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Dimensional crossover of quantum critical dynamics in many-body phase transitions
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The dimensional crossover induces varieties of quantum phenomena. In this paper, we demonstrate the
quantum critical dynamics under dimensional crossover involving many-body phase transitions by continuously
suppressing correlations and tunnelings along one direction of bulk materials, which provides a smooth connec-
tion from higher dimensions to lower ones based on the intrinsic correlations rather than geometry tailoring.
By measuring the nonadiabatic excitations, the critical scaling laws in both three and two dimensions are
observed and are consistent with predictions. In addition, we find scaling behaviors for intermediate regimes
with noninteger dimensions. This study provides insights to extend the descriptions of critical exponents into
more general or complex scenarios.
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I. INTRODUCTION

One of the most important properties of a physical system
is its dimension, and we observe a variety of novel phenomena
in different dimensions [1–5]. While thinning a bulk material
to a two-dimensional one, the reduced dimension also induces
more exotic properties, such as the transition from Fermi
liquid to Kondo physics [6], the enhanced thermal conduc-
tivity [7], and the swinging between abnormal Hall effects
and topological Hall effects [8]. In addition, the dimension
is also a critical exponent d describing quantum criticality
[9–11], such as Josephson’s identity [12,13], although most
quantum critical phenomena can be described by universal
scaling laws based on Landau symmetry breaking [11,14–23].
By changing the magnetic field or temperature, the critical
scaling exponents can be changed from one set to another with
different magnitudes and corresponding symmetries [24–28].
Therefore, it is intuitive and important to study what will
happen when the dimension of a system changes, particularly
when involved with quantum phase transitions, and what will
change in the critical scaling laws, especially the critical ex-
ponents when the dimension cannot be integer-defined.

In previous research, the geometry of materials was
changed to reduce the dimension [6–8,29–31] by thinning
the layers of materials or cutting wires into points. However,
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these approaches are mainly used on condensed-matter ma-
terials, and only steady properties such as transportation or
magnetization are measured. In addition, it is not convenient
to measure the dynamical or transient responses in the di-
mensional crossover region. It is also not clear how different
dimensions are smoothly connected since the layers or unit
cells must be integers with open boundaries.

On the other hand, we believe that the dimension of a sys-
tem can also be decided by the correlations [17,32–37]. If we
can strongly suppress the correlations or the dynamics along
one direction of a three-dimensional system, the correspond-
ing properties should be described by two-dimensional (2D)
physics instead of three-dimensional (3D) physics. The 3D
system will then be reduced into a series of independent layers
of 2D systems. This provides a way to tune the dimension of a
bulk material based on changing the correlations to smoothly
connect a higher dimension to a lower one without influencing
the integers of dimension and the boundary problems.

II. STEADY-STATE CALIBRATIONS

Here we utilize the unique tunability of ultracold-atom
platforms to demonstrate a continuous dimensional crossover
from a three-dimensional system to a two-dimensional one
under many-body phase transitions, and we measure the
dynamical response and the topological excitations during
such nonadiabatic phase transitions. We observe a smooth
crossover of critical scaling behaviors from 3D to 2D; al-
though both scalings in 3D and 2D are consistent with
previous predictions [9–11], the scaling in the crossover
regime cannot be simply defined by the previous critical ex-
ponents. Upon further consideration of the bonding of all
critical exponents, it indicates that the dimensional crossover
continuously alters all other critical-scaling behaviors.
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We prepare the Bose-Einstein condensates with
1.5(2)×105 rubidium-87 atoms in |F = 1, mF = −1〉 with a
radius around 10 µm and load them into three-dimensional
optical lattices. Each lattice beam is formed by reflecting
the incident beam at the wavelength λ = 1064 nm with a
beam waist of 150 µm at the atom position. We apply a
magnetic field along the z-direction as the quantization axis,
which is also the imaging direction. During the experiments,
we keep the trap depths Vxy of the x-direction lattice and
the y-direction lattice the same, but we may use a different
trap depth Vz for the z-direction lattice. This provides an
anisotropic Bose-Hubbard model,

H = −
∑
m,n,q

b̂†
m,n,q[txy(b̂m−1,n,q + b̂m,n−1,q )

+ tzb̂m,n,q−1] + H.c.

+ 1

2

∑
m,n,q

U n̂†
m,n,q(n̂†

m,n,q − 1), (1)

where the subscripts m, n, and q label out the indices of the
lattice sites along the x-, y-, and z-directions, and n̂†

m,n,q =
b̂†

m,n,qb̂m,n,q is the particle number operator. The coefficient txy

corresponds to the tunneling amplitude in the x-y plane, and tz
corresponds to the tunneling amplitude along the z-direction.

Our measurement is based on the improved band-mapping
method, which was demonstrated recently [22,23]. This im-
provement allows us to better distinguish the coherent part and
the incoherent part in the optical lattices, with the coherent
part corresponding to a sharp peak and the incoherent part
exactly corresponding to a plateau in the first Brillouin zone.
Based on this information, we extract out γinc, the fraction
of the incoherent part in the atoms. This describes the phase
coherence and correlations during the many-body phase tran-
sitions.

To show the influences of dimensions on the many-body
critical dynamics, we first calibrate our systems with steady
states. We ramp up the lattice depth adiabatically from 0 to
the final values in 80 ms, in which the final values Vxy and Vz

have different magnitudes. After reaching the final values, we
hold the atoms at this stage for 20 ms, and then we apply the
band-mapping [inset of Fig. 1(b)] to extract out the incoherent
fraction γinc. In Fig. 1(a), we show the steady-state data of
γinc versus Vxy and Vz. We see an overall trend in this plot
that either increasing Vxy or Vz increases γinc. This suggests
that the coherence between different sites is decreasing for
larger trap depths in either of the directions. It is consistent
with the intuition that the tunneling amplitudes, suppressed
by large trap depths, push the systems into the Mott-insulator
regime with less coherence. To more quantitatively analyze
the observations, we compare the data by choosing a particular
Vxy [Fig. 1(b)], such as Vxy = 17Er . When Vz equals 17Er , the
same as Vxy, the system is described by a three-dimensional
Bose-Hubbard model. When Vz is increasing, tz decreases
stretched-exponentially. The tunneling amplitude tz along the
z-direction becomes 10 times smaller at Vz = 30Er , and in
this scenario the system should be described by several inde-
pendent layers of two-dimensional optical lattices. Therefore,
it realizes a continuous crossover from a three-dimensional
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FIG. 1. The incoherent fraction for anisotropic optical lattices.
(a) The incoherent fraction γinc vs the trap depth Vxy and Vz. The color
bar from dark to light corresponds to the incoherent fraction from
large to small. When γinc equals 1, the quasimomentum distribution
is exactly a flat plateau. The dashed line is a label for the data shown
in panel (b). (b) γinc vs Vz at Vxy = 17Er (blue circles with error bars
of one standard deviation). The solid line is a fitting guideline. The
square and the diamond correspond to the data with Vz = 17Er and
30Er , respectively, with their quasimomentum distribution in panels
(c) and (e). The inset shows the ramping curves of Vxy and Vz. (c) The
2D quasimomentum distribution with Vxy = Vz = 17Er . The color
bar corresponds to the relative atomic density obtained from the
absorption image along z. (d) The quasimomentum distribution along
the y-direction by integrating the x-direction with Vxy = Vz = 17Er .
The plateau labeled by a gray shadow corresponds to the incoherent
component, and the peak corresponds to the coherent component.
The dashed line labels the first Brillouin zone. (e) The quasimomen-
tum distribution with Vxy = 17Er and Vz = 30Er .

Bose-Hubbard model to a two-dimensional one in a bulk
material.

III. DYNAMICAL RESPONSE

To investigate the dynamics versus the system dimen-
sions, we change the experimental procedure [bottom panel
of Fig. 2(b)]. First we adiabatically load atoms into the lat-
tices in 80 ms with Vxy = Vi = 5Er and a tunable Vz for
different measurements, and then we hold the atoms for
20 ms. This stage prepares a superfluid sample with a tunable
dimension depending on Vz. Then we ramp up Vxy linearly
with a ramping speed k while Vz is kept unchanged. Once
the trap depth reaches the final value, the band-mapping is
applied to extract γinc. Compared with the measurement of
steady states, the incoherent part fraction γinc is smaller than
the value obtained in Fig. 1(a) due to the nonadiabatic dy-
namics, since some of the atoms cannot follow the external
ramping immediately, which introduces excitations or topo-
logical defects in the systems. Then we use this difference
nex = γinc(adiabatic) − γinc(k) to characterize the excitation
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FIG. 2. The excitation vs the ramping. (a) Excitation fraction nex

vs ramping speed, where nex characterizes the topological defects
or excitation due to the nonadiabatic ramping. The detailed ramping
protocol is shown in panel (b), where the black, blue, and yellow
circles correspond to the data of the two-dimensional ramping with
different fixed Vz = 17Er , 19Er , and 25Er . The red triangles cor-
respond to the data of the three-dimensional ramping. The solid
lines are the fit of scaling laws nex ∝ kα . The dashed lines are the
extensions of fitting outside of the data range. Based on the fit,
α equals 0.94(10), 0.74(4), and 0.63(9) for the 2D ramping with
Vz = 17, 19, and 25Er , and α equals 0.93(11) for the 3D ramping.
The error bars correspond to one standard deviation, and the shaded
area corresponds to the 95% confidence interval of the fitting. (b) The
ramping protocol of Vxy and Vz for the two-dimensional and three-
dimensional schemes, where the horizontal axis is not plotted in
scale. In both protocols, two gray lines correspond to the initial value
Vi and the final value Vf of ramping. (c) The quasimomentum distri-
bution. Left 1: the adiabatic states at Vxy = 5Er , Vz = 19Er ; Left 2:
the adiabatic states at Vxy = 17Er , Vz = 19Er ; Left 3: the dynamical
states at k = 1.6Er/ms, Vxy = Vf = 17Er , Vz = 19Er ; and Left 4: the
dynamical states at k = 3.1Er/ms, Vxy = Vf = 17Er , Vz = 19Er .

defects due to the nonadiabatic ramping. Intuitively, nex is
proportional to the number of atoms that deviate from the
steady states, and in the Appendix A we numerically prove
the existence of this proportional relation in a superfluid and
the shallow-Mott-insulator regimes.

This two-dimensional ramping characterizes the dynamics
of phase transitions under different dimensions depending on
Vz. When Vz equals 17Er , it is comparable to Vxy and the
dynamics are still in the 3D regime. In Fig. 2(a), we show the
data nex versus k for Vz = 17Er . We fit them with a scaling
law and obtain nex ∼ k0.94(10). To compare with a real 3D
case [upper panel of Fig. 2(b)], we measure the case of three-
dimensional ramping and obtain a scaling as nex ∼ k0.93(11),
which is consistent with the two-dimensional ramping data at
Vz = 17Er . Then we measure the two-dimensional ramping
at Vz = 19Er and 25Er [Fig. 2(a)]. We find that all the data
fall into the scaling relations nex ∼ kα but with different α,
where α equals 0.74(4) and 0.63(9) for Vz = 19Er and 25Er ,
respectively. The tunneling amplitude tz is 1.5 and 4.3 times
smaller than the value at 17Er , respectively (inset of Fig. 4).

According to the theories of critical dynamics, the excitation
defects have a scaling relation with k as [9–11,38,39],

nex ∝ k
dν

1+νz , (2)

where for the mean-field treatment of the Bose-Hubbard
model, we have the correlation exponent ν = 1/2 and the
dynamical exponent z = 1 for shallow Mott insulators with
the particle-hole symmetry [10,11], and d is the system
dimension. Therefore, nex is proportional to k1 for the three-
dimensional case and k2/3 for the two-dimensional one. For
our experiment, it is consistent that we observe α = 0.94(10)
for Vz = 17Er (3D) and 0.63(9) for Vz = 25Er (2D).

To further understand how the two-dimensional and three-
dimensional cases are connected, we follow the same protocol
to measure nex versus the ramping speed k for different Vz.
In Fig. 3, we choose different Vz for our measurement. For
each of them, we ramp Vxy from Vi = 5Er to Vf = 17Er with
a fixed Vz ranging from 17Er to 30Er . In Fig. 3(b) we list
out the data, which all fall into the fitting of nex ∼ kα . Based
on these, we obtain different α versus Vz. We find that α

decreases from 1 to 2/3 when Vz increases, and once Vz is
larger than 21Er , α approaches a steady value. There appears
to be a smooth connection from 1 to 2/3 without any sudden
jumps, but the exponent cannot be simply defined by integer
dimensions according to Eq. (2). All the critical exponents are
bounded by four identities (i.e., Rushbrooke, Widom, Fisher,
and Josephson). Any changes in dν will result in changes in
other critical exponents. This suggests that the intermediate
regime may have different critical scalings compared with the
integer-dimensional systems, which we will leave for further
experiments to explore.

IV. ESTIMATION OF CORRELATION LENGTHS

To give a more quantitative understanding from the theoret-
ical side, we apply the Gutzwiller mean-field theory (GMFT)
[40–42] to describe the ramping dynamics. Actually, the band
mappings are performed in the shallow Mott-insulator regime,
and the GMFT can still capture part of the actual physics. For
each particular value of Vz, we ramp the trap depth Vxy along
the x- and y-directions with a ramping speed k following the
same protocol in experiments. Then, we calculate the inco-
herent part γinc and compare it with the value of the steady
state to extract nex. The numerical results of nex versus the
ramping speed k are shown as red squares in Fig. 3(b). Based
on these, we extract the critical exponent α for different Vz.
At Vz = 15Er , α equals 0.95(5), which is the typical exponent
predicted by critical dynamics theory in 3D systems [10,11],
and α reaching 0.68(2) at Vz = 28Er describes the quasi-2D
dynamics when d = 2 in Eq. (2). As Vz grows, the exponent
goes down in a smooth trend in the same way as the experi-
mental results, which shows similar behaviors of dimensional
crossover in our systems [purple triangles in Fig. 3(a)].

We also want to understand why the third direction is
suppressed in an anisotropic model. To better quantitatively
characterize the spatial tunneling and correlations along this
direction, we perform a quantum Monte Carlo method to
calculate the Green function of the steady states,

G(i, j, τ1, τ2) = Tτ 〈b†
i (τ1)b j (τ2)〉. (3)
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FIG. 3. The critical exponent α vs the third dimension suppres-
sion. (a) The critical exponent α vs the trap depth Vz of the third
dimension. The hollow circles correspond to the experimentally ob-
tained α by fitting nex ∝ kα for different Vz. The blue dashed line
is a guideline of data. The purple triangles correspond to the critical
exponent α under the 2D ramping calculated by the Gutzwiller mean-
field theory. The yellow hollow square corresponds to the measured α

for the 3D ramping. The theoretically predicted α for the 3D system
is 1, while for the 2D systems it is 2/3, both marked by red dashed
lines. (b) nex vs the ramping speed k for different Vz and 3D ramping
procedures. The blue circles correspond to the measured data, and
the red squares correspond to the calculation from the Gutzwiller
mean-field theory. The solid lines are the fitting results. All the error
bars correspond to the same standard deviation. The light-shaded
areas correspond to a 95% fitting confidence interval.

To balance the consistency between the experimental pa-
rameters and the computational complexity, we simulate a
65×65×65 anisotropic lattice with 3.3(1)×103 atoms by the
worm algorithm [43,44]. The trap has the same geometry but
the atom number is smaller. Since we are interested in the su-
perfluid and the shallow-Mott-insulator regimes, fewer atoms
can still capture the forming of n = 1 Mott insulators. Once
the correlation length is much smaller than the size of the
Mott insulators, it will not be affected by the finite-size effect.
We calculate the effective normalized spatial correlation func-
tion along the z-axis as G(z, τ = 0) = ∑

t,i G(i, i + z, t, t ) at
Vxy = 15Er and we plot it in Fig. 4. The long-range trans-
portation between sites decays with distance, hence G(z, 0)
obeys a stretched-exponentially decay with z [45], that is,
G(z, 0) = G0 exp(−b×xc). We extract out a distance ξ as
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FIG. 4. Correlation functions along the z-direction. The main
panel shows the Green functions vs distance z at Vxy = 15Er . The
colored dots are numerical results by QMC simulations for different
Vz ranging from 13Er to 27Er . The solid lines are obtained by fitting
each set of dots with G(z, 0) = G0 exp(−b×zc ). The black solid line
in the inset shows the correlation length ξ vs Vz. The correlation
length ξ/a decreases smoothly from 2.4(4) to much less than 1.
The error bars mainly come from fitting errors. The red dashed line
indicates a downtrend of relative tunneling amplitude tz/txy as Vz

increases.

the correlation length when G(z, 0) decays to 1/e. When Vz

increases from 13Er to 27Er , ξ decreases from 2.4(4)a to
0.20(1)a, where a is the lattice constant. This trend is consis-
tent with the tunneling amplitude ratio tz/txy, which decreases
stretched-exponentially with Vz by more than tenfold. Dur-
ing the change of Vz, the interaction energy U only changes
around 40% (see U ∼ Vz in the Appendix C) comparing with
the exponential decay of tz. At the region with more than
one lattice constant, the correlation length provides a 3D con-
figuration since the neighboring layered lattice is correlated,
while at the ξ/a < 0.5 region or tz/txy < 0.2, the correla-
tions between nearby layers are suppressed, which induces
the quasi-two-dimensional dynamics. However, the correla-
tion length is a more fundamental reason for the dimensional
crossover. If such a many-body system is interaction-free, it
will be described by single-body physics and the correlation
length will penetrate into all directions even for a very small
ratio tz/txy, where the existence of interaction suppresses the
correlation length along the z-direction. Therefore, our sim-
ulation shows that dimensional crossover happens when the
correlation length is exactly at one lattice constant in bulk
materials, and only the monolayer of atoms may describe the
real two-dimensional physics. More details of calculations can
be found in the Appendix C.

V. CONCLUSION

In conclusion, we measure a continuous dimensional
crossover from 3D to 2D in bulk materials by avoiding the
influences of open boundaries. We observe the critical dynam-
ics of quantum phase transitions with exponent scaling, and
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we measure the critical exponents in the crossover region. We
find that the critical exponents cannot be simply defined by
the previously known values in systems with integer dimen-
sions. Since the bonding of identity equations (Rushbrooke’s,
Widom’s, Fisher’s, and Josephson’s) connects different crit-
ical exponents with a limited degree of freedom, our results
show that other critical exponents in the crossover region also
require further theoretical and experimental investigations.
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APPENDIX A: GUTZWILLER MEAN-FIELD THEORY

In the main text, we adopt the Gutzwiller mean-field theory
(GMFT) [40–42] to simulate the ramping dynamics of phase
transitions in anisotropic optical lattices. Based on the method
of GMFT, we write the many-body wave function |ψ〉 as a
large product state between different lattice sites,

|ψ〉 =
∏

i

(∑
n

f n
i |n, i〉

)
, (A1)

where each state |n, i〉 corresponds to n bosons occupying the
lattice site with an index i, and f n

i is the amplitude of this state.
This assumption decouples the Hamiltonian, and we treat each
site independently. Therefore, the Hamiltonian is converted
into a mean-field form, which is

HMF = −
∑
m,n,q

ψ∗
m,n,q[txy(b̂m−1,n,q + b̂m,n−1,q ) + tzb̂m,n,q−1]

−
∑
m,n,q

b̂†
m,n,q[txy(ψm−1,n,q + ψm,n−1,q ) + tzψm,n,q−1]

+
∑
m,n,q

ψ∗
m,n,q[txy(ψm−1,n,q + ψm,n−1,q ) + tzψm,n,q−1]

+ H.c.

+ 1

2

∑
m,n,q

U n̂m,n,q(n̂m,n,q − 1)

=
∑
m,n,q

hm,n,q, (A2)

where txy or tz are the tunneling amplitudes in the x-y plane or
along the z-direction, respectively, and ψm,n,q = 〈bm,n,q〉 is the
mean value of the annihilation operator bm,n,q, where m, n, q
label the lattice site index along the x, y, and z directions, and
hm,n,q is the mean-field Hamiltonian of site (m, n, q).

To prepare the equilibrium states with an ultracold tem-
perature, we initialize the state with a random trial wave
function and use the trial function to calculate the mean-field
terms ψm,n,q. Based on these mean-field terms, we obtain the
mean-field Hamiltonian and calculate the ground-state wave
function. Then, we apply this ground-state wave function to
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FIG. 5. γinc(adiabatic) vs Vz at Vxy = 17Er . The incoherent frac-
tion increases with Vz, showing the same trend as experiments.

calculate the mean-field terms and a new ground-state wave
function. We repeat the overall process, and the energy of
states decreases and converges as the iteration increases. We
stop the iteration when the energy difference between two
adjacent iterations is less than some chosen threshold such
as a relative error of 10−12, and the current wave function is
approximated as the ground state or the equilibrium state.

The incoherent fraction is defined as

γinc = 1 −
∑

i, j〈b†
i 〉〈b j〉

N
, (A3)

where b†
i and bi are the creation and annihilation operators

of site i. To be consistent with the experiment, we simulate a
lattice in size of 65×65×65 sites with particle number N =
1.5×105, and the allowed maximum filling number is limited
to n = 4.

First we calculate the incoherent fraction γinc at Vxy = 17Er

with different Vz for the equilibrium states, as shown in
Fig. 5. These values correspond to the incoherent fraction
γinc(adiabatic) obtained by the adiabatic ramping. Then we
need to consider the dynamical effects and simulate the ramp-
ing process by the Runge-Kutta method. In each time step,
we need to adjust the chemical potential to keep the particle
number unchanged. By starting from the equilibrium states at
Vxy = 5Er with different Vz, we increase Vxy to 17Er by a cer-
tain ramping speed k, which has the same ramping curve as the
experiments in the main text. During each time step, we adjust
the chemical potential to keep the atom number unchanged.
Based on these methods, we obtain how the wave function
evolves versus the external ramping. Therefore, we extract
out the information of γinc(k) for these ramping states and
calculate the excited defect nex = γinc(adiabatic) − γinc(k).

nex is the deviation of the ramping states from the equilib-
rium states, and it describes how many atoms cannot follow
the external ramping. Here we will prove that it can be used to
describe the excited defects due to the nonadiabatic ramping.

The defect density is defined as [9]

ndefect = 〈(n̂i − 〈n̂i〉)2〉, (A4)
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FIG. 6. The defect density ndefect vs nex. We ramp Vxy from
5Er to 17Er with different speed k at Vz = 17Er , 21Er , and 25Er .
Then we apply linear fitting on three sets of data to characterize
the dependence of nex on ndefect. The hollow circles are GMFT re-
sults and the dashed lines are the fitting results. For blue circles,
Vz = 17Er and ndefect = 0.32(1)×nex + 0.029(4). For yellow circles,
Vz = 21Er , ndefect = 0.30(1)×nex + 0.020(6). For green circles, Vz =
25Er , ndefect = 0.31(1)×nex + 0.016(1). The slopes are consistent
with each other.

where n̂i is the atom number operator in the lattice site i, 〈ni〉
is the mean atom number of the lattice site i, and the outermost
brackets 〈·〉 correspond to the average over all lattice sites
(running over all indexes i).

In the deep Mott-insulator regime, the occupation number
at each site is fixed and the defect density approaches zero,
which, however, is nonzero in the superfluid and the shallow
Mott-insulator regimes due to quantum fluctuations. There-
fore, ndefect of the equilibrium states will be nonzero due to
the intrinsic quantum fluctuations. Then, the external ramping
introduces additional defects compared with the equilibrium
states, and this additional increase in ndefect is actually caused
by the dynamical excitations. Therefore, our logic is to show
the linear dependence between nex and ndefect.

For each Vz with different ramping speed k, we calculate
the defect density ndefect and compare it with nex, as shown
in Fig. 6. The defect density has a linear dependence on nex

for all sets of Vz, and the slopes of fittings are almost the
same. The intercepts of fitting lines are nonzero due to the
intrinsic quantum fluctuations of the Mott insulators. When Vz

becomes larger, the quantum fluctuations are suppressed and
the intercepts decrease. This supports that the observable nex

can serve as the indicator of excited defects.

APPENDIX B: MONTE CARLO WORM ALGORITHM

For Bose-Hubbard models with off-diagonal terms, we use
the worm algorithm [43,44,46] to deal with the off-diagonal
correlations, and we calculate the Green function at τ = 0.
The main idea is to map a d-dimensional quantum system
to classical worldlines with d + 1 dimension, and then we
use the worldlines to describe the system. Here we give a

brief introduction to the worldlines and what we do in the
calculations.

First, we divide the Bose-Hubbard Hamiltonian into two
parts: the diagonal part H0 and the off-diagonal part H1 based
on the basis of Fock states. Then, the partition function be-
comes

Z = Tr[exp (−βH )]

= Tr

[
exp (−βH0) exp

(
−

∫ β

0
dτH1(τ )

)]
, (B1)

where β = 1/T and T ≈ 0 because the atoms are cooled to an
ultracold temperature. Rewriting Eq. (B1) as a time-ordered
expansion, the mth term is∫

(−1)mdmτe−(β−τ1 )H0
α0 H1

α0,α1
e−(τ1−τ2 )H0

α1 H1
αm−1,αm

e−τmH0
αm ,

(B2)

where αm = α0 guarantees the periodic imaginary-time
boundary condition, and the integrals of all τi are in the form
of path integrals but with imaginary time. Based on this, we
decompose the many-body partition functions into summa-
tions of all possible path-integral trajectories W [ni(τ )]. The
trajectories W [ni(τ )] are based on single-particle representa-
tions ni(τ ), and they are referred to as worldlines. Therefore,
the partition function Z is written as

Z =
∑
ni (τ )

W [ni(τ )]. (B3)

Figure 7 shows the typical worldline configuration for
partition function Z , which is called the Z-configuration. At
one particular imaginary time, the trajectory can hop to a
neighboring site due to the off-diagonal term, and then it
remains along the imaginary-time axis. All the worldlines
start at τ = 0 and end at τ = β, which is the most important
difference from the G-configuration we are going to introduce
below.

To optimize the statistics and calculate the correlation with
local updates, the worm algorithm rewrites the Green function
by repeating the path-integral procedure above,

G(iM − iI , τM − τI ) = Tτ

〈
b†

iM
(τM )biI (τI )

〉
. (B4)

The operators b†
M and bI claim another particle in the time

interval (τM, τI ), adding one more open worldline from point
(iM, τM ) to (iI , τI ), which enlarges the configuration space of
the partition function. Following the notation in Refs. [43,46],
we call this new configuration space the G-configuration, and
the open worldline is defined by a worm pair with a starting
point Masha and an ending point Ira. The properties of an
open worldline require τM �= 0 at Masha and τI �= β at Ira,
as shown in Fig. 7.

Under the descriptions of worldlines, we update the system
by the worm pair operations. There are four types of opera-
tions here: open/close, insert/remove, jump, and move, which
have been elaborated on by the previous pioneering works
in Refs. [43,46]. Each type of operation corresponds to one
possible change of worm pairs. After sufficient sweep times,
we achieve the ergodicity of the Green configuration.
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FIG. 7. The Z-configuration (upper panel) and the
G-configuration (bottom panel). The Z-configuration contains
only closed worldlines, whereas the G-configuration allows open
worldlines with Ira (τI �= 0) and Ira (τM �= β) at the beginning and
end of the worldlines. The update of the system is accomplished by
simple operations on the worm pair of Masha and Ira.

The worm algorithm starts with the Z-configuration, and
an arbitrary worm pair propagates until the worm head meets
the tail in each sweep, walking through all possible paths
ergodically. Since the worm pair helps to measure 〈b†

i b j〉, we
can calculate the Green functions between different sites.

We perform the worm algorithm on lattices with a size of
65×65×65 with fixed Vxy = 15Er . The maximally allowed
occupation number of one site is n = 3, and the particle num-
ber is 3.3(1)×103. At Vxy = 15Er and Vz � 13Er , the system
is in the shallow Mott-insulator regime, allowing us to have
a look at the correlation between different layers. We have
plotted the results in the main text.

Here we also want to check the effects of limited bound-
aries. We simulate the particle distribution at the x-y plane
centered in the z-direction, as shown in Fig. 8. Ignoring small
fluctuations due to limited sweeping times, the QMC result
is consistent with the results of GMFT. From the distribution,
there are almost no particles at the boundary, hence the limited
boundary shows few influences under the chosen parameters.

In the main text, we show the relation between the cor-
relation length and the trap depth along the z-direction at
Vxy = 15Er , and it exhibits the same trend as tz/txy. To illus-
trate the universality of the results, we plot the correlation
lengths for Vxy = 13Er , 15Er , and 17Er , as shown in Fig. 9.
At Vxy = 13Er and Vz = 13Er , the correlation length is much
larger than one lattice constant, showing the typical corre-
lation in the superfluid. As Vz grows larger, the tunneling
between neighboring sites in the z-direction is suppressed,

FIG. 8. The particle distribution at Vxy = 15Er , and Vz = 15Er ,
21Er , and 27Er . We apply two numerical methods to simulate the
atom number distribution in the x-y plane with z = 0, and r is defined
as

√
x2 + y2. The smooth lines are the GMFT results, which show

consistencies with the zigzag lines by QMC. As Vz gets bigger, the
center plateau extends as the incoherent fraction gets larger in the
Mott-insulator regime.

hence the correlation length decays below one lattice constant
a and the system goes into a quasi-2D regime.

APPENDIX C: DEPENDENCE OF TUNNELING
AMPLITUDE AND INTERACTION ENERGY

ON LATTICE TRAP DEPTH

Here we plot the relations between the tunneling amplitude
tz, the interaction energy U , and the trap depth Vz (Fig. 10).
The tunneling amplitude tz decays stretched-exponentially

FIG. 9. The correlation length ξ vs Vz at Vxy = 13Er , 15Er , and
17Er . The blue and yellow circles are simulated data for Vxy = 13Er ,
15Er , and 17Er , and the corresponding curves are fitted lines. The
correlation length ξ decreases as Vxy or Vz increases.
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FIG. 10. The tunneling amplitudes tz and on-site interaction en-
ergy U vs trap depth Vz along the z-direction. The blue line with the
left axis shows that tz decays as Vz grows. The red line with the right
axis shows the ratio tz/U . The inset shows U vs Vz.

with the trap depth Vz. The on-site interaction energy U obeys
a linear relation with Vz (inset). Compared with tz, U is almost
unchanged while ramping the trap depth. The ratio of tz and
U has the same trend as tz alone, as shown in the main panel
of Fig. 10. Therefore, we use tz (or tz/txy) instead of tz/U to
show the changing trend in the main text, and this helps us to
better understand the anisotropy.

APPENDIX D: CALIBRATION OF
THE RAMPING ADIABATICITY

To calibrate the ramping adiabaticity, we use a comparison
between two ramping curves to see the heating effect during
experiments. The time sequences are shown in the inset panels
of Fig. 11.

The inset left panel shows a simple ramping that we spend
80 ms to load atoms into the optical lattices with a trap depth
Vi = 10Er . Then, we hold atoms for 120 ms and perform the
band mapping. The right panel shows that we ramp up the
anisotropic lattices with the x-y trap depth Vf = 17Er and a
tunable z trap depth Vz. This costs 80 ms. Then, we hold atoms
for 20 ms and ramp down all the lattices into the trap depth
10Er in 80 ms, the same as the trap depth in the left panel.

FIG. 11. Calibration of the ramping adiabaticity. The insets show
two time sequences of ramping trap depth. The left one is a simple
80 ms ramping to Vi = 10Er and a 120 ms holding. The right panel
is an anisotropic ramping up (80 ms), a holding (20 ms), a ramping
down (80 ms), and a holding (20 ms). The main panel shows the
measurement results. The red belt shows γinc in the left inset with
one standard deviation. The black dots with error bars (one standard
deviation) show γinc obtained from the right inset.

After the ramp down, we hold atoms for 20 ms and perform
the band mapping. This makes the overall time cost of both
the left and right inset panels the same.

The data are shown in the same figure (Fig. 11). The
red shadow area shows one standard deviation range of the
incoherent fraction γinc in a simple ramping (left inset). The
black dots with error bars show the data in the right inset
with Vz from 17Er to 30Er . The ramping-in and ramping-out
increase γinc by 0.02–0.08 depending on Vz. Our experimental
sequence takes half of the time comparing with this measure-
ment. The increase of γinc is under 0.04, and we think this is
small enough for most of the cases.

On the other hand, the heating mainly comes from the
changing of Vz, rather than the trap depth in the x-y plane.
In the main text, nex is defined as the difference between two
incoherent fractions. Both of them share the same Vz during
the preparations, so the heating contributions can be canceled.
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