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Optical precursors in waveguide quantum electrodynamics
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When a broadband signal propagates through a dispersive medium, some frequency components move faster
than the center of the pulse. This leads to the appearance of precursors, transient signals that emerge from the
medium earlier than the main part of the pulse and seem to propagate superluminally. Here, we investigate the
microscopic origin of precursors in a minimal setup: an array of qubits coupled to a waveguide. The linear
transmission function only converges to that of a continuous medium for large qubit numbers. Nevertheless, the
dispersion produced by only two qubits is enough to produce oscillatory transients. Precursors are best observed
under conditions of electromagnetically induced transparency, as the center of the pulse is significantly delayed.
Under these conditions, just a single qutrit is enough to generate a precursor. Our results pave the way towards
dispersion engineering of light with just a few qubits and can be realized with superconducting qubits coupled
to transmission lines or atoms coupled to optical waveguides.
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I. INTRODUCTION

The propagation of light through a continuous dispersive
medium is a canonical problem in electrodynamics [1,2]. One
of the most fascinating aspects of the transmitted radiation is
the formation of transients that precede and follow the main
pulse when the input signal has sharp edges, compared with
the response time of the system. These transients are known
as precursors and were theoretically predicted by Sommer-
feld and Brillouin in the early twentieth century [3,4]. They
occur due to the different group velocities of the high- and
low-frequency components in the spectrum of the original
pulse. Since their prediction, precursors have been extensively
studied theoretically [5–8]. They have also been observed
in a plethora of systems and frequency ranges, such as in
microwaves propagating in transmission lines [9], optical
photons traversing atomic clouds [10–12], gamma rays in
Mössbauer spectroscopy [13–17], and mechanical waves in
fluids [18,19].

In waveguide quantum electrodynamics (wQED), where
a collection of qubits are coupled to each other via a one-
dimensional (1D) photonic reservoir, dispersion arises due
to the narrow spectral response of the qubits. These two-
level systems (which represent neutral atoms, molecules,
or superconducting qubits, to name a few examples) only
interact with photons of frequency resonant with their ground-
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state-to-excited-state transition. Photon-mediated interactions
between qubits give rise to the emergence of collective states
that can either decay rapidly (superradiant) or be protected
from dissipation (subradiant) [20]. In the last decade, wQED
has attracted significant interest due to the possibility of
exploiting these states for quantum information processing
and storage (for instance, to produce quantum states of light
[21] and to compute via decoherence-free subspaces [22])
as well as for exploring many-body physics in open quan-
tum systems (many-body localization [23], spin dimerization
[24], and fermionization [20], among other examples). A
lot of work has been devoted to single-photon [25], few-
photon [26–31], and many-photon [32] transport in wQED,
although most of it (except for a few exceptions [33–35])
is focused on the steady-state regime or on propagation
of quasimonochromatic light. In parallel, experimental re-
alizations of wQED systems have multiplied, with setups
ranging from neutral atoms coupled to single-mode optical
fibers [36–39] and photonic-crystal waveguides [40–42] to
superconducting qubits coupled to microwave transmission
lines [43,44].

Here, we investigate the linear transport of broadband pho-
ton pulses in wQED, for a system consisting of N qubits
coupled to a waveguide. Employing a transmission coefficient
in terms of collective frequency shifts and decay rates, we
demonstrate that the temporal response under a short pulse
coincides with that of a continuous medium for N � 1. The
macroscopic description of the medium breaks down for a
small qubit number. Nevertheless, a system with just two
qubits generates enough dispersion to produce an intensity
profile that oscillates rapidly in time. The delay between the
main signal and its precursor is evident under conditions
of electromagnetically induced transparency, where a single
qutrit is enough to generate a precursor.
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II. CONTINUOUS MEDIUM

The amplitude and phase modulation acquired by a
monochromatic field after propagation through a (either clas-
sical or quantum) linear dispersive medium is encoded in the
complex transmission function t (ω). For nonmonochromatic
input pulses, the transmitted field is simply

E (t ) = 1

2π

∫ ∞

−∞
t (ω)E0(ω)e−iωt dω, (1)

where E0(ω) is the Fourier transform of the temporal profile
of the input pulse. In standard electromagnetism, the complex
relative permittivity ε(ω) determines the transmission coeffi-
cient and is usually postulated phenomenologically to match
the optical response of a continuous medium. A conventional
model is that of a Lorentz oscillator with a single resonance
of frequency ω0 and damping coefficient �′ � ω0. Then, the
transmission coefficient reads [45]

tcont(ω) = exp

(
− ib

ω − ω0 + i�′/2

)
, (2)

where b quantifies the strength of the light-matter interac-
tion. Throughout this paper, we consider an input field of
central frequency ωp with a square temporal profile, E0(t ) =
E0eiωpt [�(t − ti ) − �(t − t f )]. Assuming that the duration of
the input pulse is larger than the time it takes the system
to reach the steady state, we approximate the input signal
as a step function E0(t ) � E0e−iωpt�(t f − t ) to calculate the
transients in the transmitted intensity right after switching off
the input field. Similarly, to calculate the transmitted field im-
mediately after switching on the input field, we approximate
the pulse as E0(t ) � E0e−iωpt�(t − ti ). Setting t f = 0 (ti = 0),
the Fourier transform for the rising (falling) edge is

E0,{R,F }(ω) = E0

[
± P

i

(ω − ωp)
+ πδ(ω − ωp)

]
, (3)

where + (−) corresponds to the rising (falling) edge and P

stands for Cauchy’s principal value. Plugging E0,{R,F }(ω) and
tcont(ω) into the transmitted field expression in Eq. (1) results
in

E{R,F }(t ) = E0

[
�(t f − t )e−iωpt tcont(ωp)

∓ 1
2π i e

−iω0t e−�′t/2
∮

dz

z − � − i�′/2
e−i b

z e−izt

]
,

(4)

where z ≡ ω − ω0 + i�′/2 and � = ωp − ω0 is the detuning
between the central and resonance frequencies. After solving
the integral (see the Appendix), the final form for the tran-
sients reads

Icont(t )

I0
=

∣∣∣∣∣�(t f − t )tcont(ωp)e−i�(t−t0 ) − e−�′(t−t0 )/2

×
∞∑

n=1

⎛
⎝ −i

� + i�′/2

√
b

(t − t0)

⎞
⎠

n

Jn

(
2
√

b(t − t0)
)∣∣∣∣∣

2

,

(5)
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FIG. 1. Propagation of a broadband signal in a waveguide-QED
system. (a) A sharp input pulse propagates through an array of qubits
separated by a distance d . The qubit decay rate into the waveguide is
�1D, and the decay rate into any other mode is �′. The idealized out-
put consists of a precursor followed by the main pulse and a trailing
transient. (b) Temporal evolution of the intensity at the detector, Id ,
with (red) and without (blue) qubits, normalized to the maximum in-
put intensity I0. The central part of the pulse is mostly absorbed, and
the transmitted intensity is low except at the edges, where a precursor
can be observed at the first edge. The qubits’ response immediately
after switch-on and switch-off is transient, taking some time for the
induced field to build up (and cancel the forward-propagating input
field) and decay, respectively. The optical depth is N�1D/�′ = 5
(N = 20, �1D/�′ = 0.25), the detuning between the resonance and
central frequency of the pulse is � = 0.37�′, the lattice constant
is k1Dd = π/2, and ti( f ) represents the time at which the pulse is
switched on (off).

where Jn is a Bessel function of the first kind. Here, t0 = ti
corresponds to the rising edge, and t0 = t f corresponds to
the falling one. The sharp edges of the input signal translate
into a broad spectrum in Fourier space, and the interference
between different frequency components propagating at dif-
ferent group velocities gives rise to temporal oscillations in the
transmitted intensity. The transmitted intensity consists only
of the precursor and the final transient, since the main pulse
has been absorbed and scattered into free space.

III. N QUBITS

A. Model

We demonstrate that temporal oscillations in the trans-
mitted field intensity (so-called “dynamical beats” in the
Mössbauer literature [13–17]) are not unique to continuous
classical media; they also occur in “granular” quantum sys-
tems, such as a chain of N > 1 qubits coupled to a 1D
waveguide, as shown in Fig. 1. In this case, the optical re-
sponse can be obtained by first tracing out the field and solving
for the dynamics of the qubits [46], which interact with each
other as they share a common electromagnetic environment.
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Then, one recovers the field evolution via an input-output
formalism. In the linear (or single-excitation) regime, the
qubits’ evolution is governed by the effective Hamiltonian
H = H1D +H′ +Hdrive [47–49], where

H1D = −i
h̄�1D

2

N∑
i, j=1

eik1Dd|i− j|σ̂ i
egσ̂

j
ge, (6a)

H′ = h̄

(
J ′ − i

�′

2

) N∑
i=1

σ̂ i
ee, (6b)

Hdrive = −h̄�

N∑
i=1

σ̂ i
ee − h̄
(t )

N∑
i=1

(
eik1Dzi σ̂ i

eg + H.c.
)
.

(6c)

Here, H1D describes the qubit-qubit interaction, which oc-
curs at a rate �1D, depends on the lattice constant d , and
is mediated by photons of wave vector k1D. The qubits may
decay (independently from each other) into other nonguided
modes at a rate �′, and the presence of the waveguide imparts
a Lamb shift J ′ on their resonance frequency, as described by
H′. The qubit ensemble is being driven by a propagating pulse
of Rabi frequency 
(t ), whose central frequency is detuned
from the qubit resonance frequency by � = ωp − ω0. In the
above equations, σ̂ i

eg = |ei〉 〈gi| is the coherence operator be-
tween the ith-qubit excited and ground states, σ̂ i

ee = |ei〉 〈ei|,
and H.c. stands for Hermitian conjugate. We note that the
rotating wave approximation is justified as counter-rotating
terms produce rapidly oscillating contributions (at frequency
∼2ω0) that average out in the timescales relevant for the
transients (proportional to the inverse of the qubit linewidth).
The transmitted light intensity is found via the input-output
equation [48,49]

Ê+(z, t ) = 
(t )eik1Dz + i
�1D

2

N∑
i=1

eik1D|z−zi|σ̂ i
ge(t ), (7)

where Ê+ is the positive-frequency component of the right-
propagating field (normalized to have units of the Rabi
frequency), and the field is measured by a detector at a po-
sition z that lies beyond the last qubit. In this paper, the
dispersion is solely due to the qubits, and the waveguide is
considered to be dispersionless.

B. Transmission coefficient

The steady-state transmission is mostly determined by the
optical depth OD ≡ N�1D/�′, as shown in Fig. 2(a), where
systems with different numbers of qubits and decay rates
but fixed optical depth display almost identical transmittance
spectra. To calculate the transmitted light for a continuous-
wave drive (i.e., E0(t ) = 
0eiωpt ), we solve for the expectation
value of the steady-state coherences (such that 〈 ˙̂σ i

eg〉 = 0) and
plug the result into the above input-output equation. The trans-
mission coefficient is defined as

tN (ω) = E+(zright )

E+
p (zleft )

, (8)

where zleft is a point immediately to the left of qubit 1 and
zright is a point immediately to the right of qubit N . E+(z) is
the expectation value of the positive-frequency component of
the total field operator Ê (z) in the steady state, and E+

p (z) =

0eik1Dz is the input field. The transmission coefficient can be
expressed in terms of collective shifts and decay rates, as we
now derive (see Ref. [50] for full details).

The input-output equation states that the total field is the
sum of the input field and the field radiated by the qubits, i.e.,

E+(z) = 
0eik1Dz −
N∑

n=1

g(z, zn)σ n
ge, (9)

where σ n
ge ≡ 〈σ̂ n

ge〉 is the expectation value for the coherences

in the steady state and g(z, z′) = −i(�1D/2)eik1D|z−z′ |. Defining
gnm = g(zn, zm) and defining E+

p as an N-dimensional vector
whose entries are E+

p,n ≡ E+
p (zn), the evolution equations for

the expectation value of the coherences are

σ̇ n
ge = i

(
� − J ′ + i

�′

2

)
σ n

ge + iE+
p,n − i

N∑
m=1

gnmσ m
ge. (10)

The steady-state solutions of these equations (for which
σ̇ n

ge = 0) are

�σge = −M−1E+
p , (11)

with M = (� − J ′ + i �′
2 )1 − g. We express this in terms

of collective modes, since the eigenvectors of g satisfy∑N
ξ=1 vξ ⊗ vT

ξ = 1. Using this identity, we find

�σge = −
N∑

ξ=1

(
vT

ξ · E+
p

)
vξ

� − J ′ + i�′/2 − λξ

, (12)

where {λξ } are the eigenvalues of g [and of H1D defined
in Eq. (6a)]. Plugging the steady-state solution (12) into the
expression for the field, we obtain

E+(z) = E+
p (z) +

N∑
ξ=1

(g(z) · vξ )
(
vT

ξ · E+
p

)
� − J ′ + i�′/2 − λξ

. (13)

In the last expression we have adopted the shorthand no-
tation (g(z)) j = g(z, z j ). Here, g(z, z′) is the propagator of
the guided field that has been projected in the direction of
the qubits’ dipole transition. Physically, g(z, z′) describes the
field at z that is generated by a dipole at z′. By means of the
trace-determinant lemma [50], this expression can be written
in terms of eigenvalues only, yielding

tN (ω) =
N∏

ξ=1

ω − ω̃0 + i�′/2

ω − ω̃0 + i�′/2 − λξ

, (14)

where ω̃0 = ω0 + J ′. The real (Jξ = Re{λξ }) and imaginary
(�ξ = −2Im{λξ }) parts of these eigenvalues correspond to the
frequency shifts and decay rates of the collective modes. The
decay rates can be either superradiant (with �ξ > �1D, and the
largest one scaling as �ξ ∼ N�1D) or subradiant (with �ξ <

�1D, and the smallest one scaling as �ξ ∼ �1D/N3), and their
actual values depend on the specific lattice constant [20,23].
For lattice constants such that k1Dd = nπ , with n being an
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FIG. 2. Steady-state and time-dependent optical response for 1 (red), 2 (green), 200 (blue) qubits and for a continuous medium (purple).
(a) Transmittance spectra for a continuous-wave input. (b) Light intensity right after switching off a square pulse at t = t f , as a function of time.
(c) The temporal response can be understood by analyzing the pole structure of the transmission coefficient in the complex plane. The response
function for a finite qubit array, tN , has simple poles at finite real frequencies for N � 2. As N → ∞, the poles (blue dots) converge towards the
essential singularity of the continuous transmission coefficient tcont at ω∗ = ω0 − i�′/2, indicated by a purple cross. For all plots, k1Dd = π/2
and � = 0.3�′. The coupling efficiency �1D/�′ is changed for each qubit number, keeping the optical depth the same (OD ≡ N�1D/�′ = 5).

integer, there is only one superradiant eigenvalue of decay,
N�1D. In this so-called “mirror configuration,” there is only
one collective mode coupled to the waveguide, and the array
of qubits behaves effectively as a single qubit with a large
decay rate [50].

C. Transients

The temporal dynamics of the transmitted intensity for a
broadband input pulse is not determined solely by the optical
depth, but is instead also sensitive to the specific values of N
and �1D/�′ separately, as shown in Fig. 2(b). From Eqs. (1),
(3), and (14), the transmitted field at the beginning and end of
the pulse is

E{R,F }(t ) = E0

[
1

2
e−iωpt tN (ωp)

∓ 1

2π i
P

∫ ∞

−∞
dω

1

ω − ωp
tN (ω)e−iωt

]
. (15)

We solve the remaining integral using the residue theorem
and a semicircle that closes in the lower half plane. There are
two contributions: one from the simple pole at ω = ωp and
one due to the singularities in t (ω) in the lower half plane.
They read

I1 = −π i Res

(
1

ω − ωp
tN (ω)e−iωt , ωp

)

= −π i tN (ωp)e−iωpt , (16)

I2 = −2π i
∑

ξ

Res

(
1

ω − ωp
tN (ω)e−iωt , ωξ

)
, (17)

where {ωξ } are the singularities of tN (ω).
Reintroducing the times ti and t f yields the final expression

for the transmitted field

E{R,F }(t ) = E0

[
�(t f − t )e−iωp(t−t0 )tN (ωp)

±
∑

ξ

Res

(
1

ω − ωp
tN (ω)e−iω(t−t0 ), ωξ

)]
,

(18)

where t0 = ti at the rising edge and t0 = t f at the falling edge.
The term originated by the simple pole ξ in the transmis-

sion coefficient for a discrete chain, tN (ω), describes the light
emitted by the corresponding collective mode. The measured
intensity at the rising and falling edges is thus a coherent sum
over all the contributions of the collective modes and reads

IN (t )

I0
=

∣∣∣∣∣�(t f − t )tN (ωp)e−i�̃t + e−�′(t−t0 )/2

×
N∑

ξ=1

λN
ξ∏

κ �=ξ (λξ − λκ )

e−iλξ (t−t0 )

λξ − �̃ − i�′/2

∣∣∣∣∣
2

, (19)

where �̃ = ωp − ω̃0. The contributions from different modes
give rise to a time-dependent slope in the decay. The most
superradiant modes play an important role for shorter times.
As these modes become depopulated, the most significant
contributions originate from less superradiant states, yielding
a smaller decay rate [51]. The transients cannot be faithfully
reproduced by just including a few modes in Eq. (19).

Oscillations only occur for N � 2, as they arise from inter-
ference between different collective modes. Two qubits is the
minimum required number to produce oscillations that—only
in this case—are periodic with a frequency equal to half of the
difference between the two collective modes. For N � 1, the
intensity calculations agree with those obtained for a continu-
ous medium [i.e., as described by Eq. (5)]. The agreement can
be readily understood by noting that for |λξ | � |ω − ω0 +
i�′/2|, with ξ = {1, . . . , N}, the transmission coefficient for
a finite array reduces to

tN�1(ω) = e− ∑
ξ ln[1−λξ /(ω−ω̃0+i�′/2)] � e

∑
ξ

λξ

ω−ω̃0+i�′/2
, (20)

which is precisely the transmission coefficient of a continuous
Lorentz medium (Beer-Lambert law), as captured by Eq. (2),
with resonant frequency ω0 + J ′, damping coefficient �′, and
coupling strength b = |∑ξ λξ | = N�1D/2. For a fixed optical
depth, the region where the series expansion is valid increases
with qubit number [see Fig. 2(c)]; thus the approximation
works better for N � 1. As exemplified in Fig. 3, in this limit
the temporal evolution of the intensity is independent of the
qubit spatial configuration, is robust against imperfect filling
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ttime,

FIG. 3. Light intensity after switching off a square pulse propa-
gating through an imperfectly filled array with 300 sites, �1D/�′ =
0.08 and � = 0.3�′. In each run, there are Nd qubits, with Nd � N .
The results of the imperfectly filled arrays (solid lines), the perfect
arrays of Nd qubits (thick light lines), and the Bessel expansion of
Eq. (5) with b = Nd�1D/2 (dotted lines) are in agreement.

of the array, and is dictated only by the optical depth (see
the Appendix for more details on the role of experimental
imperfections). This occurs for any lattice constant different
from that of the mirror configuration.

Moreover, Eq. (5) captures the temporal response even for
large optical depths (as long as N � 1, N�1D/�′ can take
any value), as shown in Fig. 2(b) for N = 200 qubits and
N�1D/�′ = 5, even if tN cannot be approximated by tcont at
resonance. This occurs because the temporal response for a
broadband pulse involves an integral over frequencies, which
is less sensitive to the specific details of the response function
at resonance, compared with the steady-state transmission.

The breakdown of the continuous approximation for a few
qubits can be understood by analyzing the pole structure of the
two transmission coefficients in the complex plane, as shown
in Fig. 2(c). For a finite array, each qubit (or more specifically,
each collective mode) contributes with one simple pole. As
N → ∞, the poles cluster around ω∗ = ω̃0 − i�′/2, which is
an essential singularity of tcont(ω), and the response coincides
with that of a continuous medium. As the number of qubits
decreases, the poles do not densely cover the region of the es-
sential singularity. Nevertheless, due to the frequency splitting
between the collective modes, the poles have finite real parts,
producing oscillations in the time domain. Lastly, N = 1 has a
single pole at a purely imaginary frequency, −i(�1D + �′)/2,
giving rise to exponential, nonoscillatory decay. The approx-
imation in Eq. (20) is still valid for a single atom as long as
�1D � �′. However, in this limit, tN�1(ω) roughly predicts a
purely exponential decay, since the oscillations would occur
in a timescale (∼�−1

1D ) that is much larger than the decay
(∼�′−1). An arbitrary number of qubits in the mirror configu-

ration also produces an exponentially-decaying signal without
oscillations. Nonetheless, oscillations are expected to arise
even for the mirror configuration if the Markov approximation
is not valid (see the Appendix).

IV. N QUTRITS

To observe the delay between the main pulse and its pre-
cursor, one can employ qutrits (three-level systems) under
electromagnetic-induced transparency (EIT) conditions [7].
EIT has been used to observe precursors in both coherent
[10] and single-photon [52] pulses propagating through dilute
atomic clouds in free space. By coupling the excited state to a
metastable level |s〉 via a control field of Rabi frequency 
c, a
transparency window of width ∼
2

c/
√

N�1D�′ opens up, and
a pulse that is spectrally narrower than the window propagates
without being absorbed or reflected, at a reduced group veloc-
ity vg = 2
2

cd/�1D. As shown in Fig. 4(a), a square pulse is
also delayed, and the precursor is measured before the main
signal arrives at the detector. The system is described by the
Hamiltonian

HEIT = H1D +H′ − h̄
N∑

n=1

(
�sσ̂

i
ss + 
c

(
σ̂ i

es + σ̂ i
se

))
, (21)

where �s = ωp − ωc − ωs is the two-photon detuning (with
ωc being the frequency of the control field) and σ̂ i

es =
|ei〉 〈si| is the coherence operator between the excited and the
metastable states.

The transmission coefficient describing light propagation
through this system is derived in an analogous manner to
tN (ω) and reads [50]

tEIT(ω) =
N∏

ξ=1

(ω − ω̃0)(ω − ω̃0 + i�′/2) − 
2
c

(ω − ω̃0)(ω − ω̃0 + i�′/2 − λξ ) − 
2
c

. (22)

This response function has 2N poles at (complex) frequen-
cies

ω±
ξ = ω̃0 + δ̃ξ

2
±

√
δ̃2
ξ /4 + 
2

c, (23)

where δ̃ξ ≡ λξ − i�′/2. Proceeding in a similar way as in
Sec. III C, the transmitted intensity is

Id

I0
=

∣∣∣∣∣�(t f − t )tEIT(ωp)e−iωp(t−t0 )

+
N∑

ν=1

Res

(
tEIT(ω)e−iω(t−t0 )

ω − ωp
, ω+

ν

)

+ Res

(
tEIT(ω)e−iω(t−t0 )

ω − ωp
, ω−

ν

)∣∣∣∣∣
2

. (24)

Plugging in the poles and simplifying yields

Id (t )

I0
=

∣∣∣∣∣�(t f − t )tEIT(ωp)e−i�̃(t−t0 ) + 2e−�′(t−t0 )/4
N∑

ξ=1

λN
ξ


ξ

∏
η �=ξ (λξ − λη )

e−iλξ (t−t0 )/2


2
ξ − (λξ − i�′/2 − 2�̃)2

×
[

2
ξ�̃ cos

ξ (t − t0)

2
− 2i

(
�̃(λξ − i�′/2) + 2
2

c

)
sin


ξ (t − t0)

2

]∣∣∣∣∣
2

, (25)
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FIG. 4. Electromagnetically induced transparency enables clear observation of the full-time evolution of the precursors as it delays the
main pulse. (a) Transmitted intensity for 1 (red), 2 (green), and 50 (blue) qutrits with k1Dd = π/2, where EIT is achieved by coupling an
external control field to the transition between the excited and metastable |s〉 states, as shown in the schematic in the right inset. The left inset
shows the precursors emerging at early times. The optical depth is N�1D/�′ = 50. (b) Oscillations in intensity right after the pulse has been
switched off at t = t f , for a single qutrit. The gray dashed lines show the oscillation period (see text for details). For comparison, the decay
for 
c = 0 is shown as a dashed blue line. The optical depth is N�1D/�′ = 1. In both plots, the calculations are done in the condition of
two-photon resonance, i.e., �s = �̃, with �̃ = 0. The control field intensity is 
c = 4�′.

with 
ξ =
√

4
2
c + δ̃2

ξ . The transmitted field after a large
number of qutrits consists of an initial precursor, the main
pulse, and a final transient. For large enough optical depth, the
precursor is clearly separated from the (delayed) main pulse,
as shown in Fig. 4(a).

At resonance, the intensity of the precursor is always the
intensity of the main pulse [Id (t = ti ) = I0], as can be seen
from Eq. (25). Furthermore, the delay time of the main pulse
can be inferred by estimating the timescale of decay of the
second term. For simplicity, we consider �̃ = 0. The depen-
dence in time of the contribution of mode ν to the second term
of Eq. (25) is

Eν (t ) ∼ e−�′(t−ti )/4e−i(t−ti )λν/2 sin 
ν (t − ti )/2

∼ e−�′(t−ti )/4e−i(t−ti )λν/2

× (ei
ν (t−ti )/2 − e−i
ν (t−ti )/2). (26)

The most important contributions to Eq. (25) come from
the most superradiant modes, for which we can neglect the
shift and approximate λν = Jν − i�ν/2 ∼ −i�ν/2. Further-
more, we can assume �ν � �′,
c, which yields

iIm
ν = iIm
√

4
2
c + (λν − i�′/2)2 � i�ν

2
− 4i
2

c

�ν

.

Plugging this expression into Eq. (26), we find

Eν (t ) ∼ e−�ν t/2e2 
2
c

�ν
t − e−2 
2

c
�ν

t � −e−2 
2
c t

�ν , (27)

where the first term has been neglected as �ν � 
c. The term
with the slowest decay thus belongs to the most superradi-
ant mode, for which �ν � N�1D. Hence the time of arrival
of the main pulse (i.e., the time at which the output signal
stabilizes to I0) scales as ∼N�1D


2
c

, which agrees with the delay
of a monochromatic wave propagating through a dilute atomic
cloud [10,53].

Under conditions of EIT, a single qutrit is enough to pro-
duce both a precursor and oscillations in the intensity after
switching off the input field, as shown in Fig. 4(b). Due to

the coupling of the excited and metastable states, each qutrit
contributes to two poles (of finite and opposite frequency) to
the transmission coefficient. Right after switching off the field,
there is no radiation as the excited state is unpopulated. The
emission of light follows a slower trend, as light can only
be emitted when the qutrits oscillate into the excited state.
In the limit where 
c � �1D, the oscillations have a period
that scales as ∼1/

√
4
2

c − (�′ + �1D)2/4. The dips in the
intensity correspond to times when the population of |e〉 is
minimal. For more qutrits, the oscillations are almost periodic
if 
c � N�1D, or resemble those of two-level systems (Fig. 2)
in the opposite case.

V. CONCLUSIONS

In summary, waveguide QED constitutes a versatile plat-
form for dispersion engineering, which can be employed to
tailor the temporal shape of propagating photons. The trans-
port of spectrally broad photon pulses can be understood from
the location of the poles of the transmission coefficient in the
complex plane, which correspond to the collective frequency
shifts and decay rates arising from photon-mediated qubit-
qubit interactions. For large qubit number, the response of
the discrete system approaches that of a continuous medium,
where the temporal oscillations in the intensity (arising from
interference between frequency components of the original
pulse) are fully determined by the optical depth N�1D/�′. In
contrast, for low qubit number, there is a breakdown of the
macroscopic response, and a single qutrit is enough to give
rise to precursors (under EIT conditions). In this regime, the
optical depth is no longer a good figure of merit, and the
Purcell factor and the number of qubits, separately, play a
significant role in the dynamics.

Precursors provide information about the number of qubits
and their coupling separately, in contrast to the Beer-Lambert
law that is obeyed by systems under continuous-wave illu-
mination. For low atom numbers, this feature allows one to
count how many atoms are coupled to a nanostructure, which
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is difficult to do with continuous-wave measurements [42].
Both the oscillation timescale for the transients and the delay
between precursor and main pulse in the EIT regime increase
with the ratio �1D/�′. Efficient coupling to the waveg-
uide mode can be achieved in state-of-the-art experimental
platforms, such as in superconducting qubits coupled to mi-
crowave transmission lines [44] (�1D/�′ > 100) and quantum
dots coupled to photonic crystal waveguides (�1D/�′ � 10
[54,55]).
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APPENDIX: CONTOUR INTEGRAL FOR THE
TRANSIENTS IN A CONTINUOUS MEDIUM

We follow closely the calculation presented in Ref. [14] to
solve the integral in Eq. (4). Since

∑∞
k=0 rk = 1/(1 − r), we

replace the denominator by the series

1

z − � − i�′/2
= −

∞∑
k=0

zk

(� + i�′/2)k+1
. (A1)

We also replace the exponentials inside the contour integral
by the generating function of the Bessel functions of the first
kind:

e−ib/ze−izt =
∞∑

m=−∞

(
−iz

√
t

b

)m

Jm(2
√

tb). (A2)

The field at the trailing edge is therefore

EF (t ) = − E0

2π i
e−iω0t e−�′t/2

∞∑
m=−∞

∞∑
k=0

∮
dz zk+m

(� + i�′/2)k+1

×
(

−i

√
t

b

)m

Jm(2
√

tb). (A3)

The integral can now be performed trivially as
∮

dz zk+m =
−2π i δk+m,−1, and E (t ) reads

EF (t ) = E0e−iω0t e−�′t/2
∞∑

k=0

1

(� + i�′/2)k+1

×
(

−i

√
t

b

)−(k+1)

J−(k+1)(2
√

tb). (A4)

Finally, given that J−n(x) = (−1)nJn(x) and reintroducing
t f back into the equation (the time at which the input pulse is

(b)

0.0 0.5 1.0 1.5 2.0
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0.0 0.5 1.0 1.5 2.0

Imperfect filling
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(a)

ttime,

Average
Single realization

Perfect array

FIG. 5. Impact of position disorder on transients for a low qubit
number. (a) Transients produced by five atoms positioned at random
in an array of ten sites with lattice constant k1Dd = π/2. (b) Tran-
sients produced by five atoms with random positions. �1D/�′ = 2.5
and �/�′ = 0.5 for both plots. To get the average curves, 100 real-
izations were used.

switched off) by taking t → t − t f , we find

Icont

I0
= e−�′(t−t f )

∣∣ ∞∑
n=1

(
−i

� + i�′/2

√
b

(t − t f )

)n

× Jn(2
√

b(t − t f ))|2, (A5)

where I0 = |E0|2. Similarly, the transients at the beginning of
the pulse are

Icont

I0
= ∣∣tcont(ωp)e−i�(t−ti ) − e−�′(t−ti )/2

×
∞∑

n=1

⎛
⎝ −i

� + i�′/2

√
b

(t − ti )

⎞
⎠

n

Jn(2
√

b(t − ti ))|2.

(A6)

The Bessel expansion in Eqs. (A5) and (A6) has a slow
convergence for high optical depths. Alternatives to this ex-
pression are found in Ref. [8].

1. Role of spatial disorder and inhomogeneous
broadening

The transients for high qubit numbers depend exclusively
on the optical depth. For low qubit numbers, the transmit-
ted intensity is not solely dictated by the OD. As shown
in Fig. 5, transients change for different spatial configura-
tions. The transients produced by the perfect array can be
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FIG. 6. Impact of frequency disorder on transients for (a) large
and (b) small qubit numbers. The parameters used were (�1D/�′ =
0.2, �/�′ = 0, k1Dd = π/2) and (�1D/�′ = 25, �/�′ = 0, k1Dd =
π/2), respectively. The curves shown for every σ are the result of
averaging over 100 realizations.

approximately recovered by averaging over many realizations
with imperfect arrays with the same qubit number, as shown
in Fig. 5(a). Even if the qubits have random positions, as in
Fig. 5(b), the average over many realizations is qualitatively
similar to the signal of a perfect array.

Next, we analyze the effect of inhomogeneous broadening
on the transients. We consider that atom i is detuned from
the central frequency of the input pulse by �i, which is cho-
sen randomly from a Gaussian distribution of mean μ = 0
and standard deviation σ . As shown in Fig. 6, the transients
described by Eqs. (5) and (19) are robust against typical dis-

order levels found in experimental realizations for both large
(σ ∼ �′ [42]) and low qubit numbers (σ ∼ 0.01�1D [44]).

2. Validity of Markov approximation

Equation (19) describes the transients only when the
Markov approximation is valid, i.e., when retardation is negli-
gible, and when the bandwidth of the reservoir is much larger
than the linewidth of the qubits [thus making �1D and k1D

approximately constants in the frequency interval with the
most important contributions to the integral in Eq. (1)]. If this
approximation is not valid [for instance, for total chain lengths
comparable to or larger than c/(�′ + �1D)], precursors are ex-
pected to appear even at the mirror configuration. The output
field in this regime is

E (t ) = 1

2π

∫ ∞

−∞
t̃ (ω)E0(ω)e−iω(t−zright/c)dω, (A7)

where t̃ (ω) is the transmission coefficient in the non-
Markovian limit. The transmission coefficient takes the form
[50]

t̃ (ω) = 1 − 1

g(zright, zleft, ω)

×
∑

ξ

(g(zright, ω) · vξ (ω))
(
vT

ξ (ω) · g(zleft, ω)
)

�̃ + i�′/2 − λξ (ω)
.

(A8)

Here, g(z, z′, ω) = −[i�1D(ω)/2]eik1D(ω)|z−z′ | with
(g(z, ω)) j = g(z, z j, ω). In the non-Markovian regime,
both the eigenvalues {λξ (ω)} and eigenvectors {vξ (ω)}
of gi j = g(zi, z j, ω) depend on the frequency. Even if the
qubits are in the mirror configuration at resonance [i.e.,
k1D(ω0)d = nπ ], t̃ (ω) will generically have more than one
simple pole, since k1D(ω)d �= nπ for most frequencies, so
gi j will have more than one nonzero eigenvalue. Hence the
contributions from the singularities of t̃ (ω) to the output field
will interfere and produce oscillations.
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