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We use entanglement witnesses to detect entanglement in the XY chain in thermal equilibrium and determine
the temperature bound below which the state is detected as entangled. We consider the entanglement witness
based on the Hamiltonian. Such a witness detects a state as entangled if its energy is smaller than the energy of
separable states. We also consider a family of entanglement witnesses related to the entanglement negativity of
the state. We test the witnesses in infinite and finite systems. We study how the temperature bounds obtained
are influenced by a quantum phase transition or a disorder line in the ground state. Very strong finite-size
corrections are observed in the ordered phase due to the presence of a quasidegenerate excitation. We also
study the postquench states in the thermodynamic limit after a quench when the parameters of the Hamiltonian
are changed suddenly. In the case of the Ising model, we find that the mixed postquench state is detected as
entangled by the two methods if the parameters of the Hamiltonian before and after the quench are close to each
other. We find that the two witnesses give qualitatively similar results, showing that energy-based entanglement
witnesses are efficient in detecting the nearest-neighbor entanglement in spin chains in various circumstances.
For other XY models, we find that the negativity-based witnesses also detect states in some parameter regions
where the energy-based witness does not, in particular, if the quench is performed from the paramagnetic phase
to the ferromagnetic phase and vice versa. The domains in parameter space corresponding to postquench states
detected as entangled by the energy-based witness have been determined analytically, which stresses further the
utility of our method.

DOI: 10.1103/PhysRevResearch.5.013158

I. INTRODUCTION

Entanglement lies at the heart of quantum mechanics and
also plays an important role in quantum information theory
[1–3]. For pure states it is equivalent to correlations, while
for mixed states the two notions differ. A quantum state is
entangled if its density matrix cannot be written as a mixture
of product states. Based on this definition, several sufficient
conditions have been developed. In special cases, e.g., for
2 × 2 (two-qubit) and 2 × 3 bipartite systems [4,5] and for
multimode Gaussian states [6], even necessary and sufficient
conditions are known.

However, in an experimental situation usually only limited
information about the quantum state is available. This is true
even for theoretical calculations for very large systems. Only
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those approaches for entanglement detection can be applied
that require the measurement of a few observables. One of
such approaches is using entanglement witnesses. They are
observables that have a positive expectation value for all
separable states. Thus, a negative expectation value signals
the presence of entanglement. The theory of entanglement
witnesses has recently been rapidly developing [7–9]. It has
been shown how to construct entanglement witnesses that
detect entanglement close to a given quantum state, even if
it is mixed or a bound entangled state [10]. It is also known
how to optimize a witness operator in order to detect the most
entangled states [9].

Apart from determining optimal entanglement witnesses, it
is also important to find witnesses that are easy to measure in
an experiment or possible to evaluate in a theoretical calcula-
tion. From both point of views, witnesses based on spin-chain
Hamiltonians attracted considerable attention [11–17]. There
have been already calculations for infinite chains [11,16,17].
It has been shown that the optimal witness for the thermal
state of the chain is not necessarily the Hamiltonian [17].
Besides entanglement in general, witnesses based on energy
can be used to detect multiparticle entanglement [13,14]. Note
that even a direct relationship between entanglement mea-
sures and the energy of the thermal state has been observed
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in isotropic Heisenberg chains [18]. The energy-based wit-
nesses have been used in various physical systems such as
nanotubular systems [19], in molecular nanomagnets [20], in
heterometallic wheels [21], and also for theoretical calcula-
tions in theoretical spin models [22–24].

In this paper, we extend the approach to the XY model.
This model is exactly solvable and several entanglement-
based properties have been studied recently [25–29]. We also
consider another approach, based on a family of witnesses that
detect entanglement whenever the entanglement negativity
of the nearest-neighbor two-spin density matrix is nonzero
[30], i.e., when the state violates the entanglement criterion
based on the positivity of the partial transpose (PPT) [4,5].
We consider finite and infinite systems in thermal equilibrium
and compare the temperature bounds for separability obtained
from the energy-based witness and from the negativity-based
witnesses.

Then we test the entanglement witnesses in mixed states
based on the following idea. We place the system in the
ground state of a given XY Hamiltonian. Then, consider-
ing a quench, we change the parameters of the Hamiltonian
[31–35]. Since the state is not an eigenstate of the new Hamil-
tonian, dynamics start. In the infinite time limit, the system
approaches a stationary state, which is some mixture of the
states appearing during the dynamics. If the Hamiltonian is
nonintegrable, then the system is expected to be thermalized
and the stationary state is described by a Gibbs ensemble with
an effective temperature [36–46]; see, however, Refs. [47–50].
For integrable systems, such as the XY chain, the stationary
state is assumed to be described by a so-called generalized
Gibbs ensemble (GGE) [51–59], for which different effective
temperatures are assigned to each conserved quantities. This
type of description has been exactly calculated for the quan-
tum Ising chain [60], and a similar formalism is conjectured
for the XY chain [61].

In this article, we show for the XY model that the
postquench state can still be handled efficiently for large
systems and the expectation value of the witness operators
mentioned above can also be computed. We analyze in which
cases the mixed state is detected by the energy-based witness
and by the witnesses based on entanglement negativity. We
find that the energy-based witness is efficient in detecting
entanglement in these systems.

Our paper is organized as follows. In Sec. II, we introduce
the XY model, present its free-fermion representation, calcu-
late thermal averages and present its conjectured GGE after
a global quench. In Sec. III, the entanglement witnesses are
described. In Sec. IV, the temperature bounds are calculated
both by the energy and the entanglement negativity methods
and also finite-size corrections are studied. In Sec. V, the
bounds for postquench states are calculated. In Secs. VI and
VII, we close our paper with a discussion and conclusions,
respectively. In the Appendix, we present the calculation of
the thermal average of the energy in finite periodic chains.

II. MODEL AND METHODS

In this section, we describe the model, present the XY
spin-chain Hamiltonian and show how to calculate important
quantities for it in a free-fermion representation, including

FIG. 1. Phase diagram of the XY chain with the Hamiltonian
Eq. (1). The equation of the disorder line is given by Eq. (6). For a
qualitative description of the regions on the two sides of the disorder
line, see Sec. II B 1.

averages for finite temperatures. Finally, we discuss how to
handle nonequilibrium stationary states after a quench.

A. The XY chain

The XY chain is defined by the Hamiltonian

H = −
L∑

l=1

[
1 + γ

2
σ x

l σ x
l+1 + 1 − γ

2
σ

y
l σ

y
l+1

]
− h

L∑
l=1

σ z
l ,

(1)

where σ x
l , σ

y
l , and σ z

l are Pauli spin operators acting on
the spin at site l and σα

L+1 ≡ σα
1 for α = x, y, z. We consider

chains with periodic boundary conditions and generally cal-
culate quantities in the thermodynamic limit, L → ∞. In a
few cases we study also finite chains up to L = 12 through
numerical techniques. The parameters 0 � γ � 1 and h � 0
denote the strength of the anisotropy and the transverse field,
respectively. The special case γ = 1 represents the transverse
Ising model, and for h = 0, γ = 0 the Hamiltonian reduces
to the XX chain. The equilibrium phase diagram is shown in
Fig. 1.

B. Free-fermion representation

Using standard techniques [62,63], the Hamiltonian in
Eq. (1) is expressed in terms of fermion creation and anni-
hilation operators η†

p and ηp as

H =
∑

p

ε(p)

(
η†

pηp − 1

2

)
, (2)

where the sum runs over L quasimomenta, which are equidis-
tant in [−π, π ] for periodic boundary conditions and almost
equidistant in [0, π ] for free boundary conditions and a finite
L but again equidistant in the limit L → ∞. The energy of the
modes is given by [31,32,61]

ε(p) = 2
√

γ 2 sin2 p + (h − cos p)2 (3)
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and the Bogoliubov angle Θp diagonalizing the Hamiltonian
is given by

tan Θp = −γ sin p/(h − cos p). (4)

The energy of the ground state equals

E0 = −
∑

p

ε(p)

2
, (5)

since the state is the fermionic vacuum.

1. Disorder line

The disorder line, also shown in Fig. 1, is given by

h2 + γ 2 = 1. (6)

Alternatively, we can express the h values as a function of γ

corresponding to the disorder line as

hd =
√

1 − γ 2. (7)

As we will see, hd will turn out to be a central quantity in our
paper.

The system has a special behavior at the disorder line given
by Eq. (6). Here the energy of modes has the simple form

ε(p) = 2(1 − hd cos p), (8)

and the ground-state energy density in the thermodynamic
limit is given by

E0

L
= − 1

π

∫ π

0
(1 − hd cos p)d p = −1. (9)

Below the disorder line

h2 + γ 2 < 1 (10)

holds and the long-range two-point correlation functions have
an oscillatory behavior, whereas at the disorder line they are
constant [31,32]. Above the disorder line we have

h2 + γ 2 > 1 (11)

and the two-point correlation functions do not have an oscil-
latory behavior.

C. Averages at finite temperature

Next, we summarize results for the thermodynamic limit,
L → ∞, used in the article. Calculations of the energy for
finite periodic chains are presented in the Appendix A.

1. Energy

At finite temperature, T > 0, the partition function is ex-
pressed as

Z = 2L
∏

p

cosh

[
ε(p)

2T

]
, (12)

and the average value of the energy is given by

〈H〉T = −
∑

p

t (p, T )
ε(p)

2
, (13)

with the definition

t (p, T ) = tanh

[
ε(p)

2T

]
, (14)

setting kB = 1.

2. Correlation functions

The correlation functions of the XY model are calculated
in Refs. [31,32] and the nearest-neighbor correlations can be
expressed as 〈

σ x
l σ x

l+1

〉
T = gc − gs,〈

σ
y
l σ

y
l+1

〉
T = gc + gs,〈

σ z
l σ z

l+1

〉
T = g2

0 − g2
c + g2

s, (15)

where we define the sums

gc = 2

L

∑
p

cos p(cos p − h) t (p, T )ε−1(p),

gs = −γ
2

L

∑
p

sin2 pt (p, T )ε−1(p),

g0 = 2

L

∑
p

(h − cos p) t (p, T )ε−1(p). (16)

We stress once more that the relations above are valid in the
thermodynamic limit, L → ∞. One can easily check that

〈H〉T

L
= −1 + γ

2

〈
σ x

l σ x
l+1

〉
T − 1 − γ

2

〈
σ

y
l σ

y
l+1

〉
T − h

〈
σ z

l

〉
T

(17)

holds with 〈σ z
l 〉T = g0, which further supports the correctness

of our calculations. In particular, it helps to verify that con-
stant factors have been taken into account correctly.

D. Nonequilibrium stationary states after a quench

We consider global quenches at zero temperature, which
suddenly change the parameters of the Hamiltonian from γ0,
h0 for t < 0 to γ , h for t > 0. For t < 0 the system is assumed
to be in equilibrium, i.e., in the ground state |	0〉 of the
Hamiltonian H0 with parameters γ0 and h0. After the quench,
for t > 0, the state evolves coherently according to the new
Hamiltonian H as

|	0(t )〉 = exp(−iHt )|	0〉. (18)

Correspondingly, the time evolution of an operator in the
Heisenberg picture is

σl (t ) = eiHtσl e
−iHt . (19)

The energy of the system after the quench is given as

〈	0|H|	0〉 =
∑

p

ε(p)

(
〈	0|η†

pηp|	0〉 − 1

2

)
, (20)

where the occupation probability of mode p in the initial state
|	0〉 is given as

fp = 〈	0|η†
pηp|	0〉. (21)
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For the XY model it is expressed through the difference 
p =
Θ0

p − Θp of the Bogoliubov angles as

fp = 1
2 (1 − cos 
p) (22)

with the cosine of the difference 
p given as

cos 
p = 4
(cos p − h0)(cos p − h) + γ γ0 sin2 p

ε(p)ε0(p)
, (23)

where the index 0 refers to quantities before the quench [61].
In the thermodynamic limit, Eq. (20) can be rewritten as

〈	0|H|	0〉
L

= − 1

4π

∫ π

−π

ε(p) cos 
pd p. (24)

After large-enough time and in the thermodynamic limit
the system is expected to reach a stationary state,

ρq = lim
τ→∞

1

τ

∫ τ

0
e−iHt |	0〉〈	0|e+iHt dt, (25)

for which the energy equals the energy of the initial state

Tr(ρqH) = 〈	0|H|	0〉. (26)

Similarly, for an observable O the stationary value is given by
Tr(ρqO).

In the stationary state, due to conserved symmetries, aver-
ages of correlations are described by a GGE [51–54,56–59].
In this case to each fermionic mode an effective temperature,
Teff (p) is attributed through the relation [61]

tanh

(
ε(p)

2Teff (p)

)
= |2 fp − 1| = | cos 
p|. (27)

This follows by comparing the relations in Eqs. (13), (14),
and (20). In this way the nearest-neighbor correlations in the
stationary state can be obtained as in Sec. II C, just replacing
t (p, T ) defined in Eq. (14) by | cos 
p|,

t (p, T ) → | cos 
p|. (28)

In particular, we have to apply Eq. (28) for the correlation
functions in Eqs. (15) and (16).

III. ENTANGLEMENT WITNESSES

Generally, an operator W is called an entanglement witness
if its expectation value, 〈W〉, satisfies the following require-
ments [64,65]:

(i) For all separable states

〈W〉 � 0 (29)

holds.
(ii) For some entangled state we have

〈W〉 < 0. (30)

We say that such a state is detected by the witness as
entangled. Entanglement witnesses have been used in vari-
ous physical systems to verify the presence of entanglement
[66–76].

A single entanglement witness cannot detect all entangled
states. On the other hand, if for some states ρk , then we have

〈W〉ρk
= 〈W〉ρk′ (31)

for all k, k′, and then for any mixture of such states

ρ =
∑

k

pkρk (32)

the expectation value of the witness remains the same, i.e.,

〈W〉ρ = 〈W〉ρk
(33)

holds for all k. Thus, if ρk are detected as entangled, then ρ

given in Eq. (32) is also detected as entangled, even if ρ is
highly mixed.

Let us consider now the case in which the ρk family is
obtained via a unitary dynamics from an initial state. If for
a state ρ we have 〈W〉ρ, then for any state given as

ρ′(K ) = e−iKρe+iK (34)

we have the same expectation value

〈W〉ρ′ = 〈W〉ρ, (35)

if K commutes with W as

[K,W] = 0. (36)

It is easy to see that the expectation value is equal to 〈W〉ρ
even for an arbitrary mixture [like in Eq. (32)] of the states
given in Eq. (34). Thus, if ρ is detected as entangled by the
witness W, then an arbitrary mixture of the states given in
Eq. (34) is also detected. Based on these, we can see that en-
tanglement witnesses might be especially useful in detecting
entanglement in a mixture of states obtained from a unitary
dynamics with a Hamiltonian that commutes with the wit-
ness. In general, an entanglement witness that is conserved
during the quench, might be especially useful in detecting
entanglement.

In this section, we present the energy-based witness [11],
which is constructed with the Hamiltonian and thus, based on
the arguments above, it is especially suited for entanglement
detection in a postquench state given in Eq. (26). We also
present the negativity-based witnesses [17] what we will use
to analyze the entanglement properties of the XY chain.

A. Energy-based witness

In this section, we review the idea of detecting entangle-
ment with energy measurement [11,15,16].

First, we calculate the minimum of 〈H〉 for product states
of the form

|�〉 = |ψ〉1 ⊗ |ψ〉2 ⊗ · · · ⊗ |ψ〉L, (37)

with the single-particle states

|ψ〉k = cos φeiθ↑ |↑〉k + sin φeiθ↓ |↓〉k, (38)

where k labels the site in the real space. The energy per site
for the state given in Eqs. (37) and (38) is

〈�|H|�〉
L

= −1

2
sin2 2φ[1 + γ cos 2(θ↑ − θ↓)] − h cos 2φ,

(39)
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which has a minimum at θ↑ = θ↓ and for

cos 2φ = h

1 + γ
, for h � 1 + γ ,

φ = 0, for h > 1 + γ . (40)

Thus, the minimum energy per site for product states is given
by

Esep

L
=

{
− (1+γ )2+h2

2(1+γ ) , for h � 1 + γ ,

−h, for h > 1 + γ .
(41)

Then, we consider separable states given as [77]

ρsep =
∑

m

pmρ(1)
m ⊗ ρ(2)

m ⊗ · · · ⊗ ρ(L)
m , (42)

where ρ(k)
m are single-particle pure states. The bound given in

Eq. (41) is also the bound for mixed separable quantum states,
since the expectation value

〈H〉 = Tr(ρH ) (43)

is linear in ρ, and the set of separable states is convex.
Then we can simply write the witness detecting entangle-

ment based on the energy as

WE = H − Esep1. (44)

We will compute 〈WE 〉 for thermal states [see Eq. (13)] and
for postquench states [see Eq. (20)].

Along the disorder line, h and γ fulfill Eq. (6). Then, based
on Eq. (9), we have for the ground-state energy

E0 = −L. (45)

The ground state is a product state of the form given in
Eqs. (37) and (38) for θ↑ = θ↓ and φ fulfilling Eq. (40).

Note that based on the bound for separable states given in
Eq. (41) we have

Esep = −L, (46)

which means that there is a separable state with energy Esep.
However, since E0 = Esep and the ground state is nondegener-
ate, there is only a single pure state having this energy and it
must be a product state. Thus, only by knowing E0 and Esep,

and the fact that the ground state is nondegenerate, we can
conclude that the ground state must be a product state along
the disorder line.

B. Negativity-based witnesses

In this section, we summarize the method presented in
Ref. [17] and show how to apply it to the XY chain. It sug-
gests to use not the Hamiltonian but another operator as an
entanglement witness for spin chains in thermal equilibrium,
which is shown to be connected to partial transpose of the
density matrix [4,5] and to entanglement negativity [30].

Deciding whether a quantum state is entangled is a hard
task in general. However, there are some necessary conditions
for separability that are easy to test. If these conditions are
violated, then the state is entangled. One of the most impor-
tant conditions of this type is the PPT condition [4,5]. For a

bipartite density matrix given as

ρ =
∑
kl,mn

ρkl,mn |k〉 〈l| ⊗ |m〉 〈n| , (47)

the partial transpose according to first subsystem is defined by
exchanging subscripts k and l as

ρTA =
∑
kl,mn

ρlk,mn |k〉 〈l| ⊗ |m〉 〈n| . (48)

It has been shown that for separable quantum states [4,7]

ρTA � 0 (49)

holds. Thus, if ρTA has a negative eigenvalue, then the quantum
state is entangled. For 2 × 2 and 2 × 3 systems, the PPT
condition detects all entangled states [7]. For systems of size
3 × 3 and larger, there are PPT entangled states [5,78]. One
can even use the partial transpose to tell how much a quantum
state is entangled. The entanglement negativity [30] is defined
as

N (ρ) = 2max(0,−min(μν )), (50)

where μν are the eigenvalues of the partial transpose ρTA .

Let us turn now to XY chains. Let us consider the nearest-
neighbor reduced density matrix, ρ, which will be defined in
the σ z basis given by |↑〉 and |↓〉. We use the convention

|↑ ↑〉 = |1〉, |↑ ↓〉 = |2〉, |↓ ↑〉 = |3〉, and |↓ ↓〉 = |4〉.
Due to the symmetries of the problem, ρ is a direct sum of two
2 × 2 matrices living in the space spanned by the states |1〉, |4〉
and |2〉, |3〉, respectively. Consequently, it is represented as

ρ =

⎡
⎢⎢⎣

ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ41 0 0 ρ44

⎤
⎥⎥⎦, (51)

where we indicated the elements that are necessarily zero
explicitly. The matrix is real and symmetric, hence ρ14 = ρ41

and ρ23 = ρ32 hold; furthermore, we have the constraint due
to unit trace, ρ11 + ρ22 + ρ33 + ρ44 = 1. Due to the permuta-
tional symmetry of the problem we also have

ρ22 = ρ33. (52)

Due to Eqs. (15) and (16), ρ14 = −2gs, and

ρ14 � 0 (53)

holds if γ � 0. In Appendix B we also show that

ρ23 � 0 (54)

holds.
For the partially transposed density matrix, by indicating

the zero elements explicitly we obtain

ρTA =

⎡
⎢⎢⎣

ρ11 0 0 ρ23

0 ρ22 ρ14 0
0 ρ41 ρ33 0

ρ32 0 0 ρ44

⎤
⎥⎥⎦. (55)

The lowest eigenvalue of ρTA , denoted by μmin is non-negative
if and only if the state is separable [4,7]. According to

013158-5



FERENC IGLÓI AND GÉZA TÓTH PHYSICAL REVIEW RESEARCH 5, 013158 (2023)

Eq. (55), the minimal eigenvalues of the 2 × 2 submatrices
are

μ
(1)
min = ρ11 + ρ44 −

√
(ρ11 − ρ44)2 + 4ρ23ρ32

2
, (56a)

μ
(2)
min = ρ22 + ρ33 −

√
(ρ22 − ρ33)2 + 4ρ14ρ41

2
, (56b)

and the minimal eigenvalue is just

μmin = min
(
μ

(1)
min, μ

(2)
min

)
. (57)

Taking into account all our knowledge of the density matrix
elements, Eq. (56b) can be simplified to

μ
(2)
min = ρ22 − ρ14. (58)

The matrix elements of ρ appearing in Eq. (58) can be ex-
pressed through nearest-neighbor correlations [26]. Here we
use the relations〈

σ z
l σ z

l+1

〉 − 1

= ρ11 − ρ22 − ρ33 + ρ44 − (ρ11 + ρ22 + ρ33 + ρ44)

= −2(ρ22 + ρ33) = −4ρ22 (59)

and 〈
σ x

l σ x
l+1

〉 − 〈
σ

y
l σ

y
l+1

〉 = 2(〈σ+
l σ+

l+1〉 + 〈σ−
l σ−

l+1〉)

= 2(ρ14 + ρ41) = 4ρ14. (60)

For ρ14 the relation Eq. (53) holds. Thus, the eigenvalue is
obtained as

μ
(2)
min = − 1

4

(〈
σ x

l σ x
l+1

〉 − 〈
σ

y
l σ

y
l+1

〉 + 〈
σ z

l σ z
l+1

〉 − 1
)
. (61)

The other eigenvalue, μ
(1)
min, can also be expressed with

nearest-neighbor correlations, since

ρ11 + ρ44 = (〈
σ z

l σ z
l+1

〉 + 1
)
/2,

ρ11 − ρ44 = (〈
σ z

l

〉 + 〈
σ z

l+1

〉)
/2,

ρ23 = ρ32 = (〈
σ x

l σ x
l+1

〉 + 〈
σ

y
l σ

y
l+1

〉)
/4. (62)

Then, we obtain the eigenvalue as

μ
(1)
min =

〈
σ z

l σ z
l+1

〉 + 1

4

−1

4

√(〈
σ z

l

〉 + 〈
σ z

l+1

〉)2 + (〈
σ x

l σ x
l+1

〉 + 〈
σ

y
l σ

y
l+1

〉)2
.

(63)

In order to proceed, we need to know that the partial
transposition of a two-qubit state has at most one negative
eigenvalue and all the eigenvalues lie in [−1/2, 1] [79,80].
Thus, only one of the μ

(1)
min and μ

(2)
min can be negative, and when

they are equal to each other, they must be non-negative and the
state must be separable.

Let us now examine the relation between the eigenvalues
μ

(1)
min and μ

(2)
min and the parameters h and γ . At the disorder line

where Eq. (6) is satisfied, we have μ
(1)
min = μ

(2)
min and here the

state is separable even at T = 0, which is consistent with what
we mentioned about the eigenvalues of the partial transpose.

We have checked numerically in finite systems that in the
oscillatory region where h2 + γ 2 � 1, the relation

μ
(1)
min � μ

(2)
min (64)

holds. On the other hand, if h2 + γ 2 > 1, then we have

μ
(1)
min > μ

(2)
min. (65)

Let us now show that a simple entanglement witness can be
obtained based on the expression for μ

(2)
min given in Eq. (61).

In particular, we can define the operator

WN = − 1
4

(
σ x

l σ x
l+1 − σ

y
l σ

y
l+1 + σ z

l σ z
l+1 − 1

)
, (66)

and hence its expectation value gives one of the eigenvalues
of the partial transpose of the two-qubit density matrix,

〈WN 〉 = μ
(2)
min, (67)

which also implies that WN is an entanglement witness. It is
instructive to rewrite the witness given in Eq. (66) as

WN = 1
21 − |	+〉〈	+|, (68)

where

|	+〉 = 1√
2

(|↑↑〉 + |↓↓〉). (69)

The form in Eq. (68) expresses the fact that the witness WN

detects entangled states in the vicinity of the state given in
Eq. (69). If μ

(1)
min > μ

(2)
min holds, then WN is an entanglement

witness and its expectation value even gives us the minimal
eigenvalue of the partial transpose of the nearest-neighbor
two-qubit density matrix. The minimum of the expectation
value of the witness is 〈WN 〉 = −1/2 for the maximally en-
tangled state given in Eq. (69). If μ

(1)
min � μ

(2)
min holds, then

based on the previous arguments we have 〈WN 〉 = μ
(2)
min � 0.

Let us now show that a simple entanglement witness can be
obtained based on the expression for μ

(1)
min given in Eq. (63).

For the special case when〈
σ z

l

〉 + 〈
σ z

l+1

〉 = 0, (70)

we can derive an entanglement witness

W ′
N = − 1

4

(
σ x

l σ x
l+1 + σ

y
l σ

y
l+1 − σ z

l σ z
l+1 − 1

)
. (71)

It is instructive to rewrite the witness given in Eq. (71) as

W ′
N = 1

21 − |�+〉〈�+|, (72)

where the state is defined as

|�+〉 = 1√
2

(|↑↓〉 + |↓↑〉). (73)

If the condition in Eq. (70) holds, then

〈W ′
N 〉 = μ

(1)
min. (74)

However, in general,

〈W ′
N 〉 � μ

(1)
min, (75)

holds and the witness W ′
N is not sufficient to detect all entan-

gled states if Eq. (65) does not hold.
We will show that a one-parameter family of entanglement

witnesses is sufficient. Let us define the entanglement witness
[1,2]

W ′′
N,p = (|�p〉 〈�p|)TA, (76)
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where the state is given as

|�p〉 = √
p |↑↑〉 −

√
1 − p |↓↓〉 . (77)

Since for ρ23 the relation Eq. (54) holds, the two coefficients
have an opposite sign. Based on the general relation

Tr(XY ) = Tr(X TAY TA ), (78)

we can write that

Tr(W ′′
N,pρ) = Tr[(W ′′

N,p)TAρTA ]

= Tr(|�p〉 〈�p| ρTA ) � μ
(1)
min. (79)

Based on Eq. (55), we can see that when Eq. (65) does not
hold, the eigenvector of ρTA with the negative eigenvalue is of
the form given in Eq. (77). Hence, for some p the inequality
in Eq. (79) is saturated. Thus, the eigenvalue can be obtain as
a minimization over the expectation values of the witnesses as

min
p

〈W ′′
N,p〉ρ = μ

(1)
min, (80)

which is an approach somewhat different from that of
Ref. [17], which presented a nonlinear witness operator. Note
that W ′

N is member of the family

W ′
N = W ′′

N,1/2. (81)

In summary, the witness WN given in Eq. (66) can be
used to detect entanglement in the nearest-neighbor state of
an XY system in thermal equilibrium if h2 + γ 2 > 1 holds.
Otherwise, W ′

N given in Eq. (71) will detect many entangled
states. However, all entangled states are detected by the family
of witnesses given in Eq. (76).

In the case of a quench the parameters of the Hamilto-
nian are changed suddenly, as described in Sec. II D. Using
the quench protocol (h0, γ ) → (h, γ ) we noticed numerically
that the condition Eq. (65) is only valid in a part of the phase
diagram. We find that WN does not detect entanglement in the
region h0 < hd and h < hd .

IV. TEMPERATURE BOUNDS FOR EQUILIBRIUM
THERMAL STATES

In this section, we consider thermal states, which are
generally entangled at low temperature, but at a sufficiently
high temperature they are separable. Using the energy-based
witness given in Eq. (44) and the negativity-based witnesses
given in Eqs. (66) and (76), we calculate temperature bounds
below which the state is detected as entangled. We note that
at specific points there have been calculations for infinite
chains [11,16,17]. Here we consider several parts of the phase
diagram and also study the finite-size corrections that turn out
to be very important in the ordered phase.

A. Energy-based witness

The energy-based witness WE described in Sec. III A de-
tects a state as entangled if 〈H〉 < Esep. For thermal states,
there is a corresponding temperature bound TE such that the
state is detected as entangled by the witness if T < TE . We
will study thermal states in the XY chain based on these
ideas. The Hamiltonian H is given in Eq. (1), and the minimal
energy for separable states is given in Eq. (41).

FIG. 2. Temperature bound of entangled equilibrium thermal
states of an XY chain in the thermodynamic limit calculated using
the energy-based entanglement witness given in Eq. (44). The Hamil-
tonian H is given in Eq. (1). The witness detects a state entangled if
〈H〉 is smaller than the minimal energy for separable states, given in
Eq. (41). The value γ = 1 corresponds to the transverse Ising model.
At the disorder point, h is given by Eq. (7).

1. Thermodynamic limit

First, we consider the thermodynamic limit. In Fig. 2,
we show TE as a function of h for different values of the
anisotropy. We can make the following observations.

Let us start with the paramagnetic phase where h > 1,

as shown in Fig. 1. At a fixed h value, TE monotonously
decreases with γ , and we even have TE → 0 as γ → 0. At
a fixed 0 < γ � 1, TE also decreases with decreasing h and
passing through the critical point at h = 1 in the ordered phase
approaches zero at the disorder point h = hd , where hd is
given in Eq. (7). Decreasing h further at the other side of
the disorder point, the temperature bound starts to increase
monotonously. In Fig. 2, when going from bottom to top, the
order of the TE (h) curves at h = 0 is the opposite of that at
h > 1. That is, if γ1 > γ2, then we have

TE (h, γ1) > TE (h, γ2) (82)

if h > 1. On the other hand, we have

TE (h, γ1) < TE (h, γ2) (83)

at h = 0. Finally, at the disorder point h = hd , there is a
singularity,

TE ∼ ln−1 |h − hd |. (84)

Let us turn to the quantum critical point h = 1. Close to it
there is an inflection point of the TE (h) curve, the position of
which approaches h = 1 as γ → 0.

If γ = 0, then we have the XX model and it has a polar-
ized ground state if h � 1, which is separable. Consequently,
TE = 0 in this region.

2. Finite-size corrections

We have repeated the calculation of the temperature bound
on finite transverse Ising chains working in the Ising spin basis
up to L = 12. Results are shown in the main panel of Fig. 3.
The corrections are relatively small in the paramagnetic phase,
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FIG. 3. Temperature bound of entangled equilibrium thermal
states of an XY chain for finite systems calculated using the energy-
based entanglement witness given in Eq. (44). Main panel: (solid)
Temperature bound of entangled equilibrium thermal states in finite
transverse Ising chains for (from top to bottom) L = 4, 6, 8, 10, 12.

(Dashed) The L → ∞ case, which is the same as the γ = 1 line in
Fig. 2. Insets: finite-size corrections in a lin-log scale at different val-
ues of h. Upper inset: corrections in the ordered phase for (from top
to bottom) h = 0.25, 0.5 and 0.75. Lower inset: (top) at the critical
point, h = 1.0 and (bottom) in the paramagnetic phase, h = 1.25.

Note the different scales in the x axis.

while in the ordered phase they are quite large. To see more
precisely the finite-size dependence of the correction term we
repeated the calculation in the free-fermion basis as described
in the Appendix A.

We have studied the finite-size dependence of the correc-
tion term


TE (L) = TE (L) − TE (85)

at different points of the phase diagram. We considered several
values of h corresponding to the ordered phase and to the
paramagnetic phase, as well as to the critical point. Using
lin-log scale in the figures the curves are asymptotically linear,
and thus the size dependence is well described by the form


TE (L)  AL−a exp(−L/L0), (86)

where the power-law correction term is relevant for short
chains, L < L0. In the paramagnetic phase and at the critical
point L0 is just a few lattice spacings (L0 ≈ 2.6 and 6.2, for
h = 1.25 and 1.0, respectively), while in the ferromagnetic
phase it is much longer (L0 ≈ 52, 610 and 5800, for h = 0.75,
0.5 and 0.25, respectively) and tends to infinity at h → 0. (In
the ferromagnetic phase the exponent a is h dependent; it is
approximately 0.25 and 0.42 for h = 0.25 and 0.5, respec-
tively.) The slow finite-size convergence of the results is due
to the presence of an exponentially small gap in the ordered
phase, which has a large correction.

B. Negativity-based witnesses

The negativity-based witnesses WN and W ′′
N,p described

in Sec. III B detect a state as entangled if its negativity
is nonzero. For thermal states, there is a corresponding

FIG. 4. Temperature bound of entangled equilibrium thermal
states of an XY chain for finite systems calculated using the
negativity-based entanglement witnesses. (Solid) (from top to bot-
tom) L = 4, 6, 8, 10, 12. (Dashed) L → ∞ case. Main panel: γ = 1,
quantum Ising chain. Upper inset: γ = 0.8. Lower inset: γ = 0.6.

temperature bound TN such that the state is detected as entan-
gled by the witness if T < TN . We will study thermal states in
the XY chain based on these ideas.

Results for the transverse Ising chain are in the main panel
of Fig. 4. We carried out calculations for the finite chain in
the Ising spin bases. We also made calculations in the ther-
modynamic limit using the formula with the nearest-neighbor
correlations given in Eq. (61). We find that the temperature
bounds obtained using the entanglement negativity witness
given in Eq. (66) are considerably higher than those obtained
using the energy-based witness; the difference is around a
factor of two for h ≈ 0, while the difference is less for
h > 1. The finite-size corrections appear almost negligible
in the paramagnetic phase (h > 1) but are much larger in
the ferromagnetic phase (h < 1). The finite-size corrections
observed for the negativity-based entanglement witness have
the same origin as those for the energy witness. Indeed,
both the entanglement negativity [given via the minimum of
the values in Eqs. (61) and (63)] and the energy [given in
Eq. (17)] can be obtained via nearest-neighbor correlation
functions.

We have repeated the calculation for two values fulfilling
0 < γ < 1, and the results are shown in the insets in Fig. 4.
The results are calculated using the negativity-based witness
given in Eq. (66) for h > hd and the family of negativity-based
witnesses in Eq. (76) for h < hd . Equivalently, we used the
formula giving the smallest eigenvalue of the partial transpose
of the two-qubit state. In particular, we used the formula
for μ

(2)
min in Eq. (61) for h > hd and the formula for μ

(1)
min in

Eq. (63) for h < hd . If the smallest eigenvalue is negative,
then the two-qubit state is entangled. In these cases, too,
the convergence to the thermodynamic limit is very fast in
the paramagnetic phase, while in the ferromagnetic phase the
convergence is much slower. We find that the temperature
bounds obtained using the entanglement negativity witness
are considerably higher than those obtained using the energy-
based witness.
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V. ENTANGLEMENT IN NONEQUILIBRIUM
POSTQUENCH STATES

In this section, we consider global quenches in the system,
as described in Sec. II D and study the entanglement proper-
ties of nonequilibrium stationary states, which are obtained in
the large-time limit after the quench. To calculate averages we
use the GGE protocol and assign different effective tempera-
tures to each fermionic modes, as described in Eqs. (27) and
(28). First we apply the energy-based witness in Eq. (44) and
then the entanglement negativity-based witnesses in Eqs. (66)
and (76).

A. Energy-based witness

The energy-based witness detects the postquench state as
entangled if

〈	0|H|	0〉 < Esep (87)

holds, where H is the Hamiltonian after the quench. In the
following, for simplicity we consider the case when γ0 = γ

holds and study the area in the (h0, h) plane corresponding to
quenches in which entanglement has been detected.

We will now obtain the boundaries analytically using the
bound Esep given in Eq. (41). We have to consider two cases.

(i) Let us consider first the case when

h � 1 + γ (88)

holds. Then, from Eq. (87), we obtain the relation

−hI1(h0, γ ) − I2(h0, γ ) < − (1 + γ )2 + h2

2(1 + γ )
. (89)

The right-hand side of Eq. (89) corresponds to the top line
in the equation defining the bound for separable states in
Eq. (41). The left-hand side is equal to the energy of the state
after quench given in Eq. (24). The integrals are defined as

I1(h0, γ ) = 1

π

∫ π

0

h0 − cos p√
γ 2 sin2 p + (h0 − cos p)2

d p,

I2(h0, γ ) = 1

π

∫ π

0

−h0 cos p + cos2 p + γ 2 sin2 p√
γ 2 sin2 p + (h0 − cos p)2

d p. (90)

The left-hand side and the right-hand side of Eq. (89) are up to
second order in h. Thus, the condition given in Eq. (89) holds
if

h− < h < h+, (91)

where the lower and upper bounds are defined as

h± = [
I1 ±

√
I2
1 + 2I2/(1 + γ ) − 1

]
(1 + γ ). (92)

Note that h− and h+ depend on h0. Note also that we assumed
that the condition given in Eq. (88) is satisfied, and thus the
interval given by Eq. (91) must be reduced taking into account
Eq. (88).

(ii) Let us consider now the case when

h > 1 + γ (93)

holds. Then, from Eq. (87), we obtain the relation

−hI1(h0, γ ) − I2(h0, γ ) < −h. (94)

The right-hand side of Eq. (94) corresponds to the bottom
line in the equation defining the bound for separable states in
Eq. (41). The left-hand side is equal to the energy of the state
after quench given in Eq. (24). The integrals are defined in
Eq. (90). For a fixed h0, the left-hand side and the right-hand
side of Eq. (94) are up to first order in h. Thus, Eq. (94) holds
if

h < h̃+, (95)

where the upper bound is defined as

h̃+ = I2

1 − I1
, (96)

and it depends on h0. Note that we assumed that the condition
given in Eq. (93) is satisfied, and thus the set of h values satis-
fying Eq. (95) must be reduced taking into account Eq. (93).

Let us determine now the set of h values for which the
quantum state is detected as entangled. Let us start from a
small h0 value. In this case, simple algebra yields

h− � h+ < h̃+ < 1 + γ , (97)

and if the postquench state is detected as entangled, then h
must fulfill Eq. (91). Let us increase h0. We arrive at a point
when

h− < h+ = h̃+ = 1 + γ . (98)

Increasing h0 further, we find that

h− < 1 + γ < h+ < h̃+. (99)

If the postquench state is detected as entangled, then h must
fulfill the relation

h− < h < h̃+. (100)

Based on these, for a given h0 and h, the postquench state is
entangled if

h− < h <

{
h+ if h̃+ � 1 + γ ,

h̃+ if h̃+ > 1 + γ ,
(101)

where h+ and h− are given in Eq. (92), and h̃+ is given
in Eq. (96). We stress that we obtained the boundaries
analytically.

In Fig. 5, the region in which the postquench states are de-
tected as entangled by the energy-based witness are indicated
with a yellow-filled area. In Fig. 5(a), we consider the case
with γ = 1 and hence we have a quantum Ising chain. The
region corresponding to postquench states detected as entan-
gled consists of a single connected part. In Figs. 5(b)–5(d),
we have γ = 0.8, γ = 0.6, and γ → 0+, respectively. The re-
gion corresponding to postquench states detected as entangled
consists of two connected parts, which touch each other at

(h0 = hd , h = hd ), (102)

where hd is given in Eq. (7). The point given by Eq. (102)
corresponds to a quench in which the system is at the disorder
line before and after the quench, and due to h = h0 the
parameter h does not change. Thus, the thermal state is
separable, as discussed in Sec. III A.

If the initial state is in the ferromagnetic domain, h0<1,
the region of postquench states detected as entangled is rather
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(a) (b)

(c) (d)

FIG. 5. Postquench states after a sudden quench protocol (h0, γ ) → (h, γ ) in the XY chain. (Yellow) Entanglement is detected by the
energy-based witness. (Blue) Entanglement is detected in the postquench state by the negativity-based method using μ

(1)
min in Eq. (63).

Equivalently, the entangled states can be detected by the family of negativity-based entanglement witnesses given in Eq. (76). (Gray)
Entanglement is detected in the postquench state by the negativity-based witness in Eq. (66). The blue and the gray areas touch each other at
the disorder point, where h0 = hd and h = hd , and hd is given in Eq. (7). The blue and the gray filled areas overlap with the yellow area such
that all yellow-filled area is part of the blue- and the gray-filled areas. Thus, all postquench states detected by the energy-based witness are also
detected by the negativity-based witness. In panel (d) the limit γ → 0+ is considered, which is different from the case when γ = 0, see text.

narrow, then the values of h corresponding to an entangled
entangled postquench states are close to h0. Starting the
quench from the paramagnetic phase, h0 > 1, the domain of
postquench states detected as entangled is relatively wider.

Starting the quench just at the critical point, h0 = 1, the
boundaries exhibit a singularity since

dh±
dh0

∼ −(h± − 1) ln |h0 − 1| (103)

holds.

B. Negativity-based witnesses

We have calculated the region of postquench states de-
tected as entangled by the entanglement negativity-based
witness. In Fig. 5, the results are shown indicating that the
postquench states are detected as entangled with blue (gray)
filled areas if the calculation is used μ

(1)
min given in Eq. (63)

[μ(2)
min given in Eq. (61)]. In other words, the blue (gray) area

denotes states that are detected by the family of negativity-
based witnesses in Eq. (76) [by the negativity-based witness
given in Eq. (66)]. All postquench states that are detected by
the energy-based witness are also detected by the negativity-
based methods.

In Fig. 5(a), we consider the case with γ = 1 and hence we
have a quantum Ising chain. In this case, the negativity-based
witness with μ

(2)
min is applicable in the whole phase diagram.

In Figs. 5(b)–5(d), we have γ < 1, and the condition μ
(1)
min <

μ
(2)
min is fulfilled in a part of the phase diagram. Thus, entangled

postquench states are also detected based on μ
(1)
min.

In Fig. 5(d) the limit γ → 0+ is considered, which is,
however, not identical to the γ = 0 case, which corresponds
to the XX model. In the latter model, for all h0 and h we have

[H0,H] = 0, (104)
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hence this case needs a special treatment. If the system is
ideally isolated, then, according to Eq. (18), the system re-
mains in its original state, |	0(t )〉 = exp(−iẼ0t )|	0〉, with
Ẽ0 = 〈	0|H|	0〉. In this state the the correlations in Eqs. (15)
and (16) are given by:

gc =
{

0, h0 � 1,

2
π

√
1 − h2

0, h0 < 1,

gs = 0,

g0 =
{

1, h0 � 1,

1 − 2 arccos(h0 )
π

, h0 < 1.
(105)

Thus, the postquench state is separable for h0 � 1 and entan-
gled for h0 < 1, independently of the value of the postquench
parameter h.

We note that |	0(t )〉 is generally not the ground
state of H, since the modes for p1 < p < p2 are oc-
cupied, where p1 = min[arccos(h0), arccos(h)] and p2 =
max[arccos(h0), arccos(h)]. This follows from Eqs. (22) and
(23). In the limit γ → 0+, the system can be considered not
ideally isolated, which means that an arbitrarily small but
nonzero interaction is present with the environment. Then the
system for sufficiently long time will decay to its ground state,
having no occupied modes. This is formally equivalent to the
condition in Eq. (27), which for having | cos 
p| = 1 predicts
Teff (p) = 0 for each modes. As a consequence the correlations
in Eqs. (15) and (16) are the same as in the ground state
of the postquench Hamiltonian, and the postquench state is
separable for h � 1 and entangled for h < 1, independently
of the value of the initial parameter h0.

We can see that the entangled region detected by the nega-
tivity method is larger than that detected by the energy-based
witness. Even if the initial state is separable, corresponding to
h0 = hd , the postquench state can be detected as entangled
by the negativity-based witness if h �= hd . In this case, the
entanglement is obtained due to the entangling dynamics of
the Hamiltonian H.

Note that the border of the entangled domain is singular
at h0 = 1, which corresponds to the case when the system
is critical before the quench. Note also that for γ < 1 the
border of the entangled domain is horizontal where the two
disconnected parts meet at the point given in Eq. (102).

VI. DISCUSSION

Entanglement in mixed quantum states is a difficult prob-
lem, in particular when the degrees of freedom is large and
we approach the thermodynamic limit. The possible systems
of investigation are usually quantum spin systems, most often
quantum spin chains. Such type of quantum spin chains could
have experimental realizations in condensed matter systems
[81] or they could be engineered artificially through ultracold
atomic gases in an optical lattice. Recently, this latter type
of technique is very well developed and different intriguing
questions could be studied experimentally [82–90].

In this paper we consider the XY chain, which is integrable
through free-fermionic techniques and several exact results
are available, mainly in the ground state but there are some
known results even at finite temperature [31,32]. We con-

sider the entanglement properties of mixed states of the XY
chain. To detect entanglement we use different entanglement
witnesses: an energy-based witness and a family of wit-
nesses that detect states with a nonzero bipartite entanglement
negativity. Using the former is technically simpler, but it does
not detect all states that have nearest-neighbor entanglement.
In contrast, the witnesses based on entanglement negativity
can detect all states that have nearest-neighbor entanglement,
but it is generally more complicated to calculate their expec-
tation value.

First, we considered thermal states, for which some pre-
vious calculations are available at specific points for infinite
chains [11,16,17]. Here we performed the entanglement de-
tection both for finite chains and in the thermodynamic limit.
In the ordered phase of the system very strong finite-size
corrections are detected, which are due to the presence of a
quasidegenerate first excited state and the corresponding gap
is exponentially small with the length of the chain.

One of the main novelties of the present paper is that we
considered also mixed states which are due to a quench when
parameters of the Hamiltonian of the system are changed
abruptly and the time evolution of the system is governed
by the new Hamiltonian. After a sufficiently long time the
system will approach a nonequilibrium stationary state, the
properties of which are of vital importance. The postquench
state is a mixed quantum state. For general, nonintegrable
systems it is expected to be a thermal state, which is described
by an appropriate Gibbs ensemble. For integrable systems,
for which examples are the XXZ or the XY chains, the
postquench state is described by a so-called generalized Gibbs
ensemble.

We observed that the postquench state has an entangled
two-qubit reduced state for the nearest neighbors if the param-
eters involved during the quench (in our case the transverse
fields h and h0) are sufficiently close to each other. If the
parameters change significantly, then the nearest-neighbor
two-qubit reduced state for the nonequilibrium stationary state
becomes nonentangled. We expect that the latter statement is
generally valid in various systems for the entanglement of
nonequilibrium postquench states, at least for the entangle-
ment of few-particle blocks. Additionally, in the XY models
different from the Ising model, we found entanglement if the
quench is performed from the paramagnetic phase (h0 > 1) to
the ferromagnetic phase (h < 1) and vice versa. These cases
are relevant especially for small γ . It would be interesting
to check the entanglement properties of postquench states of
other (Bethe-Ansatz) integrable models.

While we studied the nearest-neighbor entanglement of the
postquench state, other properties uncovering hidden critical-
ity of the initial system not detectable by local quantities have
recently been considered [91]. The method has been based on
efficient lower bounds on the negativity in XY chains [92,93].
We have shown that the criticality of the initial state can still
be seen in the boundaries of the regions with nearest-neighbor
entanglement.

VII. CONCLUSIONS

We used energy-based entanglement witnesses to detect
entanglement in the thermal states of the infinite and fi-
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nite XY chain, as well as in the mixed states arising after
quench. We compared their performance to the negativity-
based entanglement witness. We find that they efficiently
detect entanglement in the systems we considered.
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APPENDIX A: THERMAL AVERAGE OF THE ENERGY
FOR FINITE PERIODIC CHAINS

For periodic chains in the fermionic representation there
are two sectors, depending on the parity of the number of
fermions [94,95].

(i) For even number of fermions, let us denote the Hamilto-
nian by H(+), and the possible values of the momenta are as
follows:

p = ±π

L
(2m − 1), m = 1, 2, . . . , L/2. (A1)

(ii) For odd number of fermions, let us denote the Hamilto-
nian by H(−), and the possible values of the momenta are as
follows:

q = 0, π,±2π

L
n, n = 1, 2, . . . , L/2 − 1. (A2)

In this sector the energy of the q = 0 mode is

ε(q = 0) = 2(h − 1). (A3)

The partition function of the system is given as

Z = Z (+) + Z (−), (A4)

where Z (±) are the partition functions calculated with even and
odd number of fermions, respectively.

The even partition function for L = 2� sites is given as

Z (+)
2� = 22�−1

⎧⎨
⎩
∏
p>0

cosh2

[
βε(p)

2

]
+

∏
p>0

sinh2

[
βε(p)

2

]⎫⎬
⎭,

(A5)
and the analogous odd partition function is expressed as

Z (−)
2� = 22�−2

⎧⎨
⎩C(+)

∏
0<q<π

cosh2

[
βε(q)

2

]

+C(−)
∏

0<q<π

sinh2

[
βε(q)

2

]⎫⎬
⎭, (A6)

with the definitions

C(±) = cosh(β ) ± cosh(βh). (A7)

Here, as usual, β = 1/T . The thermal average of the energy is
given by

〈H〉T = 〈H(+)〉T
1

1 + Z (−)/Z (+)
+ 〈H(−)〉T

Z (−)/Z (+)

1 + Z (−)/Z (+)
,

(A8)
with

〈H(+)〉T = ∂ ln Z (+)

∂β
=

∑
p>0

ε(p)

{
tanh

[
βε(p)

2

]
1

1 + T (p)

+ coth

[
βε(p)

2

]
T (p) )

1 + T (p)

}
. (A9)

Similarly, we have

〈H(−)〉T = ∂ ln Z (−)

∂β
= S(+) + S(−)T (q)

C(+) + C(−)T (q)

+
∑

q

ε(q)

{
tanh

[
βε(q)

2

]
1

1 + T (q)C(−)/C(+)

+ coth

[
βε(q)

2

]
T (q)C(−)/C(+)

1 + T (q)C(−)/C(+)

}
. (A10)

Here we use the definitions

T (p) =
∏
p>0

tanh2

[
βε(p)

2

]
,

T (q) =
∏

0<q<π

tanh2

[
βε(q)

2

]
, (A11)

and

S(±) = sinh(β ) ± h sinh(βh). (A12)

APPENDIX B: PROVING THE FACT THAT ρ23 � 0

In this section, we show that

ρ23 = gc/2 � 0. (B1)

This can be proved starting with the definition in Eq. (16) in
the thermodynamic limit

gc = 2

π

∫ π

0
d p cos p(cos p − h)t (p, T, h)ε−1(p, h), (B2)
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where the integral is separated in two halves,
∫ π/2

0 + ∫ π

π/2,
leading to

gc = g̃c(h) + g̃c(−h) (B3)

with

g̃c(±h) = 2

π

∫ π/2

0
d p cos p(cos p ± h)t (p, T,±h)ε−1(p,±h).

(B4)

Bringing the two expressions below one integral, the integrand
is of the form

I (p, T, h) = C(p, h)[(cos p − h)ε(p,−h)t (p, T, h)

+ (cos p + h)ε(p, h)t (p, T,−h)], (B5)

where C(p, h) = π−1 cos pε−1(p, h)ε−1(p,−h) � 0 and thus
I (p, T, h) � 0.
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