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Dusty plasmas represent a powerful platform to study the collective dynamics of strongly coupled systems
with important interdisciplinary connections to condensed matter physics. Due to the pure Yukawa repulsive
interaction between dust particles, dusty plasmas do not display a traditional liquid-vapor phase transition,
perfectly matching the definition of a supercritical fluid. Using molecular dynamics simulations, we verify the
supercritical nature of dusty plasmas and reveal the existence of a dynamical liquidlike to gaslike crossover
which perfectly matches the salient features of the Frenkel line in classical supercritical fluids. We present
several diagnostics to locate this dynamical crossover spanning from local atomic connectivity, shear relaxation
dynamics, velocity autocorrelation function, heat capacity, and various transport properties. All these different
criteria well agree with each other and are able to successfully locate the Frenkel line in both 2D and 3D dusty
plasmas. In addition, we propose the unity ratio of the instantaneous transverse sound speed CT to the average
particle speed v̄p, i.e., CT /v̄p = 1, as a diagnostic to identify this dynamical crossover. Finally, we observe an
emergent degree of universality in the collective dynamics and transport properties of dusty plasmas as a function
of the screening parameter and dimensionality of the system. Intriguingly, the temperature of the dynamical
transition is independent of the dimensionality and it is found to always be 20 times of the corresponding
melting point. Our results open a path for the study of single particle and collective dynamics in plasmas and
their interrelation with supercritical fluids in general.
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I. INTRODUCTION

A supercritical fluid [1–3] typically refers to a condensed
state of matter in which the traditional liquid and gas phases
cannot be separated anymore by a sharp first-order phase
transition. For various substances, the supercritical fluid state
can be achieved when the temperature and the pressure are
above the corresponding critical point [1–3]. Supercritical
fluids have been intensively investigated due to their wide
applications in the nuclear waste, petrochemical, food, and
pharmaceutical industries [4–6]. Although there is no tra-
ditional liquid or gas state within the supercritical regime,
recently, several studies suggest that a liquidlike to gaslike
dynamical transition can be identified in supercritical fluids
using either the Frenkel line [7–13], the Widom line [14], or
the Fisher-Widom line [15].

In the microscopic description of liquids proposed by
Frenkel [16], atomic particle motion is a combination of
quasiharmonic vibrations around potential minima and ther-
mally induced jumps from an equilibrium position to a new
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one. These hopping processes give the ability to flow in liq-
uids and happen at an average time τ , also termed the liquid
relaxation time [7,8,16]. This view, deeply inspired by the
phenomenological ideas of Maxwell [17], implies that liquids
behave effectively as solids for time scales shorter than τ , or
equivalently, for frequencies larger than the Frenkel frequency
ωF = 2π/τ . Following this picture inspired by solid state the-
ory, the minimal period of rigidlike vibrations is given by the
Debye time τD, which is around 0.1 − 1 ps in classical liquids.
When τ > τD, particles mainly vibrate at their equilibrium
positions and hop rarely so that the typical liquid behavior
is exhibited, often termed as the “rigid liquid” state [7,8].
In that regime, liquids are expected to support propagating
shear waves at frequencies ω > ωF . One can further derive
a minimal cutoff wavevector for their propagation [18], which
implies a maximum propagation length approximately equal
to the sound speed times the relaxation time τ .

Within this framework, the frequency of collective prop-
agating shear waves in liquids, responsible for the emergent
“rigidity”, has to fall in the range ωF < ω < ωD, with ωD =
2π/τD. The relaxation time τ decreases as the temperature
increases. Physically, this is just reflected in a larger kinetic
energy and therefore a stronger ability to rearrange. When
τ < τD, the particles’ hopping occurs more frequently than
solidlike vibrations, collective shear waves disappear, and the
“nonrigid” gaslike fluid state [7,8] is approached. Following
this logic, in supercritical liquids, the concept of Frenkel
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lines [7,8] has been introduced to discriminate the rigid liquid
from the nonrigid gaslike fluid state and it has been formally
defined by the condition τ ≈ τD. In the past [7–11], sev-
eral diagnostics, including the specific heat cV , the velocity
autocorrelation function (VACF), and the mean squared dis-
placement have been used to determine the condition for the
Frenkel line in various physical systems, as described in detail
later. Furthermore, when τ → τD, i.e., at the onset of the
dynamical crossover, the propagation length of shear waves
approaches the minimum available value approximately given
by the interatomic distance. Therefore, the Frenkel line can
be also defined as the disappearance of collective shear waves
in fluids [18] and it is related to universal minimal values for
different transport coefficients such as the shear viscosity and
the thermal diffusivity [19,20].

Dusty plasmas [21–28], also termed complex plasmas, are
partially ionized gases containing micron-sized dust particles,
and they represent an excellent model system where the mo-
tion of individual dust particles can be directly tracked. In
the laboratory conditions, these dusts have a typical charge
of −105e in the steady state [29–31], interacting with each
other through the Yukawa repulsion [32], and leading to
a much higher potential energy between neighboring dusts
than their kinetic energy, i.e., these dusts are strongly cou-
pled [24–28,33] (cf. classical liquids). During experiments,
these dusts can form into either a single layer two-dimensional
(2D) suspension or a three-dimensional (3D) suspension, i.e.,
2D [29–31,34–42] or 3D dusty plasma [43–50], exhibiting
collective solid and liquidlike behaviors [21–31,34–50], in-
cluding the solidliquid phase transition or melting [23,29,30].
Thus, dusty plasmas provide an incredibly powerful platform
to explore collective dynamics of liquids and solids at the
individual particle level [29–31,34–42].

In the past thirty years, the solid-liquid phase transition of
dusty plasmas has been systematically investigated, in both
experiments and simulations, as well as theories [23,29,30].
Commonalities between fluid dusty plasmas and classical
liquids, rooted in their shared strongly coupled nature, have
also been explored, creating a beneficial exchange of ideas
and results. As a concrete example, the dynamics of shear
waves and the existence of a critical wavevector, typical of liq-
uids [18,51], have been the subject of several theoretical and
experimental studies in dusty plasmas [52–54]. However, so
far, one important aspect of the collective dynamics of dusty
plasmas remains elusive. In fact, due to the pure repulsive in-
teraction between dust particles, there is no liquid-vapor phase
transition [55] in dusty plasmas. Thus, a melted or fluid dusty
plasma perfectly matches the definition of a supercritical fluid
and should be thought as such. The relation between dusty
plasmas and supercritical fluids has been briefly discussed
in [56] by looking at the behavior of the pair correlation func-
tions. In this work, we investigate the dynamical crossover
between the liquidlike and gaslike states in dusty plasmas, and
we further show that, as in classical liquids, the supercritical
regime of 2D and 3D dusty plasmas can be separated into
a liquid and a gaslike phase by a dynamical crossover, the
Frenkel line (see diagram in Fig. 1).

The rest of this paper is organized as follows. In Sec. II,
we briefly introduce our simulation method to mimic 2D
and 3D dusty plasmas. In Sec. III, we present the proposed
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FIG. 1. A putative phase diagram for dusty plasmas as a function
of the coupling parameter � and the screening parameter κ . The
solid blue line indicates the first-order solid-liquid phase transition.
The dashed red line refers to a possible dynamical crossover in the
supercritical regime which is the subject of this work.

supercritical nature of dusty plasmas and its features. We also
provide various diagnostics to discriminate the liquidlike from
the gaslike states, with the same resulting transition at 20
times of the melting point for both 2D and 3D dusty plasmas.
In Sec. IV, we provide an interpretation of the agreement be-
tween our diagnostics and the traditional Frenkel line criteria.
In Sec. V, we give a summary of our findings.

II. SIMULATION METHOD

We perform equilibrium molecular dynamics (MD) sim-
ulations of 2D and 3D Yukawa liquids to mimic 2D and
3D fluid dusty plasmas as in [52,57]. The dynamics of each
particle i is governed by the following equation of motion:

mr̈i = −∇� jφi j, (1)

where φi j = Q2 exp(−ri j/λD )
4πε0ri j

is the Yukawa repulsion between
particles i and j, separated by a distance ri j . Here, λD is
the Debye length, Q the charge, and ε0 the vacuum elec-
tric permittivity. To characterize dusty plasmas, we use the
screening parameter κ = a/λD and the coupling parameter
� = Q2/(4πε0akBT ) [24–28], where a is the Wigner-Seitz
radius of (nπ )−1/2 [25] and (4nπ/3)−1/3 [52,58] as a function
of the number density n in 2D and 3D systems, respectively.
Clearly, by increasing the screening parameter κ , the potential
changes gradually from a long-range Coulomb-like potential
to a hard-sphere-like repulsion. Timescales are normalized us-
ing the dusty plasma frequency ωpd =

√
Q2/(2πε0ma3) [25]

and ωpd =
√

3Q2/(4πε0ma3) [52] for 2D and 3D dusty plas-
mas, respectively. For convenience, we will present all our
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results as a function of the reduced coupling strength �/�m,
where �m corresponds to the melting point determined from
the static structure measured from simulations [59,60]. In
analogy to thermal systems, we can think of the coupling
parameter � as the effective inverse temperature for dusty
plasmas, so that a higher � value corresponds to a lower
temperature.

To simulate 2D and 3D dusty plasmas, we confine N =
4096 and 8192 particles in two simulation cells with the
dimensions of 121.9a × 105.6a and 32.5a × 32.5a × 32.5a,
respectively, using periodic boundary conditions. We always
set the simulation conditions as melted dusty plasmas, i.e., for
each chosen κ value between 0.5 and 3, we specify various
� values lower than the corresponding melting point �m of
2D [59] and 3D dusty plasmas [60]. We also use the reduced
coupling strength �/�m [61,62] to characterize the relative
temperature of the studied systems. The integration time step
is chosen to be 0.005 ω−1

pd , small enough as justified in [57],
while the interparticle Yukawa repulsion at the radii beyond
22a [57] and 8a is truncated directly for 2D and 3D sys-
tems, respectively. Other simulation details are the same as
in [52,57]. As the output of our simulations, the obtained time
series of positions and velocities for all simulated particles
are used to determine various physical quantities reported
in the main text. We also perform Langevin dynamical sim-
ulations [63] of 2D and 3D dusty plasmas to confirm that
our reported results are valid. More details can be found in
Appendix A.

III. RESULTS

A. Heat capacity

We start our discussion with the analysis of the heat ca-
pacity. In what follows, we will refer to the specific heat per
particle, so that the total number of particles N disappears
from our expressions. Moreover, in dusty plasmas, the tem-
perature is expressed in units of energy, so that kB = 1 as
well [35].

At lower temperatures, or equivalently larger coupling pa-
rameters, the Frenkel frequency is much lower than the Debye
one and collective shear waves display an almost gapless dis-
persion as in solids. In that regime, for 3D systems, we expect
two transverse waves and one longitudinal wave there, each of
which contributes kBT/2 potential energy from the equipar-
tition theorem [9,64], and kBT/2 kinetic energy. For large
values of the coupling parameter, �/�m � 1, the heat capac-
ity therefore approaches the solidlike value, cV = 3. When
transferring from the rigid liquid to the nonrigid gaslike state,
the two transverse waves cannot be sustained anymore, and
the heat capacity reduces to cV = 2 [8,9]. Qualitatively, this
gradual decrease reflects the disappearance of the solidlike
oscillations into the diffusive gaslike motion. In other words,
the number of transverse modes with frequency ω > ωF de-
creases toward the gaslike regime. As a result, the Frenkel
line is determined by the simple condition c3D

V = 2 in 3D
systems [9]. Following a similar argument, for 2D systems,
there is only one transverse wave, so that cV decreases from 2
to 1.5 when the transverse wave cannot be sustained anymore.
Thus, the Frenkel line for 2D systems can be determined from
the condition c2D

V = 1.5.

c V
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c V
5.1-D3
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FIG. 2. Specific heat cV for 2D and 3D dusty plasmas as a func-
tion of the reduced coupling strength �/�m for different values of
the screening parameter κ . Following the arguments in [8,9] on the
disappearance of propagating shear waves, the liquidlike and gaslike
transition occurs when c2D

V = 1.5 and c3D
V = 2 for 2D and 3D dusty

plasmas, respectively. Independently of the number of dimensions,
this occurs at �/�m = 0.05, which is indicated by the vertical dashed
line. The horizontal dotted line corresponds to the value 0.5.

In the microcanonical ensemble, the specific heat cV can
be derived from the fluctuations of the kinetic energy (KE)
using [65,66]

2 (〈KE2〉 − 〈KE〉2)

Nd (kBT )2
= cV − d/2

cV
, (2)

where d is the dimensionality of the simulated system and kB

the Boltzmann constant. Since the temperature is expressed
in units of energy, the obtained specific heat cV is dimension-
less, as in [35]. The numerical results from MD simulations
are presented in Fig. 2 as a function of the reduced cou-
pling strength �/�m, for different values of the screening
parameter κ and for both 2D and 3D systems. Clearly, as the
reduced coupling strength �/�m increases, the specific heat
cV increases monotonically, for both 2D and 3D fluid dusty
plasmas. Since the coupling strength has to be interpreted as
an inverse temperature, this behavior is consistent with the
expected heat capacity for a liquid, which contrary to that
of solids, decreases monotonically with temperature. At � ≈
�m, the obtained value in 2D matches the expectation from
solid state theory, c2D

V ≈ 2. While in 3D, the obtained heat
capacity at � ≈ �m is slightly larger than the harmonic solid
value of c2D

V ≈ 3, which we are not able to clearly explain now.
Since it is not directly related to the main points of this work,
we leave this interesting observation for future investigations.
In the opposite limit, �/�m → 0, the data approaches the
ideal gas result, c3D

V = 3/2 and c3D
V = 1.
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FIG. 3. Calculated normalized velocity autocorrelation function
(VACF) Cv (t ) for 2D (a) and 3D (b) fluid dusty plasmas with
κ = 1 and different values of the reduced coupling strength �/�m.
The black lines correspond to the critical value γc = 0.05.

From our simulation results in Fig. 2, c2D
V = 1.5 and

c3D
V = 2 both occur at the same reduced coupling strength of

�/�m = γc = 0.05, with γc the dimensionless critical value.
This clearly indicates that the Frenkel line for both 2D and 3D
fluid dusty plasmas is located at the same γc, suggesting that
the liquid-like-gas-like transition in dusty plasmas or Yukawa
systems is independent of the dimensionality. Intuitively, this
could be explained by considering the dynamics of transverse
shear waves. In absence of shear excitations, the system is
effectively isotropic and therefore insensitive to the number of
dimensions. This is further proved by the universal collapse of
the two curves in Fig. 2 for �/�m < γc, where no collective
shear waves can be sustained any more. On the contrary, in
the rigid liquid phase, the heat capacity of the 3D system is
consistently larger than the 2D counterpart simply because of
the larger number of emerging propagating shear waves.

Intriguingly, all the 3D and 2D curves collapse into a uni-
versal one for different values of the screening parameter κ .
This hints toward a possible universality of our results with
respect to the particle interaction potential chosen. As we
will see, this universality pertains not only the thermodynamic
properties but also the transport ones, such as shear viscosity
and thermal conductivity.

B. Velocity autocorrelation function and transport

In order to further verify our results, we compute the nor-
malized velocity autocorrelation function (VACF):

Cv (t ) = 〈v(t ) · v(0)〉
〈v(0) · v(0)〉 (3)

for 2D and 3D fluid dusty plasmas of κ = 1. The numerical re-
sults are shown in Fig. 3. Our obtained Frenkel line condition,

γc = 0.05 from the heat capacity cV , is further confirmed by
our results of the VACF in Fig. 3. In the rigid liquid state, the
VACF contains significant oscillations due to the rigidity of
the underlying phase. However, in the nonrigid gaslike state,
the VACF does not contain oscillations any more, but rather
a monotonic decrease typical of gaslike systems. Thus, in [8],
the Frenkel line is proposed to be the critical temperature at
which the oscillatory behavior in the VACF just disappears.
In [8], it is also mentioned that, for some cases, such as sys-
tems with strong repulsive interactions, this second criterion
from the VACF may be not accurate.

In our systems for 3D fluid dusty plasmas, as �/�m de-
creases, the oscillations of VACF gradually decay until they
completely disappear at �/�m = 0.05, perfectly matching the
Frenkel line extracted from the heat capacity criterion in
Fig. 2. Besides the results for κ = 1 shown in Fig. 3, we
have also confirmed that, for all other simulated κ values,
the critical point at which the oscillations just disappear is al-
ways located at γc = 0.05. Thus, the Frenkel line of 3D dusty
plasmas determined by the VACF is always at γc = 0.05, in
agreement with the analysis of the heat capacity in Fig. 2.
For 2D dusty plasmas, the dynamical transition of the VACF
oscillations at �/�m = 0.05 is not as distinctive as for the 3D
systems. This is consistent with the disclaimers mentioned
in [8] and might be attributed to the anomalous diffusion in
2D dusty plasmas [67], which is absent in the 3D case.

Besides the VACF results presented here, in Appendix B
we show that the various transport coefficients, such as the
diffusion coefficient, the shear viscosity, and the thermal con-
ductivity, calculated from our current simulation data and the
previous results of Yukawa systems or one-component plas-
mas [68–72] are also optimal diagnostics for the dynamical
crossover.

C. Local atomic connectivity and shear relaxation

It is an important question to ask whether there exists
any physical quantity linked to the microscopic dynam-
ics which can identify the Frenkel line crossover. In the
Frenkel/Maxwell theories, the rearrangement time around lo-
cal minima τ plays a fundamental role. A more microscopic
characterization of such a process is given by the local atomic
connectivity τLC , which is defined as the time for one particle
to maintain its surrounding neighbors, or equivalently the time
for the atomic topological structure change [73,74].

Within the Maxwell viscoelasticity theory, the shear stress
relaxation time plays an equivalently important role, espe-
cially in the collective dynamics of gapped transverse waves.
The shear stress relaxation time τ ex

M , first introduced in [74]
to quantify the viscoelastic response of dusty plasma liquids,
controls the relaxation of the excess part (the particle inter-
action portion) of the shear stress autocorrelation function.
Following [74], we calculate the shear stress relaxation time
τ ex

M from the ratio of the excess parts of the shear viscosity ηex

to the infinite frequency shear modulus Gex
∞ using

τ ex
M =

∫ ∞

0
G(t )exdt/Gex

∞ , (4)

where G(t )ex comes from the autocorrelation function of
the particle interaction portion of the shear stress time
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FIG. 4. Local atomic connectivity time τLC and shear stress re-
laxation time τ ex

M multiplied with the Einstein frequency ωE for
various conditions of 2D (a) and 3D dusty plasmas (b).

series [74], while Gex
∞ is just the initial value of G(t )ex [74].

The shear stress relaxation time τ ex
M is approximately equal

to the Maxwell relaxation time τM when � is large, in the
so-called potential energy dominated regime [74].

From Fig. 4, we discover that the Frenkel line condition
can be expressed as the product of the lifetime of the local
atomic connectivity τLC , or the shear stress relaxation time
τ ex

M , and the Einstein frequency ωE to be unity, i.e., τLCωE = 1
or τ ex

M ωE = 1, for 2D or 3D fluid dusty plasmas, respectively.
Here, the Einstein frequency ωE refers to the oscillation fre-
quency of one particle in the environment where all other
particles are assumed to be frozen stationary [25,63].

As evident from the numerical data shown in Fig. 4,
τLCωE = 1 in 2D systems and τ ex

M ωE = 1 in 3D systems both
occur at �/�m = 0.05, corresponding to the location of the
Frenkel line determined from cV in Fig. 2 and VACF in
Fig. 3, as well as various transport coefficients presented in
Appendix B. Thus, both τLC and τ ex

M can be used to quantify
the relaxation time τ between two consecutive hops of a
single particle [16]. Furthermore, the Einstein frequency ωE

is just proportional to the inverse of the minimum particle
vibration period. As a result, the Frenkel’s criterion [16] of
τ/τD ≈ 1 is qualitatively equivalent to τLCωE ≈ 1 or τ ex

M ωE ≈
1, consistent with the findings in Fig. 4. Thus, we propose
the conditions τLCωE = 1 and τ ex

M ωE = 1 as diagnostics to
determine the Frenkel line for supercritical fluids. To the best
of our knowledge, these conditions have not been considered
in classical liquids so far.

In Fig. 4, it is clear that both τLCωE in 2D and τ ex
M ωE in 3D

dusty plasmas exhibit a universal collapse in the rigid liquid-
like phase. On the contrary, this universal collapse seems to
be less precise in the gaslike regime, �/�m < 0.05 where the
trend of the data depends mildly on the screening parameter

κ . We also notice that the product τ ex
M ωE in 3D dusty plasmas

displays a discontinuous derivative at the Frenkel line which
deserves further investigations.

Finally, we also calculated τLCωE in 3D and τ ex
M ωE in 2D

fluid dusty plasmas, but in that case the universal collapse is
less clear. Comparing with the other quantities presented in
this work, which all show a universal collapse as a function
of κ , we might speculate that this universality is an emergent
property of the collective dynamics which fails, or at least
fades away, for microscopic quantities. As a matter of fact,
in the gaslike regime, the definition of τLC or τM is not able to
reflect the collective dynamics any more.

D. Instantaneous transverse sound speed

Besides the aforementioned conditions τLCωE = 1 and
τ ex

M ωE = 1, we discover that the unity ratio of the instanta-
neous transverse sound speed CT to the average particle speed
v̄p can also discriminate the liquidlike and gaslike states and
therefore be an optimal diagnostic for the location of the
Frenkel line. Here, CT is the instantaneous speed of transverse
sound which can be derived from the infinite frequency shear
modulus G∞ [55,73,75]. We observe that the unity ratio of
CT /v̄p occurs at the same value of �/�m = 0.05 correspond-
ing to the proposed Frenkel line. Some of these results for
2D dusty plasmas have already appeared in [75]. Here, new
results for 3D dusty plasmas, as well as more results of 2D
dusty plasmas under different conditions are presented.

When CT /v̄p > 1, the transverse sound speed is faster than
the motion of individual particles, corresponding to the “co-
operative dynamics regime” [75], which is a defining property
of rigid liquids. However, when CT /v̄p < 1, in the “individ-
ual dynamics regime” [75] belonging to the nonrigid gaslike
state, the average speed of individual particles is larger than
the transverse sound speed. Thus, the transition between the
cooperative and individual dynamics regimes at CT /v̄p = 1
coincides exactly with the rigid liquid and nonrigid gaslike
states separated by the Frenkel line. Our newly proposed cri-
teria for the Frenkel line, τLCωE = 1, τ ex

M ωE = 1 and CT /v̄p =
1, may be verified in the future in other physical systems, such
as Lennard-Jones and soft-sphere systems [7,8].

As compared with τLCωE , τ ex
M ωE , cV , and others, the con-

cept of the speed ratio of collective to individual dynamics
used in the diagnostic of CT /v̄p = 1 appears to be superior
due to at least two reasons. First, from Fig. 5, the results of
CT /v̄p for 2D and 3D fluid dusty plasmas collapse into one
universal “master curve”. This happens independently of the
dimensionality of the system and the value of the screening
parameter κ . Second, the concept of CT /v̄p can be generalized
to different physical processes. For example, during compres-
sional shocks in 2D dusty plasmas, a clear transition at the
condition of vleft/Cl,preshock = 1 has been observed in Figs. 4
and 5 of [76], where vleft is the drift velocity of particles
after shocks and Cl,preshock is the longitudinal wave speed.
Clearly, the main cooperative dynamics during compressional
shocks [76] is represented by Cl,preshock, and not CT as above.
At the same time, for compressional related dynamics, the
average particle speed should be represented by the drift ve-
locity vleft in the postshock region along the shock propagation
direction, and not the thermal velocity v̄p. Thus, analogous
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FIG. 5. The ratio of the instantaneous transverse sound speed CT

to the average particle speed v̄p for various conditions in 2D and
3D dusty plasmas. The vertical dashed line indicates the location
of the Frenkel line as derived from the specific heat and the other
diagnostics above.

to the CT /v̄p = 1 criterion, the predicted “phase” transition
should be located at Cl,preshock/vleft = 1, which is exactly what
is observed in [76]. Therefore, when Cl,preshock/vleft < 1, the
compressed system exhibits a gaslike behavior in which many
particles can penetrate the shock front to enter the preshock
region, as confirmed in [77]. By extrapolation, we do expect
that the speed ratio of the cooperative and individual dynamics
may be regarded as a universal criterion valid for different
physical processes.

IV. DISCUSSION

In this work, MD simulations are performed to investigate
the collective and microscopic dynamics in 2D and 3D fluid
dusty plasmas. We propose that, below the well-established
solid-liquid phase transition (see Fig. 1), these systems should
be regarded as supercritical liquids. To support this hypothe-
sis, we reveal a dynamical transition between the rigid liquid
and nonrigid gaslike states in the supercritical regime of dusty
plasma, using the concept of Frenkel lines. We probe this
dynamical crossover with several microscopic and macro-
scopic thermodynamic and transport quantities such as the
heat capacity, the VACF, the shear viscosity, and the thermal
conductivity. Furthermore, we propose several new criteria to
identify the Frenkel line,

τLC ωE = τ ex
M ωE = CT /v̄p = 1 , (5)

providing a new perspective into this old debate. We expect
these measures to be generally valid beyond the dusty plasma
system considered here.
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FIG. 6. Obtained phase diagrams for 2D (a) and 3D (b) dusty
plasmas. For both 2D and 3D dusty plasmas, the melting point �m

for the solid-liquid phase transition (solid blue curves) is obtained
from [59,60]. The dashed line indicates the location of the dynamical
Frenkel crossover, which is universally given by �/�m = 0.05.

Starting from our conjecture, expressed as the diagram in
Fig. 1, we are now in the position to fundamentally re-define
the phase diagram for 2D and 3D dusty plasmas, by adding
a dynamical crossover into it, as shown in Fig. 6. Impor-
tantly, from all our studied diagnostics, it is found that, for
both 2D and 3D dusty plasmas, the transition point between
the liquidlike and gaslike states is always at �/�m = 0.05.
This value corresponds to a temperature of 20 times of the
melting point and coincides with the recently proposed cri-
terion to discriminate the strong and weak coupling regimes
in dusty plasmas in [75], identified from the behavior of the
shear viscosity. Thus, the proposed weak coupling regime of
dusty plasma in [75] is just equivalent to the gaslike state,
while the proposed strong coupling regime in [75] corre-
sponds to the liquidlike state. From this point of view, the
criterion of �/�m = 0.05 in [75] does contain fundamental
physical significance to discriminate the strong and weak cou-
pling regimes and it may supersede the traditional criterion
� = 1 [33].

The supercritical dynamics for 2D and 3D dusty plasmas
revealed in this work presents an emergent degree of univer-
sality with respect to the dimensionality of the system and the
value of the screening parameter κ , which hints towards the
existence of a general fundamental origin. It would be fruitful
to extend this analysis to different systems, potentials, and
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conditions to ascertain, verify, and understand this conjectured
universal character.

V. SUMMARY

In summary, we propose a fundamental redefinition of the
phase diagram of 2D and 3D dusty plasmas by introducing
a new dynamical separation between liquidlike and gaslike
phases. Our results provide strong evidence for the super-
critical collective dynamics in strongly coupled plasmas and
open the path toward a new interpretation of their fundamental
nature which could be fruitful for the modern understanding
of plasmas, classical liquids and supercritical phases of matter.
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APPENDIX A: SIMULATION DETAILS

1. MD simulations

All results presented in our paper are obtained using MD
simulations similar to those in [52,57,75]. For each simula-
tion, first we run 106 steps with the Nosé-Hoover thermostat
so that the simulated system reaches the equilibrium state
under the specified conditions of � and κ . Then, the Nosé-
Hoover thermostat is turned off, and we integrate the next 105

steps to confirm the equilibrium state is unchanged. Finally,
we integrate the last 106 steps, which is the only used for
our data analysis reported in this paper. For each simulation
run, the output is just the obtained time series of positions
and velocities for all simulated particles, which we use to de-
termine the various physical quantities reported in the paper.
Note, for our simulation data, when the thermostat is turned
off, we always make sure that the system temperature only
mildly fluctuates, without any overall drifts.

2. Langevin simulations

Besides the MD simulations presented in the main text, we
also performed Langevin dynamical simulations [63] of 2D
and 3D dusty plasmas to confirm that our reported results are
accurate. In the Langevin dynamical simulations, the equa-
tion of motion [63] for our simulated particles is given by

mr̈i = −∇� jφi j − νmṙi + ξi(t ), (A1)

where the term of −∇� jφi j is the Yukawa repulsion between
particles i and j, the same as in the MD simulation. The
second term νmṙi is the frictional gas drag, while the last term

ξi(t ) is the Langevin random noise obeying the fluctuation-
dissipation theorem [63,64].

We simulate N = 4096 and 8192 dust particles for 2D
and 3D systems, confined in the simulation cells with same
size and with periodic boundary conditions as in our MD
simulations. The specified values of the screening parameter
κ and the coupling parameter � in our Langevin simulations
are exactly the same as those used in the MD simulations.
The time step and the total temporal duration of our Langevin
simulation are both chosen to be the same as those for our MD
simulation, which are 0.005 ω−1

pd and 106 steps, respectively.
As compared with the MD simulation, the only new parameter
in the Langevin simulation is the gas damping rate ν, which
is chosen as ν = 0.03 ωpd , a typical value in dusty plasma
experiments [63].

The Langevin simulation data are also used to calculate
various physical quantities to confirm our findings in the main
text. Different from the microcanonical ensemble of MD sim-
ulations, Langevin simulations correspond to the canonical
ensemble, where the temperature, or the kinetic energy, of the
simulated system is unchanged. As a consequence, Eq. (2) in
the main text cannot be used to determine cV anymore. Here,
we use the fluctuation of the total energy E of the simulated
system to derive the specific heat cV as [64]

cV = 〈E2〉 − 〈E〉2

N (kBT )2
. (A2)

Except for the specific heat cV , all other physical quantities
are calculated using the same methods as for our MD simula-
tions. We find that the physical quantities from our Langevin
simulations are within numerical uncertainties the same as
those reported in this paper, further confirming the reliability
of all conclusions in this paper. Note that none of our calcu-
lated physical quantities from the Langevin simulations are
presented here or in the main text.

APPENDIX B: TRANSPORT PROPERTIES

Using our simulation data, and revisiting existing data in
the literature, we quantify transport properties such as the
self-diffusion coefficient, the shear viscosity using the Green-
Kubo relation [64], and the thermal conductivity. As we will
show next, all these quantities are also very efficient diag-
nostics to discriminate the rigid liquid phase from the gaslike
phase in the supercritical regime of 2D and 3D dusty plasmas.

1. Self-diffusion

For our 3D simulation data, we calculate the diffusion co-
efficients D using the corresponding Green-Kubo relation [64]

D = 1

3

∫ ∞

0
〈v(t ) · v(0)〉dt . (B1)

In fact, Eq. (B1) is just the time integral of the velocity
autocorrelation function (VACF) 〈v(t ) · v(0)〉 for the particle
motion. We do not study the diffusion coefficient for our 2D
simulations. The reason is that as lower dimensional systems,
2D dusty plasmas exhibit anomalous diffusion, as reported
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FIG. 7. Obtained normalized self-diffusion coefficient D
(a) and the corresponding logarithmic derivative d[ln(D/(n− 1

3

v̄p))]/d[ln(�/�m )] (b) for our 3D dusty plasma simulations, as well
as those performed in [68]. The dashed line indicates the critical
line, �/�m = 0.05, as probed by other diagnostics.

in [67], which could strongly affect our analysis and deserves
a separate investigation.

Our calculated self-diffusion coefficients for 3D dusty
plasma simulations when κ = 1, 2, and 3 are presented in
Fig. 7(a) as a function of �/�m. Following the elementary
kinetic theory for a dense medium of particles [78], we nor-
malize the obtained self-diffusion coefficient D using n− 1

3 v̄p.
Besides our diffusion results, in Fig. 7(a), we also plot the
data of 3D Yukawa one-component plasmas reported in [68],
which agree well with our 3D dusty results. Above the dynam-
ical crossover line, in the rigid liquid phase, �/�m > 0.05,
all data for 3D Yukawa systems, and even for 3D Coulomb
systems for κ = 0, collapse into a single universal curve. This
universality appears less evident in the gaslike phase in which
different curves deviate from each other especially for very
small values of �/�m.

The self-diffusion coefficient D clearly exhibits a mono-
tonic decreasing trend as the coupling parameter � increases.
Given that � has to be interpreted as an inverse effective
temperature, this trend is reasonable. When the temperature
is lowered, the diffusion is obviously suppressed. More im-
portantly, we observe that the Frenkel dynamical crossover
corresponds to a saddle point in the self-diffusion data as a
function of � which locates the condition of lowest decreasing
rate.

To better characterize this important feature, we use the
logarithmic derivative d[ln(D/(n− 1

3 v̄p))]/d[ln(�/�m)] ob-
tained from the data points in panel (a) of Fig. 7. The resulting
data are presented in panel (b) of Fig. 7. We observe a clear
maximum in the logarithmic derivative which occurs exactly
at �/�m = 0.05, further confirming the lowest decreasing rate
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FIG. 8. The normalized shear viscosity η for 2D and 3D dusty

plasmas as a function of the coupling parameter � varies from our
MD simulations. The original viscosity results for 3D Yukawa fluids
and one component plasmas reported in [69,70] are also plotted here
for comparison. The minimum of the normalized shear viscosity
always occurs at �/�m = 0.05, as shown by the dashed line.

of the normalized diffusion coefficient D/(n− 1
3 v̄p) in Fig. 7(a).

From both panels in Fig. 7, we confirm that the self-diffusion
coefficient also represents an efficient indicator for the liq-
uidlike to gaslike dynamical crossover in 3D dusty plasmas,
validating once more the universal value of γc = 0.05. Finally,
notice that, using the data of [68], also shown in Fig. 7,
the supercritical transition at �/�m = 0.05 is valid for 3D
Coulomb systems as well.

2. Shear viscosity

Using the Green-Kubo relation, the shear viscosity is
obtained from the shear stress fluctuations [64]. First, we
calculate the time series of the shear stress from the velocities
and locations of all simulated particles using

Pxy =
N∑

i=1

⎡
⎣mvixviy − 1

2

N∑
j 	=i

xi jyi j

ri j

∂φ(ri j )

∂ri j

⎤
⎦. (B2)

Second, we obtain the autocorrelation function of the shear
stress fluctuation Cs using

Cs(t ) = 〈Pxy(t )Pxy(0)〉. (B3)

Finally, the shear viscosity is derived using the time integral
below

η = 1

V kBT

∫ ∞

0
Cs(t )dt, (B4)

where V is the volume of the simulated 3D system, or the area
of the simulated 2D system.
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varies. The corresponding original data are reported in [71,72]. The
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�/�m = 0.05, as indicated by the dashed line.

Our calculated results for the shear viscosity in 2D and
3D dusty plasmas are presented in Fig. 8 as a function of
�/�m and for different values of κ . Following [78,79], we
normalize the obtained shear viscosity η using mv̄pn

1
2 and

mv̄pn
2
3 for 2D and 3D dusty plasmas, respectively. Besides

our viscosity results, in Fig. 8 we also plot the viscosity
results for 3D Yukawa fluids and one component plasmas
reported in [69,70], all agreeing well with our results. From
Fig. 8, all data for both 2D and 3D dusty plasmas, as well
as 3D Coulomb systems, collapse into one universal curve
in the liquidlike phase, �/�m > 0.05. In the gaslike phase,
we observe mild deviations from this universal master curve
which deserve further investigations. More importantly, for
all conditions in the different systems in 2D and 3D, the
minimum of the normalized shear viscosity always occurs
at �/�m = 0.05, the location of the dynamical liquidlike to
gaslike crossover.

In summary, we find that shear transport is a promising
macroscopic quantity to locate the Frenkel line in dusty plas-
mas as well. In order to rationalize this finding, we resort
to classical arguments already presented in [20]. From the
standard kinetic theory, in the gaslike regime, one expects the

viscosity to be given by η ∼ ρvpL where ρ is the density, vp

the average particle velocity, and L the mean free path. Since
vp increases with temperature, vp ∝ √

T , the gas viscosity
increases as well. On the contrary, in a liquid phase, the vis-
cosity arises from a quite different underlying dynamics and
it decreases with temperature as η ∼ exp(U/T ), where U is
the activation energy. This immediately implies the existence
of a minimum in the viscosity which indicates the crossover
between the liquidlike to gaslike behavior. In addition, it turns
out that the value of the viscosity at the minimum is universal
and given by simple fundamental constants [20,80]. It would
be interesting to explore further the value of the viscosity at
the minimum in strongly coupled plasmas and compare to
the results of [20]. A connection between the minimum of
the viscosity in classical liquids and in the strongly-coupled
quark-gluon plasma has indeed already been made in [81].

3. Thermal conductivity

A similar argument to the one just presented for the shear
viscosity can be made for energy transport and in particu-
lar thermal conductivity/diffusivity [19]. For this reason, we
revisit the thermal conductivity data for 3D Yukawa fluids
and 3D one-component plasmas presented respectively in [72]
and [71]. In [71], the thermal conductivity is obtained from
the fluctuation of the heat flux using the corresponding Green-
Kubo relation. In principle, we are also able to determine the
thermal conductivity with our simulation data. However, from
the suggested time duration needed for the thermal conduc-
tivity calculation [71], our simulation run is not long enough,
which may lead to large uncertainties. Thus, we only focus on
the results reported in [71,72]. As we will see, those results
reveal important physical lessons which were not discussed in
the original papers.

We conveniently reproduce the data in Fig. 9. Here, we
normalize the thermal conductivity λ using n

2
3 kBv̄p [78].

From Fig. 9, the minimum of the normalized thermal con-
ductivity also occurs at �/�m = 0.05, which is the same value
as the one extracted from the shear viscosity in Fig. 8 and
the diffusion coefficient in Fig. 7. This value also corresponds
to the proposed Frenkel line crossover probed with several
diagnostics in the main text.

In summary, we find that not only the self-diffusion coeffi-
cient and the shear viscosity but also the thermal conductivity
displays a distinct feature, i.e., a clear minimum, at the
dynamical crossover between liquidlike and gaslike states.
Interestingly, the universal collapse observed for other quan-
tities is not so clear in the thermal conductivity data. A more
detailed exploration in this direction would be fruitful.
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