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Characterizing the performance of heat rectifiers
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A physical system connected to two thermal reservoirs at different temperatures is said to act as a heat
rectifier when it is able to bias the heat current in a given direction, similarly to an electronic diode. We
propose to quantify the performance of a heat rectifier by mapping out the tradeoff between heat currents and
rectification. By optimizing over the system’s parameters, we obtain Pareto fronts, which can be efficiently
computed using general coefficients of performance. This approach naturally highlights the fundamental tradeoff
between heat rectification and conduction, and allows for a meaningful comparison between different devices
for heat rectification. We illustrate the practical relevance of these ideas on three minimal models for spin-boson
nanoscale rectifiers, i.e., systems consisting of one or two interacting qubits coupled to bosonic reservoirs biased
in temperature. Our results demonstrate the superiority of two strongly interacting qubits for heat rectification.
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I. INTRODUCTION

Managing heat flows in nanoscale devices is a fundamen-
tal challenge, notably from the perspective of minimizing
heat dissipation and exploiting heat currents for produc-
ing electrical power [1–4]. A key device in this context
is the heat rectifier, first analyzed at the nanoscale in the
seminal works [5–9]. Similar to an electronic diode, which
features a strong resistance in one direction and a low one
in the opposite direction, a heat rectifier aims at biasing
the flow of heat in a given direction (see also the re-
views [10,11]). Remarkably, heat rectification at the nanoscale
was successfully demonstrated experimentally over the past
decade exploiting different platforms, for example, graphene-
based samples [12], circuit QED setups [13–16], and hybrid
superconducting-normal devices [17,18].

The simplest scenario for discussing heat rectification is a
two-terminal setup (see Fig. 1). A (quantum) system is con-
nected to two thermal reservoirs at different temperatures. An
ideal rectifier would allow for a strong heat flow when biasing
the temperature gradient in one direction, while showing a
vanishingly small heat current when biasing the temperatures
in the opposite direction. Intuitively, the device must feature
a form of asymmetry in order to operate as a heat rectifier.
More formally, it was shown that a left-right asymmetry is
necessary, as well as nonlinearities in the energy spectrum
of the device [2,3,5–9,19–22]. For example, considering a
setup with two bosonic thermal reservoirs, a simple two-level
system (qubit) can act as a rectifier, while a harmonic os-
cillator cannot [8,23]. For spin (qubit) chains, the simplest
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way to break left-right symmetry is to consider asymmetric
couplings between the system and the left and right reservoirs.
Nonlinearities in the spectrum can be induced in qubit chains
by means of energy detuning between the constituents of
the chain [20,24–32] and/or with nonhomogeneous interac-
tion strengths within the chain that can also involve strong
coupling [5,30,33–40]. This research direction has triggered
numerous works in the past years, analyzing platform-specific
conditions for achieving heat rectification, for instance in
classical and quantum lattices [5,6,22,23,36,41–43], investi-
gating the role of quantum interferences, quantum coherence
and entanglement [44–48], exploiting nonlinear quantum cir-
cuits [8,9,29,32,44,49–53], semiconducting devices [54,55],
and superconducting structures [56–61].

In order to characterize the performance of a heat recti-
fier, the standard approach involves defining a rectification
factor (see, for instance, Refs. [8,9,11,26,62,63]). While
this quantity captures the asymmetry between the two heat
currents, it provides in general no information about their
magnitudes. For example, it can be the case that a device
achieves its maximal rectification factor in the limit of both
currents being vanishingly small, as illustrated in Fig. 1
with device 1. Clearly, such a regime serves no purpose
from a practical perspective. More generally, there appears
to be an unavoidable tradeoff between heat conduction and
rectification in many nanoscale devices (see, for example,
Refs. [25,28,29,40,54,62], and [17] for an experiment), which
is reminiscent of the power-efficiency tradeoff in heat en-
gines [10]. Clearly, the efficiency or optimal operation of a
heat rectifier lacks meaning when characterized by the rectifi-
cation factor alone.

In the present work, we investigate the question of charac-
terizing the performance of heat rectifier from an operational
and practical perspective. Specifically, we quantify the perfor-
mance of a given device by mapping out the tradeoff between
heat rectification R and the corresponding largest heat current
J (refer to the next section for precise definitions). This can
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FIG. 1. (Left) A device coupled to two thermal reservoirs at dif-
ferent temperatures operates as a heat rectifier when it is able to bias
the heat current in a given direction, i.e., |Jhc| �= |Jch|. This imbalance
in the heat currents can be quantified via a rectification factor R
defined in Eq. (3). (Right) In order to characterize the performance
of a given device as heat rectifier, we propose to plot the rectification
factor R versus the maximum heat current J = max{|Jch|, |Jhc|}. This
allows for comparing the performance of different devices for heat
rectification. For example, here device 1 can achieve higher rectifi-
cation factors than device 2, but only in the regime of small currents.
If a larger heat current is required, then device 2 is appropriate.

be visualized on a two-dimensional (2D) plot (R vs J). By
optimizing over the system’s parameters, one obtains Pareto
fronts, which characterize the device’s performance as heat
rectifier. We show that these Pareto fronts can be efficiently
computed using a general form of coefficients of performance
(COP). Let us remark that this approach is not specific to heat
flows and heat rectifiers, and is also valid for characterizing
electrical and particle rectifiers.

This method allows one to address a number of questions
that arise naturally in practice. For example, given a minimal
desired heat current J , what is the maximal rectification factor
R that can be achieved for a given device? Importantly, it
also allows for a fair comparison between different devices.
We illustrate the relevance of these ideas using three minimal
models for rectifiers sketched in Fig. 2. These consist of a
system of one or two interacting qubits coupled to bosonic
reservoirs, inspired by the spin-boson rectifier first introduced
in Ref. [8]. Each device can be operated as heat rectifier
by tuning a minimal number of settings, including left-right
asymmetry of the couplings to the reservoirs, energy detuning
of the qubits, and strong interqubit interaction. These models
are paradigmatic for quantum technologies, and the simplest
spin-boson rectifier has recently been realized experimentally
in superconducting platforms [14,15]. Using master equa-
tions, we analyze the heat currents and rectification factors
in the different devices and provide microscopic insights into
the mechanisms involved in heat rectification at the quantum
scale. For each device, we perform numerical optimization
of the COP over the device’s parameters, which allows us to
compare their performances via Pareto fronts. We conclude
with a number of open questions.

II. CHARACTERIZING THE PERFORMANCE
OF A HEAT RECTIFIER

We consider the setup depicted in Fig. 1. A device (system)
is coupled to two thermal reservoirs, referred to as left and

FIG. 2. Three minimal spin-boson devices S = A, B, C made of
one or two interacting qubits, coupled to two thermal reservoirs with
tunable coupling rates characterized by the asymmetry parameter χ .
Temperature gradient can be reversed in order to investigate heat rec-
tification properties of the different devices; left and right reservoirs
can be set to hot and cold temperatures, or vice versa. The three
minimal models for achieving heat rectification are characterized by
their key parameters. A - a single qubit with energy transition ε,
B - two weakly coupled qubits with a possible energy detuning δ,
and C - two strongly coupled qubits characterized by the interqubit
coupling, g.

right, with temperatures TL and TR, respectively. We are inter-
ested in the situation when the two reservoirs are at different
temperatures and the same chemical potentials, which places
the system in a regime out of thermal equilibrium. Our focus
here is on the steady state, in which a constant heat current
flows through the device, from the hot reservoir to the cold
one. The main task is to investigate the difference in heat
currents when biasing the temperatures of the two reservoirs
in one direction or the other. So we are interested in the two
heat currents

Jhc := J (TL = Th, TR = Tc)

Jch := J (TL = Tc, TR = Th). (1)

Note that here heat currents always flow from hot to cold, and
our main concern is therefore the intensity of these currents.
Heat rectification is said to occur whenever these two currents
are unequal in magnitude, i.e.,

|Jhc| �= |Jch|. (2)

In order to capture the magnitude of this effect, it is conven-
tional to introduce a rectification factor defined as [2,11]

R =
∣∣∣∣Jhc + Jch

Jhc − Jch

∣∣∣∣. (3)

When the two currents match exactly in intensity, i.e., Jhc =
−Jch (heat flows from hot to cold, hence the minus sign when
reversing the temperatures), we have that R = 0, and there is
no rectification. When there is an imbalance between the two
heat currents, we have that R > 0 and the device acts as a
rectifier. An ideal rectifier would have R = 1, meaning that
heat can only flow in one direction.

At this point, however, it is crucial to realize that the above
rectification factor R captures only the relative intensity of
the two heat currents, independently of their actual intensities.

013129-2



CHARACTERIZING THE PERFORMANCE OF HEAT … PHYSICAL REVIEW RESEARCH 5, 013129 (2023)

Therefore, two devices can have the same rectification factor
R, while the respective heat currents may have several orders
of magnitude difference. Hence from an operational point
of view, R provides only an incomplete description of the
rectifier, and from a practical perspective, more information
is needed to assess the performance of a device.

This motivates us to present a more general method for
characterizing the performance of a heat rectifier, in order to
properly account for the tradeoff between heat rectification
and conduction. Specifically, we define another quantity of
interest,

J = max{|Jhc|, |Jch|}, (4)

which represents the largest of the two currents. Then, we
investigate on a 2D plot the behavior of the rectification factor
R as a function of the maximum current J . By optimizing over
the relevant parameters of a system, one can obtain so-called
Pareto fronts (see Fig. 1), which then quantify the tradeoff
between heat rectification and conduction. In practice, this
allows one to understand what level of rectification can be
expected, under the constraint that the heat current J is not
below a certain threshold value. Moreover, it allows one to
meaningfully compare the performance of two devices as heat
rectifiers, taking into account difference different regimes of
operation. For example, one device may achieve higher rec-
tification in the regime of low heat currents, while another
device may be preferable when larger currents are required,
as illustrated in Fig. 1.

In order to efficiently compute the Pareto fronts, it is useful
to consider the following family of coefficients of perfor-
mance (COP) {ηα}α , where

ηα = α R + (1 − α) J, (5)

with α ∈ [0, 1] is a parameter that captures the relative weight
attached to rectification R and maximal heat current J . For
given value of α, one can maximize ηα over the system’s
parameters. By repeating the procedure for different values of
α, one can then draw the desired Pareto fronts capturing the
tradeoff between R and J and hence giving a full description
of the performance of the device as heat rectifier.

In the following, we will illustrate the relevance of these
ideas considering three minimal designs for quantum heat
rectifiers. Importantly, this will allow us to compare their
respective performances and draw some general conclusions.
More generally, these methods can of course be readily ap-
plied to any device, allowing for the comparison of very
different types of heat rectifiers. Finally, we note that our
approach can also be readily adapted to the use of alternative
definitions for the rectification factor, which have been used
in the literature (see, for example, Refs, [8,11,28,29,51]).

III. MINIMAL MODELS FOR SPIN-BOSON
HEAT RECTIFIERS

In this work, we consider minimal models for quantum heat
rectifiers, in which a system of one or two qubits is connected
to two thermal reservoirs, as shown in Fig. 2. We consider
three specific models, each of which can achieve heat recti-
fication by tuning different control parameters. Specifically,
we have:

(1) Device A: spin-boson system, featuring a single qubit
with energy gap ε.

(2) Device B: two weakly interacting qubits, detuned in
energy by δ, i.e., with the energy gaps ε and ε + δ.

(3) Device C: two strongly interacting qubits degenerate
in energy ε, with interqubit coupling g.

For each device, one can tune independently the couplings
to the reservoirs, hence breaking the left-right symmetry. De-
noting the couplings γL, γR with the left and right reservoirs,
the asymmetry can be captured by a single parameter χ ∈
[−1, 1], defined by setting γL = γ (1 − χ ) and γR = γ (1 +
χ ). Here γ is a bare coupling rate set by microscopic param-
eters. The regime χ = 0 corresponds to symmetric couplings
γL = γR = γ and χ = ±1 implies that one of the couplings is
zero, i.e., the system is only coupled to a single reservoir and
can no longer function as a rectifier.

We evaluate the heat currents in the stationary state within
a master equation framework. We assume Markovian bosonic
reservoirs and weak coupling between the reservoirs and de-
vices. Hence the evolution equation for the reduced density
operator ρ (i) of the device i = A, B,C can be expressed in
a Lindblad form [64–66] (we set h̄ = kB = 1 throughout the
paper),

ρ̇ (i) = −i[H (i), ρ (i)] +
∑

σ=L,R

∑
k

(
γ +

σ

(
E (i)

k,σ

)
D

[
A(i)

k,σ

]
ρ (i)

+ γ −
σ

(
E (i)

k,σ

)
D

[
A(i)†

k,σ

]
ρ (i)). (6)

The Lindblad evolution equation is composed of a unitary
part through the commutator involving the Hamiltonian H (i)

of device i (i = A, B, C) and a dissipative part due to the
presence of the left and right reservoirs labeled with the index
σ = L, R. Dissipation occurs through the superoperators D
acting onto ρ (i) defined as,

D[X ]ρ := XρX † − 1
2 {X †X, ρ}, (7)

where {·, ·} is the anticommutator. The jump operators A(i)
k,σ

and A(i)†
k,σ

, respectively, describe a single excitation jumping
out of the system or a single excitation jumping in to the
system to and from reservoir σ = L, R at energy Ek . This
energy Ek corresponds to the energy gap between the two
states involved in the jump. The corresponding outgoing and
incoming rates are γ −

σ (E (i)
k ) and γ +

σ (E (i)
k ). They are set by a

bare coupling rate γ introduced above, and by the quantum
statistics of the reservoirs. Importantly, they are evaluated at
the energy transition E (i)

k and at the temperature Tσ of the
reservoir σ = L, R that can take two values depending on
the chosen configuration: Tσ = Th, Tc. As we consider here
exclusively bosonic reservoirs, the rates take the form [66],

γ −
σ

(
E (i)

k

) ≡ γσ

(
1 + nB

(
E (i)

k , Tσ

))
(8)

γ +
σ

(
E (i)

k

) ≡ γσ nB
(
E (i)

k , Tσ

)
,

where nB is the Bose-Einstein distribution nB(E , T ) =
(eE/T − 1)−1. The steady state ρ (i)

ss of device (i) is found by
imposing ρ̇ (i) = 0, and is then used to derive the steady-state
(stationary) heat current in the right reservoir for device i. In
a two-terminal device with charge conservation, it is defined
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as [10,11],

J (i) = Q̇(i)
R − Q̇(i)

L , (9)

with

Q̇(i)
σ = Tr

{
H (i)

∑
k

(
γ +

σ

(
E (i)

k

)
D

[
A(i)

k,σ

]
ρ (i)

ss

+γ −
σ

(
E (i)

k

)
D

[
A(i)†

k,σ

]
ρ (i)

ss

)}
, σ = L, R. (10)

We note that the heat currents as defined above correspond
to the energy currents carried by excitations with an energy
above the chemical potential of each reservoir. Without loss
of generality, we assume in this work the two reservoirs being
biased by a temperature gradient only (not by a voltage bias).
Hence, no work is implied in the following investigation. In
the next sections, we present analytical results for the three
devices A, B, C sketched in Fig. 2. We then illustrate the
unavoidable tradeoff between heat conduction and heat rec-
tification and compare their performance using Pareto fronts
computed by optimizing the family of COPs ηα .

IV. DEVICE A: SINGLE-QUBIT RECTIFIER

Device A consists of a single qubit with energy gap ε

described by the Hamiltonian,

H (A) = ε σ+σ−, (11)

with σ+ and σ− the raising and lowering operators in the
computational basis of the qubit {|1〉 , |0〉}, σ− |1〉 = |0〉 and
σ+ |0〉 = |1〉. The jump operators entering the master equa-
tion Eq. (6) are raising and lowering operators, σ−, σ+
operators, capturing single-particle tunneling between system
and reservoirs. For device A, the computational basis is the
energy eigenbasis and the jump rates are therefore evaluated
at the unique energy scale of the system, ε. The steady state
for this simple system reads,

ρ〈A〉
ss = 1




(

+ 0
0 
−

)
, (12)

where 
± := γ ±
h + γ ±

c and 
 := 
− + 
+.
The current in the right reservoir can be computed us-

ing Eq. (9). In the presence of asymmetric couplings, γL �=
γR, this system can operate as a heat rectifier [8] and has
been recently experimentally realized on a circuit QED plat-
form [15]. The currents Jhc and Jch correspond, respectively,
to the currents with the left and right reservoirs being set to
the temperatures {TL = Th, TR = Tc} and {TL = Tc, TR = Th}.
They can be expressed in the compact form,

J (A)
hc/ch = 2 ε γ (1 − χ2)

1 + � + χ �hc/ch
�hc/ch = ± 2 ε γ (1 − χ2)

1 + � ∓ χ �hc
�hc,

(13)

with the notations

�hc = nB(ε, Th) − nB(ε, Tc), � = nB(ε, Th) + nB(ε, Tc).
(14)

We evidently have for a single qubit characterized by ε only,
that �ch = −�hc, hence the form of the heat currents in

FIG. 3. Heat conduction versus heat rectification for device A
and optimal operation regime according to COP ηα . The gray
lines are parametric plots of the maximum heat current, J (A) =
max{|J (A)

hc |, |J (A)
ch |} and R(A) with 0 � χ � 1 as the varying parameter.

For hot temperatures between 0 < Th/ε � 6, ηα is optimized over
the asymmetry χ for various values of the convex parameter α. The
cold temperature is fixed at Tc/ε = 0.01. These curves represent the
corresponding optimal regimes of operation of the rectifier.

Eq. (13). As expected from quantum transport theory, the cur-
rent is proportional to the difference of the distributions of the
two reservoirs. For reservoirs with equal chemical potentials,
if TL = TR, this difference vanishes for a single qubit and no
transport occurs. One can also note that in absence of left-right
asymmetry, χ = 0, the currents are the same upon exchanging
the temperatures of the two reservoirs, J (A)

hc = J (A)
ch , forbidding

any rectification effect. This is also evidenced by inserting
Eq. (13) into Eq. (3) to obtain the rectification factor for
device A,

R(A) = |χ |
1 + �

�hc. (15)

Again, in the absence of thermal bias �hc = 0, no current and
hence no rectification are present. R(A) depends linearly on the
asymmetry factor χ and the maximum value of R(A) occurs for
maximum asymmetry, χ → ±1, which corresponds to a van-
ishing J (A) = max{J (A)

hc , J (A)
ch }, independently of the coupling

rate γ . We note that this linear dependence reflects the same
physics as discussed in Ref. [8] with a different definition of
the rectification factor. Since �hc/(1 + �) is upper bounded
by 1, Eq. (15) implies that the rectification factor is upper
bounded by |χ |. Such an upper bound was discussed earlier
in Ref. [32] in the context of quantum dots coupled with
fermionic reservoirs.

In Fig. 3, we show the behaviors of R(A) versus J (A) [defined
in Eq. (4)] as a function of the asymmetry parameter χ for
fixed temperatures of the cold reservoir (Tc = 0.01 ε) and dif-
ferent temperatures of the hot reservoir Th [ε] = 0.5, 1, 2, 4, 6
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(gray thin lines). These curves clearly show the tradeoff
between heat conduction and heat rectification. Maximal rec-
tification comes at the cost of zero heat current. Utilizing
the COP ηα , we determine optimal values of χ to favor heat
conduction or heat rectification, by varying the parameter α.
This is shown by the thick colored solid lines corresponding
to different values of α in Eq. (5). For each temperature bias
(Th is varied a Tc being fixed), optimal values of χ are found
numerically. As more weight is put on heat rectification, heat
conduction decreases, and vice versa. For instance, for α =
0.9, rectification is close to its maximum R(A) ∼ 0.8, whereas
heat current remains around 0.4 (max values for heat currents
reach 1.1 in arbitrary units). Again, this reflects the tradeoff
between the two properties present in nanoscale devices.

Finally, it is worth discussing the regime without rec-
tification, i.e., R = 0. In this case, the device behaves
symmetrically in terms of the two heat currents, and we
have that Jhc = −Jch. Here, this requires perfectly symmetri-
cal couplings to the reservoirs, i.e., χ = 0, since the device
is otherwise perfectly symmetrical. Also, we note that this
regime is in fact rather rare, as it requires a precise tuning
of the parameters.

V. DEVICE B: TWO WEAKLY INTERACTING QUBITS

Device B consists of two weakly interacting qubits (left and
right) with bare energies εL and εR. The interaction between
the two qubits is of flip-flop type, with strength set by g (see
Fig. 2). The weak interaction regime is defined by the relative
strengths g versus the bare coupling to the reservoirs γ , g �
γ 
 εL, εR and the total Hamiltonian of device is given by,

H (B) = εLσ
(L)
+ σ

(L)
− + εRσ

(R)
+ σ

(R)
− + g(σ (L)

+ σ
(R)
− + σ

(L)
− σ

(R)
+ ).

(16)

In the weak-interaction regime, it is relevant to work in the
computational basis of the two qubits {|11〉 , |10〉 , |01〉 , |00〉}.
The jump operators in Eq. (6) are local and are given
by [11,67–70],

A(B)
k,σ

= σσ
− A(B)†

k,σ
= σσ

+ . (17)

There is only a single relevant energy per qubit, E (i)
k,L = εL

and E (i)
k,R = εR. The steady-state solution to the corresponding

master equation can be found in Ref. [70]. Note that this
device has also been considered in Ref. [28] in the context
of heat rectification.

When the two qubits are degenerate in energy, εL = εR =
ε, the transition energies involved in the jumps are all equal to
ε and the steady state takes a simple form. The heat currents
are calculated according to Eq. (9), and can be expressed
exactly in terms of the heat current of device A as follows,

J (B),deg
hc/ch = 1

1 + 
L
R/4g2
J (A)

hc/ch. (18)

with 
L := γ +
L + γ −

L and 
R := γ +
R + γ −

R , for convenience.
Furthermore, the rectification factor for this case is exactly
equal to R(A),

R(B),deg = R(A). (19)

Since 1/(1 + 
L
R/4g2) � 1, Eqs. (18) and (19) imply that
the heat conduction ability of device B for energy degenerate
qubits is always worse than one of device A and that heat
rectification properties are the same. Equation (19) can be
intuitively understood as the proportionality factor between
J (B),deg

hc/ch and J (A)
hc/ch is symmetric upon exchanging the tempera-

tures of the left and right reservoirs. Hence, in this particular
case, one can directly see that device A always performs better
than device B with degenerate qubits. Let us remark that this
statement also holds for a chain of N energy-degenerate qubits
as the heat current turns out to be independent of the length of
the chain, see for example, Ref. [11].

The situation is different when the two weakly interacting
qubits of device B are nondegenerate in energy, εL �= εR, i.e.,
when there is an energy detuning δ between both. In the
following, we define the energy of the left qubit to be the
reference εL = ε, and we define the energy of the right qubit
as εR = ε + δ as sketched on Fig. 2. The master equation with
local jump operators remains valid in the presence of detuning
when all energy scales are much smaller than the bare energies
of the qubits. Hence, here we must further impose that δ 

εL, εR. In Ref. [70], the heat current was derived analytically,
and for relatively large detuning was shown to be smaller
in magnitude compared to device B with energy-degenerate
qubits. However, for smaller detuning, when investigating
rectification properties, device B turns out to be advantageous
over device A in some parameter’s range. This is illustrated
in Fig. 4, where we compare the COPs of devices A and B
as functions of the hot temperature Th and detuning δ. The
shaded region corresponds to the parametric region in which
for any value of α in Eq. (5), η(B)

α > η(A)
α , because,

J (B) > J (A), and R(B) > R(A). (20)

In other words, in the shaded region, independently of the
weight put on heat conduction or heat rectification, device B
performs better than device A. In contrast, the dotted region
corresponds to the opposite situation, where device B per-
forms worse than device A for any value of α. In the white
region, the possible advantage of one device over another
depends on the value of α. Depending on the task the device
should achieve the most efficiently (large heat current or large
heat rectification), it is possible to choose optimal parameters
to favor it. We note that any advantage of device B over device
A vanishes in the limit g → 0, since the heat current in device
B vanishes in this limit.

As we did for device A, we mention here the conditions
for R = 0 (i.e., symmetric heat currents Jch = −Jhc) in de-
vice B. When the two qubits are degenerate in energy, then
the symmetric R = 0 regime requires symmetric couplings to
the reservoirs (χ = 0). Interestingly, it is possible to reach the
symmetric R = 0 regime even when the couplings to the reser-
voirs are different (χ �= 0), by taking energy-detuned qubits.
Detuning adds an additional asymmetry, and can be carefully
adjusted to offset the asymmetry due to couplings; the exact
condition can be computed using the results in Ref. [70].

VI. DEVICE C: TWO STRONGLY INTERACTING QUBITS

We now consider two strongly interacting qubits, degen-
erate in energy. This regime is characterized by the energy
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FIG. 4. (a) Region plot in the parameter space of Th and δ, comparing heat currents and rectification factors of device A (single qubit) and
device B (two weakly interacting qubits). Other parameters: ε = 1, g/ε = 0.05, γ /ε = 0.001, χ = 0.4, and Tc/ε = 0.01. (b) Region plot in the
parameter space of Th and g, comparing heat currents and rectification factors of device A (single qubit) and device C (two strongly interacting
qubits). Other parameters: ε = 1, γ /ε = 0.001, χ = 0.4, and Tc/ε = 0.01. The performance of the rectifiers can be unambiguously compared
without using ηα in the dotted and dashed regions, while it importantly, depends on α in the white region.

scales, ε � g � γL, γR and a global master equation has been
shown to capture adequately the dynamics of the device in this
regime [11,67,70]. This global master equation corresponds to
Eq. (6), with jump operators acting onto the energy eigenstates
of the two interacting qubits, {|11〉 , |ε+〉 , |ε−〉 , |00〉} with
respective eigenenergies 2ε, ε± = ε ± g and 0. The transition
rates in Eq. (8) are evaluated at energy transitions between
the energy eigenstates involved in the jumps. We again refer
to Ref. [70] for explicit expressions in this regime. Using the
steady-state solution for the reduced density operator, the heat
current follows from Eq. (9).

J (C)
hc/ch = γ (1 − χ2)

( ±ε− �hc(ε−)

1 + �(ε−) ∓ χ�hc(ε−)

+ ±ε+ �hc(ε+)

1 + �(ε+) ∓ χ�hc(ε+)

)
, (21)

with �hc and � defined earlier by Eqs. (14) and (15), respec-
tively. The energy argument of these functions indicates the
energy transitions at which the Bose-Einstein distributions in
�hc and � should be evaluated.

The above form of the heat current bears a striking sim-
ilarity with the currents of devices A and B as each term
in the sum exhibits the same structure. The sum of two
terms evaluated at ε− and ε+ in Eq. (21) reflects how strong
coupling enriches transport by involving more states (here
energy eigenstates |ε+〉 and |ε−〉). As expected, each term is
proportional to the difference in Bose-Einstein distributions
�hc. Compared to device A, the Bose-Einstein distributions
are now evaluated at the eigenenergies ε±. The rectification
factor R(C) takes the following form,

R(C) =
∣∣∣∣ ε−P (ε−) + ε+P (ε+)

ε−Q(ε−) + ε+Q(ε+)

∣∣∣∣, (22)

with the definitions of terms appearing in the numerator,

P (ε±) := χ �hc(ε±)2

(1 + �(ε±))2 − χ2 �hc(ε±)2
(23)

and in the denominator,

Q(ε±) := �hc(ε±)(1 + �(ε±))

(1 + �(ε±))2 − χ2 �hc(ε±)2
. (24)

As expected, Eq. (22) shows that there is no rectification in
absence of asymmetry in the coupling rates, χ = 0. We note
that this is the only regime in which there in no rectification
shown by the device; the reason is that the device is inter-
nally symmetrical. In contrast, the heat current falls to zero at
maximum asymmetry χ = ±1, see factor 1 − χ2 in Eq. (21),
reflecting again the tradeoff between heat conduction and heat
rectification in this device. Let us note that the tradeoff here is
a bit more subtle than in device A, as R(C) is no longer linear in
χ ; its maximum does not necessarily lie at χ = ±1. In Fig. 4,
we show how the advantage of device C can be discussed
with respect to device A using ηα , similar to the discussion
between devices A and B. Based on the COP ηα , it is possible
to determine two regions in the parameter space where one
device is unambiguously better than the other one. Then, in
the region left blank, which device performs better depends
on the convex parameter α. For a given set of hot temperature
Th and coupling strength g, device C may be operated as a
better heat conductor or a better heat rectifier than device A.

Let us note that the advantage of device C over device A
is expected to decrease when g → 0. This can be understood
analytically. In the limit g → 0, J (C) = J (A) and R(C) = R(A),
i.e., two strongly coupled qubits show the same behavior as
a single qubit. This can be intuitively understood looking at
the spectrum of device C. As g → 0, the eigenstates |ε+〉
and |ε−〉 become degenerate, and one is effectively left with
qubit transitions of the same energy, ε. We must emphasize
that while this limit makes mathematical sense, the global
description of the two-qubit system breaks down for small
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FIG. 5. Rectification-current Pareto-optimal fronts of each de-
vice by optimizing the COP ηα over all parameters’ range relevant
for each device; χ for device A, χ , δ and g for device B, χ and g for
device C, for two different hot temperatures, Th/ε = 2.0 (purple) and
Th/ε = 0.4 (orange). The cold temperature is fixed to Tc/ε = 0.01,
as well as γ /ε = 0.001 is set constant. The inset shows optimal
(maximum) value ηα as a function of α, see Eq. (5). Optimization
ranges: 0 � δ/ε � 0.1, 0 � χ � 1, 0 � g � 0.05 (weak coupling)
and 0.1 � g � 0.95 (strong coupling).

g [67] and one should consider again the model for device
B for weakly interacting qubits.

Finally, we note that various two-qubit devices have
been previously considered in Refs. [28,30,33,40], and in
Refs. [28,40] a tradeoff between heat current and rectification
was also noticed. Furthermore, in Ref. [28,33] the maxi-
mization of R was considered. Our considerations enable a
more general optimisation within the R-J plane, and to oper-
ationally compare different rectifiers, as further discussed in
Sec. VII.

VII. COMPARING THE PERFORMANCE
OF THE THREE MODELS

In the previous sections, we showed that any advantage
one device holds over another in heat conduction or heat
rectification strongly depends on the parameters with which
they are operated. While this analysis allowed us to conclude
that the performance of one device can be better than that
of another, it does not allow us to make a stronger statement
about the overall performance of one device over another.

To address this question, we follow a procedure similar to
the one for Fig. 3. For a fixed temperature, we optimize ηα for
all 0 � α � 1, over all the relevant parameters of the corre-
sponding devices. We then plot the rectification factor R vs the
maximum current J , obtaining Pareto fronts for each device,
presented in Fig. 5. Note that these fronts are Pareto optimal,
in the sense that rectification cannot be increased without

sacrificing heat conduction, and vice versa. The procedure is
then repeated for a higher temperature, giving another set of
three Pareto fronts.

We find that in both sets of Pareto fronts, the one corre-
sponding to device C (dashed) lies above (or on top of) the
other fronts, and the one corresponding to B (long-dashed) lies
in the middle. This means that for any given heat current that
is required, device C gives the highest rectification factors.
Since, the optimization is performed for all α, this result is
independent of its value. This unambiguously demonstrates
that device C is superior compared to devices A and B for heat
conduction and heat rectification. The inset in Fig. 5 shows the
maximum value of ηα as a function of α. For both choices
of Th, there is a specific value of α where there advantage
of device C starts over devices A and B. Furthermore, the
high temperature (purple) curves show that for increasing hot
temperatures, there is a clear decrease in the advantage. We
further investigate the performance of these three devices as a
function of the temperature gradient in Fig. 6.

Similar to Fig. 3, we show in Fig. 6(a) the corresponding
curves of optimal operation for devices B and C for increasing
hot temperature, with the cold temperature fixed. With dashed
and long-dashed curves, we show optimal lines of {R(B), J (B)}
and {R(C), J (C)}; at every point in each line, ηα is optimized for
α = 0.3 (green), and α = 0.7 (red). As before, we find that
the heat current and rectification show a general increasing
trend for increasing temperature gradients. The plot clearly
demonstrates that devices B and C have a higher rectifica-
tion factor when operated optimally, compared to device A
at low temperatures. The advantage of device C over device
A remains at much larger temperature gradients, but also
tends to decrease, and to reach the single-qubit device, which
serves as a representative lower bound. In Fig. 6(b), we further
investigate this temperature behavior. We show the maximal
achievable rectification factor (optimizing over all relevant
parameters) for the three devices as a function of the hot
temperature, for a fix cold temperature and a given minimum
heat current. We again find that device C holds an advantage,
which decreases with increasing temperature and the curves
merge at high temperatures.

Analytically, one can demonstrate that R(B), R(C) → R(A)

for Th → ∞ as follows. In the limit of a high-temperature
bias, nB(Ek, Th) � 1 and nB(Ek, Th) � nB(Ek, Tc), the heat
currents J (B), J (C) and rectification factors R(B), R(C) approach
the limiting values J (A)

hc/ch ≈ ±2εγ (1 ± χ ) and R(A) ≈ |χ |.
This explains the convergence of the curves in Figs. 5 and 6.

VIII. CONCLUSION

We presented a general method for assessing the perfor-
mance of heat rectifiers, which involves mapping the tradeoff
between the rectification factor R and the maximal heat cur-
rent J . To do so, we introduced a general coefficient of
performance (COP), which can be optimized over the rele-
vant parameters of the system allowing us to draw Pareto
fronts and to meaningfully compare the performance of dif-
ferent rectifiers. We then illustrated the relevance of these
ideas on three minimal models for nanoscale heat rectifiers
and demonstrated that a strongly coupled two-qubit device
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(a) (b)

FIG. 6. Performance of the three devices as a function of temperature gradient. (a) Parametric plot of the rectification factor versus the
maximum heat current as a function of asymmetry parameter χ for fixed Tc/ε = 0.01 and 0.1 � Th/ε � 6. Red and green sets of curves
correspond to α = 0.7 and 0.3, respectively. The solid gray curves correspond to device A and have been reproduced from Fig. 3 for clarity.
The long-dashed and short-dashed curves correspond to devices B and C, respectively. ηα is optimized over δ, g, and χ for B, and g and
χ for C. (b) Maximum achievable rectification for the three devices as a function of hot temperature Th for fixed Tc/ε = 0.01, given that
J [γ ε] � 1. At large Th (corresponding to a large temperature bias for a fixed Tc), advantage of B and C over device A decreases to 0. The
single-qubit rectifier sets lower bounds on heat conduction and heat rectification. The other parameters are ε = 1, γ /ε = 0.001, g/ε = 0.8
(strong coupling), g/ε = 0.1 (weak coupling), and Tc/ε = 0.01.

operates better than a single-qubit or a weakly coupled two-
qubit device, both for heat rectification and heat conduction.

We note that our method to characterize and quantify
the efficiency of a rectifier could also be applied to charge
and particle currents. Hence, we believe that this approach
is suitable for identifying which types of systems are best
suited to be operated as rectifiers. Our results on two-qubit
devices suggest that strongly interacting composite systems
may be beneficial for heat rectification. From there follows an
open question about the optimal device and its correspond-
ing optimal nonlinear energy spectrum. This question was
recently investigated in Refs. [71,72] considering classical
and quantum systems (Ising models) focusing on rectification
alone. Our work opens the way to determine optimal device
from a fundamental and practical points of view, by also
taking into account their heat conduction properties. Another
open question concerns the possible advantage of a rectifier
that would be operated in the quantum regime compared

to a semiclassical regime. Indeed, the Pareto fronts in this
work demonstrated the better performance of strongly coupled
qubits. However, this device can be modeled with a semi-
classical model with rate equations describing the dynamics
of the four energy eigenstates. Hence, the role of quantum
coherence or quantum correlations for a better device in our
approach remains an open question of particular importance
for determining a possible quantum advantage. Our approach
provides a solid framework to tackle these open questions in
a practical, systematic, and rigorous way.
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