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Saturable Purcell filter for circuit quantum electrodynamics
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We consider a typical circuit QED setup where an artificial atom encodes a qubit and is dispersively coupled
to a measurement resonator that in turn is coupled to a transmission line. We show theoretically that by placing
another artificial atom in this transmission line to act as a filter, the Purcell decay of the qubit into the transmission
line is suppressed. When strong control fields are applied in the transmission line, the filter is saturated and
effectively switched off. Such a Purcell filtering capability permits both the control and measurement of the qubit
using the single transmission line, while maintaining the long coherence time of the qubit in the absence of the
control pulses. We show that high fidelity Pauli o, gates on the qubit can be realized using simple pulse shapes.
For devices that already use one transmission line both for control and measurement of the qubit, our paper
provides a way to completely filter out the qubit frequency without removing the possibility of controlling the
system. Further, combining the proposed filter with frequency multiplexing potentially enables both control and
measurement of several qubits using a single Purcell-filtered transmission line. This will enhance the scalability
of superconducting quantum processors by decreasing the number of the required transmission lines.

DOLI: 10.1103/PhysRevResearch.5.013148

I. INTRODUCTION

Superconducting quantum processors with moderate num-
bers of qubits are already available [1-5]. Error correction,
where multiple physical qubits act as one logical qubit, is
already being explored on such scalable hardware [6—8]. This
means, however, that the number of the physical qubits has
to increase drastically to be able to run useful quantum al-
gorithms on the logical qubits. To do this, every part of the
current setups needs to be improved: the artificial atoms that
encode the qubits, the room-temperature electronics that con-
trols them, and the interconnect. Simplifying the interconnect
is the focus of this article. In particular, we will show how
to reduce the number of the microwave transmission lines.
The current approach is to use frequency multiplexing where
several qubits are measured using the same transmission line
[1-5]. Each qubit is coupled to the measurement line through
a resonator that has a significantly different frequency. The
measurement line is filtered to suppress the qubit decay into
it. Such decay is conventionally called “Purcell decay” [9],
and the filters are called “Purcell filters”.

The Purcell filters are designed to break the trade-off be-
tween fast measurement and small Purcell decay. This is done
by filtering the frequencies close to the qubit transitions, but
not the resonator frequencies [9—12] [see Figs. 1(a) and 1(b)].
Addition of an unsaturable Purcell filter to a transmission line
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makes it more challenging to control the qubits, precisely due
to the fact that the qubit frequencies are filtered out. If they are
filtered out completely, a separate (unfiltered) control line is
required for each qubit [1-5]. However, it is possible to make
a trade-off between filtering and leaving a small coupling to
perform control using the measurement line [12].

The qubit transition frequencies could not be filtered out
completely before the introduction of the Josephson quantum
filter (JQF) [13,14], which is another artificial atom. The JQF
matches the qubit transition (i.e., the transition frequency of
the two lowest energy levels the JQF is approximately the
same as the qubit transition), is strongly coupled to the con-
trol line, and is placed half a wavelength apart as shown in
Fig. 1(c). When a strong control pulse is applied, the JQF
becomes saturated and effectively switched off. In the absence
of the control pulses, the JQF prevents the decay of the qubit
into the control line. Therefore, the JQF breaks the trade-off
between fast control and small decay rate of the qubit into the
control line.

In this article, we show that the JQF can also act as a
Purcell filter when placed in the measurement line. Because
the JQF can be saturated, it allows resonant control pulses to
be sent in the measurement line, making the separate control
lines unnecessary. This results in the setup shown in Fig. 1(d).
We verify that simple control pulses are sufficient to imple-
ment high-fidelity gates on the qubit, and that the gate fidelity
can be further increased using quantum optimal control. We
also briefly comment on the combination of the JQFs with the
frequency multiplexing. Such a combination would have the
same low number of transmission lines as in Refs. [15-17],
but with the Purcell filtering of the qubits. We expect that
the Purcell filtering using a JQF will also be useful outside of
the quantum computation context, e.g., in the hybrid systems
setup of Ref. [18].
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FIG. 1. (a) Band-rejection Purcell filtering using a stub filter [9].
The qubit is encoded in the coupled eigenstates (dressed states) of
an artificial atom (AA) and a resonator (Res.). The measurement
line is connected to the resonator and has an open circuit stub with
length A,/4, where A4 is the wavelength corresponding to the qubit
transition. Alternative designs of the band-rejection filters can be
found in Refs. [11,12]. (b) Bandpass Purcell filtering using a filter
resonator [10]. The frequencies of the resonators are the same or
close to each other. (c) Filtering of the control line using a Josephson
quantum filter (JQF) [13,14] placed A,/2 away from the qubit. The
Purcell filter in the measurement line is not shown. (d) The setup
that we consider—JQF as a saturable Purcell filter in the combined
measurement and control line.

The rest of the article is organized as follows. In Sec. I we
describe our theoretical model and its associated parameters.
In Sec. I1I, we show that the Purcell decay is suppressed by
the JQF. In Sec. IV, we show that the JQF does not disturb the
measurement of the qubit. In Sec. V, we show that the qubit
can be controlled despite the presence of the JQF by finding
the pulse shapes that implement a high-fidelity Pauli o, gate.
The article is concluded by Sec. VI.

II. SETUP

We assume transmons, modeled as anharmonic oscillators,
for the artificial atoms. Using the two-level atoms gives simi-
lar results [13,14]. The considered setup is shown in Fig. 1(d).
One transmon is coupled to a transmission line through a
resonator. The subsystem consisting of this transmon and res-
onator has index 1 in the equations below and encodes a qubit
in its coupled eigenstates (dressed states). The subsystem 2
is a transmon that is coupled to the same line directly and is
used as a JQF. The JQF is placed Ay/2 from the resonator,
where A4 is the wavelength that corresponds to the qubit tran-
sition frequency. The Hamiltonian of the setup can be written
H = H; + Hf + H;. The parts H;, Hs, and H; correspond to

the system, transmission line field, and the interaction, respec-
tively.

The system part is Hy = an:l H; ,,, where the subsystem
1 part is

- o T
H, | = fiw biby + h?‘(bi)zbi
+ hwa'a + hg(bla + a'by), 1)

and the subsystem 2 part is

o
ma=hwﬂ&n+ﬁ§@9%§ )

The resonator has the corresponding annihilation operator a
and the frequency w;. There are 2 transmons with the cor-
responding annihilation operators b,,, transition frequencies
wy,;m of the lowest two energy levels, and the anharmonicity
parameters «,,. Only the transmon with the index m =1 is
coupled to the resonator with the coupling strength g;.

Multiple resonator modes could have a significant contri-
bution to the Purcell decay [18,19]. This occurs when the
detunings of several modes of the resonator from the qubit
frequency have similar magnitudes. It is possible to model
a multimode resonator as several single-mode ones [20-22],
but for simplicity, we only consider the parameter regime
where one of the resonator modes is dominant. We use the
parameters close to Ref. [14], where a coplanar waveguide
resonator with the fundamental frequency w,/(27w) = 10 GHz
was coupled to the transmon with the transition frequency
wr,1/(2w) = 8 GHz. The next mode of the resonator has
the frequency 2w, /(2m) = 20 GHz, and hence does not con-
tribute much to the Purcell decay.

The existence of the higher modes does not significantly
change the required JQF parameters. The JQF needs to have
the frequency close to the qubit frequency, not the resonator
modes. The resonator modes shift the qubit frequency due to
the coupling, but the shift due to the fundamental mode is a
few MHz for the considered parameters, and the shift due to
the higher modes is even smaller. In practice, the frequency of
the JQF may need to be tuned post fabrication anyway, either
using the bias flux [14] or the laser annealing [5]. Hence, even
the predictions of a single-mode theory should be sufficient
for this parameter regime.

The transmission line field part is

[o.¢]
Hy=h f wc! cpdo. A3)
0

The annihilation operators ¢, correspond to the modes
cos(k,x) with positive wave vectors k,,, but use the angular
frequencies w as the integration variable. The dispersion re-
lation is w = k,vg, with v, being the speed of light (group
velocity) in the transmission line.

The interaction part is

2 o0
=1y / n(@)(Co — cL)Op — Ol )dw, (&)
0

m=1
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where g, (@) = Gua/® cos(kyXn), Gy = /T /2 wsy),

k form=1,

P = {y2 for m = 2, ©)
Wy for m =1,

Om = {wnz for m = 2, ©)
a form=1,

On = {bg for m = 2. )

The interaction Hamiltonian (4) gives rise to the decay
rates x (resonator) and y, (JQF). We use the coupling of
the form g, (w) = G,/ cos(k,x,,), which is obtained by
ignoring the so-called A% term. A more careful derivation
[20-23] results in g, (@) = Gu(Jw/vV 1+ Aw?) cos(kyxy),
i.e., has a cutoff for the higher @ controlled by the param-
eter A > 0. The form of g, with the cutoff results in the
renormalization of the decay rates and an additional collective
frequency shift as detailed in Appendix B. The theoretical
model without a cutoff, i.e., with g,,(®) = G4/ cos(kyX),
was found to be in good agreement with the experiment when
the JQF was placed in the dedicated control line [14], sug-
gesting that the influence of the additional frequency shift
is small. To estimate its effect theoretically, the numerical
value of A is needed, and it does not seem to be available
in the literature. Due to these considerations, we proceed
with g,,(w) = G,/ cos(k,x,,), but the calculations could be
easily adjusted for a nonzero A.

The constants G, could also be related to the circuit pa-
rameters, but we write them in terms of the decay rates [,
which can be measured experimentally [14]. If the A% terms
are included, these constants could be modified to G,, =
\/ [(1+ Aw?2)/(2mw,) to account for the renormalization.
Another note is that the rotating wave approximation is not
applied immediately in H;. It will be applied after the effec-
tive Heisenberg equations of motion for the subsystems are
obtained to ensure that all the terms are present [24]. More
details about this can be found in Appendices A and B where
the master equation is derived starting from the Hamiltonian
above and following Refs. [13,14,24,25]. Here, we only give
the outline of this derivation.

In general, the interaction of matter with the electromag-
netic fields results in non-Markovian equations of motion
[26,27] caused by the fact that it takes a finite time for
the photons to propagate between the atoms. For g,,(w) =
G/ cos(kyxy,), the effective equations of motion where
the field degrees of freedom are traced out, take the form
of the delay differential equations. However, the delay dif-
ferential equations are difficult to solve in the general case,
and hence some kind of approximation is usually needed.
We adopt the approximation that converts the time delays
into the propagation phase factors [13,14,24,25]. For g,,(w) =
Gu(Vw/ V1 + Aw?) cos(kyx,), the equations of motion are
of a more general form with a memory kernel given by
Eq. (A9) in Appendix A. This case can also be approximated
by a Markovian master equation as explained in Appendix B.

Before we explain the approximation involved in replacing
the non-Markovian equations of motion with the Markovian
ones, we first note that we diagonalize the subsystem Hamilto-
nians H ,,. For every pair of eigenstates | j,), |j,) of Hy ,,, we
define the operators oy, j» = | jm){J,,| and the matrix elements

Cn,jj = (jm|Onlj,). We order the eigenstates such that the
number of excitations increases or is constant with increasing
j. Since O,, is an annihilation operator, the rotating wave
approximation ensures that C,, j; # 0 only for j < j'. We can
write

I—Is,m = hza)m,jo'm,jj’ (8)
J

where w,, ; are the eigenfrequencies.

Assuming that the Hamiltonian is dominated by the system
parts (8), the approximation of the time-delayed terms can be
written

O jj (& = 1) R 0y jj (1) Oms =Om s, )

making the Heisenberg equations of motion for the attached
subsystems local in time. When a classical drive with fre-
quency wyq is present, we make the approximation

Om, jj/(t — 1) X O jjr (1) (10)

instead. Physically, this means that the driven subsystems
oscillate with the drive frequency rather than their eigenfre-
quencies.

The derivation assumes a coherent state with the carrier
frequency wgq as the input in the transmission line, and hence
an additional drive Hamiltonian

2
Hy=h) (Que ™ Of, + (Qu)'e™ 0,) (1)

m=1

emerges with the Rabi frequencies

Q= [ AT it cos (kg im)e®, (12)
W

which may be time-dependent due to the changing photon flux
n and phase ¢.

The rotating frame is defined with respect to the Hamilto-
nian

2
H, =h22w0,m,j0m,jj, (13)

m=1 j

where the frequencies wy ,,, ; are chosen such that the factors
e in Eq. (11) are canceled, i.e., t[Ho, Op] = —iwgO,,. If
there is no drive, any fixed frequency can be used instead of
wq. The Hamiltonian in the rotating frame is

2
H =n Z Z(a)mj - wO,'11.j)am,jj

m=1 j

+ Re[Q]Hqyre + Im[Q]Hy 1, (14)

where we have picked 2 = Q; as the reference Rabi fre-
quency. Defining

5, = Rel@n] _ Wil _ - fon, Ty 05 (hostn) —\s)
Re[Q2] Im[Q2] Om Ty €08 (Kgoy Xy )
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we can write

2
I:Id,Re =h Z s~2m((9j,-1 + Om)a

m=1

(16a)

(16b)

The ratios €2,, do not depend on the photon flux 7 or phase ¢,

and hence Hyg. and Hyp, are independent of time. The time

dependence of A is contained in the factors Re[2] and Im[2].
The master equation can be written

bs = L(ps)

. 2
i~ 1 . .

= -7 H, ~s ~ (9mn~s(9I - OI OmnNS
PR E (OmnpsO,, = O, Omns)

m,n=1

2
1
~ bt = nt
+5 2 (OO, = 10}, 00, (17)

m,n=1
where Opy = 3 v Emn, j1jC jjrOn,jijr»
[ VT _@Onjj

mn, -
s 2 Jw,w,

x (ensiPm=al 4 gtk jjlontanly, (13)

Wp,jij = Wy j — Wy, are the transition frequencies between
the eigenstates j and j', ky,j; = ks, ,, are the correspond-
ing wavevectors, and p, = e/'/tr[ple~Ho!/" is the density
matrix with the transmission line field degrees of freedom
traced out, in the rotating frame with respect to the Hamil-
tonian (13). If a classical drive is present, we set k, j; =
ko, in Eq. (18), while keeping the factor w, jij/\/@nw, un-
changed. For g, (w) = G, (Jo/v1+ Aw?) cos(kyx,) with
A >0, &,, j; is given by Eq. (B16) derived in Appendix B
instead of Eq. (18).

The Schrieffer-Wolff transformation on the Hamiltonian
(1) results in the dispersive shifts for every transmon energy
level [28]. We define

X g% <1_ a)r_wl,1+al> (19)

2(wr — wy,1) wp — W] — o

in terms of the difference of the dispersive shifts for the lowest
two levels. For o; — o0, this reduces to the two-level system
shift x = g2/(w; — o).

For the calculations below, the parameters are chosen close
to the ones in Ref. [14]. We set the frequency of the resonator
w;/(2m) = 10 GHz, resonator decay rate «/(27) = 2 MHz,
transition frequencies of the lowest two transmon energy
levels wy/(2m) = 8.000 GHz and w>/(27) = 7.994 GHz
(shifted to match the qubit transition frequency wy 1o/(27)),
anharmonicities o1 /(27) = ap/(2mw) = —400 MHz, JQF de-
cay rate y,/(2mw) =100 MHz, and the dispersive shift
x/(m) =1 MHz. From Eq. (19), the coupling between the
transmon and the resonator is g;/(2m) = 109.544 MHz. The
resonator is placed at the origin, x; = 0, and the JQF is placed
half a wavelength from the resonator, k,, ,,x» = 7. We also
choose 2 = 2 as the reference Rabi frequency, and hence

Q =1and Q, = Vorya /(e ak) cos(ky,x2).

As explained above, the Hamiltonian (1) for the subsystem
1 is written in the diagonal form (8) prior to the derivation of
the master equation (17) (the Hamiltonian (2) for the subsys-
tem 2 is already diagonal). Truncated to at most one excitation
either in the transmon or the resonator, we can write the
Hamiltonian (1) as the matrix

0O O 0
0 o g |, (20)
0 8r W1

where the zero row and column were added explicitly for the
zero-excitation state |0;). This is also one of the eigenstates of
the matrix. The other two eigenstates have a single excitation
and can be written

1)) = sin(6)a’|0,) — cos(6)b]01),
121) = cos(@)a’|0;) + sin(0)b][0y),

(21a)
(21b)

where 0 = L arg[(o; — w,1)/2 + ig;], and arg is the argu-
ment of a complex number. Below, we use the computational
basis states |0) = |0;) and |1) = [1;). The state |2;) is the
rapidly-decaying eigenstate with most of the excitation in
the resonator, and is outside of the computational basis. The
corresponding eigenfrequencies are w; o = 0,

wr + W Wy — W 2
w1 = r t,1 _ ( T t,l) +g%’ (223)

2 2
w; + o wr — W 2
W, = — > L < d 3 "‘) +g.  (22b)

With the chosen parameters above, we have w; ;/(2r) =
7.994 GHz and w; »/(27) = 10.006 GHz.

The single-excitation states are sufficient to describe the
decay in Sec. III below. The measurement (Sec. IV) and
control (Sec. V) involves sending microwave fields through
the transmission line and hence can excite the higher eigen-
states. In the general case, we truncate the transmons and the
resonator at a certain maximal number of excitations and then
perform the numerical diagonalization of the resulting Hamil-
tonian matrices. This produces an eigenfrequency w,, ; for
each eigenstate |j,). Physically, only the transition frequen-
CieS Wy, jij = Wy, j — Wy, are relevant. However, the choice
w10 =0 as the frequency of the zero-excitation eigenstate
|0;) results in the identities w; 10 = w;,1 and w; 0 = w1 2.
Hence, for the single-excitation states, the distinction between
the absolute eigenfrequencies and the transition frequencies
does not exist. This distinction becomes important for the
higher-excitation states.

For example, the JQF transmon is described by an an-
harmonic ladder of eigenstates, as shown in Fig. 2(b).
The states up to two excitations are |0y), |12), and |25).
The corresponding absolute eigenfrequencies are ws o =
0, w21/(2m) =7.994 GHz, and w;,/(2mw) = 15.588 GHz.
The transition frequencies are w; 19/(27) = 7.994 GHz and
w221/(2mw) =7.594 GHz. These are the only transitions
that have the nonzero matrix elements C, ;; = (j2|O,| ;) =
(j21b2|75) in the two-excitation subspace. When diagonalizing
the transmon and resonator subsystem, the nonzero matrix
elements Cy j; = (ji1|O1lj;) = (jilalj;) have a more compli-
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FIG. 2. (a) The level diagram of the coupled transmon and res-
onator subsystem, showing the eigenstates (dressed states) | j;) up to
two excitations with the corresponding eigenfrequencies w, ;. The
qubit is encoded in the states |0,) and |1;). For w;; and w, », there
are analytical expressions [cf. Eqs. (22)]. The nonzero matrix ele-
ments Cy ;; = (j1|O1lj}) = (jilalj;) are shown as lines with arrows
between the eigenstates. For C; o, and Cj ¢y, there are analytical ex-
pressions using Egs. (21). (b) The level diagram of the transmon JQF
subsystem, showing the eigenstates |j,) up to two excitations. Since
the Hamiltonian (2) is already diagonal, the eigenfrequencies are
linear combinations of its parameters: w, | = w2, w22 = 2w 2 + Q2.
The shown nonzero matrix elements C, ;i = (/2|01 j5) = (j21b2l )
are C2,01 =1 and C2‘12 = \/E

cated structure, as shown in Fig. 2(a). Hence more transition
frequencies w,, j; are relevant to the dynamics.

III. SUPPRESSED PURCELL DECAY

First, we verify that the decay of a qubit is reduced by
adding a JQF. The computational basis state |0) = |0;) is the
zero-excitation state and hence does not decay. The decay of
the state [1) = |1;) [cf. Eq. (21a)] is suppressed by the large
detuning of the resonator even without a JQF. From the master
equation (17), the Purcell decay rate is

1,10

Kpurcell = |C1.011*E11,10 = sin® ()« : (23)

where w110 = W1,] — W1,0, W11 is given by Eq. (223),
and w; o =0. Since the detuning w; — @ is large, we
can approximate sin’(0) ~ (g;/(w; — wt’l))z, resulting in
Kpurcell ~ (gr/(w; — a)t,l))zlca)l,lo/a),. The only difference
from the usual formula for the Purcell decay rate is an
additional factor w jo/w;. This factor comes from the
definition of the frequency-dependent coupling g(w) =
VK [ w )/ cos(k,x1) that results in the decay rate «
of the resonator with the frequency w; that is not coupled
to the transmon and placed such that cos(k,x;) = 1. The
qubit transition frequency w; 1o is different, and hence the
decay rate that is proportional to gj(w.19) gets this additional
factor w),19/w;. For our parameters, w; jo/w; = 0.7994, and
Kpurcell/ (2) = 4.8 kHz.

A Purcell filter needs to suppress the decay rate below
Kpurcell- We show in Fig. 3 that addition of a JQF accomplishes
this. We initialize the qubit in the state |1) = |1;), and the
JQF (if present) is initialized in its ground state |0,). The error

1071
1072 5 soF
—_— no
Ry - = JQF
| =1 no JQF (analytical)
— 10—3 i * JQF (analytical)

0 200 400 600 800
t [ns]

FIG. 3. The error probability 1 — F where F is given by Eq. (24)
as a function of time for the qubit initialized in the state |1) = |1;)
[cf. Eq. (21a)], and the JQF initialized in the ground state |0,).
The dash-dotted-blue curve plots 1 — e *Purcel” with kpyee given by
Eq. (23). The horizontal-dotted-black line plots 1 — Fg,x given by
Eq. (25). It overlaps the dashed-green curve for large times.

probability 1 — F is plotted, where the fidelity F' is
F = trg[(o1,11 @ L)ps(1)], (24

and trg is the trace over the system degrees of freedom (the
trace over the transmission line degrees of freedom try has
already been performed during the derivation of the master
equation in Appendix A). We have also written the tensor
product with the identity operator /> on the subsystem 2 (JQF)
in Eq. (24) explicitly, so that it is more easily seen that F' =
(1]tra(ps)| 1), where tr, is the trace over the subsystem 2.

The solid-red curve in Fig. 3 is the numerically calculated
error probability 1 — F without a JQF, and the overlapping
dash-dotted-blue curve plots 1 — e *ruet’ . We see that the
behavior of the dashed-green curve that shows the case with
a JQF is qualitatively the same as when the JQF was placed
in the dedicated control line [13,14]. The qubit and the JQF
have a bright state that decays rapidly and a dark state that
does not decay. The state |1;) ® |0,) (the qubit is in state |1),
and the JQF is in the ground state), has both bright and dark
parts. Because the JQF decay rate y, is significantly larger
than kpyrcelr, this state is mostly dark. After the rapid decay of
the small bright part, the decay rate vanishes. The fidelity after
the bright part has decayed is

2
Faarke = (L> , 25)

Kpurcell + V2

and 1 — Fyux is shown by the horizontal dotted black line in
Fig. 3.

In practice, the decay rate is not expected to be zero due
to the imperfections in the qubit and the JQF but still be
reduced compared to the case without the JQF. We show the
influence of some of the possible imperfections in Fig. 4.
If the JQF transition frequency w;, does not match the
qubit transition frequency wy o, the decay rate is not can-
celed completely, as shown in Fig. 4(a). The cancellation
is also imperfect if the JQF is not placed at x, = m /kg, .,
as shown in Fig. 4(b). The influence of the internal de-
cay of the JQF with the rate y,in/(27) =3 MHz [14] is
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T, q,int [13]

FIG. 4. The error probability 1 — F where F is given by Eq. (24)
as a function of: (a) JQF transition frequency w;, (b) JQF position
Xz, (c) internal 7} time of qubit (77 ginc = 1/¥gin» Where yginc is
discussed in the text). In all the subplots, the qubit was initialized
in the state |1) and evolved for the same time #; = 10/« =~ 800 ns
as in Fig. 3, plotting the final value. For the solid-red and dashed-
green curves, the parameters are the same as in Fig. 3, except for
> in (a), x5 in (b), and 7 gy in (c). The dash-dotted-blue curves
show the influence of the internal decay of the JQF with the rate
Yot/ (2) = 3 MHz [14].

shown as the dash-dotted-blue curves in Fig. 4, calculated
by phenomenologically adding a decay term y» inD[b2]p =
(yz,im/Z)(2b2,ob; — pbgbz — b;bzp) to the master equa-
tion (17). An imperfect JQF provides a significant reduction
of the Purcell decay, even if it does not make it vanish com-
pletely. The internal decay of the qubit is modeled by adding
Yaint P[b1]p to the master equation, and Fig. 4(c) shows the
influence of the different 7; gjne = 1/¥qint- Even for T gjn; =
50 us [29], the difference in the error probability 1 — F is
significant, becoming more than an order of magnitude for
Ti qint = 500 s [30,31]. These differences could be larger if
the Purcell limited 77 time, 1/kpycen = 33 us, were lower,
e.g., by choosing a smaller detuning w, — @ |, which may
decrease the gate time.

In Appendix C, we check the approximation (9) used in the
derivation of the master equation (17) numerically. Without
this approximation, delay differential equations are obtained,
and they can be solved for the single-excitation subspace. The

differences between the two models can only be seen with
significant zoom factors, with the 1 — F' curves deviating on
the order of 10° or less.

IV. MEASUREMENT

The dispersive shifts of the resonator frequency depend on
the state of the transmon [28], and this is the standard physical
mechanism for the qubit measurement in the superconducting
quantum processors [1-5,10]. The desirable parameter regime
is where the internal losses are negligible on the time scales
of the duration of the measurement. Here, we only consider
zero internal losses in the model, but these losses could be
added as in the previous section. Since the considered setup
[Fig. 1(d)] is in the reflection geometry and under the assump-
tion of zero internal losses, all of the incident radiation gets
reflected due to the energy conservation. Hence, no informa-
tion can be gained from the amplitude of the reflected field,
and only its phase carries the information about the qubit. The
experimentally accessible / and Q values could be obtained
by the phase-preserving amplification [32] and mixing with
a local carrier on an /Q mixer [1]. Then the I and Q values
are proportional to the sine and cosine of the reflected phase
[33]. With the fast analog to digital converters [34,35], an IQ
mixer may not be needed, and then the relationship between
the reflected phase and the final processed values could in
principle be arbitrary.

Since the JQF is far detuned from the probe (around 2 GHz
in our assumed parameters), it is weakly excited even for
moderate powers of the probing field. For example, the max-
imum JQF population (b3b,) for the parameters of Fig. 5 is
around 3 x 10~*. Therefore, the noise contribution is assumed
to be negligible, and instead of the more advanced theoret-
ical descriptions of the measurement mechanism that also
include the noise contributions [36,37], we take the simple
approach of only considering the expectation values of the
complex reflection coefficient r. The optimal situation is when
the reflection coefficients, interpreted as 2D vectors with the
components Re[r] and Im[r], point in the opposite directions
for the computational basis states |0) and |1) [38]. In the
dispersive approximation, this gives the condition y = /2,
so that the dispersive shift x is large enough compared to
the resonator linewidth « to obtain the maximum angle of &
between the reflection coefficients.

In Appendix D, we derive the expression for the reflection
coefficient

r_l_lzz Om,jj V1 RAR LYo
Joo, @ "

X trg [O—m,jj’ ps] Cos(kwdxm) (26)

m=1 j,j

at the position x;r = x, + € for ¢ — 0 from above, i.e., just

to the right of the last subsystem attached to the transmis-
sion line (the JQF). The expression is written in terms of
the reference Rabi frequency €2;, and the overall propagation
phase ¢**%*7 has been removed. The master equation (17)
is solved to evaluate the expectation values trg[oy, ;i ps], and
the reflection coefficient as a function of time is calculated.
The true steady-state reflection coefficient for both of the two
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FIG. 5. (a) The phase of the reflection coefficient (26) as a func-
tion of the probe frequency wy for the Rabi frequency 2,/(2n) =
4 MHz, corresponding to —125 dBm [cf. Eq. (12)] and 16 photons
on average inside an empty resonator that is probed on resonance
(wg = w;) without a JQF in front. In this and the other subfigures, the
qubit is initialized either in the state |0) or the state |1) and evolved
for a fixed time # = 20/k ~ 1.6 ps. (b) The angle (27) between the
states |0) and |1) as a function of the Rabi frequency €2; at the
probing frequency (wyg — w;)/(2w) = 5 MHz [vertical-dotted-black
line in (a)]. (c) The angle (27) as a function of the dispersive shift
x [related to the coupling g, by Eq. (19)] for a probing frequency
wq optimized numerically [39,40] to give the maximum angle. The
legend indicates the values of €2;/(2m). The vertical-dotted line in-
dicates x /(2w ) = 1 MHz [g;/(27) = 109.544 MHz] used in (a) and
(b), and also all the other figures of this article. This value satisfies
the condition x = «/2.

initial qubit states, |0) and |1), is the same since the state |1)
eventually decays into the state |0). Therefore, we evolve the
master equation for a finite time, which is long enough for
the transients to disappear, but short enough that the state |1)
does not decay significantly. We choose the evolution time
tr = 20/k ~ 1.6 us in Fig. 5.

In Fig. 5(a), the arguments of the complex reflection coef-
ficients arg(r) are shown as a function of probe frequency. For
the probe frequency in the middle, (wq — w;)/(27w) = 5 MHz,
close to the desired angle of m between the states |0) and
[1) is obtained. To quantify how close the angle is to m,
we calculate the smallest angle 63 between the two complex

reflection coefficients via the dot product,
RC[I’|0>]RC[I‘|1)] + Im[r|0>]lm[r|1)]

, (27
[0y 1711

cosby =

where 7|, and ry;y are the reflection coefficients for the initial
states |0) and |1), respectively. In Fig. 5(b), 64 is shown as a
function of the probe Rabi frequency €2;.

Due to the transmon and resonator subsystem becoming
more nonlinear for larger probe Rabi frequencies, the angle
04 decreases. Addition of the JQF also decreases 64, although
by a small fixed amount, about 1.5%. Despite choosing the
parameters such that y = « /2, the angle 6, does not reach &
even for a weak probe and without a JQF. This could be caused
by the fact that the Schrieffer-Wolff transformation used to
obtain the expression (19) for x is a perturbative method and
hence inexact. Other reasons for the discrepancy could be that
our model does not make the dispersive approximation, under
which the condition x = «/2 is derived, and because there is
some uncertainty with the heuristic procedure of choosing the
finite evolution time #;. We have verified that increasing x (by
increasing the coupling g;) slightly is sufficient to reach the
maximum angle of , as shown in Fig. 5(c). In this subfigure,
the angle 6, is plotted as a function of the coupling x for an
optimal wq (obtained by the numerical optimization [39,40]).
Once y is large enough to obtain 63 = 7 for a chosen probe
power, the measurement is not expected to improve, but a
larger coupling might still be useful for decreasing the gate
time.

The above results suggest that the JQFs have a very similar
behavior to the unsaturable band-rejection Purcell filters [9],
in that each Purcell filter acts as a far off-resonant scatterer
during the measurement, adding a small phase shift to the
reflected field. Hence, if JQFs are combined with the fre-
quency multiplexing, we expect the angle decrease between
the computational basis states for each qubit to be small, as
long as the number of the qubits in each multiplexed group
is not much bigger than currently used (around 6 [1]). Other
considerations for the frequency multiplexing that are not in-
cluded in our model, such as the performance of the quantum
limited amplifiers [41], are expected to play a much bigger
role than the presence of the JQFs.

V. CONTROL

To verify the controllability of the system despite the com-
plications arising from coupling to the qubit through the JQF
and the resonator, we show that the Pauli o, gate can be
implemented with high fidelity. For a two-level atom with a
directly attached control line, this can be accomplished with
a simple rectangular pulse. The setup where the two-level
atom is replaced with a transmon and JQF added in the con-
trol line [Fig. 1(c)] requires pulses that are more carefully
chosen [14,42]. For the setup that we are considering here
[Fig. 1(d)], we use both the relatively simple pulses similar
to Refs. [14,42,43] that do not require extensive calibra-
tion, and the more general Fourier series pulses inspired by
Refs. [44,45] that achieve a larger gate fidelity.

We maximize the average gate fidelity. For a qubit, it is
sufficient to average over the initial states at 6 cardinal points
of the Bloch sphere, i.e., the eigenstates of the three Pauli
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matrices [46]. More efficiently, the averaging could be done
by propagating the Pauli matrices themselves with the master
equation, even though these matrices are not valid states [46].
The system under consideration has more than two levels, but
the states before and after a gate are mostly restricted to the
qubit subspace. The leakage outside of the qubit subspace is
accounted for by adding the states of the coupled transmon
and resonator subsystem that also include the second excited
state of the transmon and four excitations of the combined
system in total. There are 12 such states. Together with 11
states of the JQF, this sets the total Hilbert space basis size
of 132. In principle, more general expressions for the average
fidelity need to be used with a much larger set of operators
being propagated by the master equation [47]. To keep the
simulation run time manageable, we use the expressions in
Ref. [46] instead.

The expression for the average fidelity for the ideal opera-
tor U = o, and the real superoperator M that we use is thus

_ 1. 1 .
Faverage = ZF(I) + E Z F(Uj)v (28)
J=x,3.z
where
F(A) = try[UAU T M(A)). (29)

The Pauli matrices o; and the identity operator I in Eq. (28)
are interpreted as operators on the entire (132-dimensional)
Hilbert space but only have nonzero matrix elements for the
qubit subspace. In Eq. (29), M(A) is calculated by initializing
the master equation with the operator A instead of the initial
density matrix and propagating until the final time #. It is
not possible to simplify £(I) to a constant like in Ref. [46],
since [ is not an identity operator on the entire Hilbert space.
Compared to the fidelity F' given by Eq. (24), the trace over
the JQF is not performed in Eq. (29), requiring the JQF to be
in the ground state |0,) at the end of the gate. This ensures that
the JQF does not disturb the qubit by emitting a photon after
the gate is performed.

For the simpler pulse shape, we choose a Gaussian-filtered
rectangular pulse

Szmax fend < (t - t/)2> /
Re[Q](t) = exp | ————— )dt, 30)

2
Ot/ 270 Jigan 20¢

where 0 < fgart, fend < . The above integral can be evaluated
in terms of the error functions. The initial value Re[$2](0) is
never exactly zero, but £y, can be chosen such that Re[€2](0)
is below a certain tolerance [Re[€2](0)/(27) < 0.2 MHz in
Fig. 6(c)]. The carrier frequency of the drive is set equal to
the qubit transition frequency, i.e., wq = w; 0. Optionally, a
correction is applied to the imaginary quadrature Im[Q2](¢) =
CDRAG,Imj—IRe[Q](Z), and a power dependent frequency shift
A4t) = CDRAG,ARe[Q]Z(t) is used similar to the Derivative
Removal by Adiabatic Gate (DRAG) [43].

For a transmon without a JQF, the DRAG correction con-
stants Cprag,im and Cpracg. a have analytical expressions [43].
For our setup with the JQF, we find that these constants need

109 4 A A At A A
A A ol ol e ol wl” e ol SN i=0
3 A n TS
BN _5 | R Te=-
g R \ N
1010 !:, I T |J:10\ T J=l2.... T
0 10 20 30 40 50
t [ns]
(c)
200 - = Re[Q]/(2m)
- == Im[Q2]/(27) DRAG
N | + Re[Q]/(27) iter = 13
§ 100 — Im[Q]/(27) iter = 13
0 - e —— ——J-..-.—_g,\
0 10 20 30 40 50
t [ns]

FIG. 6. The result of the simpler pulse shape [cf. Eq. (30)]
optimization with a DRAG [43] correction. (a) The error probabil-
ity 1 — F(|0)(0]) where F(A) is given by Eq. (29), the resonator
population (a’a), and the JQF population (b;bz) as functions of
time for the setup initialized in the state |0) and driven to the
state 0,|0) = |1) by the time-dependent Rabi frequency shown in
(c) by the solid-red [Re[€2](7)] and dashed-green [Im[€2](?)] curves.
In Eq. (30), we set Q.x/(27) = 200 MHz, corresponding to —91
dBm [cf. Eq. (12)], and 1/0; = k/0.02 = 628 MHz. The DRAG
corrections have the form: Im[2](¢) = CDRAG’ImC%Re[Q](t), and
Aq(t) = Cprac,aRe[Q1*(7) (not shown) with Cprac,im and Cprac, a
optimized numerically [39,40]. (b) Populations of the individual
JQF levels (o3 ;;). The achieved fidelity is F(]0)(0]) = 0.9993
(szemge =0.9981). The dotted-blue [Re[S2](z)] and dash-dotted-
cyan [Im[€2](¢)] curves in (c) show the pulse shapes obtained after
13 iterations of the optimal control algorithm described in the text,
using the initial pulse shape with Re[€2](¢) given by the solid-red
curve and Im[2](#) = 0. The achieved fidelity after 13 iterations is
F(10){0]) = 0.9993 (Fyyerage = 0.9994).

to be optimized numerically [39,40] to yield any improvement
for the fidelity. However, the improvement is so small as to be
negligible. Without the DRAG correction (Cprag,im = 0 and
Cpbrac,a = 0), we get Fyerage = 0.9980. With the DRAG cor-
rection, Faverage = 0.9981. Some of the il}itial states achieve
higher fidelities, as shown in Fig. 6 with F'(]0)(0]) = 0.9993.
Using the optimal control approach described below with
only 13 iterations, we see that a better correction Im[2](¢)
[the dash-dotted-cyan curve in Fig. 6(c)] is not propor-
tional to the time derivative of Re[€2](¢), contrary to DRAG.
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The optimal control with 13 iterations achieves Fierage =
0.9994 (F(]0)(0]) = 0.9993) while keeping the pulse shapes
simple.

To reach higher fidelities, we run the optimal control for
more iterations. We consider the Fourier series parametriza-
tion of the pulses with a finite number of terms to limit the
bandwidth. We can write this parametrization

Ne

Re[Q](t) = \/?Za,, sin(wpt), (31a)
[t
PR

Im[Q](t) = - ;b,, sin(w,t), (31b)

where N, is the maximum number of the Fourier components,
and w, = pm /t;. By construction, sin(0) = sin(wpt;) = 0.

Optimizing a function with many variables (we choose
2N, = 200) is faster if a gradient-based algorithm is used. We
use the reverse mode automatic differentiation, as explained
in Appendix E, to calculate the gradient, which is used in the
LBFGS algorithm [40,48] to find the maximum of Faverage.
For the reverse mode automatic differentiation, the cost of
calculating the gradient is independent of the number of the
variables 2N,. Using the fourth-order Runge-Kutta method for
the propagation of the master equation, the time to calculate
the fidelity and the gradient is around 8 times larger than the
time to calculate the fidelity without the gradient.

For the initial qubit state |0), the resulting evolutions of
the error probability 1 — £ (|0)(0|) and the populations of the
resonator and the JQF are shown in Fig. 7(a). The correspond-
ing time-dependent Rabi frequency is shown in Fig. 7(c).
The optimization has not finished after 2000 iterations taking
around 50 days with the convergence rate becoming extremely
small. It was run on a machine with a Ryzen 3700X CPU
and a Radeon VII GPU, with the most computationally ex-
pensive part, the sparse matrix-vector multiplications, being
performed on the GPU. A pure CPU calculation is about
4.5 times slower. Both implementations could be optimized
further to speed up the calculations, and there may be a more
efficient parametrization the the pulse shapes. Contrary to the
setups without the JQF, we cannot perform the evolution in a
closed system (with a Schrodinger equation) while optimizing
the control pulse shapes [43], with the master equation only
being used to evaluate the final pulses. The JQF has a short
life time of 1/y, = 1.6 ns by design, which is much smaller
than the gate time. Hence, a slower master equation evolution
is needed to accurately simulate the dynamics also during the
optimization.

The populations of the individual levels of the JQF are
shown in Figs. 6(b) and 7(b). In both cases, the JQF is
driven to the higher excitation levels by the strong control
fields, effectively decoupling it from the transmission line
and permitting control of the qubit. While the simpler pulses
just reach some steady state level of the JQF population, the
pulses found by optimal control induce fast oscillations, which
result in a higher gate fidelity Faverage = 0.9996 (F(|0Y(0]) =
0.9995). For the optimal control parametrization (31), we use
N, = 100, giving the highest Fourier frequency wy,/(27) =
1 GHz. Since it is possible to synthesize microwave pulses

—~ 13400 s
'3 fﬂ"}f*&"n\v .
3 ( WM .
~ [ . J$'ﬂ""“\_’,.|‘,r'-
ool — =1\ — =2
0 10 20 30 40 50
t [ns]

300 A —— Re[Q]/(27)
~ 200 == Im[Q]/(2n)
T 100 1 Apdkypat
=0 Tyuiliyyudyiy's M

~100 4 """5'-"""'-"-"1'."3 ot
0 10 20 30 40 50
t [ns]

FIG. 7. The result of the optimal control. (a) The error proba-
bility 1 — £(|0)(0|) where F(A) is given by Eq. (29), the resonator
population (a‘a), and the JQF population (b;bz) as functions of
time for the setup initialized in the state |0) and driven to the state
0,]10) = |1) by the time-dependent Rabi frequency shown in (c).
(b) Populations of the individual JQF levels (03 ;;). The achieved
fidelity is F(|0)(0]) = 0.9995 (Fiyerage = 0.9996). The number of the
Fourier components in the parametrization (31) is N, = 100 (for
each of Re[€2] and Im[€2]). This corresponds to the highest Fourier
frequency wy, /(2m) = 1 GHz.

with bandwidths of several GHz [34,35,49], the pulse shapes
in Fig. 7(c) are feasible.

Combination of the JQFs with the frequency multiplexing
where multiple qubits are controlled by the same transmission
line will likely require tuning of the control pulse shapes to
reach high gate fidelities, because several qubit transitions will
be within the bandwidth of the pulses shown in Figs. 6(c)
and 7(c). Ideally, this would be accomplished by repeating the
pulse shape optimizations using a Hilbert space that includes
the entire system of several transmons and resonators. If the
Hilbert space dimension 132 is used for each set of two trans-
mons and a resonator that stores an filters one qubit (like we
do for the simulations in this section), then the total Hilbert
space dimension is 132N with, e.g., Ny = 6 [1]. This makes
the storage requirements for the density matrix prohibitive.
It may be possible to side step this problem by using opti-
mal control with the stochastic wave functions [50] or tensor
networks [44]. Using the experimental setup directly is also
an option [51].
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VI. CONCLUSIONS

We have shown theoretically that it is possible to con-
struct a saturable Purcell filter using an artificial atom directly
attached to the transmission line. This filter suppresses the
Purcell decay when the control fields are absent and can be
effectively switched off by saturation when the control fields
are present. This allows both the control and measurement of
the qubit to be performed using a single transmission line
while maintaining long coherence time. Our results can be
used to decrease the number of the needed transmission lines
in the superconducting quantum processors and other setups
involving superconducting artificial atoms. Further reductions
in the number of the transmission lines could be achieved by
combining saturable Purcell filters with the frequency multi-
plexing.

ACKNOWLEDGMENTS

The authors acknowledge T. Shitara, S. Goto, and Y.
Sunada for fruitful discussions. This work was supported by
JST ERATO (Grant No. JPMJER1601), JST Moonshot R&D
(Grants No. JPMIMS2067-3 and No. JPMIMS2061-2-1-2),
and JSPS KAKENHI (Grant No. 22K03494).

APPENDIX A: DERIVATION OF THE MASTER EQUATION

In this Appendix, we derive the master equation (17), fol-
lowing Refs. [13,14,24,25]. The derivation is for N attached
subsystems, i.e., not limited to N =2 as in the main text.
In this case, the summation in Hamiltonian given by Eq. (4)
and the following ones is to N instead of 2; and Egs. (5),
(6), and (7) need to be redefined depending on the attached
subsystems. Then the Heisenberg equations of motion for the
field operators are

N

éw = —iwa — lng(w)(Om - O;rn)

m=1

(AD)
with the solutions

N
Co = o(0)e™ =i )" gu()
m=1

x / (Ot —1) = Ol (t =t e ™ di’.  (A2)
0

Here and below, the indication of the time-dependence of the
operators is omitted for brevity as long as it is of the simple
form: c¢,, means c,(t) in the above expressions. Note that
the term involving O] is present, because the rotating wave
approximation is not performed [24] in the Hamiltonian (4).
Once we calculate

N
Co — €l = o (0™ — ()™ —i Y gu(w)

m=1

t
x ( / Op(t — ) (e — " )dr’
0

t
— / Oj‘n(t _ t/)(e—iwt/ _ eiwl’)dt/> , (A3)
0

we see that terms arising from not performing the rotating
wave approximation appear as additional e™®* in the inner
parentheses. These will allow us to extend the integrations
over w to the entire real line.

The expression for ¢, — ¢ is needed in the Heisenberg
equation of motion for an arbitrary system operator Q,

. By
Q=£[HS,Q]+t;/O gn(@)

x ([0, Q(co — 1) = (co — ¢ )[Op, QDdw, (Ad)

written in the normal ordered form. When we insert Eq. (A3),
the normal ordering becomes important. The integrations over
w are carried out first. Using the expression for the coupling
gm(w) = G4/ cos(kyx,,), we have

o0
/ gm(@)gn(@)(e™" — e )dw
0
inGuGy (., Xm—Xn o, Xy — Xp
=——\6|t — +68(t +
2 Vg Vg

+8<t/_xm+xn)+8‘<t/+xm+xn>>’ (AS)
Vg Vg

where § is the derivative of the Dirac delta function that has
the property

t

fo 8t —t)ft —1dt' = f(t — 1), (A6)
aslong as 0 < t, < ¢, f is an arbitrary (operator-valued) func-
tion, and the integration limits are chosen as to be relevant to
the present derivation. The case with 7, = 0 is defined with
f()/2 on the right hand side of Eq. (A6). Since 7, =0 is
equivalent to x,,, x, = 0 in Eq. (AS), this case could also be
addressed by setting x,,,, x, = 0 in the integral on the left hand
side of Eq. (AS5). Thus,

YO, xmEx, o XmE X,
S|t —— ) +68t +
0 Ug Ug

x O,(t —t)dt'

~ m:|: n m:l: n
zon(t——'x x ')eH(z——'x X '), (A7)
v v

g g

where 6y is the Heaviside theta function.
The integral in Eq. (A5) can also be evaluated

with gn.(0) = G, (Vw/+/1+ Aw?)cos(kyx,,) for A >0,

resulting in

_ eiwl/)dw

GG, / * w cos(kyx,) cos(kyx,) (e
0 1 + ./4(,()2

() =)
Vg v

g
+/c(f _ ”") +IC<t/+ all “”)), (A8)

Vg Vg

with
inG,,G
K@) = ——22 VA,

() oy

sgn(t)e (A9)
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and sgn being the sign function, sgn() = 26y(¢) — 1. In this
case, the time integral corresponding to Eq. (A7) cannot be
evaluated explicitly. Since it is in a form of a convolution,
the Laplace transform could be used [26], but there is no
algorithm for the numerical inverse Laplace transform that
can work in all cases, necessitating selection among the dif-
ferent available algorithms [52-54]. For simplicity, we find
the Markovian master equation using a different integration
order (first # then w instead of first w then ¢) and using the
approximation (9) or (10) from the beginning, as detailed in
Appendix B.

For the rest of this Appendix, we continue with the cou-
pling g,,(®) = G,,a/@ cos(k,x,, ). Defining the noise operator

Now = /Oogm(w)cw(o)e*i“”dw, (A10)
0

and applying the rotating wave approximation, we can write

N
Q= —[H,Ql+i) ([0}, QIN, + N[Oy Q)

m=1

N
] GmGn . m — An
s WT[O;,Q](OHG_M)

m,n=1 Ug
|2 =+ X,
Vg

+On<t_
N inG,G o — Xl
m n OT t— m n
- Z 2 ( n( Vg )

m,n=1

col(i- =) oo

g

i
T h

(Al1)

where the Heaviside theta function factors resulting from
Eq. (A7) are implicit. We make one more approximation by
setting

On(t — )~ _izwn,j’jcn,jj’o-n,jj’(t - tx),

JJ'

(A12)

where w, j; = w, j — w, ;. This approximation can be
viewed as applying Eq. (All) and ignoring all the terms
besides %[HS, O, ] due to the fact that the absolute frequencies
wy, jr; are large compared to the couplings G,. Thus, this is
also a form of a rotating wave approximation.

In Appendix C, the equations of motion in the single-
excitation subspace are derived from Eq. (A11) without any
further approximations besides Eq. (A12). For the master
equation (17), Eq. (A11) needs to be approximated such that
it becomes local in time, i.e., does not contain operators at the
previous times ¢ — |x,, & x,,|/v,. We use either approximation
(9) or (10) together with the approximation (A12). Addition-
ally, we assume that the size of the ensemble is small, i.e.,
|% &£ X4]/vg is short compared to the time scales of interest,
and hence we set Oy (t — |x,, = x,,|/vg) = 1 for all 7.

Using the approximation (9), inserting G, =
v Um/Qrwy), identifying &, y; given by Eq. (18) and

Omn = ijj/ émn,j’jcn,jj’gn,jj” we get

. N
. l . T +
0= +[H,, 01+i ) (0, OIN,y + N, [On, Q)

m=1

1 N
+5 2 10}, Q10w = O}, [0, Q). (A3)

m,n=1

The above equation with the drive approximation (10) is ob-
tained by setting k,,_j; = k,, in Eq. (18).

Since the expectation values are the same in the Heisenberg
and Schrodinger pictures, we have

(Q) = trstre[Qp(0)] = trs[Q(0)ps],

where trg (trg) is the trace over the system (field) degrees of
freedom, and p; = tr¢[p]. Taking the time derivative, we get

trstre[ Qp(0)] = try[Q(0)s]- (AL5)

The procedure to obtain the master equation (17) starts with
inserting Eq. (A13) into the left-hand side of Eq. (Al5).
The resulting expression can then be rewritten in the form
trs[Q(0)B], where B is some system operator expression. Us-
ing the right-hand side of Eq. (A15), the master equation is
obtained as p; = B.

For any system operator A,

trstre[[A, Q1p(0)] = —tr[Q(0)[A(0), psl]. (Al6)

In trtre[[O],, QING(0)] and trstr[ N[O, Q1p(0)], we as-
sume that p(0) = ps(0) ® ps(0) with the state of the field
0£(0) = {aw}) ({ee}] being a multimode coherent state. This
state could be written as the displaced vacuum state |{«,,}) =
D({a,,})|vac), where the displacement operator is

(A14)

D({a,}) = exp (/00 (ach)(O) — a;‘)cw(O))dw) (A17)
0
We have
co(O) o)) = oy l{ay)).

To relate «,, to the photon flux 5, we define Fourier trans-
formed operators [55]

(A18)

¢ = \/%_n /O Oocw(O)e_i‘“’dw, (A19)

and then the photon flux is 7 = (c,T ¢;) = |oy|?, where

1 ® it
o = E /0 ape " “dw. (A20)
For the operators (A10), it holds that
Nonlferw}) = Que™ " [{aw}), (A21)
where we have defined the Rabi frequency

Qe 't = /Ooogm(w)awe_i“”da). (A22)

To go from Eq. (A22) to Eq. (12), a narrow-bandwidth approx-
imation is made, g, () ~ gn(wq), resulting in Qe " =
V27 gm(wa)a;. Since i1 = ||, we set o = /ne @ i for
some phase ¢, and then Eq. (12) is obtained. For the reflection
coefficient calculations (Sec. IV and Appendix D), we also
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need to consider the case of the infinitely narrow bandwidth
continuous wave input, where

coO{aw)) = V211 8(0 — wa)l{w}).

Using Eq. (A21), the terms trtre[[O], QIN,,0(0)] and
trstrf[./\/,;rl[@m, Qlp(0)] are simplified into the form where
Eq. (A16) can be applied. These terms give rise to the drive
Hamiltonian (11). Together with the other terms rewritten
either using either Eq. (A16) or in a similar way, we get the
master equation

(A23)

. i
p =

N
1 .
_ - ) _ O — O
o= —5Ha+ Hy, pd + 5 > (OunpsO}, — O, Onps)

m,n=1

N
1
T T
+ 5 E (Onpsonm - psOann)- (A24)

m,n=1

Transforming Eq. (A24) into the rotating frame with respect

to the Hamiltonian (13) by substituting p, = e~ "H0!/% p eiHot /1
results in the master equation (17) with
H = ™/ Hy 4+ H)e Hot/h _ . (A25)

Frequencies o, ; in Eq. (13) are chosen such that
+[Ho, Ol = —iwgO,,, and thus the factors e**' in Eq. (11)
are canceled. By inserting O, = C,, 0, jj, the equivalent
condition is

(A26)

Wo,m,j — Wo,m,j = @d

for every C,, j; # 0. It is possible to satisfy this condition,
since O,, is an annihilation operator, and hence C,, ;; # 0
only if j and j' correspond to the eigenstates with excita-
tion numbers N, ; and N, j = N,, ; + 1, respectively. Thus,
setting wo m, j = N, jwq satisfies Eq. (A26). With this choice,
Eq. (A25) becomes Eq. (14).

APPENDIX B: CUTOFF IN THE COUPLING

In this Appendix, we derive the master equation using
the coupling between the subsystems and the transmission
line gn(®) = G,(Jo/v1+ Aw?)cos(kyx,) with A >0
[20-23] instead of g,,(w) = G,+/@ cos(k,x,,) that was used
in all of the main text and the other appendices. Similar to
Appendix A, N attached subsystems are considered, instead of
setting N = 2 as in the main text. The discussion of the chal-
lenges associated with not using any approximations can be
found below Eq. (A8) in Appendix A. For simplicity, we use
the approximation (9) from the beginning (using the approx-
imation (10) is accomplished by replacing the frequencies).
Inserting O, = Y j.j Cm.jjom,jj into Eq. (A2), applying the
approximation (9), and setting wy, j; = Wy, j — Wy, j, gives

Co = Cp(0)e ™!

N t
—i) D gm(@) /0 (CnjOm,jye @7 mr

m=1 j,j'
* —i(w+w,, i)t ’
— G i iOm.jj€ YRSV (B1)

Following Ref. [25], the time integral could be approximated
by extending the upper limit to infinity and using the identity

(related to the Sokhotski-Plemelj theorem)

/ eTds = 8(e) £ iPV—, (B2)
€

0

where PV means the principal value. Hence,

N
Co=Co(0)e™™ =i Y gu(®)

m=1j,j’

1
X [ Chpiiomiil 8(w—wpy i) — iPV—mo
< Ji' O JJ( (0 — opjrj) =i a)_wm,j,j>

1
—C' omiil 8w+ wp i) — IPV—— | ).
530+ o =iV )

m,jj

When inserting the above into Eq. (A4), two different integrals
over the frequency need to be performed,

Re[‘i:mn,j’j] = 27[/ gm(w)gn(w)
0

X (8(w — wp,jrj) — 8(w + wy jj))dow, (Bda)

0 2w
Im[&,, 7] = —ZPV/ gm(w)gn(w)wz—zdw;
0 _

n,j'j

(B4b)

and then the same Eq. (A13) is obtained with O, =
> N Enn,j jCn,jjOn,jj> but &y, i; is given by the integrals
(B4) instead of Eq. (18). The integrands of both of the in-
tegrals (B4) are different if the rotating wave approximation
is performed already in the Hamiltonian (4), again illustrating
the importance of delaying this approximation until after these
integrals are evaluated [24].

To evaluate the integrals (B4), a particular form of
the coupling g,,(w) needs to be chosen. Using g,,(w) =

Gp(Vw/v1+ Aw?) cos(k,x,,), we get the real part

Wn,jj

14+ Aw?

n.j'j
—+ cos (k\wn,;”_;‘l(‘xm - -xn)))

Re[smn,j’j] = nGmGn (COS (kla),,.jrj\ (-xm — Xn ))

(B5)

For the imaginary part, we first switch to the integration over
k = w/vg, so that we need to evaluate the integral of the form

[} 2k2
I(x) =PV
© /0 (1+ Av2k?) (k2 — K2 ,))

cos(kx)dk, (B6)

where k, j; = kwn.j,j. Then

Im[émn,j’j] = _GmGnUg(I(xm — Xn) + 1 (X + X,,)). B7

The evaluation of the integral (B6) can be done by integrat-
ing in the complex plane and using the residue theorem. After
further variable changes, the integral is written

I(x) = |?1|PV/ J1(2)dz, (B8)
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Im(z)
Cr

—[kn,jr5| |kn,j57l Re(2)
FIG. 8. The complex contour (red) used for evaluation of the
integral (B8). The three relevant poles of the integrand (B9) at
—lkn,jrjx|, |ky, jjx|, and i|x|/(\/ng) are shown as dots. The half-
circle Cy, is parametrized by the radius R — oo. The half-circles C.
are parametrized by the radius r — 0. The direction of integration

along the sections is shown with arrows.

with the integrand

2
2()2_:) eiz'

(1 + A2 (G~ K2 )

The integral (B8) is then evaluated using the complex contour

shown in Fig. 8. The principal value is found by using half-

circles with a radius r around the poles of f; lying on the real

line and then letting » — 0. A large half-circle with the radius

R — oo encloses the pole on the positive imaginary axis.
Defining

fiz) =

(B9)

= lim -pv / fi(2)dz (B10)

R—00,r—0 |x]|

to be the integral along each section C of the contour, and
Res(f7(z), ¢) to be the residue of the function f; at z = ¢, we
see that the integral to do is

I(x) =I¢, + Ic, + Ic,, (B11)
while for the entire contour, it holds that
I, —Ic_ +1Ic, — Ic, +Ic, + I,
27 |x]
= —Res f1(2), i— ) (B12)
] ( Av,

where the signs are determined according to the directions
shown by the arrows in Fig. 8.

For large |z|, it holds that |f;(x)] < M/|z|*> with M =
2x* /(Avg). This is a sufficient condition to show that I¢, = 0.
Therefore, we have

B13
N (B13)

I(x )— x IR S(ﬁ(z) [—— >+1c++1C»

where

le, = ZERes(fi(2), &k 3.

i (B14)

For simple poles, like we have here, it holds that

Res(fi(z), ¢) = lim,_,.(z — ¢)fi(z). Hence,

- o= Xl/(VAvy) '
I(x) = T+ Aa? ( NP — Kn,jrj Sln(kn,j’j|x|)>»
n,j'j 4
(B15)
and
GG,
smn,j/j P —
1+ Aw? i
ie_lxm_xnl/(\/zvg) .
X <_— +wpy . pRnj 1 Xm =
VA
jo—Pm—xal/ (¥ Avg) .
— e ) (B16)
VA

Therefore, for g, (@) = G,(Vo/v1 + Aw?) cos(k,x,) with
A > 0 and following the same steps as in Appendix A after
Eq. (A13), we see that the factor &,,, ;; in the master equa-
tion (17) is given by Eq. (B16) instead of Eq. (18). For A —
0F and G,, = /T,,/Q2rw,,), Eq. (B16) becomes Eq. (18), as
expected.

APPENDIX C: DELAY DIFFERENTIAL
EQUATIONS FOR THE DECAY

In this Appendix, we derive the model for the decay with-
out the approximations (9) or (10), following the approach of
Ref. [13]. In the single-excitation subspace, only 3 subsystem
states are relevant: a single excitation in either of the trans-
mons or the resonator. Using the diagonal basis, the subsystem
1 consisting of the transmon and the resonator is represented
by the two eigenstates (21) with the eigenfrequencies (22).
For the subsystem 2 (JQF), there is only one eigenstate |1,) to
consider. In the single-excitation subspace, we therefore have

(Cla)
(C1b)

O1 =a =Ci 101,01 + C1,0201,02,

Oy = by =G 010201,
where C1!01=<01 |a|11)= sin(@),
and Gy o1 = (02|b2]12) =1

Equations of motion for the operators o,,; are obtained
from Eq. (A11) under the approximation (A12). We consider
the single-excitation state

C1,00=(01]al2;) = cos(9),

W) =) e j(t)om, jo(0)|vac)

m, j
+ / h fu(®)c! (0)dw|vac), (C2)
0

where |vac) = |0;)|0;,)|vac.), and |vac,.) is the vacuum state
for the transmission line. The equations of motion for the
amplitudes «,, ; are found as

U, j(1) = (vac|om,o; ()] (0)). (€3)
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Defining the inputs fin () =[5 gn(®)f(0)e ™ dw, slowly-varying quantities a, ;(t) = &, j(t)e" 10 and fipn(t) =
Finm(t)e™™ 110" "and setting x; = O for simplicity, gives the delay differential equations

1,10 -

1,20

o . z 2 K K -
a1,1(t) = —iCy o1 fin,1 (1) — |Ci 011 5 ar1(t) — CT,mCl,OZE a1 2(t) (Cda)
T T
VEYV2 w210 -
— C} 1 Cr.01 Y= ——=— 0@, 1 (1 — x2/v,), (C4b)
’ ' 2 Jorw ’
rt,2
- . - . z 2 K 1,20 K w110 .
a12(t) = —i(w1,20 — w1,10)01,2(t) — iC g fin,1 (1) — [C1.02]" = a12(t) — Ci Cr01 = a1 ()
’ 2 w ’ 2
KY2 w210 i ~
— Cf nCr,01 ~—— ————=€"“110", | (t — x2/Vg)
0202, : ),
2 Jorw
< . - . 4 2Y2 0210 . ik, -
0,1(t) = —i(wa,10 — @1,10)82,1(t) — iC5 o fin2(t) — [Ca01] 1w (@2, () + ™10 a0 1 (1 — 2x2/vg))
2
VEV2 w1100 ;% - VEYV2 w210 i b~
G5 01C1.01 ~—— ———=€""110"a; 1 (t — x2/vg) — C5 4;C1.02 "m0 @y 5 (t — x2/vg), (Cée)

where the appropriate Heaviside theta function factors on the
delayed terms are implicit.

We set the initial conditions @& 1(0) =1, & 2(0) =
@1(0)=0, f,(0) =0, and use the Euler method for the
numerical solution. The Runge-Kutta method applied to the
delay differential equations requires accurate interpolations
between the time steps [56]. For the Euler method, if the
delays x;/v, are an integer multiple of the step size, no
such interpolation is required. The drawback is a significantly
larger number of time steps N; required to reach conver-
gence. We use N, = 4x10'? in Fig. 9(b). Compared to the

(a) Master equation

9.511 x 10~°
&, R
I 9.510 x 107° 1 = no JQF
— —-= JQF
= no JQF (analytical)
* JQF (analytical)
9.509 x 1075 4+ T T T
0 200 400 600 800
(b) Delay differential equation
9.565 x 10~°
3
| 9.564 x 107> {
— - ——————————————
|
| —-— JQF
9.563 x 1075 4 T T T
0 200 400 600 800
t [ns]

FIG. 9. (a) The zoomed-in version of Fig. 3, using the master
equation (17) for the numerical results. Rapid oscillations of the
dashed-green curve make it appear thick for smaller times. The
horizontal-dotted-black line showing Eq. (25) is below the lower
limit of the vertical axis by about 2x 10~ and hence cannot be seen.
(b) The setup with a JQF corresponding to the dashed green curve of
(a), but calculated using the delay differential equations (C4). In (b),
F = la, @)%

2 Jow,

(

master equation curves in Fig. 9(a), the “steady-state” value
in Fig. 9(b) is shifted by about 5x 1077,

APPENDIX D: DERIVATION OF THE REFLECTION
COEFFICIENT

In this Appendix, we derive the input-output relations cor-
responding to the master equation (17). As in Appendix A,
the general setup with N attached subsystems is considered,
generalizing from the case N = 2 in the main text. The voltage
operator in the transmission line is

V(x) = —i‘/% /oo Jo(c, — clycostk,x)dw, (D)
0

where Z; is the impedance of the transmission line. With
the charge number operators n, x —i(QO,, — (’);fn) for the
subsystems attached to the transmission line, the above ex-
pression for V(x) determines the interaction Hamiltonian
H; x fo:l V (X )1y, resulting in Eq. (4). This can be shown
by performing the circuit quantization of the setup (ignoring
the A2 term).

The voltage operator is split into the right-moving (V. ) and
left-moving (V_) parts, V (x) = V4 (x) + V_(x), where

[hZy [ . .
Vi(x) = —i 4—0 / Vo(c,et® ™ — ¢l eFhovyde,  (D2)
T Jo

We have

+ik,x iky,x
we ®

i
c —coe

N
— Cw(o)efi(ut:l:ikmx _ Cl‘)(o)eiwt$ikwx _ lzgm(w)
m=1
! s Lo
x </ Ot — t/)(e—lwt +ikyx _ oot :Flk“’x)dt/
0

t
_ / Of,,(r_z’><e—iw”ﬂkwx—el‘wt’*‘*w")dt/) 3
0

The same comment about Eq. (A3) applies to Eq. (D3)—that
additional terms are present due to not making the rotating
wave approximation in the Hamiltonian (4).
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Only after calculating c,e*** — ¢! e¥iko* the resulting ex-
pression can be split into two parts involving either creation

or annihilation operators. That is, we write Vi (x) = Vi (x) +
Vl (x), where
Vi(x) = Vi o(x)
hZ,
_y OZ/ O, <r—r>/ (@)
m=1
x (efia)l +ikyx _ eiwt’$ik,,)x )d(,l)dl/, (D4)

and

[hZy [ .
Vio(x) = —i 4—0 / Ve, (0)e @k ge,  (D5)
T Jo

The integral over w in Eq. (D4) is similar to the integral in
Eq. (AS), and we get

00
f \/agm (w)(e*lwt'ilkmx _ etwt Fiky,x )da)
0

- inGm<3(t’:F x_x’”> +8(z’¢ x+x'”>>. (D6)
Ug Ug

While up to now the calculation for the right-moving and
left-moving parts was symmetric, the asymmetry arises after
the integration over ¢'. Using Eq. (A6),

hZy &
0 .
Vi) = Vo) =/ — n;(m)Gm
< (o(t - X‘Xm)eH(t o
Ug Ug
+(")m(t - x+x’”>9H(z - x+x’">>, (D7a)
Ug Ug
hZo o
V_(x) = V_o(x) —/ . ;<m)6m
x Om(t _ _x>9H<t _m
Ug Ug

The right-moving part V; has two types of contributions:
those that are emitted directly to the right and those that are
emitted to the left and then reflected from the boundary at
x = 0. The left-moving part V_ only has contributions from
the emission directly to the left.

Under the approximations (A12) and (10),

hZ,
Vi) = Vi) =/ OZZMW nCon,j

m=1 j,j'

= )QH(x — Xm)

>9H(xm —X).

(D7b)

X O (O (x — xm)etkmd(x—xm) + etk (X+xm)),

(D8a)

[1Zy &
o) — Ezznwm,j’ijCm,jj/

m=1j,j'

V_(x)=V_

ikopg (Xim=2)

(D8b)

X Gm,jj’GH(xm — x)e

The reflection coefficient is defined to be

tr[V; (0)pl
= ——0 D9
tr[V_(x3)pl B9

where x3y =xy +¢€ with € >0 such that € — 0 at the

end of the calculation. We assume that the positions x,,
are ordered such that they increase with increasing m, and
hence x}; is the position just to the right of the last sub-
system attached to the transmission line. Hence, V_ (xN) =
V_,o(x ). Using Eq. (A23), noting that due to Eq. (A26), we
have tr[o,, ;p] = trglo,, ; jrf)s]e‘i“’d’ , and removing the over-

all propagation phase ¢?koa™ | the reflection coefficient

r_l—zzz onns [T,

X tr5[0,  j Ps] €08 (Kepy X Y&~ (D10)

is obtained. Writing the photon flux 7 in terms of the reference
Rabi frequency 2; using Eq. (12) with x; = 0, results in the
expression (26) of the main text.

APPENDIX E: CALCULATION OF THE GRADIENT

In this Appendix, we give details about the calculation of
the gradient for the optimal control approach used in Sec. V of
the main text. The master equation (17) is rewritten such that
the elements of the density matrix ps are arranged as a vector
Ds, resulting in pg = L(t)ps. In the same way, the matrices
Mz = UAU" and ps(t) = M(A) in Eq. (29) are also written
as vectors M, » and ps(1), and hence we can write Eq. (29) as
the inner product

F = Mps(0), (ED)

where we have used the fact that My is a Hermitian matrix.
The latter follows from A either being a density matrix or one
of the Pauli matrices, and U being unitary.

We solve the master equation with the fourth-order
Runge-Kutta method and use the reverse mode automatic
differentiation to calculate the gradient of Eq. (E1) with re-
spect to the Fourier amplitudes a, and b, in the pulse shape
parametrization (31). The gradient of the average fidelity
(28) is then obtained by adding the contributions for all the
initial matrices. Compared to the general case of the nonlin-
ear differential equations solved by the Runge-Kutta method
[57,58], the linearity of the master equation allows for an ap-
proach that is superficially similar to the other optimal control
approaches where forward propagation of the equations of
motion is alternated with backward propagation of the adjoint
equations [59,60]. In contrast to Refs. [59,60], however, the
derivation of the adjoint equation is more involved than simply
taking the adjoint of L(z).

Defining At = t/N;, t, = (At)n,
L(tn)At’ L2,n = L(tn + (At)/Z)AI,

Z’n = ﬁs(tn), Ll.n =
Ly, = L(tys1)At, the
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fourth-order Runge-Kutta method can be written

kin = Li P, (E2a)
kon = Lo(Bn + k1./2), (E2b)
ks = Lo(Bn + k2./2), (E2¢)
kan = L3.n(Bn + K3.0), (E2d)

Bt = B+ Kki.a/6 + kon/3 + K3, /3 + Ky, /6. (E2e)

The reverse mode automatic differentiation applied to this al-
gorithm requires storing or recomputing (during the backward
propagation) the vectors gy, IQLH, qun, 1;3,,1, and 124,,1 for all n.
The vectors g, can be recomputed after the forward propaga-
tion by applying the Runge-Kutta method backward in time,
starting from py,. In our numerical simulations, we store as
many of the vectors g, as could be fit into memory, uniformly
spaced over all the time indices n. The vectors p, between
the stored ones are recomputed by applying the Runge-Kutta
method backward in time. We find that this decreases the
numerical error due to inexact recomputation of the vectors

The vectors k1, k2.4, k3.0, and k4, are always recomputed
but in an indirect way. We rewrite Eqs. (E2) into the form

Pnt1 = KuPns (E3)
where
Ky =1+ gLiy+ 5(Loy + 5LonLin) + 5(Loy
+ tLouloy + 3Lanlonli ) + £ (Lay + La Lo
+ $Lsulonlon + L3 nlonlonli ), (E4)

and apply the reverse mode automatic differentiation on this
form.
The gradient of Eq. (E1) at the final time t = # is

oF . 0p oF . 0pD
27 _ tﬂ, 2 T_ﬂ, (E5)
da, Fda, ab,, £ b,
where
b, 0K,_1 . 0Pn—
B e 4+ Ky L, (E6a)
da, da, da,
0, 0K, 0Pn—1
- Bt + K, . E6b
ab, ~ ab, T TRy (E6b)

By substituting these equations into themselves for all #» and
defining the initial value ¥ ;{,l = M; and the adjoint equation

X = XK, (E7)

we end up with

oF 0K,

o >t n— _.n . ESa
o Z [ (E8a)
oF oK,

- >t n—1 5 ESb
5, Z Buet. (E8b)

where the sums are can be efficiently evaluated by starting
with n = N, and propagating x,, backward using Eq. (E7).
We give more details below, but first we summarize the entire
procedure:

(1) Propagate forward using Eqgs. (E2), saving as many of
the intermediate values p,, as can be fit 1nt0 memory.

(2) Initialize n = N;, and use XN = MF

(3) If p,—; is not stored in memory, calculate it by prop-
agating Eqgs. (E2) backward in time, otherwise use the stored
Pn—1-

(4) Evaluate the scalars given by Egs. (E12).

(5) Add the contributions from this n to the gradient using
Eqgs. (E13) for all aj, and b,,.

(6) Calculate x,—; using Eq. (E15).

(7) If n > 0, go to step 3 replacing n with n — 1. Other-
wise, stop.

The above procedure needs a constant number of the com-
putationally expensive matrix-vector multiplications for every
time index n, independent of the number of the parameters a,
and b,,.

To derive the expressions for the above procedure, we first
note that

(A1 )w’) ORI I, (E9a)
a,, 8a,,
OL() _ dIm(Q
(A0, = =5~ )T, (E9b)

where, assuming that the density matrix is written as a vector
in the row-major form [i.e., (D)1 r = (Bs)ing+1» No 1s the
Hilbert space basis size, and 0 < I, 1" < N, — 1],

i . -
Te = =2 (AN (Hore ® 1~ 1@ Afg).  (E103)

i ~ ~
Iim = _ﬁ(At)(Hd,Im RI-IQ® Hd]:Im)’ (E10b)

and Hd,Re, Hd,[m are given by Eqs. (16). We define the follow-
ing temporary vectors

lon = TjePus 1o = Li P, (Ella)
by =Louhn, DLy = Treli . (E11b)
Lin = Tjebons s = Laylo s, (Ellc)
low = Lowlin, b= Lonlsn, (E11d)
lsn = Lolsn,  lon = Trelon: (Elle)
Mo n = TimPns M1 = Li,nfPp, (E11f)
My = LouPp, M3, = Ty, (Ellg)
My = TimMa ., sy = Lo i 5, (E11h)
Men = Lo yiy pn, M7, = Ly itz p, (E11i)
g, = Lo uifts n, 19y = TimiTie n; (E11j)
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and scalars

Sinre = X (2lon1 + 2lsm1 + st + mLan—1ls.n-1), (E12a)
Sonre = X Glont + 2Bt + Loy + s et + Slost + Sl

+ 3L (o1 + §l4,n—1 + §ls,n—1 + 119,11—1 + 117,11—1)), (E12b)
S3.n.Re = )?;(%ﬁo,nq + %74,;14 + L TreLoni1 (Bt + %76,%1)), (E12c¢)
Stnim = X (2001 + Liitsu_1 + g1 + 25L3n—1/Mg.0-1), (E12d)
Sanim = X (301 + Lz um1 + gt + §ils a1 + 150 0-1 + 1577.0-1

+ 2 L3 o1 (io.n—1 + 34 n—1 + 305 a1 + §7T0 ut + 17.0-1)), (E12e)
Sstm = X (0.1 + 2401 + 15 TreLon—1 (21 + 3ii6.0-1)). (E121)

(

The above definitions allow us to write

The backward propagation in Eq. (E7) can also be written

L+ 0K, dRe[2] explicitly. Define
; 1Ion—l = (tn—l)Sl,n,Re P Y
da, ap . .
aR (2] l_il,n = L2,n_|)_€n» /7«2,n = Lgl;,n_])_('n’ (El4a)
9a (tn 1+ (At)/Z)SZ n,Re
P - - - -
MU3n = L;nfl,ufl,nv M4 n = L;’,,,llu«lnv (E14b)
dRe[2
+ %(%)Slnﬂe’ (E13a)
! fisn =L}, fan (El4c)
0K,_1 dIm[€2]
vl > —
"o, n—1 = o, (tn=1)81,n.1m Then
1o | 1= 1 = | =
+ BI;II[ ](tn 1+ (A1)/2)S2.01m Xn—1 = Xn +L1 n— 1(5)( + gl + M3+ ﬁMS,n)
p
2= 1= 1= 1= l
oIm[Q2 + FM1n + cM2.n + cM3n + M4 n + = (EIS)
+ )55, (E13b) it el gl i i
14
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