOS.
Full circuit simulations have not been run for MOSFET
models corresponding to contemporary CMOS nodes, but es-
timates indicate the delay will reduce to 2–3 ns.

In running these simulations, the number of quantum dots
or emissive centers was specified (Nqd), and the width-to-
length ratio of MLED as well as the channel doping of that
MOSFET were iterated to obtain the appropriate current injec-
tion to populate that number of emitters. For each value of Nqd,
the area of the diode was calculated based on the density of
emitters, and from this area the capacitance was approximated
using a parallel-plate model. Thus the capacitance increases
linearly with the number of photons required from the source.
Figure 29(g) shows the currents in the LED on a fine temporal
scale with a logarithmic y axis for four values of the number
of emitters ranging from 102 to 105, covering a broad range of
neuron types with varying degree of connectivity. The dashed
curves at early times in the plot correspond to the current
being driven into the LED capacitance (I11 in Fig. 28), while
the solid traces at slightly later times correspond to the current
into the active region of the LED (I13 in Fig. 28). It is evident

that for all cases current must be delivered to the capacitor to
bring the voltage across the LED above threshold before cur-
rent is driven into the diode itself, resulting in approximately
1 ns of additional delay beyond the MOSFET stages.

In the phenomenological model that is the subject of this
work, the current through the diode is used as an input to
the source rate equations. I13 from the transmitter model
is input as the driving current, I , in Eqs. (E3), (E12), and
(E13). The results of these calculations are shown in Fig. 30.
Figures 30(a)–30(d) shows results from the quantum dot rate
equations, while Figs. 30(e)–30(i) shows results from the
emissive center rate equations. In Fig. 30(a), the current in-
jection pulse is shown, while Fig. 30(b) shows the ground-
and excited-state populations as a function of time. The sum
of these two quantities does not return to unity at the end of
the simulation because a finite fraction of the dots remains
in an excited state with a trapped electron or hole. At low
temperature, without a mechanism for decay of these states,
the consequence would be that slightly less injected charge
is required on subsequent pulses to populate the ensemble of
quantum dots with excitons. Figure 30(c) shows the popula-
tions of electrons and holes normalized to the total number of
carriers injected in the simulation. The simulated electrolumi-
nescence is shown in Fig. 30(d). Similar time traces for the
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FIG. 31. All 30 inputs to the nine-pixel classifier.

silicon emissive center model are shown in Figs. 30(e)–30(i),
with the addition of the populations of the nonradiative centers
in Fig. 30(g). The result is very similar to the quantum dot
case, except the longer lifetime of the emissive centers results
in an electroluminescence signal that extends further in time.
In both Figs. 30(d) and 30(i), a histogram of 106 samples
drawn from the respective cumulative distributions are shown
by the dark blue dots.

Only the electroluminescence output from the simulations
enters the phenomenological model. From the electrolumines-
cence signal, the cumulative distribution is formed, and from
this, photon delay times can be sampled. To use these simula-
tions in the phenomenological model under consideration, it is
helpful that the four curves in Fig. 29(g) are essentially scaled
versions of each other. When input to the source rate equa-
tions, the output electroluminescence spectrum is very similar.
When implemented in the phenomenological model code, a
neuron will have a given number of downstream synapses,
and a multiplicative factor is specified to determine how many
photons are generated when the neuron reaches threshold,
which we refer to as Nph. Each time a neuron spikes, Nph

samples are drawn from the electroluminescence distribution
giving Nph values of time delay. These Nph values of time
delay are randomly assigned across the receiving synapses.
Typically, Nph is larger than the number of synapses, so for
each synapse the earliest time from its list is chosen as the
spike time. This behavior is justified based on the binary

response of the single-photon detectors [110] that form the
receivers at each synapse.

While Appendices E and F have been somewhat involved,
the take-away message is simple: when a neuron reaches
threshold, its synapses all receive spike events with times
randomly sampled from the numerically determined proba-
bility distributions. The probability distributions depend on
which light source is chosen, with the primary difference
being the exponential decay time constant set by the life-
time of the radiative emission process. This transmitter circuit
and source design completes the phenomenological treat-
ment. The phenomenological model of the computational
circuits—the dendrites, synapses, and somas—is given by a
leaky-integrator equation, Eq. (2), with a nonlinear driving
function, r(φ, s; ib), and a simple form for coupling between
dendrites, Eq. (3). The phenomenological model of commu-
nication between neurons is simply a probabilistic delay time
drawn from a specified distribution obtained through circuit
and source simulations.

APPENDIX G: NINE-PIXEL DRIVE MATRICES

The full set of 30 inputs to the nine-pixel image-
classification task are shown in Fig. 31. The images are
generated by starting with the ideal letter instances for z, v,
and n. Subsequent variants are generated by letting one pixel
at a time switch its state.
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