PHYSICAL REVIEW RESEARCH 8§, 013132 (2023)

Continuous similarity transformation for critical phenomena:
Easy-axis antiferromagnetic XXZ model
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We apply continuous similarity transformations (CSTs) to the easy-axis antiferromagnetic XXZ model on
the square lattice. The CST flow equations are truncated in momentum space by the scaling dimension d so
that all contributions with d < 2 are taken into account. The resulting quartic magnon-conserving effective
Hamiltonian is analyzed in the zero-, one-, and two-magnon sector. In this way, a quantitative description of the
ground-state energy, the one-magnon dispersion, and its gap as well as of two-magnon bound states is gained
for anisotropies ranging from the gapped Ising model to the gapless Heisenberg model. We discuss the critical
properties of the gap closing as well as the evolution of the one-magnon roton mininum. The excitation energies
of two-magnon bound states are calculated, and their decay into the two-magnon continuum is determined via

the inverse participation ratio.
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I. INTRODUCTION

The collective behavior of interacting quantum matter has
been an important topic in condensed matter physics as well
as quantum optics over the last decades, since more and more
intriguing facets of quantum systems are discovered giving
rise to unexpected properties of quantum materials and fas-
cinating perspectives in quantum technological applications.
Such quantum behavior manifests itself most prominently
at low temperatures where quantum fluctuations dominate,
and therefore zero-temperature quantum phases and phase
transition with emergent properties are a relevant subject of
current research [1]. Here two-dimensional systems are most
challenging, since, unlike in one dimension, no analytical
or generic numerical solutions are available, and, unlike in
three dimensions, quantum fluctuations are still important. At
the same time two-dimensional correlated quantum systems
are known for exciting physical properties such as high-7;
superconductivity and the fractional quantum Hall effect as
well as highly entangled topological order.

One paradigmatic microscopic model is the antiferromag-
netic spin-% square lattice Heisenberg model, which has been
intensively studied, in particular since it represents the rel-
evant low-energy description of the quantum magnetism in
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the undoped cuprate superconductors [2]. While properties
of the long-range ordered Néel state and the gapless low-
energy magnon excitations are well known [3], a quantitative
understanding of the high-energy part of the one-magnon dis-
persion displaying a characteristic roton minimum as well as
of dynamical correlation functions including important contri-
butions of magnon continua has been achieved only in recent
years [4-8]. In parallel, the latter quantities become more
and more important experimentally due to the continuously
increasing resolution of various spectroscopic techniques such
as inelastic neutron scattering, terahertz spectroscopy, or res-
onant inelastic x-ray scattering.

A quantitative description of the magnon excitation spec-
trum in the Heisenberg model on the square lattice requires a
proper treatment of the magnon-magnon interaction. Techni-
cally, this can be achieved by continuous similarity transfor-
mations (CSTs) using the scaling dimension of operators as
a truncation criterion of the associated flow equations [4,5].
The CST yields an effective Hamiltonian in momentum space
which is block diagonal in the dressed magnon quasiparti-
cles and which allows one to quantitatively access one- and
multimagnon excitation energies. It is a natural next step to
ask whether CSTs can be applied successfully when mod-
ifying the model away from the gapless Heisenberg point.
The easy-axis antiferromagnetic XXZ model on the square
lattice represents one such modification which tunes contin-
uously from the isotropic Heisenberg model to the classical
Ising model with local and gapped magnon excitations. The
magnon excitation spectrum of the XXZ model has been
investigated by several means, in particular with high-order
series expansions (SEs) [9—11], diagrammatic spin wave the-
ory [12,13], density matrix renormalization group (DMRG)
[7], and quantum Monte Carlo (QMC) simulations [14,15].
Apart from the gap closing transition, a notable feature is
the appearance of two-magnon bound states in large parts
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of the phase diagram, which are not present at the Heisen-
berg point where there is only a resonance of the Higgs-like
amplitude mode within the magnon continuum [5,16]. Inter-
estingly, in coupled XXZ spin ladder compounds the finite
easy-axis spin anisotropy has led to the experimental discov-
ery of the Higgs amplitude mode near a quantum critical point
[17,18].

This paper is structured as follows. In Sec. II we describe
the relevant properties of the easy-axis XXZ model on the
square lattice. A description of the CST as well as of technical
aspects is provided in Sec. III; this section can be skipped by
those who want to focus on the results. Results for the ground-
state energy, the one-magnon dispersion, and the two-magnon
sector are presented and discussed in Sec. IV. We conclude
our study in Sec. V.

II. MODEL

We study the antiferromagnetic easy-axis XXZ model on
the square lattice as a prototypical extension of the isotropic
Heisenberg model. Here we set the lattice constant a to unity.
The anisotropy induces a finite energy gap which vanishes in
the isotropic limit where the Goldstone theorem applies [3].
Hence, we can study how the gap closes upon approaching the
isotropic point and whether binding effects occur. To establish
a deeper understanding of the performance and the applica-
bility of continuous basis transformations [4,5] for vanishing
energy gaps we investigate the XXZ model with easy-axis
anisotropies from the Ising limit to the isotropic Heisenberg
limit. The Hamiltonian reads

H= JZ [S:8% + (8753 4 878%)]. (1)

where J > 0 is the exchange coupling between spins on site
i, (i, j) represents the sum over pairs of nearest neighbors on
the square lattice where each bond is counted once. The spin
anisotropy is introduced by A € [0, 1] with the z axis being
the easy axis. For A = 0 the XXZ model reduces to the Ising
model, which is exactly solvable [19]. It displays a long-range
ordered ground state, a gapped, completely flat dispersion and
a two-particle sector with four nearest-neighbor bound states
per site in one sublattice. The Ising model is a frequently
used starting point for perturbative treatments of Heisenberg
and XXZ models; see, for instance, Refs. [10,11,20]. This
Ising phase continues adiabatically, i.e., without a quantum
phase transition, up to A = 1. At this point the symmetry of
Eq. (1) changes from Z, x U(1) to SU(2) of all spin rota-
tions. Here, at A = 1, the XXZ model becomes the isotropic
Heisenberg model still displaying long-range magnetic order
which breaks its continuous symmetry spontaneously so that
the Goldstone theorem implies the existence of gapless ele-
mentary excitations, the magnons [3]. Due to the absence of
an energy gap, multimagnon continua exist starting right at
the energies of single magnons extending to higher energies.
No bound states are known at the isotropic point, but the
attractive interaction between magnons leads to considerable
shift of spectral weight to lower energies [4,5]. We focus on
the following physical quantities.

A. Ground-state energy

The ground state in the Ising limit (A = 0) is precisely the
Néel state with a ground-state energy per site e = —J/2 that
spontaneously breaks the discrete Z, symmetry. The other
limiting case is A = 1 where the ground state is the one of
the isotropic Heisenberg model. In the thermodynamics limit,
it spontaneously breaks the SU(2) symmetry. The ground-
state energy per site obtained from QMC takes the value
eMC = _0.669437(5)J [14]. This value serves as a first test
bed for our approach.

B. Dispersion @(k) and single-particle gap A

For A = 0 the dispersion is completely flat w(k) = 2J be-
cause the elementary excitations, spin flips, are completely
immobile. For A > 0 more and more features emerge. In
the magnetic Brillouin zone (MBZ), the dispersion dis-
plays a minimum at k = (0, 0) which defines the spin gap
A = w(k =0). It closes at the isotropic Heisenberg point
A =1 according to Goldstone’s theorem. The closure of the
spin gap follows a square-root power law in spin wave the-
ory [10] although series expansions would be consistent for
slightly higher exponents as well [9]. Additionally, the disper-
sion along the line from k = (7, 0) to k = (%, %) in the Bril-
louin zone develops a distinct local minimum at k = (i, 0),
called the roton minimum, and the global maximum at
k = (%, 7). The roton minimum occurs only in third-order
spin wave theory [21]. It is understood to be due to magnon-
magnon interactions [4,5] and due to a peculiar cancellation
for motion along the diagonals [7]. We will analyze the spin
gap A, roton minimum, and dispersion maximum in depen-
dence on the anisotropy A € [0, 1] with a special focus on the
critical behavior of A for A — 1.

C. Two-particle sector

The eigenstates which are built from two elementary
excitations, i.e., two magnons, are particularly interesting
because they reflect the degree of magnon-magnon interac-
tion. For strong interaction relative to the kinetic energy of
the magnons, bound states occur in the gapped phase. The
two-particle spectrum of the Ising model features degenerate
bound states at 3J stemming from adjacent pairs of spin flips.
All other states of two magnons have energy 4/ and are thus
highly degenerate. For finite A, these states evolve into energy
continua of scattering states. The four bound states exist also
for finite A, but merge with the continuum for values A close
to but smaller than one [11,13,22] consistent with quantum
Monte Carlo simulations of coupled XXZ spin ladders [18].
We track these bound states for all A and determine at which
values of A the bound states vanish in the two-magnon contin-
uum by analyzing the locality of bound states with the help of
the inverse participation ratio (IPR) [23,24].

III. METHODS AND TECHNIQUES

Here we recall the fundamental idea of continuous basis
transformations in general and the continuous similarity trans-
formation (CST) in particular, which we employ here. Further
methodological aspects are also recapitulated such as the self-
consistent mean-field approach to obtain a good starting point
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for the CST and the IPR as a measure of locality. Technical
aspects such as the discretization of the magnetic Bril-
louin zone (MBZ) and various extrapolations are addressed
as well.

A. Continuous similarity transformation (CST)

We use the CST method in momentum space as introduced
in Refs. [4,5]. As in the flow equation approach [25-27],
we introduce an auxiliary flow variable ¢ that parametrizes
a continuous similarity transformation from H(¢{ = 0) = H,
to an effective Hamiltonian H(¢ = 00) = Hegr. The flow is
governed by the flow equation 3, H(€) = [n(£), H(l)], where
the generator n(¢) determines the course of the flow and its
end point, the fixed point. We use the quasiparticle conserv-
ing generator n;; = (gi; — q;j;)hi; [26,28,29], where g;; are
the eigenvalues of the operator O counting the number of
quasiparticles, here magnons, present in the system. Then the
final effective Hamiltonian H.x has a block diagonal form,
where the subspace on which each block acts has a given
number of quasiparticles. Subspaces with different numbers
of magnons do not influence each other; they are disentangled.
The coefficient in the zero-magnon block is the ground-state
energy, the one-magnon block contains the dispersion, and
the two-magnon energies are obtained by diagonalizing the
two-magnon block.

Computing [n(€), H(£)] for the flow equation generally
yields an infinite number of terms which cannot be handled
numerically. Therefore, one has to truncate the flow equa-
tions in a systematic and controlled way. We follow here the
idea to use the scaling dimension as truncation criterion. The
higher this dimension, the less important are the correspond-
ing terms for the physics at low energies. For the sine-Gordon
model, the operator product expansion implements this idea
and allows one to systematically truncate the flow according
to Wegner’s generator [30,31]. Recently the truncation ac-
cording to scaling dimension justified truncating the flow to
the bilinear and quadrilinear terms in a bosonic Dyson-Maleev
representation [32,33] of the spins [4,5]. At the isotropic
point A = 1, the dispersion encoded in the bilinear terms has
dimension 1, while the quadrilinear terms have dimension 2
for essentially constant prefactors. The neglected hexalinear
terms would have dimension 4. Here we focus on the gapped
spectrum of the anisotropic easy axis so that the dimension of
the bilinear dispersion is 0. Hence the same truncation remains
justified, and we do not change it because the limit A — 1
will be captured as well. Note that the scaling dimension
can be computed for any operator in second quantization and
depends only on the dimension, the number of creation, and
annihilation operators as well as the scaling property of the
coefficient [5]. Hence, this truncation can also be applied to
trilinear terms for noncollinear Heisenberg antiferromagnets,
e.g., on the triangular lattice [34]. Eventually, the flow equa-
tions are solved numerically for a discretized MBZ. Details of
the numerical methods are presented in Secs. III D, IITE, and
III G. We will see that the results for the dispersion and the
energy gap in Sec. IV C strongly corroborate our approach.
In addition, we discern and discuss deviations from exact
series results [11,13] for the energies of the bound states; see
Sec. IVD.
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FIG. 1. Magnetic Brillouin zone (MBZ) with different kinds of
discretizing mesh. In panel (a) important points such as k = (0, 0)
are sampled directly; this kind of mesh is denoted by N,. For Ny,
the calculations for A < 1 or the two-magnon sector do not require
additional interpolations. But at k£ = (0, 0) divergences in the flow
occur for A < 1. They can be avoided by a mesh of the type shown in
panel (b) for odd L; this mesh is denoted by Ny. We use it especially
for the analysis of the critical behavior of the spin gap. Due to the
point group symmetries only lattice sites in the marked blue area
need to be taken into account.

B. Self-consistent mean-field approach

Starting truncated transformations from spin representa-
tions in real space has turned out to be difficult and prone to
large truncation errors [35]. Hence, we use the self-consistent
mean-field solution in momentum space as initial Hamiltonian
even though a variation of this solution can sometimes per-
form better [36]. The crucial advantage of the self-consistent
mean-field approach is that it captures the Goldstone bosons
of the isotropic Heisenberg model. To be self-contained we
sketch the necessary analytical steps applied to Hamiltonian
(1). A detailed derivation with intermediate results is given in
Appendix.

The ground state for 0 < A < 1 displays long-range Néel
order. Thus, we choose the same classical Néel state with
alternating spin-up and spin-down on sublattices A and B,
respectively, as the reference state for all . We introduce
bosonic degrees of freedom that represent deviations from
this state by the non-Hermitian Dyson-Maleev representation
[32,33]. Then we perform a standard mean-field decoupling
[37] based on Wick’s theorem in real space. A Fourier trans-
formation and a subsequent Bogoliubov transformation to the
bosonic operators &’ and Bi diagonalize the Hamiltonian
on the bilinear level where the o bosons refer to the A sub-
lattice and the 8 bosons to the B sublattice. The mean-field
Hamiltonian reads

H=E+Y alCaje:+: BB )+To+W. 2
k

The wave vectors k are taken from the MBZ depicted in
Fig. 1. The colons : ... : indicate normal ordered operators
with respect to the mean-field ground state. The exact expres-
sions of the ground-state energy Ej, the dispersion wq(k), and
the two-particle interactions V, are given in Appendix. The
off-diagonal bilinear part 'y is zero after the self-consistent
solution of the mean-field decoupling.
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After the mean-field decoupling and the CST flow the
effective Hamiltonian is
Her =E+ Y o®)ajo, :+: BB D+V ()
k

with the dispersion w(k) of the quasiparticles in the new basis
and the quasiparticle conserving interaction term ).

C. Inverse participation ratio

In Sec. IV D we determine for each of the four bound states
at which value of the anisotropy A it enters the two-magnon
continuum, i.e., where it ceases to exist. This merging into
a continuum generically occurs slowly in the sense that the
slope of the lower band edge of the continuum and of the
energy of the bound state are the same [38—40]. Hence, the
parameters where the bound state ceases to exist are extremely
difficult to determine numerically. Therefore, we use another
criterion, namely, the locality of the bound statein its relative
coordinate. A true bound state is local in the sense that it has
a finite extension. If the extension is given by the system size
no binding occurs anymore. A good measure of the locality of
a state is the inverse participation ratio (IPR) [23,24]

=Y 1wt =>"1p(rP )

r

with density p(r) at site r of the normalized wave function
W(r). For an extended state the IPR I scales proportional to
1/L* = 1/N if L is the number of sites in one direction in
two dimensions. This is easily seen in the limiting case of
p(r) = 1/N where I = 1/N holds. The other limiting case is
a completely local state with p(0) = 1 and zero elsewhere so
that / = 1 holds. Hence one has to determine whether the IPR
vanishes o1 /N for N — oo or stays finite in this limit.

D. Flow equation and residual off-diagonality

The flow equations are a set of ordinary differential
equations (ODEs) for the coefficients of the contributing
monomials of operators which depend on wave vectors. We
solve these ODEs numerically for a finite lattice with a stan-
dard Dormand-Prince method of order 5 as implemented by
the odeint project [41] up to linear lattice size L = 22. In
order to avoid the accumulation of numerical errors and to
enhance the performance we use the point group symmetries
in the MBZ as depicted in Fig. 1. In addition, we use an
unambiguous symmetrized representation of the coefficients.
We stop the flow when the residual off-diagonality (ROD),
i.e., the square root of the sum over all squared entries of the
generator 7 [29], has dropped to values below 1076J.

E. Discretization of the magnetic Brillouin zone

One has to pay special attention to the wave vector
k = (0,0) at A < 1. The gapless mean-field solution (2) at the
isotropic point displays diverging coefficients whenever one
of the wave vectors in the quadrilinear monomials vanishes;
see, for instance, Ref. [36]. Hence, this solution cannot be
used for a discretized MBZ. Note that these divergences are
integrable in the thermodynamic limit where the wave vector
dependence is continuous. So they do not constitute a phys-
ical, but rather a numerical, issue. For A — 1 and especially
for small L we encountered signs of problematic divergences

in form of a nonconverging flow. One way to circumvent
this problem consists in using a reciprocal lattice where
k = (0, 0) does not occur, for instance, by using odd values of
L with antiperiodic boundary conditions as illustrated in the
right panel of Fig. 1. In real space, the antiperiodic boundary
conditions are achieved by giving spin flip terms across the
boundary of the system’s cluster a minus sign. In this case, the
cluster is a rhombus with side length of +/2L. In the following,
we denote lattice discretizations sampling k = (0, 0) by Ny
and discretizations not sampling k = (0, 0) by Ny. We also
implemented the approach used by Powalski ef al. [4,5] where
coefficients are set to zero, for which at least one wave vector
vanishes, i.e., they are neglected. The results extrapolated
to L — oo agree well with the results presented below, but
they show a significantly slower convergence in 1/L. For this
reason we do not consider them any further.

Since the approach Ny excludes the wave vector at which
the spin gap A = w(k = (0, 0)) can be read off by construc-
tion, the gap value must be retrieved otherwise. To this end,
we adapt the fit

M
wk)? = ZAm cos(mk) 5)

m=0

used in Ref. [42] for a one-dimensional model to our
two-dimensional case. We fit the discrete dispersion values
obtained by CST along the line from (0,0) to (;r, 0) in order
to determine the coefficients A,,. A very fast convergence of
these coefficients is found for increasing M so that we can
interpolate the dispersion very reliably in the whole Ng.

F. Determination of correlation lengths

As mentioned in Sec. III B, we perform the mean-field
decoupling to determine the initial conditions in the ther-
modynamic limit, while we solve the flow equations for a
discretized lattice as discussed in the previous section. Hence,
our results combine elements of calculations in the thermo-
dynamic limit with calculations on a finite lattice. In order
to judge if the discretization in the MBZ induces finite-size
effects, we calculate the ground-state correlation length §.
Whenever it is significantly larger than the linear length scale
of the system, finite-size effects are likely to occur. We expect
the correlation length £ to be the same in all directions for
& > a where a is the lattice constant. For A — 1, & diverges.
Thus, it is sufficient to perform the same one-dimensional fit
for a single direction as in Sec. IIIE, Eq. (5), and calculate &
from the one-magnon dispersion  via

w(ik) =0 with Re(x)=1/& 6)
adapted from Ref. [42].

G. Extrapolation in the linear system size L

For all results shown an extrapolation in 1/L — 0 is per-
formed. For small values of A up to A =~ 0.8, the computed
values do not show any relevant finite-size effects. There is
no discernible difference between the two kinds of mesh Ny
and Np. Hence, all extrapolating schemes yield essentially the
same result; see Fig. 2(a). For » > 0.8, we observe two trends
for increasing L; see Figs. 2(b) and 2(c). First, the values
for Ny decrease monotonically while those for Ny increase
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FIG. 2. Generic extrapolations in 1/L for A = 0.7, A = 0.96,
and A = 0.995. For small A, calculations on the meshes Ny and N,
converge; see panel (a). At higher values of A [see panels (b) and
(c)], values from Ny are monotonically increasing, while values from
Ny are monotonically decreasing. For the whole range, a monotonic
quadratic fit for the Ny data is used to determine the values for
L — oo. The error estimate depicted in yellow results from the

difference between the values from Ny and N, for the highest reached
value of L.

monotonically. Second, the values from the mesh Ny show
an almost linear relation as a function of 1/L for A < 1. The
values we provide as the estimate of the extrapolation are the
results of monotonic quadratic fits

x(1/L) = a + b(1/L + ¢)* (7

for the mesh Ny with ¢ > 0, evaluated at 1/L = 0. The error
estimate results from the difference between the values from
the meshes Ny and Ny; see Fig. 2. For the correlation length
& a linear extrapolation in 1/L was used; the error estimate
remains the same.

The locality of bound states is measured by the IPR given
in Eq. (4). This quantity is extrapolated linearly in 1 /N, which
works remarkably well yielding positive values for bound
states and values in proximity of zero otherwise.

IV. RESULTS

A. Convergence

Generally, flow-equation approaches based on the
quasiparticle-conserving generator transform the original
Hamiltonian to a block-diagonal form, where each block
describes the action of the effective Hamiltonian on the
subspace of a given, constant number of quasiparticles, here
magnons, determined by Q. If, however, this quasiparticle
picture breaks down, for example, by a second-order phase

B o S S e,
—— SE(014)
~ * QMC
~
O _0.6F
1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 3. Ground-state energy per site e as a function of A. Red
crosses are CST data, which are compared to results of a series
expansion(SE) [9] drawn as blue line; the green star marks the QMC
results for the isotropic Heisenberg model [14]. As expected from
second-order perturbation theory the ground-state energy displays a
monotonically decreasing behavior with negative curvature.

transition or by level crossings of modes with a different
number of quasiparticles, this separation into blocks is
not possible anymore. As a consequence, the flow does
not converge, and no description in terms of the chosen
quasiparticles is obtained. This feature makes sense because
it reflects that the physics can no longer be captured in
terms of the particular choice of quasiparticles. Conversely,
if the flow converges, this indicates that the underlying
quasiparticles picture does not break down and that there are
no interblock level crossings in the chosen truncation scheme.
Hence, the description in terms of the chosen quasiparticles
reflects the underlying physics correctly.

The flow of the CST calculations with the truncation based
on scaling dimension converges for both types of meshes Ny
and Ny for all A. Only for A > 0.99925 and the mesh Ny
including k = (0, 0) do we find a divergent flow, which can
be traced back to numerical artifacts; see Sec. I[I1 E. In general,
an analysis of the ground-state energy, the magnon dispersion,
and bound states in the two-magnon block is feasible and well
founded.

B. Ground-state energy

The first quantity of the XXZ model we inspect is the
ground-state energy per site e(A) = E(X)/ (2L%). Tt is shown
in Fig. 3 as computed by CST, series expansion up to or-
der 14 in A [9], and QMC calculations [14]. Starting from
the classical Néel state in the Ising limit, increasing A in-
duces more and more quantum fluctuations resulting in a
ground-state energy which continuously decreases. The re-
sults of the CST are identical to the series expansion results
within the line width for the whole A range. For A = 1, the
CST result (e = —0.66938J) agrees well with QMC cal-
culations (e = —0.669436(7)J), and the extrapolated series
expansion results (¢ = 0.6693(1)J). We recall, however, that
the self-consistent spin-wave theory at A = 1 already yields
e = —0.670421 J, fairly close to the above values in spite of
its mean-field character. This shows that the ground-state en-
ergy is a very robust quantity, accessible by many approaches.
This is different for the dispersion, which we consider next.

C. Dispersion

The results of the CST for the dispersion along a high-
symmetry path through the MBZ for various A and L = 16
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FIG. 4. CST result of the dispersion w(k) for Ny and L = 16
for various A. For A = 0, the XXZ model is the Ising model with
a flat dispersion, while it is the antiferromagnetic Heisenberg model
for A = 1 with a gapless spectrum and a distinct roton minimum at
k = (,0)[4,7]. For0 < A < 1 the CST results interpolate smoothly
between these two limits.

are shown in Fig. 4. At A = 0, the XXZ model is reduced to
the antiferromagnetic Ising model with a completely flat dis-
persion w(k) = 2J. For 1 = 1, the XXZ model coincides with
the antiferromagnetic Heisenberg model, which was already
studied using the CST method in Refs. [4,5]. At this isotropic
point, the dispersion features gapless Goldstone bosons and a
distinct minimum at k = (77, 0), called the roton minimum.
For 0 < A < 1, a continuous evolution between these two
limits takes place. Spin gap and roton minimum are discussed
below.

1. Spin gap

Figure 5 shows the extrapolated CST results for the one-
magnon gap A compared with previous results. For small
A, we compare to high-order series expansion calculation
[10,11] and to data obtained by the coupled cluster method
(CCM) [43]. For large A < 1, the asymptotic power law in the
critical region derived from series expansion results [10] and
spin-wave theory [12] is presented. The CST results interpo-
late smoothly between these two limits, capturing both limits
quantitatively. The inset in Fig. 5 shows a double logarithmic
plot of the gap as a function of 1 — A? in the critical region,
i.e., for A — 1. The last data point for Ny and L =22 is
A = 0.99925; for higher values no reliable convergence was
achieved. We attribute this to the fact that for values of A
even closer to the isotropic point the cluster size L is not
large enough to capture the relevant physics; see also Fig. 6 in
Sec. IV C 2. Our error estimate (see also inset of Fig. 5) grows
for larger values of A implying larger correlation lengths in the
vicinity of the isotropic point. For a quantitative analysis, we
fit

A~ 1) =c(1 — A7, 8)

which is shown in the inset. We obtain ¢ = 1.30(2) and
vz = 0.498(2), which agrees within 5% with the value
¢ = 1.265(2) obtained from series expansion [10] if the

T — T T T T T
2.00 i <o CST
F ——SEO(14) ]
1.75F <k CCM 7
[ Asymp. SWT ]
1.50 F Aysmp. SE 3
Losf ]
~ i [ — it ]
~ 2 Asymp. SWT 3 E
< 1.00 [ Aysmp. SE 1
[ -1 - ]
0.75F'" : E
0.50 F b
:_ 1 AN |
0.25 g 05 1o 02
0.00 L L— L L
0.0 0.2 0.4 0.6 0.8
A

FIG. 5. CST results for the one-magnon gap A = w(k = 0) of
the XXZ model for 0 < A < 1 compared to third-order spin wave
theory (SWT) [12,21], data from coupled cluster method (CCM)
[43], results from series expansion (SE) about the Ising limit [10,11],
and the critical power law extracted from SE [10]. A quantitative
comparison of the critical behavior is shown in the inset underlining
very good agreement.

critical exponent vz = 1/2 was fixed. For a fit with fixed
exponent of vz = 1/2 in our results we see a slight increase to
¢ = 1.313(1), which still agrees within 5% with the literature.
The agreement between all approaches is very good for almost
all values of A. For smaller values of A the various approaches
agree excellently. Only close to the vanishing of the gap does
the CCM data deviate from the other results, which is likely
to be linked to the attainable cluster sizes. The agreement
between the extrapolated series expansion and the CST results
is remarkable since the latter are obtained on a finite lattice of
moderate size L ~ 20 and extrapolated to the thermodynamic

1.0 UL B B BN LA LR |
[ -y CST ]
| Y ﬁ for L = 22 |

0.8 B v -
[ Y ]

06F T — ] -

ANl [ | * 1 Y. ]
04Tk Y*%ﬁ,- 0-05 Y ]

s ] .'QY 1

Al i Y 4

0.2 F[ ] Yo A
[ b———L 1) 00 ]

0.995 1.000 X%'
OO L PR R BT | —

— L L
0.70 075 080 0.85 090 095 1.00
A

FIG. 6. CST results for the ground-state correlation length &
for 0.7 < A < 1. A comparison of the correlation length with the
shortest wrap around +/2L in the largest cluster with L = 22 (dashed
line) is shown.
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FIG. 7. CST results for the roton mininum k = (v, 0) and the
dispersion maximum k = (7 /2, 7w /2) for 0 < A < 1 compared to
data from series expansion (SE) [10], DMRG [7], and QMC [15]. All
methods agree well for dispersion maximum. For the roton mininum,
all methods predict an inflection point for A 2 0.8. The values for the
depth of the roton mode differ slightly.

limit without imposing a certain power law. This finding
corroborates the applicability of CST in momentum space to
describe phase transitions with closing gaps.

2. Correlation length &

Figure 6 shows inverse correlation lengths 1/& along the
used fit axes from (0,0) to (i, 0) for different values A. Note
that we use units 1/a = 1, since the lattice constant a is set
to 1. Additionally, we show a horizontal dashed line for the
relevant length scale of our largest system L = 22, namely,
the shortest occurring wrap-around «/EL, in this case, in a
diagonal direction. In the inset of Fig. 6 a zoom to the domain
A > 0.993 is shown.

For values of A up to 0.995 we find finite correlation
lengths, well below V2L. For A > 0.995, 1/& starts to van-
ish, which is expected since the system at A = 1 is gapless
with infinite correlation length. The error bar for values of
A > 0.9985 crosses the threshold 1/+/2L arising from the
finite system size. Additionally, for the largest achieved value
of A = 0.99925, 1/¢ itself approaches 1/ V2L.

We conclude that for A < 0.995, finite-size effects are not
expected. For A > 0.9985 the finite size of the system might
play a noticeable role. However, £ never exceeds these rele-
vant length scales dramatically. Additionally, the extrapolated
results for closing of the gap are in agreement with the lit-
erature, and the CST results for the Heisenberg model in
Ref. [4,5] performed for L = 16 are consistent with results in
the literature. Hence, it appears that the influence of the finite
size is not severe in the CST approach.

The error estimate from A =0 to A = 0.95 lies below
0.1%, below 1% for A < 0.97, and below 5 % for A < 0.99,
and it is larger than 10 % for A > 0.995.

3. Roton mode

Figure 7 depicts the CST results for both the roton min-
imum and the dispersion maximum as a function of A.

Additionally, results from series expansion [10] and DMRG
[7] are shown. Also, QMC data [15] are available for the
isotropic point. First, we focus on the dispersion maximum
at k = (/2,7 /2) which displays a monotonic increase in
A for CST, the series expansion, and the DMRG data. All
data agree very well. At the isotropic point, similar values are
obtained: CST (2.36972(5) J), series expansion (2.385(1)J),
QMC(2.39J), and DMRG(2.40J).

For the roton minimum, CST, series expansion, and DMRG
show qualitatively similar results: first, the dispersion in-
creases, and for larger A = 0.8 an inflection point occurs.
This inflection point is consistent with the observation in
Refs. [4,5] that the hybridization between the one-magnon
state and the three-magnon scattering states causes the dip due
to level repulsion. This mechanism matters more and more
for higher A when the dispersion and the continuum approach
each other. The numerical values for the roton dip for A = 1
are 2.211(3) J for the CST, 2.18(1)J for series expansion,
2.16J for QMC, and 2.06(1)J for DMRG. Hence, these
values are reasonably close, but further spread than the maxi-
mum values. We assume that the SE and QMC results reflect
the true value best while CST is still a bit too high because
of truncation beyond the quartic monomials. The DMRG data
result from a cylindrical geometry with fixed linear extension
L =10. A comprehensive finite-size scaling therefore could
not been performed. All in all, we conclude that a consistent
description for the high-energy properties of the dispersion
of the XXZ model is reached by CST except for a slight
deviation of about 2% at the roton minimum.

D. Bound states and two-magnon continuum

A particular asset of the systematic basis changes by means
of CST is that bound states can be directly addressed and
computed. The conservation of the particle number, here the
magnon number, is achieved by the basis change. It allows
one to compute the bound states in the two-particle sector for
any center-of-mass momentum K = k| + k, in a given dis-
cretization. Recently, even three-particle bound states could
be addressed in antiferromagnetic spin ladders, which are
induced by three-particle irreducible interactions, i.e., by hex-
atic terms in second quantization [44]. Here we focus on
two-magnon bound states as established perturbatively for not
too large values of A [11,13].

For bound states to be infinitely long lived they may not
decay into scattering states. Hence, their energy may not over-
lap with the corresponding continuum; it should stay below
the lower boundary of the continuum. Here we focus on the
bound states at rest, K = (0, 0), because, generically, the en-
ergetically lowest lying bound states occur at a center-of-mass
momentum of zero. This is confirmed by series expansions
[11,13]. In addition, the strongest binding occurs for zero total
$%, i.e., between an o and a 8 magnon living on the A and
B sublattice, respectively. Again, this is confirmed perturba-
tively.

In order to distinguish the four states and to avoid nu-
merical inaccuracies we exploit the point group symmetry
of rotations R by 90° about any site of the lattice; the
effective Hamiltonian is block-diagonal within each eigen-
subspace of R. Four eigenvalues of R are possible and
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FIG. 8. The upper panel shows the energies of the four magnon-
magnon bound states t; calculated by CST as a function of the
anisotropy A and the corresponding lower edge 2A of the two-
magnon continuum. The inset compares data from truncated CST to
data from pCUT up to terms ocA* [11]. One discerns a certain small
deviation in quadratic order. In the lower panel, the inverse participa-
tion ratio IPR of the four bound states is plotted; only three curves are
shown because the eigenwave functions of the two degenerate bound
states are complex conjugates with the same IPR /. The vertical
dashed lines mark the decay points for the corresponding bound state
determined by a crossing of I with the threshold / = 10~* (horizontal
dashed line).

do occur: £1 and =i. Since the XXZ model is time-
reversal invariant the imaginary eigenvalues are degenerate
and their complex eigenvectors are complex conjugates.
The numerical diagonalization within each eigensubspace of
R yields the energies of the bound states as depicted in
Fig. 8.

Starting in the Ising limit, we find four bound states t;
below the lower edge of the two-magnon continuum. For
increasing XA they are absorbed in the continuum one after
the other before the isotropic Heisenberg model is reached.
We determine the decay point where each bound state merges
with the continuum by computing and extrapolating its IPR as
described in Sec. IIIC and Sec. III G. We recall that a finite
IPR indicates binding while its vanishing indicates delocal-
ization, i.e., the bound state ceases to exist. The results are
displayed in the lower panel of Fig. 8. It is advantageous to
determine the merging into the continuum from the vanishing
of the IPR because this vanishing occurs as a very rapid drop
by many orders of magnitude while the crossing of the binding
energies with the lower continuum edge is an intersection
with small, rigorously even vanishing, angle. We choose a
numerical threshold for the IPR to distinguish between a
bound state and a delocalized state in the continuum and set

itto 1 x 107%; i.e., only for IPR >1 x 10~* do we deduce
binding. This value is the typical value we found for the IPR of
generic states well within the continuum, extrapolated to the
infinite thermodynamic limit N — oo. The absorption points
are marked as dashed vertical lines.

We find that 7(—1) disappears for A &~ 0.565(5), which is
a deviation of ~5% to A ~ 0.5401(1) from the results de-
termined by a perturbative continuous unitary transformation
(pCUT) [11]. The merging of 7(&£i) occurs at A =~ 0.72(1)
in CST; no results were given for these bound states in
Ref. [11]. For the curves for 7(=4i) in the inset we analyzed
the hopping amplitudes given in Ref. [11] to calculate the
series up to order A*. For 7(+1) we find A &~ 0.975(5) with
a deviation of only ~0.6% to the extrapolated pCUT value of
A ~ 0.97. We conclude that for almost all values A € [0, 1] at
least one bound state exists. But even the lowest bound state
7(+1) dives into the continuum very close to the isotropic
Heisenberg model. We note that this finding is very similar
to the decay of bound states in the XXZ model on coupled
two-leg ladders. Here QMC simulations reveal the decay of
the lowest bound state at L & 0.96 for different interladder
couplings [18].

Comparing the CST result with the results from the per-
turbative series near the Ising limit (see inset of Fig. 8), we
discern a sizable deviation in order of A? for all bound states,
in contrast to what we found for the ground-state energy and
the dispersion. These deviations are a consequence of the trun-
cation scheme neglecting hexatic operators. Indeed, one finds
that for a perturbative CST in second order of A in position
space, coefficients for quartic interactions of the type ajai b; b;
are coupled to hexatic terms during the flow. Hence, these
contributions are not considered rigorously in the CST as
implemented in this paper. Therefore, the quantitative analysis
for properties at intermediate values of the anisotropy has to
be taken with a grain of salt. Nevertheless, we observe that
the series expansion and the CST results show very similar
behavior. In particular, the results close to the Heisenberg
point agree very well. Obviously, the benefits of the trun-
cation based on the scaling dimension outweighs the caveat
of not capturing all perturbative terms exactly in the Ising
limit. This observation holds an attractive promise for future
application of the CST combined with a truncation based on
scaling.

V. SUMMARY AND OUTLOOK

We extended the systematic basis change by a continu-
ous similarity transformation as applied to the spin isotropic
Heisenberg model in two dimensions in Refs. [4,5] to the two-
dimensional XXZ model. This model displays the transition
from a spontaneously broken discrete symmetry with finite
energy gap to a spontaneously broken continuous symmetry
with vanishing energy gap. The starting point of our calcula-
tion was the Hamiltonian in self-consistent spin wave theory
based on the Dyson-Maleev representation of the spin opera-
tors. The calculation is performed by numerically integrating
the flow equations in the prefactors of terms in second quan-
tization. To this end, we discretized the magnetic Brillouin
zone in various ways and checked that the results converged
within small error bars. In addition, the proliferation of terms
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was limited by a truncation based on the scaling dimension.
We kept all terms of quadratic and quartic form, but neglected
hexatic and higher terms after normal ordering them with
respect to the magnon vacuum.

We verified that this approach can be applied to the
paradigmatic transition of the two-dimensional XXZ model
including the vanishing of the spin gap. The ground-state
energy and the one-magnon dispersion as well as the two-
magnon interaction are derived and computed. The dispersion
displays the expected appearance of the roton minimum
and agrees well with all available previous results. We suc-
cessfully computed the two-magnon bound states at zero
momentum of the center of mass in the longitudinal channel,
i.e., for a vanishing total $* component. Four bound states are
identified of which two with complex eigenwave functions
are degenerate. The latter states have not been addressed so
far. Upon approaching the isotropic Heisenberg model they
merge successively with the two-magnon continuum. The
lowest bound state is rotationally invariant in space, i.e., with
respect to rotations by 90°, and vanishes only very close to the
isotropic point in nice quantitative agreement with previous
perturbative results [11] within less than 1%. This agreement
is even more remarkable because the energies of the bound
states show a larger deviation on the order of 5% to the pertur-
bative results for intermediate values of A. We trace this effect
back to the truncations at beyond quartic level. The degree of
binding and the delocalization upon diving into the continuum
are determined reliably by the inverse participation ratio.

The above sketched achievements hold the promise that the
systematic CST with truncation based on the scaling argument
can be applied to many more models which to date have not
been studied in great detail. We emphasize that the closing
and opening of gaps can be captured as well as the occur-
rence of binding phenomena. Among the models suggesting
themselves is the bilayer model of two stacked square lattices,
which displays a transition from the long-range ordered phase
with magnons to triplons on the interlayer bonds upon increas-
ing interlayer coupling [45,46]. The frustrated J;-J, model on
the square lattice is another intriguing candidate to be inves-
tigated, with its two limits displaying long-range order [8,47—
51]. Antiferromagnets displaying noncollinear long-range or-
der represent another wide field of application.

The CST data used in Figs. 3 and 5-8 are available [52].
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APPENDIX: MEAN-FIELD DECOUPLING
IN REAL SPACE

Here we provide the explicit expressions for each step of
the derivation of the starting point of the CST, i.e., for de-

termining the self-consistent mean-field solution. Apart from
the spin anisotropy A, the calculations are analogous to the
ones in Refs. [4,5,36]. The Hamiltonian in Dyson-Maleev
representation reads

H=J Z |:_S2 +S(aja; + bj+abi+s +2a;b; 5+ )‘ajbztra)
l'EFA,(S

Ay Aey g
- Eai a;a;b, , — Eai by sbiisbiys |-
(AD)

where we switched the sum over all adjacent pairs(i, j) in
Eq. (1) to a sum over all sites in sublattice A, i.e., I'4, and
their nearest neighbors on the square lattice reached via the
distances §. The first line represents the classical energy, the
second the bilinear one-magnon terms, and the last line the
quadrilinear two-magnon terms. Next, we perform the stan-
dard mean-field decoupling [37] in real space,

bg()by) — bg()by) . +<bl('l)by))0a (A2)
where : ... : indicates normal-ordered operators and (...)o
are the expectation values in the mean-field ground state. For
quadrilinear terms we apply the corresponding relations based
on Wick’s theorem.

To make the resulting expression more concise, we use
exact relations and conservation laws. First, the Hamiltonain
is invariant under the exchange of the A and B sublattice.
For the Dyson-Maleev bosons this translates into a complex
conjugation of the prefactors and swapping aj' < b, s and

a; < bl+ s- We define the expectation values

¥

n = (aja;)o = (b ;b 5)o. (A3a)
A = {aibiys)o = (al b}, 5)o. (A3b)

which are determined self-consistently below.
Second, the Hamiltonian (1) conserves the total spin com-
ponent

Sor = Z (SF +8i5) = Z(a?ai - bj+5bi+5)' (A4)
iEFA iGFA
From this conservation we can infer
(aiai)o = (bf,sbl,s)0 = (a;bl,5)o = (a[b;, 5)o = 0. (AS)

In total, the mean-field decoupled Hamiltonian reads
H=J) [—52 +28n 4 2SAA — n* — A — 2anA
iEFA,5
P A .
+ (S —n—AA)Caja; :+:Db b s0)
+ (AS —an— A abis : + 1 ajbl, ;)

1
. — :
—ta;a;bi b s

- . & *bT bT b . (A6)
5 444 Pips - 5 AilinsVirsPigs - |-

The first line is the zero-magnon part, the second and third
lines the one-magnon part, and the last two lines comprise
the two-magnon terms. We stress that no approximation is
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performed. Next, we apply a Fourier transformation yielding

H = J[N(—S2 +28n 4+ 2SAA — n* — A = 2anA)

+ > AGaja i+ bib o)

keMBZ
+ Z Bi(CGagb_y . +: a;bik )

keMBZ

Z PN
-5 > 8(1-243—4)y(3—4): aja,b}b, :

1,2,3,4cMBZ

AZ

— N D> 8(1-2-3-4)y (@) : ajayayb, :
1,2,3,4cMBZ

A -
-5 Y 8(14+2+43—4)y(4—2-3) : a}b}bib, ]
1,2,3,4eMBZ

(A7)
where we use the shorthand j for k ;. The Kronecker § symbols
hold modulo reciprocal lattice vectors. If a term describes an
Umklapp process, i.e., a reciprocal lattice vector G is needed
to fulfill momentum conservation, the Kronecker § takes the
value y(G) = %1. In the above equation, we used the defini-
tions

yk) = 1 D e = %[cos(kx) +cos(k,)] (A8a)

z
)

Ax = Z(S —n — AA) (A8b)

Bi = Zy (k)(AS — An — A), (A8c)

where we introduced the coordination number Z = 4. Next,
we diagonalize the bilinear part in Eq. (A8) by the Bogoliubov
transformation

aj = Lo +mpB_,, (A9a)
by = mo_, + LBy (A9b)
with
—m=1. (A10)
Explicitly, we parametrize as in Refs. [4,5,36]
1 (B ’ (Alla)
= — —_— , a
Mk Ay

1 —

I = Hic. (A11b)
2

1+
mi = —sgn(y (), | -4 = —sen(y (o).
Mk
(Allc)
1
= | M (A11d)
1 — pk

With these steps we rewrite the Hamiltonian (2) in the form
H=Eo+ Y o) o +: BB )+To+ W
) (A12)
with

Eg = JN(=S%+28Sn+ 2SAA — n®> — A?> —2xanA),

(A13a)
wo(k) = Ay ik, (A13b)
To= Y [2Auhm + Bi(m +17)]
keMBZ
X GoB+iapl, 0. (Al3c)

The term V) comprises all the quadrilinear two-magnon
terms. We do not provide it here explicitly because is already
published, for instance, in Ref. [36], except that we denote the
normal ordering of the quadrilinear terms by : ... :, and add
a factor A in front of y with one or a sum of three momenta
as arguments. For example the term x;y (1) becomes Ax;y (1),
the term xyx3x4y (1 — 3 — 4) becomes Axjx3xsy (1 —3 —4),
while x;x3y (1 — 3) stays x1x3y (1 — 3). This can be directly
traced back to the additional A factors in the quartic part of
Eq. (A8) compared to the Heisenberg model.

In order to retrieve the values of n and A, we ex-
ploit translational invariance and finally perform the Fourier
and Bogoliubov transformation on the right-hand sides of
Egs. (A3), and we evaluate the vacuum expectation value
for the Bogoliubov bosons «j and B to obtain the self-
consistency conditions

1 1
_ T _ 2
n=g Ek (agar)o = N Ek L

! 1
A= 5 Y v @ahio = 1 3y @l (A14b)
k k

(Alda)

They are solved numerically by iteration to convergence
for Ny mesh with L = 30001 sites with a tolerance 10~'3.
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