
PHYSICAL REVIEW RESEARCH 5, 013156 (2023)

Arithmetic circuit tensor networks, multivariable function representation,
and high-dimensional integration

Ruojing Peng ,* Johnnie Gray , and Garnet Kin-Lic Chan
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA

(Received 1 September 2022; revised 30 January 2023; accepted 6 February 2023; published 28 February 2023)

Many computational problems can be formulated in terms of high-dimensional functions. Simple representa-
tions of such functions and resulting computations with them typically suffer from the “curse of dimensionality,”
an exponential cost dependence on dimension. Tensor networks provide a way to represent certain classes of
high-dimensional functions with polynomial memory. This results in computations where the exponential cost is
ameliorated or, in some cases, removed, if the tensor network representation can be obtained. Here, we introduce
a direct mapping from the arithmetic circuit of a function to arithmetic circuit tensor networks, avoiding the need
to perform any optimization or functional fit. We demonstrate the power of the circuit construction in examples
of multivariable integration on the unit hypercube in up to 50 dimensions, where the complexity of integration
can be understood from the circuit structure. We find very favorable cost scaling compared with quasi–Monte
Carlo integration for these cases and further give an example where efficient quasi–Monte Carlo integration
cannot be performed without knowledge of the underlying tensor network circuit structure.

DOI: 10.1103/PhysRevResearch.5.013156

I. INTRODUCTION

High-dimensional multivariable functions (henceforth,
multivariable functions) and their integrals appear in a
multitude of areas, ranging from statistical and quantum
many-body physics [1–3] to applications in machine learning
[4–9]. Simple representations of such functions, for example,
on a product grid, require exponential storage, and subse-
quent manipulation of the functions, e.g., in integration by
quadrature, then requires exponential cost in dimension. Many
techniques have been introduced to bypass this exponential
cost. For example, high-dimensional integration is often car-
ried out by Monte Carlo or quasi–Monte Carlo methods,
which sample the function at a set of random or preselected
points [10–13], thereby exchanging the exponential depen-
dence on dimension for weaker guarantees on error.

In the many-body physics community, tensor networks
(TNs) such as matrix product states, projected entangled
pair states, and the multiscale entanglement renormalization
ansatz have long been used to represent multivariable physi-
cal quantities, such as quantum states [14–18] or Boltzmann
densities [19–21]. Similar techniques (although mainly for
more restricted classes of tensor networks, such as canonical
decomposition (CANDECOMP) or parallel factor analy-
sis (PARAFAC) [22–26], hierarchical Tucker decomposition
[26–28], and tensor trains [28,29]) have appeared in the ap-
plied mathematics community as well, and have been used for
high-dimensional function computation and approximation.
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In both cases, the idea is to represent an (often discretized)
high-dimensional function as a connected network of low-
dimensional tensors. This can reveal a nontrivial low-rank
structure in the function, thereby achieving a great reduction
in memory. Because TNs further come with a natural notion
of approximation (from the compression of pairs of tensors
via, e.g., the singular value decomposition), the use of such
approximations can ameliorate, and in some cases remove, the
exponential cost with respect to dimension, when computing
with the TN.

For multivariable function computation with TNs, we must
first obtain a TN representation of the function. The manner
in which such representations are obtained usually involves
problem-specific numerical computation. For instance, if the
target function can be efficiently evaluated, then determination
of the tensor parameters can be formulated as an optimiza-
tion problem [24,25,30–35]. Another common scenario is
when the function is implicitly defined from a minimization,
in which case the tensor representation can be optimized by
the variational principle [36–38]. When the function satisfies
a differential equation with a known initial condition that
is easily expressed as a TN, the TN representation can be
propagated [39–44]. In all these cases, therefore, the deter-
mination of the tensor network representation of the function
involves an associated, potentially large, computational cost.
In addition, the tensor networks are generally chosen with a
fixed network structure ahead of time (for example, a matrix
product state or a tensor train) in order to make the deter-
mination of the representation feasible, even though such a
structure may not be the most compact [38,45,46].

Here, we introduce an alternative way to construct the
TN representation of a function from its arithmetic circuit.
As both classical arithmetic circuits and quantum arithmetic
circuits can be viewed as TNs, it is immediately clear that mul-
tivariable functions can be represented as TNs through these
circuits. However, such circuits carry various disadvantages;
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for example, classical logic gates lead to extremely sparse
tensors where the number of indices is proportional to the
number of bits of precision [47,48], while quantum arithmetic
circuits are constrained to unitary tensors and may be sub-
optimal for classical calculations [49,50]. Consequently, we
introduce a tensor network circuit representation that takes
advantage of both the ability to store floating point numbers as
entries in the tensors and the lack of unitary constraints. This
leads to a concise construction that avoids the auxiliary com-
putation involved in obtaining the TN representation itself.

A by-product of the arithmetic circuit TN form is that the
structure of the tensor network is dictated by the circuit, rather
than specified beforehand. Consequently, the TN structure
that arises can have a general connectivity, and can in prin-
ciple look quite different from those typically encountered in
quantum many-body physics or applied mathematics settings.
Recent developments in the exact and approximate contrac-
tion of tensor networks with more unstructured geometries are
discussed, for example, in Refs. [51–55].

Using the arithmetic circuit TN representation, we carry
out high-dimensional quadrature over the unit hypercube (in
up to 50 dimensions) for multivariable polynomials and multi-
variable Gaussians. The use of tensor networks in conjunction
with high-dimensional integration or summation is hardly
new; it is one of the main applications of TNs (see, for ex-
ample, Refs. [33,34,56,57]). However, the availability of the
circuit structure of the function leads to new insights into this
problem. For example, for the multivariable polynomials, we
find exact compressibility of the TN circuit in certain limits
of the polynomial parameters. This can then be decoded into
an exact integration rule (see Ref. [58] for a related result).
Furthermore, away from the exact point, we can relate the
difficulty of approximation to the degree of nonlinearity (num-
ber of copy operations) in the circuit. In terms of practical
performance, because Gaussian quadrature weights can be
used in each dimension of the TN quadrature, we find that TN
integration converges in accuracy orders of magnitudes more
quickly than quasi–Monte Carlo (quasi-MC) integration for
instances of the multivariable polynomial and Gaussian inte-
grals. Finally, we finish with an artificial but instructive case
where we construct a function (based on the multiscale entan-
glement renormalization ansatz [59,60]) that can be integrated
efficiently when using knowledge of its internal TN circuit
structure, but for which function evaluation is hard, thus mak-
ing quasi-MC hard if the function is treated as a black box.

II. TENSOR NETWORK ARITHMETIC CIRCUITS

A. Function tensor representation and circuit
composition of functions

We first introduce a tensor representation of individual
single-variable and multivariable functions and show how to
use the representation to compose complicated functions from
simpler ones. We start with a single-variable function f (x).
Assuming for the time being that x is a continuous variable,
we introduce the continuous function tensor (function matrix)
representation F , where the function values are stored in the
elements Fxα , specifically,

Fx0 = 1,

Fx1 = f (x). (1)

FIG. 1. Tensor representation F of the scalar function f (x). The
“control” index is represented by the thin leg on the bottom.

We refer to x as the variable and α as the control index or leg
(the dimension of the control index is 2). We consider here
scalar-valued functions, but vector-valued functions can be
similarly defined. In numerical applications, x will typically
be discretized, e.g., on a grid with G points. The control index
is used to perform arithmetic and other gate operations on the
functions.

It will be convenient to use the standard graphical notation
of tensor networks. We show a diagram of F in Fig. 1. We use
the convention that labeled lines represent indexed elements
and unlabeled lines between two tensors are summed over for
discrete indices and integrated over for continuous indices.

The control index can be thought of as a “qubit” index in
the tensor product Hilbert space of functions, analogous to the
qubit representation used in quantum mechanics; from Eq. (1),
we see that |1〉 is associated with a basis function f (x), and
|0〉 is replaced by the scalar 1. Then given a set of functions
{ fi(xi )}i=0···N−1, we represent a monomial of functions as

F [1]
x0α0

F [2]
x1α1

F [N−1]
xN−1αN−1

= f0(x0)α0 f1(x1)α1 · · · fN−1(xN−1)αN−1 .

(2)

A multivariable function c(x0, x1, . . . , xN−1) in the product
Hilbert space

∏
i{1, f (xi )} takes the form

c(x0, . . . , xN−1) =
∑
{αi}

∏
i

Cα0,...,αN−1 F [i]
xiαi

. (3)

Using the qubit analogy, Cα0,...,αN−1 may be regarded as a wave-
function amplitude in the computational basis. Note that the
above constructs the Hilbert space using single-variable func-
tions, but we could also use more complex building blocks,
e.g., a two-variable function tensor, Fxyα ↔ f (x, y). We also
note that the use of a product Hilbert space to represent mul-
tivariable functions has been considered in other contexts, for
instance, for length scale separation in the solution of partial
differential equations, or for efficient function parameter stor-
age. For relevant discussions, see, e.g., Refs. [35,43,44].

We use a tensor network to build a circuit representation of
the function c(x0, . . . , xN−1) using contractions of the func-
tion tensors either with themselves or with other fixed tensors.
The simplest example corresponds to performing classical
arithmetic and logic to combine single-variable functions, us-
ing control tensors. The addition tensor (+) is a three-index
control tensor, with elements

(+)αβγ =
{

1 α + β = γ

0 otherwise. (4)

Note that unlike the usual binary arithmetic, the addition is not
modulo 2. The multiplication tensor (×) is also a three-index
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FIG. 2. Arithmetic circuit tensor network representation of
(a) f (x)g(y) and (b) f (x) + g(y).

control tensor,

(×)αβγ =
{

1 α = β = γ

0 otherwise. (5)

With such definitions we can perform classical arithmetic
on functions. Contraction of two function tensors, F and G,
with the multiplication or addition tensors yields the higher-
dimensional objects (shown as a tensor network in Fig. 2)
corresponding to functions of two variables, i.e.,

FxαGyβ (×)αβγ ↔ f (x)g(y),

FxαGyβ (+)αβγ ↔ f (x) + g(y),

where we have assumed summation over repeated indices.
The above are simple examples of arithmetic circuit tensor

networks. Within these arithmetic circuits, the 0 value of the
control index is only needed to perform addition; if we know
that f (x) only enters the circuit via multiplication, we can
always choose to fix the control index α = 1 of the corre-
sponding tensor F , and thus omit the control leg entirely, i.e.,
Fx = Fxαδα,1. Similarly, scalars have no variable dependence
and can thus be specified without their variable leg.

A second circuit structure involves contraction between
the variable legs of the function tensors, which corresponds
to integrating a common variable between two functions.
For example, given Fxα ↔ f (x) and Gk,x ↔ g(k, x) (we have
dropped the control index on G since we are only using it for
multiplication), then

FxαGkx ↔
∫

dx f (x)g(k, x), (6)

where we have assumed integration over the repeated contin-
uous index on the left.

Multivariable functions built from the above arithmetic
operations will be multilinear in the underlying functions. To
build nonlinearity, we use multiple functions of the same vari-
able. To do so, we define a tensor COPY on the continuous
variable legs, with entries

(COPY)xyz =
{

1 x = y = z
0 otherwise. (7)

Then, using the COPY tensor we can multiply or add two
functions of the same variable, as shown in Fig. 3, correspond-
ing to the contractions

(COPY)xyzFyαGzβ (×)αβγ ↔ f (x)g(x),

(COPY)xyzFyαGzβ (+)αβγ ↔ f (x) + g(x).

Note that the contraction of the COPY tensor is an example
of a third type of circuit operation, namely, the contraction

FIG. 3. Arithmetic circuit tensor network representation of
(a) f (x)g(x) and (b) f (x) + g(x). The circle represents the COPY
tensor.

over the variable legs of functions with additional variable
leg tensors; further examples of this kind are discussed in
Sec. II B.

Finally, we briefly mention that the control legs above are
contracted with tensors that implement classical arithmetic or
logic; contraction generates a single function output. How-
ever, one can also apply more general binary operations, such
as quantum logic gates where a single set of control inputs
may map to multiple control outputs. For example, we can
create a circuit using a quantum CNOT gate (see Fig. 4), giving

FxαGyβ (CNOT)αβ,γ δ (+)γ δε ↔ f (x) + f (x)g(y). (8)

B. Variable circuits, transformations of variables,
and other representations

The COPY operation defined above generalizes to other
transformations on the variable legs of the function tensors.
For instance, Eq. (6) represents a transformation of variable
f (x) → f̃ (k) that can be written as an integral with a ker-
nel g(x, k). As a concrete example, consider the convolution
of N-periodic sequences written as a TN contraction with
kernel Z

( fN ∗ gN )[n] =
N∑

m=0

fN [m]gN [n − m] ↔ FmGlZmln, (9)

where

Zmln =
{

1 l = n − m
0 otherwise

and the subtraction of indices is modulo N . Note that, as
previously explained, we have dropped the control index
(Fm = Fmαδα,1) since the functions fN and gN enter only
through multiplication. Similarly, discrete Fourier transforms
(DFTs) can be written as

F−1(F ( fN )F (gN )) ↔ (F−1)n,kFk,mFmFk,l Gl , (10)

FIG. 4. Arithmetic circuit tensor network representation
of Eq. (8). The CNOT gate is represented by the dashed box.
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FIG. 5. Representation of the convolution theorem:
(a) F−1(F ( fN )F (gN )) and (b) ( fN ∗ gN )[n]. The red legs represent
position space variables l, m, n, and the green legs represent
momentum space variable k. The green circle represents the COPY
tensor.

where

Fk,n = e−2π ikn/N , (F−1)n,k = 1

N
e2π ikn/N

are the kernels for the DFT and inverse DFT. The convolu-
tion theorem ( fN ∗ gN )[n] = F−1(F ( fN )F (gN ))[n] can then
be expressed as the diagram shown in Fig. 5.

In contrast to the representation introduced above, which
stores function values in the tensor elements, we also want to
mention an alternative “classical” representation of functions
where function values are stored in the tensor indices. In this
case, the function y(x) can be thought of as represented by a
function tensor with two continuous indices,

F y′x = 1 if y′ = y(x), (11)

where we have used the underline to distinguish this classi-
cal representation from our previous representation. One can,
e.g., perform arithmetic in this classical representation, using
the addition and multiplication tensors

(+)
xyz

= 1 if z = x + y,

(×)
xyz

= 1 if z = xy. (12)

In principle, one can represent all operators and all func-
tions from circuits built up this way. However, in a discrete
computation, the continuous variables must be discretized in
some manner. For instance, classical finite-precision binary
arithmetic discretizes each variable as a binary string (e.g.,
of size N , so that each variable is represented by N tensor
legs of dimension 2), in which case the (+) and (×) tensors
decompose into subnetworks of classical logic gates, e.g.,
(XOR) and (AND). The precision of the representation is then
limited by the length of the binary string, i.e., the number of
tensor legs, for each variable.

C. Arithmetic circuit tensor networks and integration

The composition of the above elements clearly allows us
to construct a general multivariable function by operations
on function tensors. This yields the arithmetic circuit tensor
network representation of the multivariable function. A simple
example for the function

∏3
i=1 ( fi(x) + gi(y)) is shown in

Fig. 6(a).
Given the TN representation, it is trivial to define integra-

tion over the input variables. Assuming a product quadrature
for each variable x0, . . . , xN−1, then each continuous variable
is discretized xi[p] ↔ xi, where [p] denotes the pth grid point.

FIG. 6. Representation of the function
∏3

i=1 ( fi(x) + gi(y)).
(a) TN representation of the function. As discussed previously, since
each factor fi(x) + gi(y) enters the function through multiplication
only, we omit the open control leg on the (+) tensors. (b) Integration
of the function with one contraction scheme: The tensors in the red
box are contracted first, then contracted with the tensors in the green
box, and then contracted with the remaining tensors. (c) Integration
of the function with another contraction scheme: The tensors in the
blue box are contracted first and then contracted with the remaining
tensors. (d) Representation of the function showing loops (red and
green lines).

One can also introduce quadrature weights w[p], giving

F
∫
α =

∑
p

wpFpα ↔
∫

dx f (x) (13)

as shown in Figs. 6(b) and 6(c).

D. Contracting the arithmetic circuit

To obtain the value of the function from the arithmetic
circuit, one needs to contract the tensors. There are many
techniques for contracting tensor networks. Here we will view
exact and approximate tensor network contraction as mainly
black box algorithms; thus we do not discuss the details and
only give a brief idea of the fundamentals. Further details of
techniques for exact contraction are described in Refs. [51,61–
69]. Additional information on approximate contraction can
be found in Refs. [14–18,38,39,42,52–55,68,70,71].

Although a typical arithmetic circuit has a flow from input
values to output values, the fact that the arithmetic circuit
TN encodes all output values for all inputs simultaneously,
removes the directionality of the circuit. In particular, the
contractions in the circuit can be evaluated in any order [see
Figs. 6(b) and 6(c)], interchanging the order of summations
and products. This can lead to drastic changes in the com-
plexity of evaluation. Heuristic techniques exist to search for
and find good orders for exact contraction which have been
applied to tensor network and quantum circuit tensor network
contraction problems (see Refs. [51,72–78]).

Tensor networks without loops (i.e., trees) can be con-
tracted exactly with a cost linear in the number of tensors.
For arbitrary connectivity, e.g., with loops, the exact tensor
network contraction scales exponentially with the number of
tensors. However, tensor networks can also be contracted ap-
proximately with an approximation error. Such approximate
contraction is widely used in tensor network applications in
the simulation of quantum systems, and is closely related to
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low-rank matrix factorization [79–81]. During the contraction
of the tensor network, tensors will be generated which share
an increased number of legs with neighboring tensors [see
Figs. 6(b) and 6(c)]; note the combined dimension of the legs
D. In approximate contraction, we use projectors of dimension
D × χ to project the shared leg of dimension D down to a
shared leg of dimension χ , thus controlling the cost of further
operations. In practice, these isometric matrices are usually
determined from a singular value decomposition (SVD).

A simple example of a compression algorithm is the
“boundary” compression algorithm for a regular two-
dimensional (2D) tensor network. Here, rows of tensors
(so-called matrix product states and matrix product operators)
are contracted together, to form matrix product states with
shared bonds; then a series of SVDs are applied to reduce the
bonds to dimension χ (see Refs. [14–18,38,39,42,55,68,71]).
We will deploy the boundary contraction algorithm as the ap-
proximation contraction algorithm below. However, just as for
exact contraction, the choice of order of when to contract and
compress can greatly affect cost and accuracy, and similar to
exact contraction, there are heuristics to choose an optimized
order of contraction and compression. In this paper, we do not
encounter sufficiently complicated network structures to use
these more sophisticated strategies, but the interested reader
is referred to Ref. [55].

Approximate contraction is critical for applications of
arithmetic tensor networks, because it allows subclasses of
arithmetic tensor networks to be executed for less than the
brute-force exponential cost in the number of tensors. This
is useful in defining classes of computational problems where
the curse of dimensionality is circumvented, as we now exam-
ine in our application to multidimensional integration below.

III. APPLICATIONS TO INTEGRATION

We now apply the arithmetic tensor network formalism
to the problem of multivariable integration. We start with
some basic intuition about complexity and then proceed to
progressively more complicated examples of multivariable
polynomial and multidimensional Gaussian integration in the
hypercube, illustrating the power of the method versus another
high-dimensional technique, namely, quasi–Monte Carlo in-
tegration. We finish with a specific circuit function with a
complexity-theoretic guarantee of hardness with respect to
sampling its values (and thus integration by direct application
of quasi–Monte Carlo methods) but which can be efficiently
integrated if one uses its tensor network structure.

Intuition regarding complexity

It is well known that multivariable functions admitting a
separation of variables are easy to integrate over a separable
range. The simplest examples are∫

	2
dxdy f (x)g(y) =

(∫
	

dx f (x)

)(∫
	

dyg(y)

)
, (14)∫

	2
dxdy( f (x) + g(y)) = 	

∫
	

dx f (x) + 	

∫
	

dyg(y),

(15)

where 	 is the integration range in each variable. In TN
language, the separability in the above equations corresponds

to the tree structure in the TN diagrams shown in Fig. 2. As
discussed, such loop-free tensor networks are easy to contract.
In the case of integration, one integrates over the variable legs
[numerically, one sums over the discrete variable index with
grid weights as in Eq. (13)], and then one repeatedly contracts
child tensors into their parents, never creating any shared
legs. Note that loop-free structures constitute a larger class
of functions than separable functions. For example, assuming
all operations are addition and multiplication operations, then
the function

[( f1(x1) f2(x2) + f3(x3)) f4(x4) + f5(x5)] f6(x6) · · · , (16)

where the nested parentheses reflect a binary tree structure, is
easily integrated.

In contrast, the multivariable integration∫
	2

dxdy( f1(x) + g1(y))( f2(x) + g2(y))( f3(x) + g3(y)),

(17)

illustrated in Fig. 6(d), does not generate a loop-free arith-
metic tensor network. In the corresponding TN diagram the
COPY tensor for each variable results in the red and green
loops, arising from a nonlinear dependence of the function
on a variable. The contraction of tensors that are part of two
loops with their neighbors can lead to tensors with more legs
or larger size. Similarly, the use of quantum gates can result
in loops. Thus in our arithmetic TN circuits the use of COPY
tensors and quantum gates makes the resulting tensor net-
works increasingly hard to contract and the resulting functions
harder to integrate.

IV. MULTIVARIABLE POLYNOMIAL OF FUNCTIONS

As an instructive example, consider the integral

Z =
∫

	N

dx1 · · · dxN f (x1, . . . xN ) (18)

with f being a polynomial of the form

f (x1, . . . , xN ) =
k∏

i=1

pi(x1, . . . , xN ) (19)

with

pi(x1, . . . , xN ) =
N∑

j=1

q ji(x j ) (20)

and where q ji(x j ) are single-variable functions. This func-
tional form was considered in Ref. [82], which showed that
integration over the domain [0, 1]N is NP-hard for arbitrary
functions q ji. We first construct an arithmetic circuit TN rep-
resentation and then proceed to investigate the complexity of
integration for different choices of the functions qji(x j ).

A. Arithmetic tensor network representation

Since the total function is explicitly a product of factors,
it is natural to construct a representation for each factor
and then multiply them together. Consider a single factor
pi(x1, . . . , xN ). This is a sum of terms, and we can use a
circuit [shown in Fig. 7(a)] to implement Eq. (20), where the
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FIG. 7. Representation of (a) pi(x1, . . ., xN ) and (b) f (x1, . . ., xN )
for N = 3. As discussed in Sec. II, we have omitted the open con-
trol leg for each pi(x1, . . . , xN ) since they enter f (x1, . . . , xN ) only
through multiplication.

horizontal bonds of dimension 2 are a manifestation of the
low-rank structure of p(x1, . . . , xN ). The arithmetic circuit for
the full tensor network is shown in Fig. 7(b), where the TN for
each factor pi(x1, . . . , xN ) becomes a row (with index i) and
the set of q ji connected by COPY tensors for a given variable
x j becomes a column (indexed by j). The COPY tensors make
the entire network loopy; as each variable is copied k times,
k is a measure of the loopiness of the network. If we first
contract the tensors in each dashed box, the resulting circuit
has a regular 2D structure, known as a projected entangled
pair state (PEPS) [14] structure.

B. Exact compressibility and an identity

We first consider the case where each factor is identical,
i.e., pi(x1, . . . , xN ) = p(x1, . . . , xN ). Then the total function
takes the form

f (x1, . . . , xN ) = (q1(x1) + · · · + qN (xN ))k. (21)

To perform the integration, we first discretize each variable xi

on a grid of G points and allow each single-variable function
on the grid to take random values between −1 and 1 (thus
each qi represents a discretized version of a function that is
oscillating between −1 and 1). We use an equally weighted
quadrature.

The contraction of the 2D tensor network corresponds to
the contraction of the PEPS; thus we use an approximate
tensor network contraction strategy commonly used in PEPS,
compressing to a finite bond dimension χ . Within the PEPS
structure, the horizontal bonds have dimension 2, while the
vertical bonds associated with the grid points have dimen-
sion G. For G � 2, the cost of contracting along the vertical
dimension is much cheaper than contracting along the hor-
izontal dimension. Thus we perform the contraction by a
boundary row contraction method, contracting rows into rows
(see Fig. 8). To compress-contract the whole tensor network,
one needs O(Nk) tensor operations (contractions and SVDs)
on adjacent tensor pairs. The contraction between a χ × χ ×
G tensor and a 2 × 2 × G × G tensor costs O(χ2G2) floating
point operations (FLOPs). The SVD of a 2χ × 2χ × G ten-
sor costs O(χ3G2) FLOPs. Hence the FLOP count scales as
O(Nkχ3G2) from the leading SVD part.

FIG. 8. Boundary row compression of a PEPS with three rows
and five columns. (a) shows the PEPS, where each tensor Ti, j (i and j
index rows and columns, respectively) corresponds to a dashed box
in Fig. 7(b). (b) For each column j, contract T1, j with T2, j . (c) For
each pair of tensors T2, j, T2, j+1 connected by multibonds, compress
the multibonds to a maximum bond dimension χ (red).

After a row is contracted into a row, the dimension of the
tensors along the boundary increases; the maximum bond di-
mension of the boundary tensors after k rows is 2k . However,
when performing compression, we immediately find that the
boundary tensors are exactly compressible to χ < 2k after
each row contraction. In fact, the entire tensor network can be
exactly contracted with bond dimension χ = k, as illustrated
in Fig. 9(a), which shows the error in the computed integral
(due to compressing to finite bond dimension χ ); we see that
the error of contraction drops to 0 for χ = k. Overall this
means that the integral can then be computed exactly with
cost linear in the number of variables N and polynomial in
the function nonlinearity k.

The ability to exactly contract the network with small χ

implies the existence of an exact algebraic identity. Each
compression corresponds to the insertion of isometries or pro-
jectors into the 2D TN. For each row i = 2, . . . , k and column
j = 1, . . . , N , we insert left and right projectors PL[i, j] [of
dimension i × 2 × (i + 1)] and PR[i, j] [of dimension (i +
1) × 2 × i] between rows i − 1 and i and between columns
j − 1 and j where

(PL[i, j])ab,c =
⎧⎨
⎩

1 a = c, b = 0
1 a = j − 1, c = j, b = 1
0 otherwise,

(22)

(PR[i, j])c,ab =
{

1 a + b = c
0 otherwise. (23)

This is shown step by step in Figs. 9(b)–9(e). For example,
in Fig. 9(b), we insert a pair of projectors PL[2, 1], PR[2, 1]
where PL[2, 1]ab,c takes two input vectors (the a, b indices)
[1, q1], [1, q1] and maps them to an output vector (the c in-
dex) [1, q1, q2

1]; PR[2, 1]c,ab takes the input vector (c index)
[1, q1, q2

1] and maps it to two output vectors (a, b indices)
[1, q1], [1, q1]. Similarly, in Fig. 9(c), we insert the pair of
projectors PL[2, 2], PR[2, 2], where PL[2, 2] takes two input
vectors [1, q1 + q2], [1, q1 + q2] and maps them to an output
vector [1, q1 + q2, (q1 + q2)2]; PR[2, 2] takes the input vector
[1, q1 + q2, (q1 + q2)2] and maps it to two output vectors
[1, q1 + q2], [1, q1 + q2]. In general,

PL[i, j] :

⎡
⎢⎢⎣

1
s j

· · ·
si−1

j

⎤
⎥⎥⎦ ⊗

[
1
s j

]
→

⎡
⎢⎢⎣

1
s j

· · ·
si

j

⎤
⎥⎥⎦, (24)
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FIG. 9. (a) Accuracy of TN integration (relative contraction error) for the integral of the multivariable function polynomial in Eq. (21).
This demonstrates exact compressibility via SVD for the 2D arithmetic circuit TN, with number of variables N = 20 and number of points
per variable G = 10. The exact compressibility is equivalent to inserting projectors PL[i, j] (red) and PR[i, j] (green) as in diagrams (b)–(e).
(b) inserts projector PL[2, 1] and PR[2, 1]. (c) inserts PL[2, 2] and PR[2, 2]. (d) inserts projectors PL[3, 1] and PR[3, 1]. (e) Full TN for N = 3,
k = 3 with projectors inserted. The result from each grouped column can be related to a recursive computation of the integral. See Sec. IV B
for details.

PR[i, j] :

⎡
⎢⎢⎣

1
s j

· · ·
si

j

⎤
⎥⎥⎦ →

⎡
⎢⎢⎣

1
s j

· · ·
si−1

j

⎤
⎥⎥⎦ ⊗

[
1
s j

]
, (25)

where s j = ∑ j
j′=1 q j′ is the sum of single-variable functions

up to the jth term. Thus we see that the role of the left
projector is to retain only the nonredundant polynomials of
the single-variable functions q j , and the right projector redis-
tributes nonredundant powers into a direct product.

The tensor network exact compression then corresponds
to computing the integral through a recursive formula (see
Ref. [58] for a related constructive approach). For example,
we can recursively define a set of integrals over a subset of
variables

Ik1
1 =

∫
dx1q1(x1)k1 , (26)

Ik2
2 =

∫
dx1dx2(q1(x1) + q2(x2))k2

=
∫

dx1dx2

k2∑
k1=0

(
k2

k1

)
q1(x1)k1 q2(x2)k2−k1

=
k2∑

k1=0

(
k2

k1

)
Ik1
1

∫
dx2q2(x2)k2−k1 , (27)

Ik3
3 =

∫
dx1dx2dx3(q1(x1) + q2(x2) + q3(x3))k3

=
∫

dx1dx2dx3

[
k3∑

k2=0

(
k3

k2

)

× (q1(x1) + q2(x2))k2 q3(x3)k3−k2

]

=
k3∑

k2=0

Ik2
2

∫
dx3q3(x3)k3−k2 (28)

and so on up to

Ik
N =

∫
dx1 · · · dxN (q1(x1) + · · · + qN (xN ))k

=
∫

dx1 · · · dxN

[
k∑

kN−1=0

(
k

kN−1

)

× (q1(x1) + · · · + qN−1(xN−1))kN−1 qN (xN )k−kN−1

]

=
k∑

kN−1=0

(
k

kN−1

)
IkN−1
N−1

∫
dxN qN (xN )k−kN−1 , (29)

where each iterative step involves integration of single-
variable integrals. The quantities I

k j

j can be related to the TN
with the projectors inserted in each layer. Figure 9(e) shows a
simple example for N = 3, k = 3. From left to right, the open
legs of the first two dashed boxes correspond to Ik1

1 and Ik2
2 ,

respectively, for k1, k2 = 0, . . . , 3, and the full contraction of
the TN corresponds to Ik

3 for k = 3.

C. Perturbations away from exact compressibility

In the above, the compression of the circuit tensor network
for the multivariable polynomial function allows us to identify
an efficiently integrable case. However, when inserting more
general polynomials in Eq. (19), we cannot expect the tensor
network to be exactly compressible since we know the general
case is NP-hard. However, we might expect that functions that
are close to the efficiently integrable case remain efficiently
integrable up to some accuracy.

We thus now consider polynomial functions in Eq. (19) that
are obtained by perturbing away from the exactly compress-
ible case. We do this by defining

q ji(x j ) = q j1(x j ) + δ · r ji(x j ), (30)

where the single-variable functions q j1(x j ), r ji(x j ) are ran-
dom length-G vectors with values in [−1, 1] (recall that G
is the number of grid points). For i = 1, we set δ = 0 for
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FIG. 10. Accuracy of TN integration for the integral of a mul-
tivariable function polynomial perturbed away from the exactly
compressible point as a function of contraction bond dimension χ :
(a) δ = 0.01 and (b) δ = 0.1. Magnitude of perturbation δ, number
of variables N = 20, number of points per variable G = 10. k is a
measure of the nonlinearity expressed in the TN. Note that there is
fast convergence with χ up to a critical precision, which depends on
δ and k. See Sec. IV C for details.

j = 1, . . . , N . Then for i > 1, the difference between qji(x j )
and q j1(x j ) is controlled by δ. In Fig. 10 we use perturbations
of magnitude δ = 0.01 and δ = 0.1 for N = 20, G = 10, and
we monitor the error in the multivariable integral as a function
of χ . In both cases we see that the integration error shows two
regions of convergence; first there is a rapid convergence to
some finite error (around 10−10 for δ = 0.01, and 10−4 for
δ = 0.1), followed by a much slower convergence to smaller
error. In the rapidly converging regime, the required bond
dimension for a given relative error grows as χ ∼ O(k); in
the slow-convergence regime, the required bond dimension
χ ∼ exp(k). In all cases, however, the cost to integrate is
linear in the number of variables N , and this is independent
of the desired precision (not shown for this case, but see next

section). Exponential dependence of the complexity appears
instead in the cost to improve the precision past a critical
threshold.

D. General case

For the general polynomial in Eq. (19), we can expect
the bond dimension for a given relative precision to scale
∼ exp(k) as discussed; the tensor network is, in some sense,
incompressible. However, in some cases, we may still be able
to approximate the integral to good accuracy. This depends
strongly on the integrand range, as illustrated in Fig. 11. In
Fig. 11(a), we take N = 20, G = 10, and single-variable func-
tion values chosen randomly in the range [−1, 1]. Then, the
corresponding 2D TN representation of the integral appears
almost completely incompressible: Only when χ reaches the
bond dimension of the exact contraction ∼ exp(k) do we
suddenly see a significant improvement in the integral error
(although for rough estimates, e.g., to 10−1 precision, it is
possible to take χ orders of magnitude below that required for
exact contraction). We can make the single-variable functions
less oscillatory by increasing the lower bound of the range of
the single-variable functions, i.e., [λ, 1], where λ is increased
from −1 to 0. As we do so, the integration problems become
easier, as can be seen from Figs. 11(a)–11(c). The decrease of
relative error with increasing bond dimension is much faster
as we raise the lower bound λ of the single-variable functions.

Monte Carlo integration can face difficulties with oscilla-
tory functions with small or vanishing integrals. In the circuit
tensor network representation, there is an exponential depen-
dence for such oscillatory functions, but unlike in quadrature,
the exponential cost is in the nonlinearity (parametrized by
k), not in the number of variables N . Figure 11(d) plots
the required bond dimension for a relative error 10−4 with
N = 20, G = 10 as a function of the nonlinearity k for var-
ious single-variable function ranges qji ∈ [λ, 1], where λ is
increased from −1 to 0. We see that the required bond dimen-
sion increases exponentially in the nonlinearity. However, the
exponent is much larger for oscillatory integrands (λ = −1)
than for more positive integrands λ > −1.

We finally confirm that the error of compressed contraction
is essentially independent of the number of variables using
boundary contraction as can be seen from Figs. 11(e) and
11(f). Either for the general functional form, Eq. (19), with
highly oscillatory values from random single-variable func-
tions, or for the perturbation from the exact case, Eq. (30),
with δ = 0.1, the rate of decrease of relative error with in-
creasing bond dimension is comparable as we change the
number of variables N .

E. Comparison with quasi–Monte Carlo integration

To understand the concrete performance of integration us-
ing the arithmetic circuit TN, we now compare costs with
those of quasi-MC. For this, we construct the polynomial in
Eq. (19) with the multivariable function

q ji(x j ) = sin (2π (x j + a ji )) + c (31)
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FIG. 11. Accuracy of TN integration of multivariable function polynomials. For (a)–(c), we plot accuracy vs χ for number of variables
N = 20 and number of points per variable G = 10, with random single-variable functions qji with values ∈ [λ, 1], for three different λ

[(a) λ = −1, (b) λ = −0.5, and (c) λ = 0]; the difficulty of integration changes with the positivity of the integrand. (d) Bond dimension χ vs
nonlinearity k to achieve a relative accuracy � 10−4 for various λ for N = 20, G = 10. For (e) and (f), we plot relative accuracy vs χ for the
general and perturbative (δ = 0.1) function polynomial cases, respectively, with k = 5, G = 10, and single-variable functions qji, r ji ∈ [−1, 1],
demonstrating the independence of accuracy with respect to the number of variables N . See Sec. IV D for details.

for random a ji ∈ [0, 1] and some constant c and integrate
over x j ∈ [0, 1]. We compare the results from TN contraction
with quasi-MC integration in Fig. 12 (we report representative
results for random a ji) changing both the number of variables
N and the polynomial power (nonlinearity) k. All calculations
are done on Intel Xeon CPU E5-2697 v4 processors. For the
quasi-MC calculations, the integrand in Eq. (19) was coded
in PYTHON and then compiled by JAX [83], and the sample
points were generated using the QMCPY [84] package with
Sobol generating matrices using a batch size of 107, with the
function values for each batch computed on a single core. The
TN timings are reported as the runtime for contraction using
the QUIMB [85] package on a single core or two cores, with
the time normalized to a single core time. The reference exact
result for the integration was taken as the converged TN result
with respect to χ and G (specified in the caption of Fig. 12).

Figure 12(a) plots the convergence of the integral versus
time for TN integration and quasi-MC for N = 10, c = 0, and
various k. The TN data points represent increasing grid or-
der G using Gauss-Legendre quadrature and bond dimension
χ = 2k . For moderate k, quasi-MC already faces convergence
difficulties as a result of the highly oscillatory function values
around 0. On the other hand, the TN result converges quickly
with G as shown in Fig. 12(b). Although details of imple-
mentation make it difficult to interpret small differences in
absolute timing, the rapid convergence of the TN integration

means that it is orders of magnitude more efficient than quasi-
MC for high accuracies. However, the TN contraction cost
becomes prohibitive at large k, due to using a χ = 2k bond
dimension.

For c > 0, the integrand is more positive, and we expect the
TN to be more compressible, making it possible to integrate
the function for larger k. In Fig. 12(c), we plot the convergence
of the integral versus time for TN integration and quasi-MC
for N = 50, k = 30, and various c. The TN data points cor-
respond to G = 12 Gauss-Legendre quadrature for increasing
bond dimension χ ∈ [60, 560]. [To justify the choice of fixed
G = 12, Fig. 12(d) shows the convergence of the TN contrac-
tion result as a function of G for various c at fixed χ (solid,
dashed, and dotted lines correspond to χ = 180, 120, and
60, respectively); at G = 12, the quadrature errors are below
10−6 for c = 0.3 and below 10−8 for c = 0.4 and c = 0.5, and
these errors remain essentially constant as χ increases from
60 to 180.] As expected, for a fixed computational time, the
integration error decreases for both methods with increasing
c. Both methods display relatively quick convergence to a
loose threshold, with slower convergence to tighter thresh-
olds. The TN integration converges relatively smoothly to
high accuracy, while it appears difficult to converge quasi-
MC systematically to high accuracy, which again opens
up a significant timing advantage for TN integration over
quasi-MC.
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FIG. 12. Comparison of TN and quasi-MC integration for the multivariable function polynomial in Eqs. (19), (20), and (31). N is the
number of variables, k is the number of factor powers in the function, and c is a function parameter that controls the positivity of the integrand.
G is the number of quadrature points per variable in the TN integration. (a) TN (solid lines) and quasi-MC (dotted lines) integral convergence
with runtime for various k at N = 10, c = 0. Exact result taken as TN integral at G = 36, bond dimension χ = 2k . (b) TN integral convergence
with respect to G at χ = 2k for various k at c = 0. Solid, dashed, and dotted lines are for N = 10, 20, and 40, respectively. (c) TN (solid lines)
and quasi-MC (dotted lines) integral convergence with time for various c at N = 50, k = 30. Exact result taken as TN integral at G = 12,
χ = 560. (d) TN integral convergence with respect to G for various c at N = 50, k = 30. Solid, dashed, and dotted lines are for χ = 180, 120,
and 60, respectively. See Sec. IV E for further details.

V. MULTIVARIABLE GAUSSIAN INTEGRALS
IN A HYPERCUBE

As another example, we consider the multivariable Gaus-
sian integral over a finite hypercube

Z =
∫

	

dx1 · · · dxN exp

(
−

∑
i j

Ai jxix j

)
, (32)

where A is an N × N matrix and 	 = [−1, 1]N . The expres-
sion directly corresponds to a tensor network contraction of
tensors (Ti ) and (Ti j ) for all i < j where

(Ti )xi = exp
( − Aiix

2
i

)
, (33)

(Ti j )xi,x j = exp ( − (Ai j + Aji )xix j ). (34)

Note that all tensors enter into the final function via multipli-
cation only; thus there is no need for control legs as discussed
in Sec. II, and they are omitted in the figures.

The structure of A plays an important role in the cost of
approximability of the integral. In the following we consider

band-diagonal A with width W , i.e., Ai j �= 0 only if |i − j| �
W (dense A corresponds to W = N − 1). In Fig. 13, we show
a systematic construction of the TN representation of the
integral for N = 5, W = 3, which can easily be generalized
to arbitrary N , W . We start with a TN consisting of only T12

[representing exp (−A12x1x2)] as in Fig. 13(a). For each j =
2, . . . , 1 + W , we add to the TN the tensor T1 j and a COPY
tensor to account for the additional occurrence of x1 as in
Figs. 13(b) and 13(c). For example, in Fig. 13(c), the four open
legs represent the variables x1, x2, x3, x4, and the overall tensor
network represents exp ( − (A12x1x2 + A13x1x3 + A14x1x4)).

Next, for i = 2, and for each j = i + 1, . . . , i + W , we add
to the TN the tensor Ti j and two COPY tensors; for example,
in Figs. 13(d) and 13(e), the COPY tensors connected by the
horizontal bonds correspond to copying the variable xi, and
the COPY tensors connected by the vertical bonds correspond
to copying x j for each j = 3, 4, . . .. Iterating the previous step
for each i = 3, . . . , N − 1 as in Fig. 13(f), one adds all Ti j to
the TN. Finally, we add Ti to the TN for each i = 1, . . . , N as
in Fig. 13(g). Contracting the tensors in each dashed box, one
obtains the 2D TN shown in Fig. 13(h). The TN obtained from
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FIG. 13. (a)–(h) Steps for building the arithmetic circuit TN for
a multivariable Gaussian with N = 5 variables and width W = 3.
Circles represent COPY tensors.

the procedure above clearly has a direct correspondence with
the structure of A. If A is dense, then the graph is a triangular
network, and if A is banded, then the network is also banded.

A. Fixed width compressibility

For banded A (fixed W with N), the TN has a quasi-1D
structure along the diagonal direction. Thus it is always pos-
sible to contract the network exactly with cost linear in N
and exponential in W along the diagonal direction. If W is
large, it may still be too expensive to use exact contraction,
but the regular structure lends itself to a variant of boundary
contraction as shown in Fig. 14.

In this case we limit the maximum bond dimension χ

during the approximate contraction, with χ expected to scale
as ∼eW to achieve a fixed relative error. To compress-contract
the whole tensor network, one needs to perform O(NW ) con-

FIG. 14. (a)–(d) Variant of boundary contraction used to contract
the arithmetic circuit TN for the multivariable Gaussian integral.

FIG. 15. TN integration for a multivariable Gaussian with ex-
actly banded matrix A in the hypercube. Accuracy vs bond dimension
χ for number of variables N = 30 and number of points per variable
G = 4. (a) Median and interquartile range of error over 20 random
instances of the Gaussian matrix A. (b) Bond dimension to achieve
various median contraction errors. For details, see Sec. V A.

tractions and SVDs on adjacent tensor pairs. The contraction
between a χ × χ × G tensor and a G × G × G × G tensor
costs O(χ2G4) FLOPs, and the SVD of a χG × χG × G ten-
sor costs O(χ3G4) FLOPs. Hence the total FLOP count scales
as O(NW χ3G4). We show the relative contraction error with
respect to χ for various W in Fig. 15(a) and the bond dimen-
sion to achieve various median contraction error as a function
of W in Fig. 15(b), for a 30 × 30 band-diagonal matrix A with
width W and random nonzero elements in [−1, 1]. We see that
the difficulty of compression indeed scales exponentially with
W from the linear trend in the log-linear plot.

B. Approximately banded case

Above, we demonstrate that for moderate width W , the
quasi-1D TN can be exactly contracted. As in the perturbed
case for the polynomial example, we can also ask whether the
TN for an approximately band-diagonal A remains compress-
ible. We thus consider A of the form

A = AW + δ · ÃW , (35)
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FIG. 16. TN integration for a multivariable Gaussian with ap-
proximately banded matrix A in the hypercube. Accuracy vs bond
dimension χ for number of variables N = 30 and number of points
per variable G = 4. (a) Median and interquartile range over 20
random instances. (b) Bond dimension to achieve various median
contraction errors. For details, see Sec. V B.

where AW is an N × N band-diagonal matrix with width W
such that (AW )i j �= 0 only if |i − j| � W , ÃW is an N × N
matrix such that (ÃW )i j �= 0 only if |i − j| > W , and nonzero
elements of AW , ÃW take random values in [−1, 1]. Then the
magnitude of the perturbation of A away from AW is controlled
by δ. Note that the existence of the perturbation makes the TN
a full 2D triangle, rather than quasi-1D.

We show the relative contraction error with respect to χ

for various δ in Fig. 16(a) and the bond dimension required to
achieve various median errors as a function of δ in Fig. 16(b)
for A of dimension 20 × 20. We require increasingly large χ

to reach the same error as δ increases. However, Fig. 16(b) is a
linear-linear plot, showing that the required χ appears to grow
only linearly with the size of the perturbation δ.

C. Comparison with quasi–Monte Carlo integration

We now compare the efficiency of TN integration for Gaus-
sian integrals with banded (or approximately banded) A with
that of quasi–Monte Carlo integration. We consider two cases
for A of the form in Eq. (35): In case (a), N = 50, W = 5, and
δ = 0.1 with random nonzero elements of AW , ÃW in [−1, 1],

FIG. 17. Comparison of TN and quasi-MC integration errors
for the multivariable Gaussian integral Z in the hypercube, plotted
against runtime. (Error plotted is for ln Z to better distinguish the
curves.) N is the number of variables, and G is the number of
quadrature points per variable in the TN. (a) Exact result taken as
TN partition function at G = 10 and bond dimension χ = 140 (bond
dimension error below 5 × 10−7). The TN errors are plotted for
χ = 60, 80, 100, 120, 140 for each G, which are the labels next to
the TN data points. (b) Exact result is taken at G = 14 for converged
χ = 80, 140, and 200 for W = 6, 8, and 10 with contraction error
� 10−15, 10−9, and 10−6, respectively. TN (quasi-MC) results are
represented by solid (dotted) lines. The label next to each data point
corresponds to its G value.

and in case (b), N = 50, W = 6, 8, or 10, and δ = 0 with
random nonzero elements of AW in [−1, 1].

In Fig. 17, we show the relative error of ln Z from TN and
quasi-MC integration for cases (a) and (b). For the quasi-MC
results, we directly computed the exponent −∑

i j Ai jxix j for
each sample point x with batched linear algebra code using
PYTHON and JAX [83] and accumulated the log of the integral
using the identity

ln (ea + eb) = a + ln (1 + eb−a).

The sample points were generated using QMCPY [84] with
Niederreiter generating matrices in batches of size 107 and
plotted every 20 batches. The TN integration was performed
using QUIMB [85] with Gauss-Legendre quadrature, and the
exact value of the integral was estimated from TN integration
using converged G and χ (indicated in the caption of Fig. 17).
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All calculations are done on a single Intel Xeon CPU E5-2697
v4 processor.

For the TN integration data in Fig. 17(a) [corresponding
to case (a)] each line labeled by G is a sequence of TN
estimates of ln Z at the corresponding G with increasing
χ = 60, 80, . . . , 140. For G = 4 and G = 6, the value of ln Z
plateaus at large χ , corresponding to the intrinsic quadrature
error for that G. For G = 8 and G = 10, the TN results are
well converged with quadrature, and the small perturbation
strength δ = 0.1 allows for quick convergence with χ . In
comparison, quasi-MC struggles with this integrand, and in
fact shows little systematic convergence behavior over the
∼1600 × 107 samples.

For case (b), shown in Fig. 17(b), we plot the TN data
points for increasing G = 4, 6, . . . , 12 at converged χ for
each W (solid lines). This allows us to examine the speed of
convergence of the quadrature, which is very fast. Similar to
case (a), quasi-MC struggles to reduce the relative error below
10−2 even with more than 1600 × 107 samples. Thus, in both
cases, we see a substantial advantage of TN integration over
quasi-MC for this class of integrands.

VI. A THEORETICAL EXAMPLE OF SPEEDUP VERSUS
QUASI–MONTE CARLO INTEGRATION

Here we give an example of a class of integrals that can be
computed easily with arithmetic TN methods but for which
quasi-MC is hard, because there is a theoretical guarantee that
the integrand value cannot be efficiently evaluated without
exponential cost in the number of variables N .

Consider the general functional form

f (x1, . . . , xN ) =
N∏

n=1

g(xn)in (TN)i1,...,iN , (36)

where g(xn) are single-variable functions and (TN)i1,...,iN is
some fixed tensor (possibly represented as a tensor network)
for all in = 0, 1. We can choose the structure and the values
of the TNi1,...,iN and properties of g(xn) to allow for the easy
computation of certain quantities. In our case, we choose
the TN to be a 2D multiscale entanglement renormalization
ansatz (MERA) [59,60] (see Fig. 18). In this case, the TN in
Eq. (36) is constructed from tensors satisfying certain unitary
and isometric properties such that the evaluation of the trace∑

{i} |TNi1,...,iN |2 = 1. The unitary and isometric constraints
on the tensors and how they lead to the trivial trace are shown
in Figs. 18(c) and 18(d). Note that it is known to be classically
hard (as a function of N) to compute the value TNi1,...,iN for a
MERA composed of arbitrary unitaries and isometries [86].

To extend these properties to the more general functional
form, we impose a normalization condition on the single-
variable functions

∫ 1

−1
dx|g(x)|2 = 2, (37)∫ 1

−1
dxg(x) = 0. (38)

FIG. 18. TNi1,...,iN as a 2D MERA, where the legs i1, . . . , iN lie
on a 2D lattice. (a) Part of the 2D lattice, where each solid dot
represent a leg in {i1, . . . , iN }. Each green square represent a unitary
tensor. (b) After the layer of unitaries, a layer of isometries (blue
squares) is applied to the legs i1, . . . , iN . Note that after a layer of
isometries is applied, the number of legs in the layer is reduced.
Traversing upwards through the MERA, one reaches the top tensor
where all upwards legs are eliminated, and the MERA represents
a TN with legs i1, . . . , iN on the bottom. (c) Property of a unitary
tensor. (d) Property of an isometric tensor.

Then, suppose we want to integrate the probability of the
function over 	 = [−1, 1]N

I =
∫

	

| f ({xn})|2
∏

dxn. (39)

Because of the additional constraints we have imposed on the
single-variable functions, contraction of the tensors associated
with I can be done efficiently for matching pairs, which then
simplify to multiples of the identity, yielding 2N as the value
of the integral, even though sampling in the basis of {xn} is
computationally hard. This result is clearly contrived because,
in addition to requiring a restricted class of tensors and func-
tions, we must also contract the tensor network in a certain
order. Furthermore, the structure of the tensors permits sam-
pling in a different basis than {xn} [86,87]. Nonetheless, this is
a concrete example supported by complexity arguments where
using the tensor network structure of the function circuit leads
to an exponential improvement in cost versus quasi–Monte
Carlo methods which assume that the function is a black box.

VII. CONCLUSIONS

In this paper we introduced an arithmetic circuit tensor
network representation of multivariable functions and demon-
strated its power for high-dimensional integration. Compared
with existing techniques to represent functions with tensor
networks, the ability to use the arithmetic circuit construction
removes the need for extra computation to find the tensor
representation, while the circuit structure suggests a tensor
network connectivity natural to the function. In our exam-
ples of high-dimensional integration, we find that the tensor
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network representation allows us to circumvent the curse of
dimensionality in many cases, exchanging the exponential
cost dependence on dimension for a cost dependence on other
circuit characteristics, for example, the number of nonlinear
circuit operations. In practice, we find superior performance
to quasi–Monte Carlo integration across a range of dimension-
alities and accuracies.

While the work here focuses on integration as an example,
we envision the arithmetic circuit tensor network construction
to be powerful also in differential equation applications. Here,
connections with existing tensor network techniques are in-
triguing, as are applications of these ideas to many other areas

where tensor networks are currently employed, such as for
many-body simulations.
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