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Use of DFT+U+J with linear response parameters to predict
non-magnetic oxide band gaps with hybrid-functional accuracy
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First-principles Hubbard-corrected approximate density functional theory (DFT+U) is a low-cost, potentially
high-throughput method of simulating materials, but it has been hampered by empiricism and inconsistent band
gap correction in transition metal oxides (TMOs). DFT+U property prediction of non-magnetic systems such
as d0 and d10 TMOs is typically faced with excessively large calculated Hubbard U values and difficulty in
obtaining acceptable band gaps and lattice volumes. Meanwhile, Hund’s exchange coupling J is an important
but often neglected component of DFT+U, and the J parameter has proven challenging to directly calculate by
means of linear response. In this paper, we provide a revised formula for computing Hund’s J using established
self-consistent field DFT+U codes. For non-magnetic systems, we introduce a non-approximate technique for
calculating U and J simultaneously in such codes, at no additional cost. Using unmodified QUANTUM ESPRESSO,
we assess the resulting values using two different DFT+U functionals incorporating J, namely, the widely used
DFT + (U − J) and the readily available DFT + U + J. We assess a test set comprising TiO2, ZrO2, HfO2,
Cu2O, and ZnO, and apply the corrections both to metal- and oxygen-centered pseudoatomic subspaces. Starting
from the PBE functional, we find that DFT + (U − J) is significantly outperformed in band gap accuracy by
DFT + U + J, the mean-absolute band gap error of which matches that of the hybrid functional HSE06. ZnO, a
longstanding challenge case for DFT+U, is addressed by means of Zn 4s instead of Zn 3d correction, whereupon
the first-principles DFT + U + J band gap error falls to half of that reported for HSE06 yet remains larger than
that for PBE0.
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I. INTRODUCTION

The electronic band gap of a material is a property of
high importance for semiconductor and photovoltaic applica-
tions. However, attempts to computationally model the band
gap using approximate density functional theory (DFT) are
consistently inaccurate [1]. This inaccuracy arises because
the functionals used, such as the local density approximation
(LDA) and the generalized gradient approximation (GGA),
give rise to self-interaction error (SIE), among other systemic
errors, leading to an underestimation of the band gap. This
can often be partially ameliorated through the use of hybrid
functionals such as HSE06 [2] and PBE0 [3,4]. These func-
tionals are often much more accurate at predicting band gaps
than purely local or semilocal DFT approximations but can
be much more computationally expensive, depending on the
implementation and simulation size. This has motivated the
search for, alongside others discussed in the recent review of
Ref. [5], spatially localized corrections which act upon cost-
effective semilocal DFT and which allow for accurate band
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gap modeling without the need for hybrid-level computational
costs [6–9].

Perhaps the most common correction applied to conven-
tional DFT functionals is the Hubbard-model-inspired method
now widely referred to as DFT+U [10–12], which in its
simplest form effectively adds an energy penalty for par-
tial occupation of predefined sets of localized orbitals. This
method requires the choice of a value for the U parameter
to set the magnitude of the correction. The U value is often
tuned to try and match experimental values, sometimes even
those of quantities that are not ground-state DFT-accessible
observables. This diminishes the first-principles nature of the
DFT methodology and does not allow for the accurate predic-
tion of gaps for less well-characterized or only theoretically
predicted materials, where the band gap values are necessarily
not well known. To avoid the use of ad hoc or empirical U
values, several methods have been proposed for calculating
the U value from first principles, such as the well-known
finite-difference linear response method [13–15]. There, a U
value is calculated in terms of the response of the occupancies
of the localized orbitals to an applied perturbation.

The use of DFT+U has faced many difficulties in prop-
erly modeling transition metal oxide (TMO) band gaps. The
corrective terms of DFT+U are most commonly applied to
predefined pseudo-atomic d orbitals of the metal ion(s) only,
which can still result in a significant band gap underestimation
in d0 or d10 systems [16,17]. The application of DFT+U
to metal orbitals alone also can result in a distortion of the
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geometric structure of the material [18–20]. It has become
more common in recent years to apply U parameters to both
the metal d orbitals and the O 2p orbitals [21–27]; however,
the U corrections calculated with linear response methods
applied to all atoms have then tended to result in a band gap
overestimation [27]. In addition, attempts to calculate the U
with linear response on non-magnetic oxides with nearly full
or empty d orbitals such as ZnO have tended to fail, giving
unreasonably high U values [23,28] or resulting in numerical
instability in the calculations [29,30].

In addition to the Hubbard U correction, Hund’s J correc-
tion has long been incorporated to better account for the effect
of intra-atomic exchange. However, with Hund’s J in this
paper, we additionally target spin-flip exchange, a beyond-
Hartree-Fock effect [31] and therefore a correction for what
can be considered a genuine correlation (multireference) ef-
fect [32]. We refer the reader to Ref. [33] for a discussion
of how different exchange terms relate to Hund’s first and
second rules. In this paper, two different corrective functionals
incorporating U and J parameters were evaluated. The first
is the well-known functional introduced by Dudarev et al.
[34], which is a rotationally invariant simplification of previ-
ous formulations from Refs. [11,35]. This technique involves
combining U and J into an effective parameter Ueff = U − J.
For the sake of brevity, this functional will be referred to as
DFT + (U − J) in this paper, with the brackets emphasizing
that the calculated U and J values are combined into one
parameter for a single energy correction term. The Dudarev
functional was chosen here for its widespread availability and
popularity in both condensed matter physics and solid-state
chemistry.

The second functional, which is more recent and the main
focus of this paper, originated with Himmetoglu et al. [31],
who proposed the use of a DFT + U + J functional with U and
J energy correction terms separately applied using calculated
U and J parameters, together with a method for computing
J. Linscott et al. [36], working within the minimum-tracking
linear-response formalism, arrived at a factor-of-two smaller
definition of Hund’s J required for consistency with the def-
inition of Hubbard U. This latter definition has been shown
to provide very accurate band gaps for MnO [36] and TiO2

[37] when used with the DFT + U + J functional of Ref. [31].
In this paper, we combine the lessons of Refs. [31,36,37],
calculating Hund’s J using the conventional self-consistent
field (SCF) finite-difference linear-response approach (instead
of minimum tracking), as available in standard QUANTUM

ESPRESSO [38], but using the latter prefactor for Hund’s J, as
required by consistency considerations, as we will explain.

This functional will be referred to in this paper as DFT +
U + J following the nomenclature of Ref. [31], with the term
emphasizing that the U and J energy corrections are both
added separately to each other as two distinct terms in the
total energy. We emphasize that there is a long history of
incorporating Hund’s J parameter terms in the DFT+U fam-
ily of functionals, indeed going back to the very origins of
Hubbard-corrected DFT. This wider class of functionals, in-
cluding but certainly not limited to the functionals introduced
in Refs. [11,35], are usually referred to by the names given to
them by their originators, e.g., LSDA+U, and we emphasize
that, by using the term DFT + U + J, we refer exclusively

to the functional given that name in Ref. [31]. There have
also, of course, been many other extensions and applications
of the basic concept, such as using different double-counting
corrections [39], more modern functional forms [40,41], and
constrained random phase approximation (cRPA) methods
[42,43], and increasingly, calculations including intersite +V
terms are becoming widespread [44]. These diverse tech-
niques are all worthy of further investigation but are outside
the scope of this paper. Our findings are naturally not ex-
pected to be generalizable to any other functional including
Hund’s J apart from the two that we explicitly test, the well-
known Dudarev functional named here DFT + (U − J) and
DFT + U + J.

The simplified rotationally invariant DFT + U + J func-
tional of Ref. [31] can be easily incorporated into any code
that is already capable of DFT+U, and indeed, several codes
including QUANTUM ESPRESSO’s PWSCF [45] and ONETEP [46]
already support DFT + U + J. This functional results, in ef-
fect, from a rederivation of the Dudarev functional, Eq. (2),
in which it is argued that there is an additional energy term,
Eq. (3), proportional to Hund’s J, that is consistent to re-
tain given the starting assumptions and approximations. This
term couples the subspace occupancy matrices of opposite
spins and survives when the (conventional fully localized
limit) double-counting correction is applied. It is furthermore
argued in Ref. [31] that its double-counting approximation
should be neglected because it cannot be represented in terms
of the usual occupancy matrices and is unlikely to be well
represented in the underlying functional to begin with. This
removes a numerically problematic minority spin term from
the final DFT + U + J functional. We refer the reader to the
original Ref. [31] for a comprehensive and very clear account
of how the rotationally invariant DFT + U + J functional is
derived, the extra physical mechanism of spin-flip exchange
(which is beyond Hartree-Fock and therefore arguably clas-
sifiable as correlation [32]) that it captures in addition to
those effects in DFT + (U − J), and its expected effects in
practical calculations (most notably, boosting local moments
in spin-symmetry-broken phases).

For non-spin-polarized systems, it is sufficient to use a
DFT+U code to run DFT + U + J, as shown by Orhan and
O’Regan [37] and as we explain in Sec. II A. Moreover,
by taking this special case of the spin-polarized minimum-
tracking linear-response framework proposed by Linscott
et al. [36], it was found that the linear response U and J
parameters can be computed simultaneously for non-spin-
polarized systems. This method, termed here the γ method,
is described in Sec. II D and is confirmed in this paper to work
just as well within the well-known and long-established SCF
linear-response framework [13,14]. The γ method is used
extensively in this paper to calculate Hund’s coupling J as an
effectively cost-free byproduct of Hubbard U calculations.

While the DFT + U + J method is promising, it has not
been evaluated on many materials, as for example has re-
cently been done for DFT+U with ortho-atomic orbitals by
Kirchner-Hall et al. [27]. Furthermore, while there has been
a vast number of studies involving DFT+U family methods,
including Hund’s J, and how they affect relaxed ionic ge-
ometries, there has also been little investigation into whether
the DFT + U + J methodology (specifically referring to the
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functional of Ref. [31] with first-principles linear-response
parameters) may introduce spurious geometric distortions
into the lattice, as has been known to occur with other
techniques employing U or J corrections, for example, in
Refs. [18–20,47]. This also partially motivates this paper, in
which we have selected five representative d0 or d10 oxides
as a challenging test set on which to benchmark and evaluate
the DFT + U + J methodology against more common correc-
tion approaches. The materials chosen are TiO2, ZrO2, HfO2,
Cu2O, and ZnO. These materials represent a range of different
crystal structures, band edge characters, and band gap values,
and have been previously studied extensively in experimental
and computational literature. To ensure an accurate and fair
evaluation of functionals, this TMO test set was selected in
advance of the study, and we report in detail separately on
each material.

In this paper, U and J parameters are calculated using the
first-principles SCF linear-response method for each of the
test set materials. The resulting values are then used within
DFT + U + J simulations to evaluate the effect of these cor-
rections on band gaps, effective masses, and cell geometries.
These results are compared against longer-established meth-
ods such as the Perdew-Burke-Ernzerhof (PBE) functional
[48], DFT+U, and DFT + (U − J) based on a PBE starting
point, as well as against hybrid-functional results from the lit-
erature. We find that DFT + U + J yields band gap accuracies
like hybrid functionals such as HSE06, on average, without
causing spurious distortion of crystallographic or band struc-
ture parameters.

II. METHODOLOGY

A. DFT + U + J functional corrections

The Hubbard U correction is an additional energy contribu-
tion that is used to approximately correct for the many-body
SIE, or more generally delocalization error, that is harbored
within specific predefined subspaces in a practical local or
semilocal DFT calculation. The DFT+U energy correction
term takes the form of

EU [n̂Iσ ] =
∑
Iσ

UI

2
Tr[ n̂Iσ (1 − n̂Iσ )], (1)

where n̂Iσ represents the projected Kohn-Sham (KS) occu-
pancy matrix for spin σ and the subspace indexed I , and U
is an energy value that sets the magnitude of the correction.
This reduces the degree of delocalization by adding an energy
penalty for non-integer occupancy matrix eigenvalues in the
chosen subspace, which is spatially localized.

The U value can be selected by various methods, such as
fitting to experiment or reflecting past literature values. The
linear response method, covered in the next section, allows for
this value to be calculated from first principles in situ for the
material of interest, even self-consistently so [15], removing
the reliance on empirical values.

Hund’s J may be thought of as another correction parame-
ter, on the same expansion order as U and arguably a required
counterpart to U [36], which corrects for exchange effects
that are ill-described by the approximate local or semilocal
functional. The inclusion of J within DFT + U + J tends to

promote high-spin states [31]; however, the effect remains
relevant to the energy and potential of ultimately non-spin-
polarized systems [37]. Indeed, in the Hubbard Hamiltonian
context, Hund’s exchange contribution may be separated into
terms that are quadratic separately in the total density and spin
density [49].

The J parameter is commonly applied by combining U and
J into a U − J parameter, as in the formalism of Dudarev
et al. [34], which is a rotationally invariant simplification
of previous formulations from Refs. [11,35]. In this method,
which we will refer to as DFT + (U − J), the J value is simply
subtracted from the U value and implemented as an effective
U of (U − J), giving

EU−J[n̂
Iσ ] =

∑
Iσ

UI − JI

2
Tr[ n̂Iσ (1 − n̂Iσ )]. (2)

However, there are also ways to implement the J correction
separately, as an explicit term coupling unlike spin densities.
The DFT + U + J functional of Ref. [31] adds on a further
term of the form (we neglect the minority term, as in that work
and as is becoming customary):

EJ[n̂
σ ] =

∑
Iσ

JI

2
Tr[ n̂Iσ n̂I−σ ], (3)

where J is an energy value that scales the magnitude of the
exchange correction applied to a subspace I. This superscript
is dropped in subsequent equations for the sake of readability.
This implementation was shown in Refs. [36,37] to provide
accurate band gaps with first-principles parameters for MnO
and TiO2, respectively.

The DFT + U + J functional evaluated in this paper can
be activated directly using some codes such as QUANTUM

ESPRESSO and ONETEP, but as was shown in Ref. [37], in
the specific case of non-spin-polarized systems (when unper-
turbed), the DFT + U + J functional can be invoked in codes
with no Hund’s J implementation at all. This involves replac-
ing the applied U parameter with an effective U of Ufull =
U − 2J and simultaneously applying a subspace potential shift
of α = J/2. As shown in that paper, the result is mathemati-
cally identical (in the energy and its derivatives, e.g., potential
and forces) to applying separate U and J corrections with the
original values defined in DFT + U + J [the combination of
Eqs. (2) and (3)].

B. Fundamental considerations: Accessibility of band gaps and
the paired nature of Hubbard U and Hund’s J corrections

As we focus principally on the predictive capacity of
DFT+U and DFT + U + J for the fundamental band gap,
in comparison with other methods such as hybrid function-
als, it is worth considering carefully whether this quantity is
accessible in principle. For most of the history of practical
KS DFT calculations, although the discussion of the KS gap
was commonplace, it was supposed that any agreement with
experiment was, at best, fortuitous. This is because, while
DFT is a ground-state theory, the fundamental gap is a charged
excited-state property that formally requires the removal and
addition of electrons.
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In recent years, however, it has become apparent that the
fundamental band gap is a valid quantity to associate with the
single-particle eigenspectrum from a DFT calculation after
all, but only under specific conditions. Namely, when con-
sidering a solid with a well-converged k-point sampling and
when using not KS DFT but generalized KS (GKS) DFT, it
can be shown that an explicit addition-and-removal calcula-
tion will give the same fundamental band gap as that extracted
from the gap in the GKS eigenspectrum. A GKS calculation
requires the orbitals to provide the domain (degrees of free-
dom) for the calculation, not the density. Rather than being
an added complication, in practice, this has been the most
commonplace mode in which DFT is used since the very
beginning. For this distinction to have a discernible effect,
the potential needs to be non-multiplicative, i.e., it should
be a non-local potential such as that provided by DFT+U,
DFT + U + J, or indeed hybrid functionals.

A GKS calculation is not enough to open the eigenspec-
trum gap to a reasonable value, which at least in density-only
DFT, even if exact, requires the post hoc addition of the
derivative discontinuity to the eigenspectrum gap. Several
families of orbital-dependent functionals, however, includ-
ing hybrids and DFT+U, can incorporate a reasonably good
approximation to the necessary derivative discontinuity di-
rectly with their reference system (which, unlike that of KS
DFT, is partially interacting), so that the effect of such in-
teractions manifests directly in the GKS eigenspectrum gap.
As a DFT+U, DFT + (U − J), or DFT + U + J calculation
(on an extended system) meets the necessary conditions, the
fundamental gap from such a calculation is both comparable
in principle and in practice with the fundamental band gap,
noting of course that there would be several additional effects
required for perfect comparability, such as zero-point and
finite-temperate phonon corrections, which are not typically
included. As the abstract considerations mentioned here are
beyond the scope of this paper, for further details on the
domain of physical validity of GKS band gaps, we refer the
reader to the more comprehensive Refs. [1,50–56].

The abstract justifiability of a given formalism for calcu-
lating the band gap does not, of course, imply that it will
do so accurately, numerically speaking. This brings us to the
question of why it may be advantageous, or even in princi-
ple necessary, on physical grounds, to incorporate Hund’s J
corrections on the same footing as Hubbard U corrections.
On practical grounds, computing and incorporating J is cost
free when using the γ method discussed in Sec. II D, but
that is a somewhat lesser consideration. Within the spin-
polarized linear-response formalism as detailed in Ref. [36],
it becomes clear that J is a parameter on perfectly the same
footing as Hubbard U, in terms of powers of the spin-density
and pairing of orbital indices. Like Hubbard U, Hund’s J
within the present context measures, for predefined subspaces,
a supposed pathology of the approximate functional. This
pathology is an energy-magnetization curvature normally re-
ferred to as static correlation error [52] notwithstanding that
exchange mechanisms may also give rise to magnetization-
squared behavior [33]. Together, Hubbard U and Hund’s J
measure different aspects [57] of the deviation from the well-
known flat-plane condition of exact DFT [54]. Specifically,
U and J are computed while supposing that the flat-plane

condition holds approximately for the subspace undergoing
analysis and by ensuring that curvature contributions that are
not directly related to interactions are subtracted off from their
values (as interaction is to be corrected, so only interaction
is measured). Correspondingly, it is shown in Ref. [31] that
the interaction terms that U and J premultiply also appear
on the same order, in terms of powers of the spin-density
and pairing of orbital indices. Hubbard U and Hund’s J can
be thought of as two sides of the same coin of spin-indexed
linear-response theory or, rather more precisely, as measuring
the curvatures across two different slices of the surface formed
by the interaction energy as a function of both the subspace
occupancy and subspace spin magnetization.

What our results will show is that, while the spin mag-
netization naturally vanishes in closed-shell oxides, the
energy-magnetization curvature measured by J can remain
large, even for O 2p orbitals. This is a feature of the approx-
imate functional under scrutiny, and it is an indicator of its
ill description of multireference effects. In summary, there
is a non-zero Hund’s J-type error to be measured for this
functional for these closed-shell oxides. Where it comes to
using J, we rely on the landmark work of Ref. [31], where
it was shown that a spin-off-diagonal term proportional to
energy-magnetization curvature survives upon rederivation of
the long-established simplified rotationally invariant DFT+U
functional. This leads to the first-principles DFT + U + J
functional that we use, which ultimately corrects for spin-flip
pair hopping. This correlation effect [32], which is necessarily
approximated in terms of 1-body occupancy matrix products,
is different and additional to the same-spin pair-hopping ex-
change that is already contained and approximated in a similar
way within the DFT + (U − J) functional.

Let us look next at how the addition of Hund’s J modifies
the derivative discontinuity and hence the GKS prediction
of the fundamental gap. For a Mott-Hubbard material with
perfect projection of the same subspace type at both valence
and conduction band edges, such as that provided by 3d-like
Wannier functions, and neglecting self-consistent effects, the
DFT + U derivative discontinuity and band gap opening will
be exactly the corresponding Hubbard U. Using the DFT +
(U − J) functional, this is of course reduced to U − J (reduced
if we assume that J is positive, as it ordinarily is). As shown in
Ref. [37], in DFT + U + J, the gap opening would fall further
to U − 2J, in the absence of magnetization. Taking a more re-
alistic case of vanishing magnetization but looking instead at a
charge-transfer insulator like TiO2, we may suppose perfect O
2p projection at the valence band and perfect Ti 3d projection
at the conduction band. Again ignoring self-consistent effects
and other types of bands that may be present, the band gap
opening will go like the average of the O 2p and Ti 3d U
values in DFT+U and the average of their U − J values in
the case of DFT + (U − J). The situation is more complex
in DFT + U + J due to the occupancy-independent subspace
potential shift of α = J/2, previously mentioned. In this case,
the Hund’s J value of the valence band becomes more dom-
inant, and the band gap will be the average of the U − 2J
values of the two band edge subspaces, together with a further
correction (typically a further reduction) of size (J3d − J2p)/2.

The typically opposing effects of Hubbard U and Hund’s
J on the band gap can be rationalized further by considering
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FIG. 1. Example linear response calculations of (a) the Hubbard U and (b) Hund’s exchange J for a pseudo-atomic Ti 3d orbital subspace
in rutile TiO2.

that positive U indicates convexity in the interaction energy
landscape, while positive J indicates concavity in the same
landscape. These effects, namely, delocalization error and
static correlation error, respectively, are known to cancel out
to a considerable extent in common semilocal functionals
for many systems. Therefore, while addressing one without
the other might give a better result for a particular system,
the cancellation of error in the energy can be expected to
be less reliable more generally. A derivative discontinuity in
the energy is needed to maintain good boundary conditions
while removing spurious curvatures, and indeed, DFT+U
type functionals provide this. As this provides the GKS band
gap and hence fundamental gap prediction, the same argument
again follows. Specifically, we can expect that, by address-
ing one error only, by applying Hubbard U in DFT+U, or
by also but only partially addressing the other error, as in
DFT + (U − J), we can expect to leave a systemic error in
the band gap that is only resolved when both are treated on the
same footing, as in DFT + U + J. We emphasize finally in this
section, however, that the DFT + U + J functional tested here
is far from the only one in use, and it does not represent the
last word in the development Hubbard corrective functionals
using U and J.

C. Linear-response calculations of U and J

The total energy in subspace-perturbed DFT is given by

E = EDFT + αN + βM, (4)

where N is given by N = n↑ + n↓, where M is given by
M = n↑ − n↓, and where nσ are the traces of the perturbed
subspace occupancy matrix of each spin. Here, α and β are the
strengths of the subspace-uniform potentials that allow the oc-
cupancy N and magnetization M, respectively, to be controlled
at minimum energy cost, as guaranteed by the properties of
the fully relaxed constrained DFT (cDFT) energy landscape
[58]. Here, α is the strength of a perturbation that is the same
for both spins. In the case of controlled magnetization M,
the perturbation is repulsive with strength β for spin up and

attractive with strength β for spin down. Therefore, β is half of
the difference in perturbation between the two spin channels,
and we will recall this factor of 1

2 again presently.
To calculate U, several different α potentials are applied,

and the linear response of the occupation numbers gives the
values for the bare (i.e., unscreened or one-shot) χ0 and the
relaxed χ subspace-projected linear response:

χ0 = dN0

dα
, χ = dN

dα
. (5)

Here, N0 is the total occupancy trace for the bare case. Fig-
ure 1(a) shows example calculations of χ0 and χ , with the
slopes being calculated from least-squares linear regression.
The U value can then be calculated [13,14] for onsite-only
DFT+U-type corrections using the scalar equation:

U = χ−1
0 − χ−1. (6)

To see how this approach can be adapted to calculate
Hund’s exchange coupling J, we base our definition on the
ansatz for J for minimum-tracking linear response, as defined
in eq. (22) of Linscott et al. [36], specifically

J = −1

2

d (v↑
Hxc − v

↓
Hxc)

d (n↑ − n↓)
. (7)

This formula measures the rate of change, with respect to sub-
space magnetization M, of the subspace-averaged part of the
interacting potential (Hxc denotes Hartree, exchange, and cor-
relation) that applies to the magnetization density. This is akin,
but technically different, to minus the second derivative of
the interaction energy with respect to M, which would repre-
sent the global rather than subspace-specific analog. Spurious
energy-magnetization curvature is well associated with static
correlation error in approximate DFT, and we can interpret
Hund’s J as a measure of this, at least within the approxi-
mate subspace-bath decoupling and screening approximation
of that underpins DFT+U-type correction and linear response.

It is important to note at this point that this formula for
J differs by a factor of 1

2 with respect to the similar formula
proposed in Himmetoglu et al. [31], which was derived by
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analyzing the double-counting correction of the DFT + U + J
functional introduced in that work, which substantially in-
spires this paper. The factor of 1

2 brings consistency with
Hubbard U, as shown in Linscott et al. [36] [in which, see eqs.
(20) and (24)], by ensuring that the interacting analog of the
perturbation strength (the magnetization Lagrange multiplier
β) is the potential that is being measured and not twice that.
Equation (7) was recently used to calculate very accurate TiO2

band gaps from first-principles in Ref. [37]. The global minus
sign is a matter of longstanding convention, e.g., from the
Ising and Heisenberg Hamiltonians. A further justification of
the factor of 1

2 in Eq. (7) is offered in Appendix A, which
relies on the analysis of a toy system rather than the relatively
involved prior analysis of Ref. [36].

While this formula could, in principle, be directly used
within SCF DFT codes, in this paper, we explore instead
its analog within the longstanding approach used in those
codes for the non-interacting, bare response, namely, that of
evaluating perturbed occupancies before the interacting part
of the potential begins to be updated. To see this, we first can
rewrite

J = −1

2

d[(v↑
KS − v

↑
ext ) − (v↓

KS − v
↓
ext )]

dM

= −1

2

d (v↑
KS − v

↓
KS)

dM
+ 1

2

d (v↑
ext − v

↓
ext )

dM

= −dβKS

dM
+ dβ

dM
≈ − dβ

dM0
+ dβ

dM
. (8)

Here, βKS is the average of the spin-affecting KS potential
over the subspace following the framework of Refs. [37,58],
and the approximate equality signifies the relationship be-
tween minimum tracking and SCF linear response. Note that
Refs. [36,37] use the minimum-tracking method, while we
use only conventional SCF linear response in the spirit of
Ref. [13], and specifically, we use the scalar (not matrix)
Eqs. (21) and (22). In practice, notwithstanding, within SCF
codes such as QUANTUM ESPRESSO, ABINIT, CASTEP, VASP, and
others, calculating the value for J from linear response would
involve calculating the bare and relaxed response of M to an
applied β, as shown in Fig. 1(b):

χM0 = dM0

dβ
, χM = dM

dβ
, (9)

and J can ultimately be calculated, within the SCF linear-
response formalism, as

J = −χ−1
M0 + χ−1

M . (10)

We note that relaxation tends to enhance the magnetiza-
tion response, in contrast to the occupancy response which is
always reduced by screening (when perturbing from a stable
state [58]). A positive value for the computed J indicates an
erroneous effective magnetization-magnetization interaction
within the subspace with a sign corresponding to underesti-
mated Hund’s exchange coupling in the underlying functional.

D. The γ method for simultaneous U and J calculation

Orhan and O’Regan [37] have demonstrated that, within
the minimum-tracking linear-response formalism and for non-

spin-polarized (when the potential is unperturbed) systems,
a simple procedure can be used to calculate both U and
J simultaneously, using half the number of finite-difference
calculations with respect to the usual method. The same pro-
cedure should work for the methods used in this paper, as we
now investigate.

In calculations with both α and β parameters, the α pa-
rameter is applied equally to each spin, while the β parameter
applies an opposite potential to each spin channel. In terms
of the average values of the KS potential within the perturbed
subspace [58], we have

V ↑ = VDFT + α + β, (11)

V ↓ = VDFT + α − β. (12)

If we set the value of α to be equal to β, then the result
is that a potential of 2α is applied to the spin-up channel
alone, while the spin-down channel is unchanged. Setting
γ = 2α for notational convenience, we can determine the
spin-indexed response matrix [36] components from the trace
of each individual spin channel occupancy matrix:

χ↑↑ = dTr[n↑]

dγ
, (13)

χ↓↑ = dTr[n↓]

dγ
. (14)

For a non-spin-polarized system, the remaining compo-
nents of χ are set by time-reversal symmetry:

χ↑↑ = χ↓↓, (15)

χ↓↑ = χ↑↓. (16)

These results together define the 2 × 2 response matrix χ :

χ =
(

χ↑↑ χ↑↓

χ↓↑ χ↓↓

)
. (17)

This same procedure is separately used to determine the
bare response χ0. The matrix difference between the inverted
χ and χ0 matrices then yields the 2 × 2 interaction matrix f :

f = χ−1
0 − χ−1. (18)

For ultimately non-spin-polarized systems (systems that
are non-spin-polarized in the absence of perturbations), where
Eqs. (15) and (16) hold, the U and J values can then be derived
from the elements of the resulting interaction matrix [36,37]
as

U = f ↑↓ + f ↑↑

2
, (19)

J = f ↑↓ − f ↑↑

2
. (20)

Simplified into single scalar equations and using the as-
sumptions of Eqs. (15) and (16), the resulting equations
become, in terms of the scalar quantities defined in Eqs. (13)
and (14),

2U = (χ↓↑
0 + χ

↑↑
0 )

−1 − (χ↓↑ + χ↑↑)
−1

, (21)
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FIG. 2. Example linear response calculation of U and J for a
pseudo-atomic Ti 3d orbital subspace in rutile TiO2, using the γ

method and the standard QUANTUM ESPRESSO package.

and

2J = (χ↓↑
0 − χ

↑↑
0 )

−1 − (χ↓↑ − χ↑↑)
−1

. (22)

An example of the calculations used to determine U and
J with this method is shown in Fig. 2. Note that the bare
spin-down response is unaffected by γ since, in this method,
only the spin-up KS potential is modified with respect to its
ground-state profile, and the spin-down potential contains no
perturbation; thus, the spin-down density exhibits no non-
interacting response.

Linscott et al. [36] have shown that, within the minimum-
tracking formalism, the calculated U and J from the scaled 2 ×
2 methodology should match with α-and-β-method linear-
response U and J calculations. Following this, Orhan and
O’Regan [37] utilized the efficiency brought by time-reversal
symmetry to calculate minimum-tracking U and J values for
both rutile and anatase TiO2 with an LDA starting point.
The exploitation of time-reversal symmetry for ultimately
non-spin-polarized systems could, in principle, allow for the
calculation of both U and J with as few as two γ -point sim-
ulations per subspace, although more points are used in this
paper to ensure that the resulting response is linear.

Before leaving the theoretical methods behind, we empha-
size that the γ method is only applicable to non-spin-polarized
systems. The same is true, even if α and β are separately used,
for Eqs. (19)–(22). For spin-polarized systems, the calculation
of J requires the use of Eq. (10) directly and ordinarily per-
turbing M using β.

E. Corrective functionals incorporating U and J

In this paper, four different methods for incorporating the
calculated U and J are considered and compared. The first
method, referred to as DFT+U (metal only), takes the bare
PBE simulation and adds the U correction to metal-atom
centered nd subspaces alone, which is the most common
application of U to TMOs. The quantum number n here is
one less than the period in which the metal element resides.
The correction is applied using Eq. (1). The second method,

referred to as DFT+U (all atoms), applies the calculated U
corrections to both metal and oxygen 2p subspaces, a practice
that has been used in many recent studies [21–27].

The J parameter can be applied in different ways. The third
method investigated involves subtracting the J value for each
atom from the U value and applying this U − J value as the
new U correction on all atoms, referred to as DFT + (U − J).
The final method is that outlined by Linscott et al. [36], where
the DFT + U + J functional of Eq. (7) and Ref. [31] is used
to apply U and J corrections separately to metal and oxygen
atoms, referred to here simply as DFT + U + J.

For the sake of completeness, band gaps were also calcu-
lated for the method of applying both U and J to the metal
atoms alone and not the oxygen. However, in all materials
except ZnO, the band gap accuracy did not improve, and its
value was very close to that in the case of U on the metal
atoms alone. As a result, these results such have been omitted
from the figure, and further analysis but can be found in
Appendix B.

Each of these methods, alongside uncorrected PBE, are
evaluated for their effect on the fundamental (GKS) band
gap, relaxed crystallographic parameters, and electronic band
structure of the test set materials, to determine whether they
can accurately predict the band gap of each material without
causing distortions in other material parameters. It should be
noted that these are strictly evaluations of these methodologies
(corrective functionals and accompanying method for calcu-
lating U and J), and our results are not necessarily transferable
to other techniques, however related.

F. Computational details

The calculations in this paper were conducted using
the QUANTUM ESPRESSO package [38], utilizing the PBE
exchange-correlation functional. For each element in every
material, the charge neutral PSlibrary 1.0.0 [59] ultrasoft
pseudopotentials were used. The unit cell for each material
was converged with respect to kinetic energy cutoff, charge
density cutoff, and k-points, until the variable-cell relaxed
energy difference was <1 meV per atom. Table I shows the
converged unit cell parameters for each of the five materials.
The ratio of charge density energy cutoff to wave function en-
ergy cutoff was converged even at the minimum value of 4:1,
likely due to the much higher-than-typical wave function cut-
off value used out of an abundance of caution, i.e., to ensure
that projector orbitals where fully sampled. In practical stud-
ies beyond the present careful benchmarking, it may be that
computational efficiency can be optimized by using higher
grid ratios but lower wave function cutoffs than those shown
in Table I. The energy and force convergence thresholds for
relaxations were 6 × 10−5 Ry and 10−4 Ry/Bohr, respectively,
a Fermi-Dirac smearing of 0.01 Ry was applied, and the
Brillouin zone was sampled using a �-centered Monkhorst-
Pack grid [60]. The Hubbard projectors were defined in the
default way within PWSCF, that is, as neutral-configuration
non-orthonormalized pseudo-atomic orbitals, except where,
for one material (Cu2O), the effects of orthonormalization
were tested, as described in Appendix C.

Before proceeding with calculations based on the γ

method, we first numerically verified its equivalence (for
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TABLE I. Converged simulation parameters for the unit cell of each of the five materials considered, meeting a 1-meV-per-atom
convergence criterion.

Material Wave function energy cutoff (Ry) Charge density energy cutoff (Ry) k-point grid

TiO2 120 480 3 × 3 × 5
ZrO2 120 480 3 × 3 × 3
HfO2 130 520 3 × 3 × 3
Cu2O 60 240 5 × 5 × 5
ZnO 120 480 6 × 6 × 6

non-spin-polarized systems only) to the approach of sepa-
rately using α for U and β for J, using the non-supercell-
converged unit cells of each of our test materials.

The first practical step in each case was to save the wave
functions of a single-point SCF calculation using an energy
convergence threshold of 10−6 Ry. This was then restarted
with the same initial wave function but with applied α (for
U calculations) and β (for J calculations) potentials along
with tighter convergence thresholds of 10−11 Ry for the initial
diagonalization and 10−9 Ry total-energy convergence. The
trace of the bare and relaxed occupancy matrices was ex-
tracted for several different applied potentials. Least-squares
linear regression was used to determine dN

dα
and dM

dβ
and thus

extract the appropriate χ and χ0 values to be used in Eq (6) (to
calculate U) and Eq. (10) (to calculate J). The procedure for
the γ method is similar, with a range of applied γ values being
used to calculate dn

dγ
for the spin-up and spin-down channels

and thus to calculate the required χ and χ0 values that can be
used to calculate U and J using Eqs. (21) and (22).

G. Effective mass calculations

The band structure of each material between selected high-
symmetry points was calculated to determine the location of
the band gap and whether it is direct or indirect. To evaluate
the effect of each method on the band structure of the material,
the scalar path-dependent effective mass was calculated from

m∗ = ±h̄2

(
d2E

dk2

)−1

. (23)

The sign is positive when evaluating electron effective
mass and negative when calculating hole effective mass. This
was calculated from a parabolic fit at an appropriate energy
range above or belove the band edge for electrons and holes,
respectively. The ranges in which a reliable parabolic fit was
extracted were 0.05 eV for TiO2, HfO2, and Cu2O; 0.01 eV
for ZrO2; and 0.1 eV for ZnO.

III. RESULTS

A. Verification and evaluation of the γ method

For the purposes of validating the γ method, which halves
the cost of calculating the parameter pair for non-spin-
polarized systems, U and J values were calculated for the unit
cell of each material. We compared the results given by the
α and β method of Sec. II B and the γ method of Sec. II C.
Table II shows a comparison of the resulting values for rutile

TiO2, which agree to within 0.5% of the U and J values calcu-
lated in the more obvious way, that is, with α for U and β for J.

Similar tables for the other four materials are collected in
Appendix D. For all atomic elements of all materials, there
is <1% difference between the U and J calculated using the
methods, indicating that that the γ method is equivalent to the
α-and-β method for ultimately non-spin-polarized systems.
In Ref. [36], this was confirmed to be the case also within the
minimum-tracking linear-response definitions of U and J. By
using the γ method, when spin polarization is not anticipated,
the calculation of Hund’s coupling J can be performed as
an essentially cost-free byproduct of calculating Hubbard U,
using Eqs. (21) and (22). Thus, it is encouraging to confirm
its validity here for the SCF (standard) linear-response
calculations now very routinely performed using plane-wave
DFT codes.

B. Rutile TiO2 results

The linear-response U and J values for rutile TiO2 were
calculated using different supercell sizes, as shown in Ta-
ble III. These parameters were performed for the Ti 3d and
O 2p orbitals separately, as motivated by previous studies
[25–27,37,61,62]. At acceptable convergence of the derived
quantities that these parameters will be used to calculate, the
supercell calculations ultimately agree to within 0.04 eV for
all parameters. The calculated U values for Ti and O are within
the range of previous linear response studies [25,27,37]. It
should be noted that different population analysis schemes for
defining the DFT+U subspaces can yield significantly differ-
ent calculated U parameters and subsequent results [27,63].
For example, the non-orthonormalized Hubbard projectors
used in this paper will produce different U values than that
of orthogonalized projectors [27]. The U and J values for the
largest supercell size of 3 × 3 × 5 (270 atoms) were used for
the material property calculations that follow.

It is worth noting that rather satisfactory convergence
would already be recovered using smaller cells, noting the
evident erratic nature of the convergence profile but also the
insensitivity of the predicted properties with respect to small
changes in the parameters. This rapid convergence reflects
perhaps our use of scalar rather than matrix response inver-
sion, following Refs. [36,37] and using Eqs. (21) and (22),
which is predicated on the assumption that all atoms but the
perturbed one should participate in screening when no +V
parameters are to be calculated. The more rapid supercell
convergence with little effect on the converged U value, due
to scalar inversion, has been identified by other authors, e.g.,
in Ref. [64], and is an avenue for further study outside the
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TABLE II. Demonstration that the U and J values calculated for TiO2 with the α and β method of linear response and with the γ method
involving simultaneous U and J calculation are identical.

Parameter α and β method (eV) γ method (eV) Difference (eV) Difference (%)

Ti U 3.238 3.228 −1.087×10−2 −0.336
Ti J 0.465 0.465 3.247 ×10−4 0.070
O U 12.070 12.035 −3.519 ×10−2 −0.292
O J 1.826 1.835 8.823×10−3 0.483

scope of this paper. It is further interesting to note that the
convergence rate is not the same for all orbital types or be-
tween U and J. The spatial extent of the projector orbitals,
as depicted in Fig. 3, play a complex role, as does as the
anisotropic non-local screening environment. We can discern
no overall trend in convergence rate across the materials stud-
ied. In methods such as cRPA, where J is defined to capture
only explicit exchange integral matrix elements, J is well
known to converge rapidly and to be relatively impervious
to the screening environment. Here, however, we find that
the linear-response DFT J (interpreted as a localized measure
of spurious magnetization-magnetization interaction energy,
which is not limited to exchange interactions alone and indeed
usually termed static correlation error) from Eq. (7), (8), or
(22), converges similarly to Hubbard U, reflecting their inter-
related defining formulae.

Experimentally, the fundamental band gap of rutile TiO2

has been measured to be 3.03 eV by very high-resolution
absorption [65] and time-integrated photoluminescence [66].
Figure 4(a) shows a comparison of rutile TiO2 band gaps de-
rived from experiment, from hybrid and GW techniques, and
from the methods examined in this paper. The average HSE06
band gap value [65,66] is the closest of the hybrid methods,
with a slight band gap overestimation of 0.24 eV, while PBE0
values [67,68] found in the literature overestimate the gap
by an average of 0.92 eV, and even G0W0 methods [69,70]
overestimate by 0.37 eV. Our PBE value with no correc-
tions applied greatly underestimates the experimental gap by
1.19 eV, and applying DFT+U to the Ti 3d subspace alone
does not significantly improve this, in agreement with pre-
vious studies [27,37,62]. When U is applied to both Ti and
O, however, the band gap is increased and becomes 0.80 eV
larger than the experimental one.

Incorporating Hund’s exchange coupling J as well as U
brings the calculated band gap back down. In the case of
the DFT + (U − J) method, there is still an overestimation
of 0.39 eV, while the DFT + U + J functional is the most
accurate of those tested, giving an underestimation of 0.24 eV.
This echoes the recent findings for rutile in Ref. [37], albeit

TABLE III. Convergence of calculated linear response U and J
values for Ti 3d and O 2p subspaces in rutile TiO2 with different
supercell sizes and k-point grids.

Supercell size k-points Ti U (eV) Ti J (eV) O U (eV) O J (eV)

Unit cell 5 × 5 × 8 3.228 0.465 12.035 1.835
2 × 2 × 3 Г point 3.238 0.383 11.214 1.679
2 × 2 × 3 2 × 2 × 2 3.240 0.385 11.237 1.682
3 × 3 × 5 Г point 3.225 0.384 11.199 1.688

a significantly better agreement with experiment was found
there with an LDA rather than a PBE starting point and with
charge-neutral LDA pseudo-atomic orbitals defining the sub-
spaces. The zero-point phonon correction is expected to be
negligible in rutile [71] with respect to the band gap inac-
curacies in question here. The DFT + U + J band gap error
here is lower than both PBE0 and G0W0 methods and is equal
to the HSE06 average error but with a significantly lower
computational cost and indeed minor extra cost over PBE after
the U and J parameters are calculated.

To give an indication of the effect of convergence on U
and J magnitudes, the band gap was also calculated for the
unconverged unit cell parameters from Table III. This had
slightly higher U and J values (most especially the 0.8 eV
higher O U), yielding a band gap of 2.834 eV, which is an
increase of only 0.042 eV. This is an indicator that the level of
convergence in the U parameter does not need to be especially
high to give stable values for the band gap.

Figure 4(b) shows the effect of the methodologies on
the axis lengths and volume of the cell, as a percentage of
the experimental value. Applying +U on the Ti 3d orbitals
results in a stretching of the c axis, increasing the volumetric
error by ∼2%. Applying DFT+U on both the Ti 3d and O
2p orbitals maintains the c-axis stretching but shrinks the a
and b axes to below the experimental value, resulting in a
volumetric error that is smaller than that of uncorrected PBE.
Applying U and J both to Ti 3d and O 2p subspaces results
in an a = b axis length very close to experiment but slightly
increases the volumetric error. Overall, apart from the U on
Ti 3d only case, no methodology results in a significantly
distorted geometry with respect to either experimental or

FIG. 3. Radial density distribution (atomic units) of the pseudo-
atomic orbitals used to define the Hubbard projectors for corrective
functionals in this paper. The projector augmented core-region mod-
ifications are not shown. Beyond 1.5 Bohr, the effective all-electron
Hubbard projectors are as shown for all species.
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FIG. 4. Summary of effect of different U and J incorporating corrective functionals on rutile TiO2 material properties. (a) Comparison of
the experimental rutile band gap [65,66] with an average of literature band gap values for HSE06 [70,72,73], PBE0 [67,68], and G0W0 [69,70],
and with the five PBE-derived functionals utilizing U and J parameters. (b) Percentage deviation of crystallographic parameters (axis lengths
and volume) from experimental values for each correction method. (c) The band structure of rutile for the PBE functional with no corrections
applied. (d) The band structure of rutile using the DFT + U + J functional. (e) Calculated effective mass ratios in selected directions for the
five functionals.

PBE values. This is reminiscent of the findings of Linscott
et al. [36], who showed that the O 2p counterpart correction
cancels the tendency for metal 3d correction to overelongate
bonds in hydrated metal complexes.

There is similarly little band structure distortion arising
from the DFT + U + J methodology. Figures 4(c) and 4(d)
depict the band structures for bare PBE and for the full
DFT + U + J methodology. There does not appear to be a
large structural difference in the band structure near the gap,
apart from the greater band gap, with both methods predicting
a direct band gap with the conduction band minimum (CBM)
at the Г point, only slightly lower in energy than the CBM at
the M point. This difference is 32 meV for PBE and 45 meV
for DFT + U + J. The bandwidth of the valence band is also
increased from 5.6 eV for PBE to 6.3 eV for DFT + U + J.

Figure 4(e) shows how the calculated effective mass
of electrons and holes were affected by the corrective

functionals. The application of DFT+U tends to decrease
the effective mass of holes, with the largest effect occurring
in the Г-Z direction. The effective mass of electrons is in-
creased when U is applied, and this is most prominently seen
along the M-Г direction for the DFT+U (Ti only) method,
although this may be an artifact of the very flat band struc-
ture along this direction. The U corrections also appear to
have the effect of making the band structure of the holes
more isotropic, bringing the effective mass parameters closer
to each other. The two functionals incorporating J yield a
band structure that is almost identical to that of DFT+U
(all atoms), indicating that the J corrections have little effect
on the rutile band structure, except for the gap. These latter
variations, while interesting, are difficult to base assessment
upon, given that experimental estimations of the electron ef-
fective mass in rutile can vary by an order of magnitude
[74,75].
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TABLE IV. Convergence of calculated U and J parameters for ZrO2 for different supercell sizes and k-point grids. The U and J values were
calculated separately for the Zr 4d subspace, threefold coordinated O atom 2p subspaces, and fourfold coordinated O atom 2p subspaces.

Supercell size k-points Zr U (eV) Zr J (eV) O threefold U (eV) O threefold J (eV) O fourfold U (eV) O fourfold J (eV)

Unit cell 3 × 3 × 3 1.724 0.346 14.126 2.342 15.665 2.564
2 × 2 × 2 Г point 1.735 0.337 14.277 2.317 15.590 2.559
2 × 2 × 2 2 × 2 × 2 1.740 0.336 14.250 2.327 15.590 2.532
3 × 3 × 3 Г point 1.736 0.338 14.277 2.339 15.453 2.564

C. Monoclinic ZrO2 results

The two O atoms in the ZrO2 formula unit are subject to
two different chemical environments, with one O atom being
threefold coordinated and another being fourfold coordinated.
As a result, different U and J values can be calculated and
applied to each of the O atoms [27]. Table IV shows the
convergence of calculated U and J parameters for ZrO2 for
Zr and the two different O environments. The values from the
largest supercell are used in this paper.

Figure 5(a) shows the effect of U and J on the crystallo-
graphic geometry error. The PBE volumetric error is increased
slightly when DFT+U is applied to Zr 4d subspaces alone,
but when a U value is applied to the O atoms as well, the
volumetric error decreases to well below the PBE value,
due to an underestimation of the b-axis size canceling out
slight overestimations of the a and c axes. In the case of U
and J, the b axis length and β angle match almost exactly
with experimental values, but the a and c axis lengths are

FIG. 5. Summary of effect of different U and J incorporating corrective functionals on ZrO2, showing (a) the effect of methodology on band
gap compared with experiment and the literature values for HSE06 [76–79], PBE0 [80,81], and GW0 [82–84]; (b) the effect of methodology
on unit cell geometries, as a percentage difference from the experimental values [85,86]; (c) the band structure for PBE; (d) the band structure
for DFT + U + J; and (e) comparison of calculated effective mass values along selected directions.
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TABLE V. Convergence of calculated U and J parameters for HfO2 for different supercell sizes and k-point grid parameters. The U and
J values were calculated separately for Hf 5d subspaces, threefold coordinated O atom 2p subspaces, and fourfold coordinated O atom 2p
subspaces.

Supercell size k-points Hf U (eV) Hf J (eV) O U fourfold (eV) O J fourfold (eV) O U threefold (eV) O J threefold (eV)

Unit cell 3 × 3 × 3 1.442 0.327 17.875 3.139 16.071 2.863
2 × 2 × 2 Г point 1.443 0.321 17.755 3.092 16.350 2.811
2 × 2 × 2 2 × 2 × 2 1.438 0.324 18.065 3.115 16.251 2.819
3 × 3 × 3 Г point 1.441 0.323 17.815 3.144 16.187 2.829

larger, leading to a volumetric error that is about the same
as in uncorrected PBE simulations. This indicates that, aside
from the most used DFT+U approach of targeting Zr 4d
orbitals only, no methodology distorts the ionic geometry
significantly.

Figures 5(c) and 5(d) show the band structures calcu-
lated using the PBE and DFT + U + J functionals, which are
qualitatively very similar apart from the differing band gaps.
The effective mass of the electrons and holes are slightly
increased when U and J are applied, but the results are not
significantly different from PBE values. As with rutile TiO2,
there is an expansion of the valence band width, from 4.9 eV
for PBE to 5.9 eV DFT + U + J.

Overall, the first-principles DFT + U + J approach seems
to be highly efficient at correcting the band gap to the
experimental value without distorting geometry or band
structure. This negates the presupposition that DFT+U meth-
ods are fundamentally inapplicable to d0 or d10 systems.
We emphasize that both Hund’s coupling J and oxygen
2p terms are needed for satisfactory results, for different
reasons.

D. Monoclinic HfO2 results

Monoclinic HfO2 is like ZrO2 in that it comprises three-
fold and fourfold coordinated O atoms that yield different
calculated U and J values. Table V shows the convergence
behavior of these parameters. The U and J values for the
largest supercell are used.

Like the case of ZrO2, the experimental gap of HfO2

is not well known. We again use an average of inverse
photoemission spectroscopy (IPES) studies to estimate the
fundamental band gap as 5.78 eV [85,86]. Figure 6(a) shows
that G0W0 calculations in the literature have yielded values
that match within 0.01 eV of this value, with GW0 results
slightly overestimating it by 0.28 eV. As is the case with
TiO2 and ZrO2, the PBE0 functional overestimates the band
gap (by 0.73 eV), while the HSE06 result is much closer
(within 0.09 eV). In our simulations, the PBE functional
underestimated the band gap by 1.58 eV, with the under-
estimation only improving to 1.46 eV when the DFT+U
correction was applied to Hf 5d subspaces alone. Applying U
to both O 2p subspaces results in a very large band gap over-
estimation of 3.37 eV, which is slightly reduced to 2.42 eV
by the Dudarev DFT + (U − J) functional. The PBE+U+J
approach once again yields the most accurate band gap of the
cost-effective PBE-derived approaches, with an overestima-
tion of 0.61 eV, which is more accurate than PBE0 for this
system but falls short of the HSE06 performance.

The geometric effect of the various U and J methods on
HfO2 is shown in Fig. 6(b). The application of U has a small
stretching effect on the a and c axes, resulting in a slight
increase in volumetric distortion. Applying U additionally to
the O atoms rectifies this somewhat and results in a large
degree of shrinkage in the b axis, resulting in a low volumetric
error. The application of J reduces this shrinkage but increases
the a and b axis lengths, resulting in a volumetric error that is
ultimately slightly lower than the case of uncorrected PBE.
Figures 6(c) and 6(d) show the band structure of uncorrected
PBE and DFT + U + J based on PBE, showing that there
is not a large amount of change between them. Figure 6(e)
shows the resulting effect on effective mass. The application
of the corrective functionals tends to increase the effective
mass of electrons slightly. The hole effective mass is reduced
conversely, but since the lines are very flat, it is difficult to
assess the difference. As is the case for TiO2 and ZrO2, the
valence band width is increased, now from 5.5 eV for PBE to
6.8 eV for DFT + U + J.

E. Cubic Cu2O results

The convergence of calculated U and J parameters is shown
in Table VI, indicating a reasonable degree of convergence
with the accessible supercell sizes. The band gap of Cu2O was
found by an IPES study to be 2.17 [94]. Figure 7(a) shows
the band gaps of different methods compared with this result.
Hybrid PBE0 modeling has overestimated the band gap by
0.30 eV, while HSE06 models have slightly underestimated
the band gap by 0.24 eV.

Our calculated band gap with PBE and no corrections
greatly underestimates the band gap by 1.71 eV. Applying
the first-principles U value to the Cu 3d orbitals alone only
lessens the overestimation to 1.41 eV. Applying U to both
the Cu and O atoms again results in an overestimation of
the band gap value, by 1.05 eV, which can be reduced by
DFT + (U − J) to 0.50 eV. This is very similar to the final
error of 0.49 eV for the DFT + U + J method, which instead
errs on the side of underestimation. DFT + U + J is again the
best performing of the PBE-based functionals but falls short of
the hybrid accuracy in this case. The reason that DFT + U + J
appears to be less accurate for Cu2O than it is for other mate-
rials is unclear yet may lie in its distinctive bond character. It
seemed, for this material, appropriate to investigate whether
the use of orthonormalized projectors could make a more
suitable choice [27]. This was tested with a full recalcula-
tion of the results with ortho-atomic projectors, detailed in
Appendix C. The DFT + U + J band gap results were ul-
timately found to be less accurate with these projectors,
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FIG. 6. Summary of effect of different U and J incorporating corrective functionals on HfO2 material properties, showing (a) calculated
band gaps from different methodologies compared with experiment [85,86], HSE06 [87–89], PBE0 [87,90,91], G0W0 [83,92,93], and GW0

[82,83,92]; (b) difference with respect to experiment values for crystallographic cell properties and total volume for each method; (c) band
structure from uncorrected PBE; (d) band structure from the first-principles DFT + U + J method; and (e) effective mass of electrons and holes
along selected directions for each functional.

although the DFT+U (all atoms) approach was found to yield
a slight improvement. It would be worth investigating alter-
nate projector profiles for Cu 3d orbitals or even the inclusion
of Cu 4s corrections in future research. We emphasize, on a
cautionary note, that Cu2O seems to represent a point close to
the boundary of the applicability of DFT+U methods based

on d-orbital projectors. The following material, ZnO, is be-
yond that boundary, albeit with a remedy available, as we go
on to discuss.

The effect of the corrective functional on crystallographic
parameters is shown in Fig. 7(b). The PBE geometry is quite
accurate, with values that are within 1.5% of experimental

TABLE VI. Convergence of calculated U and J parameters for Cu and O atoms in cubic Cu2O with different supercell sizes and k-point
sampling.

Supercell size k-points Cu U (eV) Cu J (eV) O U (eV) O J (eV)

2 × 2 × 2 Г point 12.382 1.850 20.358 3.199
2 × 2 × 2 3 × 3 × 3 12.450 1.961 20.801 3.183
3 × 3 × 3 Г point 12.525 1.933 20.601 3.168
3 × 3 × 3 2 × 2 × 2 12.537 1.960 20.551 3.188
4 × 4 × 4 Г point 12.526 1.958 20.240 3.203
5 × 5 × 5 Г point 12.476 1.954 20.407 3.191
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FIG. 7. Summary of effect of different U and J incorporating corrective functionals on Cu2O material properties. (a) Comparison of
predicted band gaps for the five functionals with the experimental value [94], as well as an average of HSE06 literature values [17,95–99] and
PBE0 values [17,98,100]. (b) Percentage deviation of crystallographic properties (axis and interatomic distances) from experimental values
for each method. (c) PBE band structure with no corrections applied. (d) PBE structure with both U and J corrections applied to Cu and O.
(e) Effective mass in selected directions for the five functionals.

values. Applying the DFT+U correction to the Cu 3d sub-
spaces alone introduces some distortions, with cell parameter
errors rising to ∼3.5%. These distortions decrease back down
to ∼2% for DFT+U (all atoms) and DFT + (U − J). The
DFT + U + J method reduces the errors still further and turns
out to be almost as good as uncorrected PBE. This indicates
that DFT + U + J does not significantly distort the geometry
of Cu2O that is already predicted well by PBE.

The band structure of DFT + U + J is qualitatively quite
like the PBE one near the CBM and valence band maximum
(VBM), as can be seen by a comparison of Figs. 7(c) and 7(d).
However, the DFT + U + J functional results in the opening
of a second gap in the valence band that is not present in the
PBE band structure, which starts 4.2 eV below the VBM and
has a gap width of 2.2 eV. Such second gaps can be of in-
terest for photovoltaic and other optoelectronic functionalities
[101,102]. A previous quasiparticle G0W0 study [17] shows a
dip to zero or near-zero density of states at around the level

predicted here for the second gap, but it is significantly less
wide (<0.5 eV) than that found in this paper. Photoemission
spectroscopy results do not seem to readily support the ex-
istence of such a gap [103]. This suggests that the second
gap found using DFT + U + J may be either overestimated in
magnitude, or the gap finding may be entirely erroneous. Ref-
erence [104] indicates that the hybrid functional HSE06 does
not predict this feature in Cu2O. The effective masses, shown
in Fig. 7(e), do not change substantially with the various
tested functionals. The largest deviation occurs for DFT+U
applied to metal only, where the m∗

e is about half of the PBE
value.

F. Wurtzite ZnO results

Previous attempts at applying the linear-response method-
ology to calculate Hubbard U for Zn 3d orbitals in
ZnO have encountered great difficulties, with researchers
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TABLE VII. Convergence of calculated U and J parameters for Zn 4s and O 2p subspaces in cubic ZnO with different supercell sizes and
k-point grids.

Supercell size k-points Zn U (eV) Zn J (eV) O U (eV) O J (eV)

Unit cell 6 × 6 × 6 1.753 0.953 19.293 3.910
2 × 2 × 2 Г point 1.404 0.824 19.641 3.296
2 × 2 × 2 2 × 2 × 2 1.765 0.988 23.189 3.911
3 × 3 × 3 Г point 1.743 0.993 22.540 3.871
3 × 3 × 3 2 × 2 × 2 1.795 1.072 23.428 3.954
4 × 4 × 4 Г point 1.820 1.092 23.325 3.906
5 × 5 × 5 Г point 1.815 1.066 23.325 3.906

encountering either excessively high calculated U parameters
[23,28] or numerical instability [29,30]. We have found that
the almost perfectly fully filled Zn 3d orbitals require the
applied perturbation to be increased by an order of magnitude
to produce a sufficient change in occupancy level to over-
come the numerical noise of the simulation. However, this
unsurprisingly results in a response that is nonlinear. Here, U
and J values for these nonlinear responses can, in principle,
still be estimated by taking the slope at zero perturbation
of a good parabolic fit to the response curve. We found the
resulting U and J values to be very high, with a 5 × 5 × 5
supercell calculation yielding the remarkable values of 83.7
eV for U and 9.3 eV for J. A DFT + U + J band gap of 6.35
eV was calculated with these values, reflecting a saturating
effect on the band gap when the corrections are applied to a
subset of orbitals. This is >3 eV higher than the experimental
gap, indicating that a simple strategy of always applying U to
the metal d orbitals will sometimes fail if said orbitals are
near-fully occupied. This could be deemed a pitfall of the
methodology, but it is one that is already evident in the very
hard and ultimately non-linear response of the Zn 3d orbital
subspace. Put simply, if the linear-response calculation does
not go smoothly, we recommend that the choice of orbital or
its projector profile be reconsidered.

It has been shown that DFT+U-based modeling can be im-
proved by applying U corrections to the 4s orbitals of certain
transition metal systems [29]. This motivated us to calculate
the linear-response parameters of the Zn 4s subspaces, which
is more relevant to the character of the band edges than the Zn
3d ones, particularly at the conduction band edge. For this, it
was necessary to change the PWSCF source code trivially on a
few lines, so that the desired angular momentum was selected.
The charge response of the partially filled 4s subspace is much
better behaved, and linear response can be readily extracted
for the same perturbation range as for the four prior materials,
yielding U and J values that are much more plausible, as
shown in Table VII. These values (for the largest supercell)
were used for our evaluation.

Figure 8(a) shows the band gap comparison for ZnO. The
experimental band gap is 3.44 eV [105]. Hybrid functionals
consistently underestimate this gap, with the HSE06 average
being 0.97 eV below experiment and PBE0 having a smaller
error of 0.25 eV. Bare PBE drastically underestimates the gap
by 2.70 eV. Interestingly, applying the DFT+U correction to
the Zn 4s orbitals alone makes the band gap smaller, with the
resulting error increasing to 3.11 eV. This is rectified by ap-
plying corrections to the O atoms as well, and the DFT+U (all

atoms) method produces a band gap that outperforms HSE06
as assessed from the literature, with an overcorrection of
0.63 eV. Both methods of applying J improve this slightly,
with the 0.4 eV error of DFT + (U − J) making it the best
performing of the PBE-based methods in this instance. The
DFT + U + J functional gives a very close result to this, how-
ever, with an overestimation of 0.42 eV.

Since the effect of O 2p correction on the band gap is
significantly greater than the effect of the Zn 4s correction,
it is worth checking whether the Zn correction is necessary at
all for accurate results. Two more band gap calculations were
therefore performed for ZnO with U and U + J applied to the
O 2p orbitals only and not to the metal atoms, yielding band
gaps of 4.27 and 2.95 eV, respectively. This is slightly less
accurate than the DFT + U + J on both metal and O, with an
underestimate by 0.49 eV instead of the 0.42 eV overestimate
of the full methodology, indicating that the application of U
on Zn is valuable.

Figure 8(b) shows the effect of U correction on crystallo-
graphic geometry. The Zn 4s correction alone has almost no
effect on the geometry. Applying U to the O atoms using either
the DFT+U (all atoms) or DFT + (U − J) methods results in
a shrinking of axis and bond lengths that overcorrects PBE
somewhat. This still gives a lower geometric error overall
than uncorrected PBE. The DFT + U + J method increases
the error slightly, but it is still lower than that of PBE. This
indicates that neither the unconventional choice of Zn 4s or-
bitals to define the subspaces targeted for correction nor the
somewhat high-seeming calculated O 2p U values result in
ionic geometry distortion. In fact, the geometry is improved
with respect to that of PBE.

A comparison of Figs. 8(c) and 8(d) indicates that the
introduction of U and J adds a second gap within the valence
band that is not present in the bare PBE calculation, which
starts at 3.0 eV below the VBM and has a gap width of
2.1 eV. This opening of a second gap has also been observed
in some other DFT+U studies [111,112], some quasiparticle
GW calculations by Kotani et al. [113], and in x-ray photo-
electron spectroscopy data [114], although in general, these
second gaps appear to be much narrower than is seen here
(<1 eV). In contrast, most uncorrected GGA band structures
do not have a second gap [112,115], and the second gap
similarly does not appear to be present in some HSE06 stud-
ies [105,107]. The effective mass of holes remains largely
unchanged between methods, as can be seen in Fig. 8(e).
The effective mass of electrons, on the other hand, is very
substantially increased multiplicatively.
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FIG. 8. Full comparison of methodology choice effect on ZnO properties with corrections applied to 4s orbitals of Zn and 2p orbitals of O,
showing the (a) effect on band gaps compared with experiment [106], HSE06 [105,107–110], and PBE0 [105,108,110]; (b) geometric property
differences with respect to experimental values; (c) band structure for PBE; (d) band structure for DFT + U + J; and (e) effective mass along
selected directions.

G. Trends across the material test set

The calculated U and J for each orbital of each material
have been collated in Table VIII.

There are several trends of note across the material set
for the calculated U and J values, with the oxygen results all
being high compared with every metal, except for Cu. These
may be partially explained by the spatial extent of this orbital.
Figure 3 shows a graph of the radial density of each orbital
for an isolated atom, which appears to have some qualitative
relation to the U and J values. For example, the Zn 4s, Zr 4d ,
and Hf 5d orbitals have quite similar radial density profiles
and are fairly diffuse, resulting in similarly low U values. In
contrast, the Cu 3d and O 2p orbitals are much shorter ranged
and have higher U values. We observe a possible (not statis-
tically significant) relationship whereby U is proportional to
the inverse square of the spread (central second moment) of
the metal projector orbitals, when we limit the analysis to the

TABLE VIII. Summary of calculated U and J values for each
material considered in this paper.

Material Atom Orbital U (eV) J (eV) U : J ratio

TiO2 Ti 3d 3.24 0.38 8.43
ZrO2 Zr 4d 1.74 0.34 5.14
HfO2 Hf 5d 1.44 0.32 4.46
Cu2O Cu 3d 12.48 1.95 6.39
ZnO Zn 4s 1.81 1.07 1.70
TiO2 O 2p 11.24 1.70 6.62
ZrO2 O (threefold) 2p 14.28 2.34 6.10
ZrO2 O (fourfold) 2p 15.45 2.56 6.03
HfO2 O (threefold) 2p 16.19 2.83 5.72
HfO2 O (fourfold) 2p 17.81 3.14 5.67
Cu2O O 2p 20.41 3.19 6.40
ZnO O 2p 23.32 3.91 5.97

013160-16



USE OF DFT+U+J WITH LINEAR RESPONSE … PHYSICAL REVIEW RESEARCH 5, 013160 (2023)

TABLE IX. Evaluation of theoretical band gap accuracy across five chemically diverse non-spin-polarized TMOs, using a variety of
first-principles functionals derived from PBE and incorporating corrective Hubbard U and Hund’s exchange coupling J parameters, alongside
HSE06 and PBE0 hybrid functional values based on available literature.

Band gap error with respect to experiment (%)

Functional TiO2 ZrO2 HfO2 Cu2O ZnO MAE

PBE −39 −35 −27 −79 −79 52
DFT+U (metal only) −33 −32 −25 −65 −90 49
DFT+U (all atoms) 26 38 58 48 18 38
DFT + (U − J) 13 24 42 23 12 23
DFT + U + J −8 0 10 −23 13 11
HSE06 average 7 −9 −2 −11 −28 11
PBE0 average 30 11 13 14 −7 15

four metal atoms with larger metal-centered projector orbitals
(in TiO2, ZrO2, HfO2, and ZnO). Only in these four metals
is the spread calculated based on the non-ultrasoft-augmented
density expected to be reliable. This also does not explain the
full extent of the variations, as the same O 2p orbitals have
U values varying by a factor of two across the four oxides.
It can be expected that other factors such as orbital filling,
orbital coordination, dielectric screening, and details of the
approximate functional being measured will also play a role
in the U value.

The relatively high values for the O 2p orbital are con-
sistent with the results from other linear response studies,
for example, linear-response calculations of the O 2p U in
rutile TiO2 have yielded values in the range from 8.6 to 15.9
[27,37,116]. The value will be highly dependent on the exact
methodology used, for example, Ref. [27] calculated a U value
for fourfold O 2p in HfO2 of 47.8 eV for atomic projectors
but only 9.58 eV for ortho-atomic projector calculations [27].
Another study used a cRPA-calculated screened interaction U
for O 2p-like Wannier functions in TMOs ranging from 3 to 7
eV, depending on the interaction model used [117]. It is inter-
esting to ask why the calculated Hubbard U parameter or, put
another way, the localized many-body SIE in the underlying
approximate functional, is relatively high in O 2p subspaces.
In a very recent work, Ref. [32], it is argued that the periodic-
table trends in U parameters may be partially explainable, as
a direct result of the formula used for U, in terms of trends
in the chemical hardness of the isolated atoms in question.
This quantity, which is related to energy-occupancy curvature,
broadly increases as we move up and right in the periodic ta-
ble, and its value is particularly large for oxygen. Moreover, in
systems such as TiO2 where the valence band is very heavily
dominated by O 2p orbitals, it is argued that only the ion-

ization energy component of the chemical hardness matters,
and this quantity is again particularly large for atomic oxygen,
relative to that of the transition metals in question here.

Finally, we note that the U : J ratios found for the O 2p
orbitals are in a similar range for each material, varying by
only 10% from the average value, despite the U values varying
by a factor of two. Similarly consistent ratios can be found in
the work of Chai et al. [116], with their ratio ranging from
9.58 to 9.87 for four different oxides. This ratio does not seem
to be transferable to other orbitals; indeed, U : J ratios in the
metal atoms vary significantly. We emphasize that, within the
present formalism, these computed values and ratios therefore
reflect more about pathologies in the spin-polarized extension
of the PBE functional, specifically energy curvatures of differ-
ent types, than anything directly about Coulomb or exchange
interactions per se.

Table IX summarizes the effect of the various corrective
functionals on the band gap for the materials investigated (for
a summary of the actual values used for this calculation, see
Appendix B). Uncorrected PBE underestimates the band gap
of all materials by a significant degree, ranging from 27% for
HfO2 to 79% for ZnO. Applying DFT+U to the metal atoms
alone increases the band gap only slightly for each material
except for ZnO (with 4s orbital subspaces targeted), where it
makes the band gap less accurate.

When U is applied to both the metal and O atoms, an
overestimation of the band gap occurs in all five materials,
with the largest by percentage occurring in HfO2. Using the
DFT + (U − J) functional to scale down the effective U im-
proves this slightly, but this still overestimates the gap for all
materials.

The most comprehensive technique tested, that of applying
both U and explicit unlike spin J corrections in DFT + U + J,

TABLE X. Comparison of accuracy of simulated volume across all five materials for each methodology of applying U and J corrections.

Unit cell volume error with respect to experiment (%)

Functional TiO2 ZrO2 HfO2 Cu2O ZnO MAE

PBE 2.81 2.60 1.60 3.37 4.45 2.96
DFT+U (metal only) 4.60 3.47 2.02 10.52 4.11 4.94
DFT+U (all atoms) 0.77 0.68 −0.47 6.50 −0.72 1.83
DFT + (U − J) 0.96 0.66 −0.40 5.54 −0.42 1.59
DFT + U + J 2.59 2.30 1.21 3.95 1.60 2.33
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TABLE XI. Comparison of valence bandwidths calculated using PBE and first-principles DFT + U + J constructed based on PBE and
PBE pseudoatomic orbitals.

Valence bandwidth (eV)

Technique TiO2 ZrO2 HfO2 Cu2O first band Cu2O second band ZnO first band ZnO second band

PBE 5.63 4.91 5.50 7.08 n/a 5.88 n/a
DFT + U + J 6.31 5.92 6.83 4.19 3.23 3.03 3.25

gives rise to a moderate overestimation of the band gap for
the 5d metal-oxide HfO2 and the arguably marginal TMO
ZnO, a similar underestimation of the band gap for the 3d
metal-oxide Cu2O and TiO2, and the correct value within
the experimental uncertainty for the 4d metal ZrO2. At least
for the titanium group-IV metal oxides, the 4d pseudoatomic
orbitals for PBE thus appear to represent a goldilocks zone
where the population analysis happens to be well suited to
the assumptions underpinning DFT+U-type methods. This
conclusion might not be transferable to other periodic table
groups or other underlying functionals, we hasten to empha-
size.

Meanwhile, the literature indicates that HSE06 slightly
underestimates the gap on a mean-absolute error (MAE) basis
and that PBE0 overestimates it. The MAE of first-principles
DFT + U + J is 11%, which is lower than that of all of the
other PBE-derived functionals, lower than that of PBE0 from
the literature, and equal to that of HSE06 values from the
literature. This demonstrates that DFT + U + J can provide
band gap accuracy comparable with hybrid functionals and
typically at a small fraction of the computational cost after the
parameters are computed.

Table X shows a similar comparison of the effect of U and
J on the crystallographic unit cell volume of each material.
DFT+U applied to only the metal increases the volumetric
error for every material except ZnO, and that has the highest
error of all the methods investigated. However, once the U
correction is applied to the O atoms on the same footing as the
metal atoms, the volumetric error drops to below that of regu-
lar PBE. This remains the case when J is applied using either
of the functionals tested. The best-performing functional for
the lattice volume within this test set is DFT + (U − J), but
the full DFT + U + J functional still provides a lower error
than PBE. This demonstrates that accurate band gaps do not
need to come at the expense of spurious lattice distortion,
as has previously been found in several studies [18–20], the
key evidently being to correct the ligand band edge subspaces
(oxygen 2p in this paper) on the same footing as the metal
ones.

Table XI shows the difference in valence bandwidth be-
tween uncorrected PBE and DFT + U + J. The DFT + U + J
functional, for the materials and subspace choices selected,
consistently either stretches the valence bandwidth or split it
into two separate bands, predicting a second gap in CuO and
ZnO. The appearance of a second gap in the valence band
is a qualitative distinction that seems to feature in available
many-body perturbation theory calculations for the Cu2O and
ZnO band structures yet seems to be predicted by few if any
DFT simulations except those of DFT+U or self-interaction
correction type [17,105,106,111,112].

IV. CONCLUSIONS

In this paper, the use of linear-response DFT + U + J
was investigated to accurately model closed-shell metal-oxide
band gaps using unmodified, widely available plane-wave
DFT software. It was demonstrated that Hund’s coupling J pa-
rameters can be calculated routinely from first principles using
the familiar SCF linear-response formalism. The γ method
was extended and verified within the SCF linear-response
formalism, which allows for simultaneously calculating U and
J in ultimately non-spin-polarized systems. This essentially
makes J a cost-free byproduct of a U calculation.

Several corrective functionals incorporating Hubbard U
and Hund’s J corrections were evaluated in detail on a chemi-
cally diverse test set made up of TiO2, ZrO2, HfO2, Cu2O, and
ZnO. The fundamental band gap, crystallographic geometry,
and carrier effective masses were highlighted. It was shown
that DFT + U + J (applied to both metal and O orbitals on
the same footing) was overall the most successful functional
for modeling the band gap among those tested. First-principles
DFT + U + J yielded the same MAE as the popular but much
more computationally demanding and poorly scaling hybrid
functional HSE06.

Our results indicate that the magnitude of the derivative
discontinuity introduced by DFT + U + J, that is, U − 2J for
the non-spin-polarized and idealized case of the same J at both
band edges and a further correction otherwise, seems to be
sufficient to open the band gap with a comparable level of
reliability to popular hybrid functionals, without the costly
introduction of the long-ranged part of the exchange. It is
important to emphasize, however, that the choice of projector
orbitals remains arbitrary in this method, so that this correct
magnitude in practice may be the result of a fortunate error
cancellation. Given the relatively large first-principles U and
J values for certain orbitals including O 2p, the dependence
on the orbital profile and degree of orthonormalization may
be important. It remains a matter for future studies to explore
further the impact of different projector choices in DFT +
U + J. Nonetheless, our data show that following the default,
physically motivated choices in the code used in this paper,
PWSCF, yields a very practical and relatively reliable first-
principles approach for pragmatic users who wish to study
oxides in large supercells and avoid the use of costly hybrid
functionals.

Successful or at least state-of-the-art level band gap pre-
diction does not come at the cost of spurious crystallographic
geometry distortion, as has been found in many previous
DFT+U studies. The key difference in this paper is that the
errors within the oxygen 2p subspaces were measured and
corrected on the same footing as in the metal nd ones. In
fact, the cell volumes predicted by DFT + U + J simulations
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were more accurate than those of standard PBE. Similarly,
the effect on effective mass and band structure tended to
be small, although the bandwidth of the valence band was
generally increased, and a splitting of the valence band into
two subbands was observed in the late TMOs Cu2O and ZnO.

The success of this technique on this test set is promis-
ing, and it implies that the technique should work well for
similar materials in the range of non-magnetic TMOs. The
applicability of this technique on other dielectric materials,
such as magnetic TMOs, non-TMOs, and nitrides, is a topic of
ongoing and future research. The relatively poor performance
of Cu2O and ZnO (when U is applied to 3d orbitals) suggests
that mixed orbital characters may be a particular challenge for
this technique.

Overall, DFT + U + J was found to be a highly viable
method, which can be used easily within the widely
available package QUANTUM ESPRESSO. Moreover, it can
be easily introduced into any DFT+U code, and no software
modification at all is necessary if restricting its application to
ultimately non-spin-polarized systems. We anticipate that the
more widespread adoption of Hund’s coupling J comprising
corrective functionals, to strengthen exchange effects locally
at very low computational cost, could significantly improve
the reliability of future materials discovery projects, while
minimizing their environmental and financial footprint. Future
researchers in this area could, e.g., examine the applicability
of the methodology presented in this paper to spin-polarized
oxides, in which case Eqs. (9) and (10), not the γ method, are
required.
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APPENDIX A: SIGN AND PREFACTOR
CONVENTION FOR HUND’S J

In this Appendix, we briefly explore the definition used
for Hund’s J in this paper, in terms of a simple two-spin
model. This serves to demonstrate how the convention used
for quantifying spin density in DFT determines the sign and

prefactor definition of Hund’s J, without the rather involved
(compatible) analysis of Ref. [36]. The spin polarization,
sometimes called magnetization in collinear spin DFT, for
the total within a subspace, is defined as M = n↑ − n↓, as
mentioned in the main text. Thus, spin here is measured in
electrons, with magnitude of 1, not in terms of the spin angular
momentum. If we consider the spin interaction between two
electrons with no external field, an appropriate model in terms
of sign and magnitude convention is therefore the classical
Heisenberg model:

Ĥ = −J
−→
S1 · −→

S2 , (A1)

with |−→Si | = 1. This is the same convention used for Hund’s J
in DFT+U family methods.

Still considering this two-electron system and envisaging
dissociated H2, if this is studied with an approximate density
functional, then in general, this description will suffer from
static correlation error. This means that the energy ES of the
singlet state of the system (spins anti-aligned) will be higher
in energy than that of the triplet state (spins aligned) ET, where
these energies would be equal in the absence of static correla-
tion error and externally applied magnetic field. Mapping this
onto the Heisenberg model, we have ES − ET = 2J. Permit-
ting the magnetization to vary continuously and assuming a
quadratic static correlation error that matches this result, we
may write

E (M ) = ES − J

2
M2. (A2)

By examination, if we evaluate this at the fully aligned
state, we obtain

E (M = 2) = ES − 2J = ET, (A3)

as expected. Taking the second derivative of this energy model
with respect to magnetization, we recover the basic definition
of Hund’s J for measuring global static correlation error in
approximate DFT, J = − d2E

dM2 .
In practice, in linear-response methods for calculating such

parameters, one focuses on derivatives of the potential (on a
subspace) rather than second derivatives of the energy. The
magnetization is perturbed using a subspace uniform potential
of value +β for spin up and −β for spin down. This is exactly
the potential choice that minimally increases the total energy
while perturbing the magnetization, as it is consistent with the
cDFT total energy:

W = EDFT + β(M − Mtarget ), (A4)

where β plays the role of a Lagrange multiplier [58]. Suppos-
ing that the cDFT stationary point is identified always, we may
consider variations with respect to the desired magnetization
Mtarget, which is the external parameter. We note that M will
always equal Mtarget at the cDFT solution. First recalling the
definition of J, and then using the Hellmann-Feynman theo-
rem, we find that

− d2E

dM2
target

= ∂β

∂Mtarget
= +1

2

∂ (v↑
ext − v

↑
ext )

∂Mtarget
, (A5)

since β is half of the difference between the spin-up and
spin-down perturbation strengths. This is nothing but the total
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TABLE XII. Summary of band gaps values for all materials in
this paper.

Material band gap (eV)

Method TiO2 ZrO2 HfO2 Cu2O ZnO

Experimental 3.03 5.59 5.78 2.17 3.44
HSE06 average 3.25 5.10 5.69 1.94 2.47
PBE0 average 3.94 6.18 6.51 2.47 3.19
PBE 1.83 3.64 4.20 0.46 0.74
DFT+U (metal only) 2.04 3.79 4.32 0.76 0.33
DFT + U + J (metal only) 1.98 3.77 4.32 0.66 0.61
DFT+U (all atoms) 3.83 7.73 9.15 3.22 4.07
DFT + (U − J) 3.43 6.94 8.20 2.67 3.84
DFT + U + J 2.79 5.57 6.39 1.68 3.89

part of J, making up half of the terms in Eq. (8). Restricting
J to only measure the interacting part of the curvature,
since it will be used only in a functional that directly

modifies interaction (not kinetic energy, explicitly), we can
then subtract the non-interacting part to recover the full
Eq. (8), which simplifies to Eq. (7), which serves as the core
definition of J. In conclusion, the definition of the spin-density
difference M in terms of electron count rather than electron
angular momentum, taken together with Ising’s sign
convention that J is positive for aligned moments, determines
the sign and multiplicative prefactor for calculating Hund’s
J from first-principles using linear-response DFT, that is,
Eq. (9) for SCF linear-response DFT.

APPENDIX B: FULL BAND GAP RESULTS

Table XII summarizes the absolute band gap values for
all considered materials used for the percentage error calcu-
lations in Table IX. The values for the additional method of
applying U and J to just the metal orbitals and not the O
orbitals are included here. The latter method did not produce
an accurate band gap for any material, and for TiO2, ZrO2, and

FIG. 9. Summary of effect of different U and J incorporating corrective functionals on Cu2O material properties, implemented using ortho-
atomic projectors. (a) Comparison of predicted band gaps for the five functionals with the experimental value [94], as well as an average of
HSE06 literature values [17,95–99] and PBE0 values [17,98,100]. (b) Percentage deviation of crystallographic properties (axis and interatomic
distances) from experimental values for each method. (c) PBE band structure with no corrections applied. (d) PBE structure with both U and J
corrections applied to Cu and O. (e) Effective mass in selected directions for the five functionals.

013160-20



USE OF DFT+U+J WITH LINEAR RESPONSE … PHYSICAL REVIEW RESEARCH 5, 013160 (2023)

TABLE XIII. Demonstration that the U and J values calculated for ZrO2, HfO2, Cu2O, and ZnO with separate α and β linear response
calculations and with the γ method enabling simultaneous U and J calculation are near identical.

Material Parameter α and β method (eV) γ method (eV) Difference (eV) Difference (%)

ZrO2 Zr U 1.728 1.724 −3.943 × 10−3 −0.228
Zr J 0.344 0.346 1.806 × 10−3 0.525
O U 14.187 14.126 −6.082 × 10−2 −0.429
O J 2.340 2.342 1.832 × 10−3 0.078

HfO2 Hf U 1.440 1.442 1.496 × 10−3 0.104
Hf J 0.328 0.327 −1.225 × 10−3 −0.373
O U 17.939 17.875 −6.469 × 10−2 −0.361
O J 3.162 3.139 −2.371 × 10−2 −0.750

Cu2O Cu U 12.112 12.165 5.287 × 10−2 0.436
Cu J 1.978 1.980 2.095 × 10−3 0.106
O U 19.225 19.286 6.135 × 10−2 0.319
O J 3.259 3.250 −8.425 × 10−3 −0.259

ZnO Zn U 1.751 1.753 2.044 × 10−3 0.117
Zn J 0.978 0.953 −2.478 × 10−2 −2.535
O U 19.312 19.293 −1.936 × 10−2 −0.100
O J 4.006 3.910 −9.503 × 10−2 −2.372

HfO2, it was almost identical to the value for an application
of only U to the metal. In the case of ZnO, the band gap was
slightly improved, but it was still less accurate than even bare
PBE.

APPENDIX C: ORTHO-ATOMIC PROJECTOR TEST

A test was made of the use of ortho-atomic projectors for
Cu2O, with U and J recalculated for a 3 × 3 × 3 supercell with
2 × 2 × 2 k-points. The resulting U and J values for Cu are
9.87 and 1.39 eV and for O 2p orbitals are 9.01 and 1.25 eV,
respectively.

The results for the band gap are shown Fig. 9(a). Unlike
in the default projector case, here, the DFT+U (all atoms)
approach underestimates the band gap, and this underesti-
mate increases when J is applied. It should be noted that
the DFT+U (all atoms) approach slightly outperforms our
DFT + U + J approach with default projectors, warranting
further investigation of ortho-atomic projectors in future re-
search.

Figure 9(b) shows a comparison for lattice geometry. Like
the case with default projectors in Fig. 7, the highest distortion
occurs when U is applied to Cu alone, but this is improved to
levels similar to the bare PBE when U and J are applied to all
atoms.

For the sake of completeness, the band structure and ef-
fective mass were also compared in Figs. 9(c)–9(e). The main
difference between these results and that of default projectors
shown in Fig. 7 is that there no longer appears to be a distinct
second band gap in the valence band.

APPENDIX D: RESULTS TABLES

Table II in Sec. III A demonstrated that the γ method intro-
duced in Sec. II C gave the same results as separate α-for-U
and β-for-J SCF linear-response calculations for TiO2. Ta-
ble XIII summarizes similar tests for the other four materials.
In all cases, the difference between calculated values is very
small, indicating that the γ method is accurate for each mate-
rial.
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