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Countering a fundamental law of attraction with quantum wave-packet engineering
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Cold atoms hold much promise for the realization of quantum technologies, but still encounter many chal-
lenges. In this work we show how the fundamental Casimir-Polder force, by which atoms are attracted to a
surface, may be temporarily suppressed by utilizing a specially designed quantum potential, which is familiar
from the hydrodynamic or Bohmian reformulations of quantum mechanics. We show that when harnessing the
quantum potential via suitable atomic wave-packet engineering, the absorption by the surface can be dramatically
reduced. As a result, the probing time of the atoms as sensors can increase. This is proven both analytically and
numerically. Furthermore, an experimental scheme is proposed for achieving the required shape for the atomic
wave packet. All these may assist existing applications of cold atoms in metrology and sensing and may also
enable prospective ones. Finally, these results shed light on the notion of quantum potential and its significance.
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I. INTRODUCTION

Quantum mechanics (QM) challenges our common sense.
For example, it allows superposition states which we never
see directly, it adheres to a minimal uncertainty principle, and
it is nonlocal. This has brought its own founding fathers, such
as Schrödinger, Einstein, and de Broglie, to speak against it.
This has also given rise to many attempts to reinterpret it or
even extend it. One of the attempts to reinterpret QM, and
perhaps provide a base for future extensions of the theory,
has been initially developed by de Broglie and Bohm and has
been termed Bohmian mechanics (BM) [1–4]. Interestingly,
several works have pointed out that employing BM could help
solve complex numerical problems in QM [5–7]. However,
the conceptual meaning and practical utility of this intriguing
interpretation have apparently remained under debate.

In this paper we show that the Bohmian quantum potential
(defined in the next section) enables the engineering of helpful
scenarios. Specifically, we show how a fundamental force,
the Casimir-Polder (CP) force, can be suppressed using this
unique potential. This may enable new insights into the foun-
dations of quantum theory, and may allow for new pathways
in quantum technology applications, such as metrology and
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sensing. In particular, during the last two decades we have
witnessed a major growth of experiments with cold atoms
near surfaces. These experiments were driven by the desire to
increase integration and scalability while miniaturizing these
promising quantum devices, e.g., for various applications in
metrology and atom interferometry [8,9]. The CP potential be-
comes important close to the surface, posing both fundamental
and practical challenges. Recent works have utilized cold
atoms to study the CP potential and examine atom-surface
interactions [10–14].

We utilize the quantum potential Q, which depends only on
the shape of the wave function, to propose a special engineer-
ing of atomic wave packets which enables them to partially
resist the CP attraction.

Within the next two sections we analyze, first analytically
and then numerically, the proposed wave-packet engineering
and its performance. We then outline an experimental protocol
for realizing this particular wave packet.

II. SUPPRESSING THE CP FORCE VIA ATOMIC
WAVE-PACKET SHAPING

In what follows, we propose a theoretical method to ef-
fectively suppress the CP force (for a limited amount of
time) through the generation of a tailored quantum poten-
tial. This method can be simply described when applying the
Madelung transformation [15] following the recent analyses
in Refs. [16,17]. BM, as well as the Madelung formalism,
allow to efficiently describe the interplay between external
potentials and the quantum potential and hence we find them
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very suitable in this case, where we try to counteract the
former potentials.

We shall represent the wave function ψ (r) in the polar form

�(r, t ) = √
ρ(r, t )eiS(r,t )/h̄, (1)

where ρ and S are the density and phase, respectively, and use
the well-known guiding equation for the velocity

u = ∇S̃, (2)

where the tilde superscript represents quantities per unit mass
m, so that S̃ = S

m . The real part of the Schrödinger equa-
tion then becomes the continuity equation

D

Dt
ln ρ = −∇ · u, (3)

where D
Dt ≡ ∂

∂t + u · ∇ is the material (Lagrangian) time
derivative of a fluid element along its trajectory, and the imag-
inary part becomes

∂ S̃

∂t
= −(K̃ + Q̃ + Ũ ), (4)

where K̃ = u2/2 is the kinetic energy per unit mass and

Q̃ = − h̄2

2m2

∇2√ρ√
ρ

(5)

is the quantum potential per unit mass.
For an irrotational potential flow in the form of Eq. (2), we

then obtain

D

Dt
u = −∇Q̃(ρ) − ∇Ũ , (6)

suggesting the possibility of canceling an external potential Ũ
using a suitable quantum potential Q̃.

Our proposed experimental setup consists of an atomic
wave packet ψ (x, z, t ). At time t = t0 the wave packet is
brought close to the vicinity of a planar dielectric surface
situated at z = 0 using a harmonic trap (see Fig. 1). For hav-
ing a fair comparison between the Gaussian and engineered
wave packets, we assumed that the harmonic trap remained
active also for t > 0 in both, but in practice this has barely
changed the simulation outcomes due to the much stronger CP
potential.

A CP potential U (r) = −C4/z4 acts on the atoms close
to the dielectric surface, where C4 is a constant depending
on the properties of the surface and the atoms. Hereinafter
we assume that the surface is the z = 0 plane. We further
assume that the wave packet stays around the submicrometer
distance from the surface but almost vanishes for very small
distances from the surface, i.e., smaller than 100 nm from
the surface, where the atom-surface interaction is dominated
by the van der Waals potential, which has a z−3 dependence.
We focus below on the z−4 potential which leads to a simple
analytic solution for the engineered wave packet, but it turns
out that the same wave packet can also resist the more realis-
tic potential U1(r) = −C4/[z3(z + 3λa/2π2)] (also described
in Ref. [20]), where λa is the effective atomic transition
wavelength (see the Appendix). We can therefore arrange the
desirable situation D

Dt u = 0, where the total acceleration of
the atoms is zero, by preparing a density ρ(r) ≡ P2(r), which

FIG. 1. Schematic illustration of the setup. A wave packet
trapped in a harmonic potential is brought (together with the trap)
close to a dielectric surface. The specific z dependence of the wave
packet is given by Eq. ( 9) and is depicted in Fig. 2

satisfies

∇2P + 2mC4

h̄2z4
P = 0. (7)

In our proposed experimental setup we are only interested
in the dynamics along the z axis and hence our problem
becomes one-dimensional (1D). In 1D, the solution of the
ordinary differential equation corresponding to Eq. (7) is

P(z) = z

[
C1 cos

(√
2mC4

zh̄

)
+ C2 sin

(√
2mC4

zh̄

)]
. (8)

See the Appendix for additional details. We note that this
wave function is continuous at z = 0, i.e., on the surface, and
vanishes there. This function is not always positive but the
physically meaningful field ρ is. Our numerical simulations
below indicate a slightly inferior performance of |P(z)| com-
pared to P(z) and thus we use it hereinafter.

We now have to properly truncate the wave function for
making it realistic (and square-integrable). This can be done,
for instance, by multiplying it with a Gaussian envelope, thus
reaching a wave packet of the form

ψ (z) = ze− (z−z0 )2

4σ2

[
C1 cos

(√
2mC4

zh̄

)
+ C2 sin

(√
2mC4

zh̄

)]
,

(9)

where the constants z0 and σ are the Gaussian’s mean and
width, respectively. A wave function having this density will
spread with time, but as was shown in Ref. [17], Q̃(r, t +
	t ) = Q̃(r, t ) + O[(	t )2]. Therefore, an initial preparation
of a wave function according to Eq. (9) is a good estimation
for short times, which is the regime we will numerically sim-
ulate below. For longer times, the wave packet further spreads
and becomes more and more distorted, thereby creating a
different quantum potential which might be less beneficial.
Using this technique a suitably prepared atomic wave packet
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FIG. 2. The engineered wave packet and its quantum potential.
The black curve describes the density of the engineered wave packet.
The blue curve stands for the weighted quantum potential, namely,
the quantum potential multiplied by the density of the engineered
wave packet (divided here by h̄). The inset presents the weighted
residual potential, namely, the quantum potential together with the
Casimir-Polder potential (ideally, these would have canceled each
other completely, but the Gaussian envelope slightly changes that in
a way captured by the residual potential), multiplied by the density
of the engineered wave packet (same units). The negligible residue
(about two orders of magnitude smaller than the Casimir-Polder
potential) shows that indeed the quantum potential is able to suc-
cessfully counter the Casimir-Polder potential, even with Gaussian
truncation.

can be used, e.g., for measuring magnetic fields near the
surface while passing above it, without being strongly drawn
towards it.

For the short time spent by the wave packet in the vicinity
of the surface, this kind of truncation was shown in a similar
context to be almost innocuous [18]. In our case, it hinders the
cancellation of the CP potential as calculated in the Appendix,
but not fatally. The Gaussian truncation results in an unwanted
residual potential (hereinafter there is no division by m and
hence no tildes are used) which is equal to

Qres = − h̄2

2mσ 2

{
1 + z − z0

σ

[
2σ

P′(z)

P(z)
− z − z0

σ

]}
(10)

Although the residual potential is not negligible, its largest
component near z = 0 scales like 1/z2, hence it suggests a
major improvement in comparison to the CP potential which
scales like 1/z4 close to the surface. Figure 2 shows the
weighted quantum potential, the weighted residual potential,
and the density of the engineered wave packet.

Moreover, the inverse proportionality to 2σ 2 guarantees
that by increasing the width of the Gaussian envelope we
can further shrink the overall size of the residual quantum
potential. The term P′(z)/P(z) is also diverging, but if we
average over the region of each singularity we will get a
small contribution (sometimes in the form of a favorable
repulsive potential). Therefore, and in contrast to the unengi-
neered Gaussian, where the atoms are strongly attracted to the
surface, here they will not be attracted so strongly. On the
other hand, they may suffer from irregularities in the vicinity
of the singularities, and this is the reason that the numerical
simulation performed below is important. Nevertheless, we

may conclude on analytic grounds that while a solution of the
form Eq. (8) could completely cancel the CP potential, the
more realistic truncated shape in Eq. (9) also has the ability to
suppress the CP force (for a limited amount of time).

Although we employed here the Madelung-Bohm formal-
ism, as in Refs. [16,17], for finding a beneficial shape of the
wave packet enabling hydrostatic equilibrium [19], Eq. (7) can
be simply recognized as the Schrödinger equation once we
require a stationary solution. Similarly, it seems to us helpful
to analyze the residual potential in the current Madelung-
Bohm formalism, but exactly the same considerations can be
straightforwardly applied to the standard Schrödinger equa-
tion when inserting there the truncated wave packet. The two
approaches trivially agree with each other, and indeed, within
the next section we will present a numerical analysis employ-
ing the Schrödinger formalism.

III. NUMERICAL SIMULATION

In order to study the performance of the proposed wave-
packet engineering, we perform a numerical simulation
examining the dynamics of the wave packet in the vicinity
of a dielectric surface. In particular, we wish to examine how
the absorption of particles evolves in time when using engi-
neered and unengineered wave packets. The aim, of course,
is to minimize the absorption when using an engineered wave
packet. Essentially, we solve the time-dependent Schrödinger
equation using the standard numerical solver in MATLAB.

To embed the proposed scheme within a more realistic
setup, we are assuming that the atoms lie in a harmonic
trap, situated close to the surface (throughout this work, the
frequency of the harmonic trap is standardly determined by σ

and m). The atoms are initially at rest. In addition, to simulate
the absorption in the surface we assume, similarly to Ref. [20],
an imaginary (absorbing) potential Vabs growing linearly from
zero at z = δ = 0.15μm to z = 0, i.e., Vabs = iV0(δ − z) for
0 < z < δ and otherwise 0, where V0 = 10−25 Jm−1. This im-
plies that any atom that enters the region below δ = 0.15μm
is absorbed within a certain time, unless having a sufficiently
large velocity in the other direction, while the real part of the
potential remains constant throughout 0 < z < 0.15μm (we
do require continuity in z = 0.15μm). In most of the cases
we examined, the atomic wave packet was prepared farther
from the region z < δ and hence only a small fraction of its
tail resided in the absorbing region.

This necessary modification of the total potential deterio-
rates the performance of our engineered wave packet, which
was not originally meant to resist it. However, as we shall
show below, the simulative rate of absorption exhibited by
the engineered wave packet was still lower than that of the
customary Gaussian wave packet, which is consistent with the
fact that the residual potential is much smaller than the CP
potential near the surface.

We consider a 87Rb atom (mass m = 1.44 × 10−25 kg) near
a silicon surface (refractive index n = 2). For the ground
state static polarizability of 87Rb [α0 = 0.0794 Hz/(V/cm)2]
we have C4 = 9.1 × 10−56 J m4. We now solve the time-
dependent Schrödinger equation for the atoms under the
influence of the CP + harmonic + absorbing potentials. Un-
like the scattering scenario analyzed in Refs. [21,22], the
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FIG. 3. Comparison, in terms of absorption, between the engi-
neered wave packet and a Gaussian for various preparations of the
wave packets. The average ratio (over the time interval 0 � t �
2 ms) of the absorbed fractions is calculated (i.e., Gaussian wave-
packet absorption divided by engineered wave-packet absorption) as
a function of z0, the mean position of the Gaussian envelope, while
the ratio between the standard deviation and z0 is kept constant (equal
to either 2/3, 1/2, or 1/3). As expected, at short times large standard
deviation is preferable, but in all cases a substantial advantage is
achieved.

atoms start from rest in our simulation and the dominant term
is the negative potential energy dictating a bound state (as an
example, the initial energy was −1.95 × 10−29 J for a typical
wave packet of width 0.67μm starting at z = 1μm from the
surface). For this reason, absorption should be determined by
the wave packet shape rather than quantum reflection. We
run a simulation for a large set of means (z0) and standard
deviations (σ ), and calculate the absorption fraction. Before
the truncation, the sine and cosine solutions in Eq. (8) should
give rise to the same quantum potential. However, the residual
potential stemming from the truncation reveals that there is a
difference between the two cases, and we indeed notice some
advantage of the cosine solution over the sine.

We compare for various cases our proposed solution in
Eq. (9) to a Gaussian wave packet with the same mean and
standard deviation as those of the envelope (see Fig. 3). It is
desirable to decrease as much as possible the residual poten-
tial, and since it contains three terms depending on σ−2, σ−3,
and σ−4, we have better results for higher-σ wave packets. To
further explore the advantage we choose some specific param-
eters (z0 = 2.3μm and σ = 1μm) and compare the absorbed
fractions (see Fig. 4). For a similar figure concerned with the
potential U1 please see the Appendix—the results again show
a clear advantage.

As can be seen from Figs. 3 and 4, the engineered wave
packet leads to a significantly smaller absorbed fraction,
which implies that the CP force has less impact on our engi-
neered wave packet in comparison to its impact on a Gaussian
wave packet. Thus, the results show that the engineered wave
packet’s shape indeed has the ability to reduce the unwanted
effects of the CP force. In accordance with our analytic expec-
tations, the engineered wave packet excels at high standard
deviations and short times, reaching in some cases a 100-

FIG. 4. Comparison between the engineered wave packet and a
Gaussian over time for a specific choice of parameters. The mean
and standard deviation of the Gaussian are chosen to be z0 = 3μm
and σ = 1μm, respectively, enabling a particularly beneficial per-
formance (two orders of magnitude advantage at short times and
one order of magnitude at longer times). The absorption rates of
the two wave packets become comparable around 3 ms. The inset
shows the time evolution of the engineered wave packet within
the harmonic and Casimir-Polder potentials. As may be seen, the
wave packet eventually loses its specially engineered shape, thus
diminishing the effect countering the Casimir-Polder force. For this
specific calculation, the parameters used for the mean and standard
deviation of the Gaussian envelope were particularly challenging,
z0 = 1μm σ = 2/3μm, in order to emphasize the transient nature
of the effect due to the external potentials.

fold advantage over the Gaussian wave packets in terms of
absorption.

Note, however, that the engineered wave packet is typ-
ically skewed away from the surface in comparison to the
Gaussian envelope (and hence in comparison to the Gaussian
wave packet we used as a benchmark). Thus, one may ask
whether the presented advantage follows only from this spatial
displacement rather than the special shape of our wave packet.
To test this hypothesis we tried to fit a Gaussian wave packet
to the engineered solution by locating it farther away from the
surface and/or shrinking its width until it highly resembled
the Gaussian we compared it to. In all these cases we still
found an advantage in favor of the engineered wave packet (al-
beit smaller). We present such a comparison in the Appendix,
where we significantly pushed the Gaussian away from the
surface. We still found that the engineered wave packet has
a substantially smaller absorbed fraction. Thus, we conclude
that not only the shifted mean and modified width but also
the particular shape of the wave packet contributed to the
observed advantage.

Finally, we discuss the transient nature of the effect. As
can be seen in Fig. 4, the absorption rate of the engineered
wave packet shows no advantage after about 3 ms. This is
due to the fact that with time it loses its unique shape which
originally gave rise to the required quantum potential. To show
this explicitly, we plot in the inset of Fig. 4 the time evolution
of the engineered solution from Eq. (9) with z0 = 1μm and
σ = 2/3μm. We can clearly see the amplitude decreasing
with time and the shape being distorted.
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IV. A POSSIBLE SCHEME FOR ACHIEVING THE
REQUIRED WAVE-PACKET ENGINEERING

As was shown in the previous section, a certain shape of the
wave packet provides the desirable result, i.e., resisting the CP
force for a short time. The construction of such a wave packet
can be obtained in several ways. We discuss here in general
terms a technique which utilizes external potentials and fields
(resembling Refs. [23] and [24]). In practice, this prepara-
tory stage should precede the aforementioned evolution close
to the surface and should be performed in a controlled
environment.

First, a Gaussian atomic wave packet can be prepared by
cooling the atoms to occupy the Gaussian ground state of a
harmonic potential. Engineering the wave packet to the form
of Eq. (9) may be done in two stages by utilizing an inter-
ferometric sequence with two internal atomic states having
a different response to an external potential, e.g., due to a
magnetic field. We use a magnetic field gradient pulse of
duration T to create a state-dependent spatially varying poten-
tial sandwiched between two properly designed Rabi pulses
inducing transitions between the two states. These would
be followed by a projection to one state, transforming the
atomic wave packet as ψ (z) → ψ (z)[aeiϕ(z) + be−iϕ(z)]. Here
ϕ(z) = δV (z)T/2h̄ is the phase imprinted by the short pulse
of potential difference δV (z) between the two atomic states,
while a and b are complex numbers determined by the Rabi
pulses (we neglect a possible space-dependent global phase).
In order to generate the linear z dependence in front of the
right-hand side of Eq. (9) we can apply a linear potential
difference δV (z) = Fz, choose b = −a, and obtain ψ (z) →
ψ (z) sin(Kz) ≈ Kzψ (z) (if Kz = FT z/2h̄ � 1). For generat-
ing any superposition of the cosine and sine dependence with
an argument proportional to 1/z we can apply a differential
potential with a 1/z dependence, e.g., a magnetic field gen-
erated by a current-carrying wire on the surface, and choose
|a| = |b| with a certain phase difference that determines
the coefficients of the superposition of the cosine and sine
functions.

The resulting wave packet, serving as a good approxima-
tion to Eq. (9) (for z > 0), could now be used, e.g., as an
input for magnetometry applications near the dielectric sur-
face without being strongly attracted to it. Magnetometry can
be performed with F = 1 or F = 2 spin or Bose-Einstein con-
densate (BEC) atoms and is often shot-noise limited [25,26].
Increasing the number of nonabsorbed atoms using the pro-
posed method could therefore be expected to improve the
precision in a manner proportional to the square root of the
above average ratio of absorptions. The challenge would be to
sustain the engineered wave packet for a relatively long period
of time, but judging by the advantageous trend in Fig. 4 this
could be possible (bearing in mind that the distance from the
surface is typically larger than in our simulation).

Our 1D model is suitable for describing an atom-surface
potential that varies only in the direction perpendicular to the
surface. However, for analyzing a realistic situation it will be
necessary to take into account the 3D nature of the atomic
wave packet, which is manipulated, for example, by magnetic
fields that vary in 3D. In particular, a precise design of the
chip-based system of wires or magnets used to manipulate the

atoms will have to be carried out. In addition, the detection of
the state of the atoms after the process near the surface may
also be challenging and cannot be described within the scope
of the current work.

V. DISCUSSION

We explored the possibility to use the Bohmian potential in
order to cancel external potentials via wave-packet shaping.
We have analytically proposed a technique that allows to
suppress the CP force (for a limited period of time) and tested
it numerically. Using this approach, we examined the case in
which a Gaussian wave packet is engineered into a special
form such that near a dielectric surface the wave packet resists
the CP force. We have addressed the case of a wave packet
brought to a surface using a harmonic trap, but the presented
analysis can be readily generalized to a grazing beam scenario
(such as Ref. [14]). Although being related in the past to
surreal phenomena, this work emphasizes the very real effects
of the quantum potential, as well as its possible applications
in practical scenarios. In addition to providing insight con-
cerning the Bohmian interpretation, this analysis may pave
the way for various applications, e.g., surface magnetometry
with cold atoms having engineered wave packets which can
survive longer at the vicinity of the surface. Although the
CP potential was analyzed above, it should be noted that the
useful interplay between external potentials and the quantum
potential is general. Therefore, by carefully engineering the
wave packet, it is possible to suppress additional forces such
as the gravitational or van der Waals forces.
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APPENDIX

1. The engineered wave packet and the total potential

The engineered wave packet we employed is given by the
solution of

∇2P + 2mC4

h̄2z4
P = 0, (A1)

multiplied by a Gaussian truncation e− (z−z0 )2

4σ2 , yielding

ψ (z) = ze− (z−z0 )2

4σ2

[
C1 cos

(√
2mC4

zh̄

)
+ C2 sin

(√
2mC4

zh̄

)]
.

(A2)
In our numerical simulation we assumed that the wave

packet is brought to the vicinity of the dielectric surface using
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FIG. 5. Comparison between an engineered wave packet and a
fitted Gaussian over time for a specific choice of parameters. The
mean and standard deviation of the Gaussian are chosen to be z0 =
2.3μm and σ = 1μm, respectively, while the corresponding param-
eters of the engineered wave packet are z0 = 1.43μm and σ = 1μm.
Despite the significantly improved parameters of the Gaussian, the
engineered wave packet maintains a substantial advantage.

a harmonic potential which remains there. Then, following
Ref. [20], the Casimir-Polder potential VCP(z) is acting on the
wave packet for any z � 0.15μm. For 0 < z < 0.15μm it is
replaced by a constant value, VCP(0.15) (assuring continuity
at z = 0.15μm), and a linear imaginary potential is added as
in Ref. [20].

2. Calculation of the residual potential

We shall compute here the residual quantum potential cor-
responding to our proposed construction. This will allow us to
investigate more deeply the analytic properties of the shaping,
which are important for any experimental demonstration of
this technique.

In 1D, the solution of our ordinary differential equation
takes the form (A2). For simplicity we define the following
function:

α(z) =
[

C1 cos

(√
2mC4

zh̄

)
+ C2 sin

(√
2mC4

zh̄

)]
. (A3)

We shall now compute the value of

χ = d2

dz2

[
e−(z−z0 )2/ζ zα(z)

] + 2mC4

h̄2z4

[
e−(z−z0 )2/ζ zα(z)

]
, (A4)

where ζ = 4σ 2. That is,

χ = d

dz

(
d

dz
ze−(z−z0 )2/ζ α(z)

)
+ 2mC4

h̄2z4
ze−(z−z0 )2/ζ α(z),

(A5)
and after some algebraic calculations,

χ = e−(z−z0 )2/ζ

[
− 2

ζ
3zα(z) − 2z0α(z) + z2α′(z) − zz0α

′(z)

+ z(z − z0)α′(z) + 4

ζ 2
z(z − z0)2α(z)

+ zα′′(z) + 2mC4

h̄2z3
α(z) + 2α′(z)

]
. (A6)

FIG. 6. Comparison between an engineered wave packet and a
Gaussian in case of a more realistic potential. All parameters are
identical to those used in Fig. 4 of the main text, but instead of a
simple z−4 potential, the U1 potential described above was used.

From the fact that 2mC4

h̄2z3 α(z) + 2α′(z) + zα′′(z) = 0, we
have

χ = e−(z−z0 )2/ζ

ζ
[(−6z + 4z0)α(z) − 4z(z − z0)α′(z)

+ 4

ζ
z(z − z0)2α(z)]. (A7)

This suggests that the residual quantum potential is

Qres= h̄2

2m

[
−6 + 4z0/z − 4(z − z0)α′(z)/α(z)

ζ
+4(z − z0)2

ζ 2

]
.

This can be written more shortly as

Qres= − h̄2

2mσ 2

{
1 + z − z0

σ

[
2σ

P′(z)

P(z)
− z − z0

σ

]}
,

where P(z) = zα(z) is the original function defined in Eq. (8)
of the main text. The above expression coincides with Eq. (10)
there.

3. Comparison to a fitted Gaussian

To verify that the advantage reported above (in terms of
absorption) stems from the shape and not only the bias of the
engineered wave packet away from the surface, we compare
in Fig. 5 the absorption of the engineered solution to the
absorption of a fitted Gaussian located at the same distance
from the dielectric surface. The advantage is smaller, but still
apparent.

4. Countering a more realistic potential

We tested the proposed wave-packet engineering method
also in the case of the following potential [20]: U1(r) =
−C4/[z3(z + 3λa/2π2)]. The results and (beneficial) compar-
ison to a Gaussian wave packet are presented in Fig. 6.
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