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Dissipative stabilization of dark quantum dimers via squeezed vacuum
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Understanding the mechanism through which an open quantum system exchanges information with an
environment is central to the creation and stabilization of quantum states. This theme has been explored recently,
with attention mostly focused on system control or environment engineering. Here, we bring these ideas together
to describe the many-body dynamics of an extended atomic array coupled to a squeezed vacuum. We show
that fluctuations can drive the array into a pure dark state decoupled from the environment. The dark state is
obtained for an even number of atoms and consists of maximally entangled atomic pairs, or dimers, that mimic
the behavior of the squeezed field. Each pair displays reduced fluctuations in one polarization quadrature and
amplified in another. This dissipation-induced stabilization relies on an efficient transfer of correlations between
pairs of photons and atoms. It uncovers the mechanism through which squeezed light causes an atomic array to
self-organize and illustrates the increasing importance of spatial correlations in modern quantum technologies
where many-body effects play a central role.
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I. INTRODUCTION

The collective radiation of an atomic array is an iconic
example of many-body behavior in quantum open systems.
It follows the loss of excitations from several atoms to a com-
mon environment, and arises from vacuum fluctuations [1].
Recent interest in this process lies in the insight it provides to
stabilize quantum states by protecting them from dissipation
via destructive interference of individual radiative paths. The
paths depend on the spatial arrangement of the array and on
the spectral and spatial properties of the environment. Their
manipulation builds upon a larger trend in quantum technolo-
gies: the use of spatial correlations to generate, control, and
probe entangled states in extended many-body systems [2–8].

Current interest in quantum-state stabilization via corre-
lated radiation follows two experimental trends. On the one
hand, the ability to control atomic positions at the single-
particle level has lead to the creation of emitter arrays whose
patterns are tailored to achieve particular tasks in quantum
simulation [5,9], sensing [10–13], or information processing
[14,15]. On the other hand, fluctuations of the environment
have been engineered to control the radiative response of
single trapped ions and superconducting circuits [17–23].
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In this work we bring together ideas used to study quantum
systems extended in space with those of environment engi-
neering to describe the correlated decay of an atomic array
coupled to a squeezed vacuum. Squeezed vacuum corresponds
to an engineered environment composed of correlated pho-
tonic pairs [24]. It displays a phase-sensitive amplification and
deamplification of fluctuations that has been used to unveil the
stochastic nature of quantum optical processes, such as spon-
taneous decay [19,25] and resonance fluorescence [20,26]. We
show that, depending on the atomic positions and the spatial
profile of the electromagnetic modes carrying the squeezed
field, an atomic array can settle into highly entangled pure
states protected from the environment. The states are built
from atomic pairs that mimic the underlying environment:
displaying reduced fluctuations in one polarization quadrature
and amplified in another. We explore this phenomenon in
one-dimensional arrays of different sizes and atomic positions
to show how to manipulate the atom-atom correlations in the
steady state. Depending on the system parameters, the stabi-
lized state is shown to be a pure dimerized state with pairwise
entanglement, a melted dimer with all-to-all correlations, or
an uncorrelated mixed state.

The paper is organized as follows. We begin in Sec. II
by characterizing the broadband squeezed drive and deriving
the atomic master equation using a cascaded-open-quantum
system perspective. Then, in Sec. III, we map out changes in
the steady state for different array separations and centers. The
array is shown to decouple from the environment when atoms
are placed, as pairs, at points where the two-point correlations
of the field are maximized. Numerical results are supported
by analytical expressions obtained via an unraveling of the
master equation. The decoupled states are described in Sec. IV
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FIG. 1. An emitter array of lattice constant a and center zc is
coupled to a one-dimensional waveguide. The array is composed
of Nat qubits of resonance frequency ω0. The waveguide is driven
by broadband squeezed light through two ports. Superposition of
both drives causes a periodic amplification and deamplification in
the field quadratures fluctuations, as shown by the local variances
�A2

0 and �A2
π taken from Eq. (6) with ϕ = 0, Nph = 0.88, M2

ph =
Nph(Nph + 1), and drawn as blue and white solid lines.

where we introduce atom-atom interactions. The slow-fast
dynamics obtained from the interplay between coherent in-
teractions and collective dissipation are discussed in Sec. V.
Section VI is left for conclusion.

II. BACKGROUND

The experimental realization of an artificial atom radiating
into a squeezed vacuum by Siddiqi and collaborators [19,20]
demonstrated the ability to tailor the environment and test
the limits of conventional quantum optics using supercon-
ducting circuits [27,28]. It showed that the atom undergoes
a polarization-sensitive decay, where it relaxes into a steady
state following dramatically different timescales for each
polarization quadrature, as predicted by Gardiner [25]. Even-
tually, the atom reaches a mixed steady state identical to that
obtained from the absorption and emission of uncorrelated
thermal photons.

Key to this observation was a source able to produce cor-
related photons that covered all the spatial modes surrounding
the artificial atom. The atom was coupled to an environment
displaying a reduced dimensionality with respect to free space
to achieve this. At the time, attention was focused on the
temporal correlations of the squeezed modes with their spatial
structure used to determine the coupling strength and local
phase of the interaction. This structure, however, plays a cen-
tral role when the system includes several atoms extended in
space, with each one probing a different local environment.

A. Model: Atomic array and correlated traveling photons

We consider a one-dimensional array of Nat atoms sepa-
rated a distance a from their nearest neighbors, as sketched in
Fig. 1. Each atom is labeled by its position zn and is modeled
as a two-state system with states |en〉 and |gn〉 separated by
a transition frequency ω0. The atoms couple exclusively to
the electromagnetic modes of a waveguide, which acts as a
source of dissipation and mediates atom-atom interactions.
This waveguide has a length L and is driven by a broadband

squeezed source through two ports that control the input and
output of photons.

The electric field inside the waveguide is naturally ex-
panded in terms of traveling modes. Its positive frequency
component reads

Es(z, t ) =
√

Lc

2π

∫
dω

∫ ∞

0
dkδ(ω − ck)e−iωt+sikzbs(k), (1)

where the operator bs(k) annihilates a photon of wave vector
k and frequency ω propagating along the s = ± direction. In
writing Eq. (1) we have assumed a linear dispersion ω = c|k|,
which results in a density of modes g(ω) = L/2πc.

Correlations between different waveguide modes are
grounded on the physical process used to produce and transmit
the squeezed light [29,30]. We consider here a parametric
amplifier source driving the waveguide. The source runs on
a photon-photon interaction mediated by a nonlinear medium
that is activated by an external pump [31]. To be specific, we
have in mind a Josephson traveling wave amplifier [32,33]
whose nonlinearity works as an analog to those of atomic
gases [34,35] or optical fibers [36] used in seminal exper-
iments of squeezing. The amplifier outputs correlated pairs
of photons, a and b, whose frequencies and wave vectors
follow the phase matching conditions ωa + ωb = 2ωc and
ka + kb = 2kc with ωc the central frequency of the amplifier.
The input-output relation for each pair is

bs,out(kc + k) = ukbs,in(kc + k) + vkb†
s,in(kc − k), (2)

where the squeezing parameters uk and vk depend on the
pump strength and nonlinear interaction. They satisfy |uk|2 −
|vk|2 = 1 [33].

The amplifier outputs photons across a broad operational
bandwidth, which are fed into the waveguide. We set the cen-
tral frequency of the amplifier to match the atomic resonance
frequency (ωc = ω0) and consider a bandwidth much broader
than the atomic decay rate so the squeezed drive covers all
the modes relevant for the atomic interaction. The squeezed
field inside the waveguide appears as δ-correlated white noise
characterized by

〈E†
s (zn, tn)Es(zm, tm)〉 = Nphδ(τns − τms), (3a)

〈Es(zn, tn)E†
s (zm, tm)〉 = (Nph + 1)δ(τns − τms), (3b)

〈Es(zn, tn)Es(zm, tm)〉 = e−iωc (τns+τms )Mphδ(τns − τms), (3c)

〈E†
s (zn, tn)E†

s (zm, tm)〉 = e+iωc (τns+τms )M∗
phδ(τns − τms), (3d)

and 〈Es(z, t )〉 = 0. Here, cτns = ctn − szn accounts for retar-
dation and the parameters Nph and Mph follow from uk and vk

of Eq. (2) [37]. The parameters satisfy Nph(Nph + 1) � |Mph|2
and reach the equality for states of minimal uncertainty [26].

Equations (3) describe a field with Nph photons per mode
that are correlated in pairs through Mph. The correlations
cause a phase-dependent amplification and deamplification of
fluctuations of the field quadratures

Aθ (z, t ) = 1
2

∑
s=±

[Es(z, t )eiθ + E†
s (z, t )e−iθ ]. (4)

As the phase of each traveling field Es(z) rotates while it
propagates along the waveguide, the maximally squeezed
quadrature of this field rotates as well. The superposition of
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left- and right-propagating fields then gives way to an oscil-
lating two-point correlation

〈Aθ (zn)Aθ (zm)〉 = 1
2 |Mph| cos(θ − ϕ) cos kc(zn + zm)

+ 1
2 (Nph + 1

2 ), (5)

where the reference phase ϕ is set by Mph = |Mph|eiϕ . The
local variances in field quadratures

�A2
θ (z) = 〈δAθ (z)δAθ (z)〉, (6)

with δAθ = Aθ − 〈Aθ 〉, reflect an spatial dependence of fluc-
tuations in this background field, as shown in Fig. 1 for
maximally and minimally squeezed quadratures.

B. Master equation for an atomic array submerged in a
squeezed environment

The waveguide modes carry the squeezed drive and pho-
tons scattered in and out of the array. This composite field
is, in general, nonclassical and is described by correlation
functions of many orders. We follow the theory of cascaded
quantum systems [39,40] to model the evolution of the field
sources and derive the master equation for an array radiating
into a squeezed vacuum.

In the electric-dipole and rotating-wave approximations
each atom probes the amplitude of the local electromagnetic
field via the interaction Hamiltonian

HSR = h̄
∑
n,s

√
γs[Es(zn)σ (n)

+ + E†
s (zn)σ (n)

− ], (7)

where σ
(n)
+ = |en〉〈gn| and σ

(n)
− = |gn〉〈en| are raising and low-

ering operators for the nth atom; and γs = 1
2γ with γ the

decay rate into the waveguide [38]. The total field is composed
of free Ef,s and scattered components

Es(z, t ) = Ef,s(z, t ) − i
∑

n

√
γsσ

(n)
− (t − st ′

n)�(t − st ′
n), (8)

obtained from the Heisenberg equation of motion using
Eqs. (1) and (7). Here ct ′

n = (z − zn) describes a time delay
between emission and absorption of an excitation and the step
function �(x) ensures causality.

Equation (8) accounts for the evolution of a source as its
output field reaches its target. The spatial separation between
source and target is effectively removed by moving into an
interaction picture where the sources are retarded. For a small
array, such that the only changes on the source as the field
propagates from one end of the array to the other are given
from its free evolution, this retardation produces a local phase
only [40,41]. The Schrödinger picture operators (t = 0) of the
field under this assumption are

E+(zn) = eik0(zn−z1 )Ef,+(z1) − i 1
2

√
γ+

∑
m<n

eik0(zn−zm )σ
(m)
− ,

E−(zn) = eik0(zNat −zn )Ef,−(zNat ) − i 1
2

√
γ−

∑
m>n

eik0(zm−zn )σ
(m)
− ,

(9)

where we have divided into right- and left-propagating chan-
nels to define source and target consistently.

The master equation for the density matrix of the array ρ is
derived by substituting Eq. (9) into Eq. (7) and following the
standard approach [42,43]. The amplitude and correlations of
the free, squeezed field are traced back to its value at the edges
of the array. In an interaction picture with respect to the free
term

∑
n h̄ω0σ

(n)
+ σ

(n)
− , the master equation reads

ρ̇ = 1

ih̄
[Hscatt, ρ] + 1

2γ
(
(Nph + 1)LJ+ρ + NphLJ†

+
ρ + 1

2 |Mph|LJϕ,+ρ − 1
2 |Mph|LJϕ+π,+ρ

)
+ 1

2γ
(
(Nph + 1)LJ−ρ + NphLJ†

−
ρ + 1

2 |Mph|LJϕ,−ρ − 1
2 |Mph|LJϕ+π,−ρ

)
, (10)

where atom-atom interactions via the two counterpropagating
channels s = ± sum to give

Hscatt = 1
2 h̄γ

Nat∑
n,m=1

sin k0|zn − zm|σ (n)
+ σ

(m)
− . (11)

Loss is accounted for by Lξ · ≡ ξ · ξ † − · 1
2ξ †ξ − 1

2ξ †ξ · with
collective jump operators

Js =
∑

n

e−isk0znσ
(n)
− , (12a)

Jϕ,s = eiϕ/2Js + e−iϕ/2J†
s , (12b)

whose reference phase ϕ follows from squeezed-light source,
defined below Eq. (5). We take ϕ = 0 throughout.

III. CORRELATED DECAY CHANNELS
AND STABILIZATION

Equation (10) sets out a model for the collective emission
of an atomic array coupled to a squeezed vacuum. It is written
in a form that highlights collective effects over two-photon
processes of Refs. [44] and [45]. Like the single atom case,
the engineered fluctuations translate into phase-sensitive ra-
diative decays through the jump operators Jϕ,s and Jϕ+π,s. But,
with several atoms spread along the waveguide and a spa-
tially changing background, each atom may probe different
squeezed quadratures.

In Fig. 2 we map out changes in the steady state ρss

as a function of array center zc and lattice constant a. The
array has Nat = 4 atoms and is submerged in a perfectly
squeezed vacuum [|Mph|2 = Nph(Nph + 1)] with an average of
Nph = 0.88 photons per mode. All atoms begin in the ground
state and are set to evolve numerically using Eq. (10) until a
steady state is reached. The collective state is tracked through
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FIG. 2. Steady-state variance �S2
x and purity of an atomic array

as a function of its center and atomic separation. The array has Nat =
4 atoms coupled to a perfectly squeezed vacuum with Nph = 0.88
and ϕ = 0. (a) Fluctuations in the polarization quadrature Sx are
amplified and deamplified at points where all atoms can be arranged
into pairs that satisfy cos k0(zn + zm ) = ±1, a condition that follows
from the two-field correlation of the field quadratures in Eq. (5).
(b) The system is pure at these points and mixed away from them.
(c) Atomic positions (circles) relative to the local variance in field
quadratures �A0,π (white and blue lines) for cases where the array
reaches a pure state. These examples represent the points signaled
by squares and circles in (a)–(b). In all cases sequential atomic pairs
are centered at points where the local variance in field quadratures
maximizes (dark blue circles).

the polarizations

S j = 1
2

Nat∑
n=1

σ
(n)
j , (13)

with j = {x, y, z} and σ
(n)
± = σ (n)

x ± iσ (n)
y , and through its pu-

rity Tr[ρ2
ss]. We plot the variance �S2

x in Fig. 2(a) to explore
how field correlations transfer into the atoms. This variance
changes as we move along the parameter space and reaches
a local extrema at particular points as those signaled in the
figure. The steady state is pure at these points (Tr[ρ2

ss] = 1),
suggesting that the system is trapped in a dark state decoupled
from the environment. These points corresponds to particular
atomic arrangements that we divide into four cases drawn in

Fig. 2(c). The cases share the property that all atoms can be
organized into pairs that satisfy cos k0(zn + zm) = ±1. Atomic
pairs placed at these positions probe a maximally correlated
field quadrature, as seen from the two-point correlation of
Eq. (5). By plotting the atomic positions relative to the back-
ground field in Fig. 2(c), we show that this condition places
the center of each atomic pair at points where the local vari-
ance of field quadratures is maximally squeezed.

A. Pointer states

The physical origin of the dark states follows the exchange
of information between field and atoms. This exchange de-
pends on the particular set of jump operators Ji used to unravel
the master equation. The pointer states |ψi〉 of a jump operator
Ji are defined as [18,46–48]

Ji|ψi〉 = λi|ψi〉. (14)

Pointer states do not entangle with the environment under
the action of Ji. We can then define a dark state as a pointer
state with eigenvalue λ0 = 0 for all jump operators of a given
unraveling. These dark states evolve without any influence
from the environment and only experience the Hamiltonian
Hscatt of Eq. (11) [48].

In this section we focus on the collective jump operators
and possible unravelings of the master equation to identify
the dark states. We return to the effect of the Hamiltonian in
Sec. IV where we present its role to stabilize the collective
state of the array.

B. Unraveling of the master equation

A natural unraveling of Eq. (10) tracks the exchange of
excitations between array and environment through the jump
operators Js and Jφ,s of Eq. (12). When seen as independent
processes, each jump operator represents a different way for
the environment to acquire information from the system. Op-
erators Js and J†

s track photon absorption and emission as the
array exchanges excitations with left- and right-propagating
channels; while operators Jϕ,s and Jϕ+π,s track changes in
phase through two-photon exchange.

Photons in a squeezed environment, however, are created
as correlated pairs and a particular unravelling of the master
equation can be constructed to highlight this feature. We begin
to construct this unraveling by defining the standing-wave
operators

S(R)
± =

Nat∑
n=1

cos k0znσ
(n)
± , (15a)

S(I )
± =

Nat∑
n=1

sin k0znσ
(n)
± , (15b)

connected to the traveling jump operators through

Js = S(R)
− − isS(I )

− . (16)

The standing wave sets two decay channels separated by a
phase of π . Each channel aligns with a phase quadrature of
the field. Then, in the limit of perfect squeezing [|Mph|2 =
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Nph(Nph + 1)], the jump operators can be further arranged into

Jx = μS(I )
− + νS(I )

+
|4μν|1/2

, (17a)

Jy = μS(R)
− − νS(R)

+
|4μν|1/2

, (17b)

where μ and ν relate to the squeezing parameters by

|μ|2 = (Nph + 1), |ν|2 = Nph, νμ∗ = −Mph, (18)

and satisfy |μ|2 − |ν|2 = 1.
Using the linear transformations of Eqs. (15)–(17), the

master equation can be written using two jump operators only

ρ̇ = −ih̄−1[Hscatt, ρ] + 4γ |μν|(LJx ρ + LJyρ). (19)

The condition to find a dark state simplifies into

det[J †
x Jx + J †

y Jy] = 0, (20)

as obtained from Eq. (14) with λx = λy = 0.
Condition (20) cannot be fulfilled by a single two-state

atom. For a single atom the polarization changes between ±1
values after each jump [49]. When averaged out, these sudden
changes lead to a mixed-state density matrix. To find states
that decouple from the environment we need to go beyond the
single-atom case. After all, with two photon processes being
central to generate squeezed light, it is expected for atomic
pairs to play a significant role.

C. Building blocks for dark states: An atomic pair

Here, we lay down the connection between dark states and
the squeezed environment. The connection is based on an
array of just two atoms and extended to an arbitrary number
of atoms in Sec. IV.

Solving Eq. (20) for Nat = 2 shows two scenarios where
the array decouples from the environment. In the first sce-
nario atoms are separated a distance a such that sin k0a = 0.
The pair decouples from the environment by settling into the
maximally entangled state

|ψ (0)
nm

〉 = |gnem〉 − eik0a|engm〉√
2

. (21)

Atoms separated by this distance probe the same local envi-
ronment. The jump operators Jx,y reflect this fact and become
symmetric (k0a = 2mπ ) or antisymmetric (k0a = (2m + 1)π )
under atomic exchange, thus organizing the dynamics into two
separate subspaces. In accordance with the master equation re-
sults of Ref. [44].

In the second scenario atoms are placed at positions zn and
zm where correlations of the field quadratures maximize, i.e.,
cos k0(zn + zm) = ±1. At these points the dark state is

∣∣ψ (1)
nm

〉 = μ|gngm〉 + eik0(zn+zm )ν|enem〉√
|μ|2 + |ν|2

. (22)

It displays an imbalance between ground and excited states
that follows from the jump operators of Eq. (17). Atoms in this

dark state mimic the squeezed vacuum, displaying amplified
and deamplified fluctuations

�S2
x = |μ + eik0(zn+zm )ν|2

2(|μ|2 + |ν|2)
, (23a)

�S2
y = |μ − eik0(zn+zm )ν|2

2(|μ|2 + |ν|2)
, (23b)

and a population imbalance

〈Sz〉 = |ν|2 − |μ|2
|μ|2 + |ν|2 = −1

2Nph + 1
. (24)

The state is one of minimal uncertainty on total angular mo-
mentum �S2

x �S2
y = 〈 1

2 Sz〉2.

IV. DIMERIZED CHAIN

Two atoms decouple from the environment by pairing into
maximally entangled states when placed at points where the
two-point correlations of the field quadratures maximize. Due
to the linearity of the jump operators, an array decouples
from the environment when all atoms are organized into pairs
that satisfy this condition. For an even number of atoms, a
dimerized state constructed from the pairs of Eq. (22) takes
the form

|ψ�〉 =
⊗

|ψ (1)
n�m�

〉, (25)

where the product extends over all pairs. The � index charac-
terizes the different ways atoms can pair.

So far, we have constructed the dark state using the jump
operators only and neglected the effect of the Hamiltonian
Hscatt written in Eq. (11). This interaction can drive the atoms
out of the dark states and lead to a loss of coherence. We now
provide the conditions to find stable dark states that decouple
entirely from the environment and show two different behav-
iors that arise from this interaction.

A. Dimerized chain (sin ak0 �= 0)

Due to the long-range interactions inside the waveguide,
atoms couple via Hscatt for distances ak0 	= mπ . This brings
two particular pairs, |ψ (1)

a1a2
〉 and |ψ (1)

b1b2
〉, out of the dimerized

state of Eq. (25) and into the same final state |ea1ga2eb1gb2〉.
The probability amplitude to leave the dimer following this
process is

cesc ∝ ei2k0 z̄a sin k0|za2 − zb1| + ei2k0 z̄b sin k0|za1 − zb2|,
where z̄� = (z�1 + z�2)/2 is the center of the � pair.

The array remains trapped in a dimer state if all possi-
ble paths out of it interfere destructively. It is shown in the
Appendix that such destructive interference occurs when the
atoms only pair with their nearest neighbor, starting from the
boundaries. The only possible product of dimers immune to
the Hamiltonian interaction is thus

|ψ〉 =
Nat/2⊗
n=1

μ|g2n−1g2n〉 + eik0(z2n−1+z2n )ν|e2n−1e2n〉√
|μ|2 + |ν|2

, (26)

where cos k0(z2n−1 + z2n) = ±1. Since the atoms are equidis-
tant, stable dark states exist for separations k0a = mπ/4 only,
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FIG. 3. Atomic correlations Cnm = 1
4 〈σ (n)

x σ (m)
x 〉 in the steady

state for two array patterns. (a) For k0a = π/4 the interaction Hscatt

causes the atoms to dimerize following Eq. (26). (b) For k0a = π

there is no interaction Hscatt and the steady state is a superposition
of all possible dimers, thus displaying long-range entanglement be-
tween all atoms. In both cases the array has Nat = 6 atoms initially
prepared in the ground state, it is centered at k0zc = 0, and is coupled
to a perfectly squeezed vacuum with Nph = 0.88, ϕ = 0.

with the coherent interaction acting for m mod 4 	= 0. This
separation is in accordance with Fig. 2.

Atoms in this dark state are maximally entangled with
their partner and uncorrelated from the rest. This is shown in
Fig. 3(a) where we plot the atomic correlation

Cnm = 1
4

〈
σ (n)

x σ (m)
x

〉
(27)

for an array of six atoms separated a distance k0a = π/4. The
correlations are obtained by evolving the system numerically
from its ground state using Eq. (10), and show excellent agree-
ment with the analytical result. Correlations change sign from
pair to pair as successive centers are placed at points where
the variance �A0 goes from squeezed to antisqueezed. This
flipping reduces the fluctuations of the total polarization

�S2
x =

∑
n |μ + eik0(z2n−1+z2n )ν|2

Nat(|μ|2 + |ν|2)
, (28a)

�S2
y =

∑
n |μ − eik0(z2n−1+z2n )ν|2

Nat(|μ|2 + |ν|2)
, (28b)

which is obtained by adding the variances of each pair given
in Eq. (23). The same steady state is reached for every initial
state.

B. Melting of the dimer (sin k0a = 0)

For atoms separated by a distance k0a = mπ there is no
coherent interaction Hscatt to drive the system out of the dark
states or to distinguish between different possible dimers. All
atoms probe the same background field and can pair with one
another.

In Fig. 3(b) we plot the correlations in steady state for an
array of six atoms separated a distance k0a = π . The steady
state is highly entangled and displays long-range correlations
that change in sign from pair to pair. The sign follows from
a sum over all possible pairings using Eqs. (22) and (25).
This state is constructed from the two-atom dark states |ψ (1)

nm 〉

[Eq. (22)], but, for k0a = mπ , additional dark states |ψ (0)
nm 〉

[Eqs. (21)] emerge. The additional states found at these sepa-
rations cause the array to organize within ( 1

2 Nat + 1) separate
subspaces. Each subspace is determined by the number of
pairs in |ψ (1)

nm 〉 against those in |ψ (0)
nm 〉. For example, the dark

states of four atoms are

|ψdark,2〉 ∝ ∣∣ψ (1)
12

〉∣∣ψ (1)
34

〉 + ∣∣ψ (1)
13

〉|ψ (1)
24

〉 + ∣∣ψ (1)
14

〉∣∣ψ (1)
23

〉
,

|ψdark,1〉 ∝ ∣∣ψ (1)
12

〉∣∣ψ (0)
34

〉 + ∣∣ψ (1)
13

〉∣∣ψ (0)
24

〉
+ ∣∣ψ (1)

14

〉∣∣ψ (0)
23

〉 + 0 ↔ 1,

|ψdark,0〉 ∝ ∣∣ψ (0)
12

〉∣∣ψ (0)
34

〉 + ∣∣ψ (0)
13

〉∣∣ψ (0)
24

〉 + ∣∣ψ (0)
14

〉∣∣ψ (0)
23

〉
.

This organization can be shown to hold for small arrays (Nat =
2, 4, 6) and is expected to extend for larger arrays given the
linearity of the jump operators. Since Fig. 3(b) is obtained by
evolving an array from its ground state, the initial state overlap
with |ψdark,Nat/2〉 only.

Using these subspaces, it is possible to expand the dark
states within a collective basis |l, ne〉 with l the number of
pairs and ne the excitations. The states take the form

|ψdark,l〉 =
Nat∑

ne=0

e−η(ne−Nat/2)cl,ne |l, ne〉, (29)

where each excitation is weighted by a probability amplitude
cl,ne and the Lorentz parameter e−η|μ| = eη|ν| [49]. The am-
plitudes account for a statistical weight obtained from the
possible dimerizations. For l = 1

2 Nat pairs, the amplitudes for
even excitations are

cl,ne = (ng!ne!)1/2

2Nat /2
(

1
2 ng

)
!
(

1
2 ne

)
!

(30)

and zero otherwise [51]. Here, ng = Nat − ne.
The dark states |ψdark,l〉 were obtained by Agarwal and Puri

[52] for k0a = 2mπ and k0zc = {0, π/2}, and have reemerged
recently for their potential applications on metrology [45,53].
Their connection to the underlying dimers has been, however,
unexplored. At these points one of the jump operators Jx,y

cancels while the other can be transformed to the polarization
Sx,y via a Lorentz-like transformation [49]. The dark states
are then obtained by rotating the eigenstates of zero angular
momentum projection, |l, m = 0〉, and inverting the Lorentz
transformation. They take the explicit form [54]

|ψdark,l〉 =
√

4π

2l + 1

l∑
m=−l

e−ηm(−1)(l+m)/2Yl,m
(

π
2 , 0

)|l, m〉,
(31)

with Yl,m the spherical harmonics. Equation (31) can be shown
to be a special case of Eq. (29) using identities of the spherical
harmonics [56].

The selection of a particular dimer out of the melted state
via Hscatt and Jx,y is reminiscent of a protocol used in chiral
waveguides to stabilize entangled states [3]. The protocol con-
siders arrays of separation ak0 = 2πn, radiating into regular
vacuum and driven by coherent fields. It relies on the existence
of only one decay channel whose dark states span a large sub-
space. Then, by tuning the driving fields, the array is brought
to a particular state of this dark subspace. By comparison, an
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FIG. 4. Time evolution for different array sizes. An array pre-
pared in the ground state settles in a steady state following two
different timescales for the purity and population 〈Sz〉 (inset). (a) For
a dimer state, the action of the Hamiltonian and two noncommuting
jump operators cause the system to self-organize slowly. (b) For a
melted dimer, the array quickly settles in the dark state. In all cases
Nph = 0.88 and ϕ = 0.

array radiating into a squeezed vacuum is brought to a dark
state via the underlying fluctuations. Dimers are a product of
two-photon correlations probed by the atomic positions rather
than imparted by an external coherent interaction.

C. Odd number of atoms

For arrays with an odd number of atoms the correlations
are still transferred in pairs, leaving an extra atom in an inde-
terminate state. This frustration causes the array to settle into
a mixed state, as can be shown by plotting the steady-state
purity in analogy to Fig. 2. While not shown here, the purity
reaches a maxima when the atoms are separated a distance of
π/4 and centered around a maxima of the field fluctuations.
The steady state can also be shown to be formed predomi-
nantly of atomic pairs plus an uncoupled atom.

V. TIMESCALES AND POLARIZATION
SENSITIVE DECAY

We now turn our attention to the transient dynamics of the
array. These dynamics are ruled by the stochastic nature of
the field, which determines the polarization decay rates. The
connection between array dynamics and steady state—which
mirrors the connection between previous studies [25] and this
work—is made in Figs. 4 and 5.

Figure 4 shows the evolution towards dimer and melted
dimer states for increasing array sizes. In both cases the
population 〈Sz〉 is shown to quickly reach its steady state
as the atoms dimerize, while the purity takes a longer time
that increases with atom number. The stabilization into the
dark state follows two different timescales. A fast scale where
dissipation brings the array into several dimerized states and a
slow scale where it reorganizes into a particular dimer through
the Hamiltonian evolution and two noncommuting jump op-
erators. For the melted state, where the system explores a
reduced space, the array is quickly brought to the steady state.
By comparison, for the dimerized state the array takes a long
time to self-organize, a time that increases exponentially with
array size. This long timescale is to be compared with the
nonradiative and dephasing decays that emerge in an exper-
imental setting. Recent experiments using superconducting
qubits work with nonradiative and dephasing decay rates of
γnr/2π ∼ 15 kHz and κφ/2π ∼ 100 kHz (T1 = 1.71 μs and
T2 = 0.58 μs) [15]. Considering a typical decay rate of a
single-qubit into the waveguide γ /2π ∼ 15 MHz, the steady
states of Fig. 4 are reached in a timescale much faster than the
decoherence times.

Figure 5 shows how the amplification and deamplification
of field quadratures cause atomic polarizations to decay at
different rates. We plot the evolution and steady state for
an array of six atoms whose distances and centers are dis-
placed, thus changing the probed fluctuations from thermal
to squeezed. In all cases, each atom is prepared in the state

FIG. 5. Steady-state population and collective dynamics (inset) for three arrays with different atomic positions. Above each graph, atomic
positions are sketched as circles with the local field variance �A2

0,π (z) drawn as blue and white solid lines as a reference. (a) For center
k0zc = π/4 and separation k0a = 2π , atoms probe uncorrelated photons and the polarization quadratures Sx (yellow line) and Sy (green) decay
at the same rate. The array settles into a thermal state where all numbers of excitations are populated. (b) As the center moves to k0zc = 0 all
atoms are placed, as pairs, at positions where field quadratures are maximally correlated. The expected value of the polarization 〈Sx〉 decays
at an enhanced rate while that of 〈Sy〉 at an inhibited one. The array settles into a correlated state where only even number of excitations are
populated. (c) For k0zc = 0 and k0a = π/4 the local field quadratures are again maximally correlated, but the Hamiltonian Hscatt scrambles the
array into the dimerized state of Eq. (26). In all cases Nat = 6, Nph = 0.88, and ϕ = 0.
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|ψn〉 = (|gn〉 + eiπ/4|en〉)/
√

2 where the polarizations 〈Sx,y〉
take the same expected value.

In Fig. 5(a) the array is centered on k0zc = π/4 where left-
and right-propagating operators Jφ,s=± cancel one another.
The array is effectively submerged in an uncorrelated thermal
environment. Polarizations decay at the same rate and the
population within the ne excited state, P(ne ), resembles the
photon number occupation of a thermal field [57]

P(ne )
thermal = xne∑Nat

i=1 xi
, (32)

with x = Nph/(Nph + 1). The result is to be compared with
Fig. 5(b) where the array is centered at k0zc = 0 and the fields
are maximally correlated. As a consequence, the atomic po-
larizations decay at dramatically different rates and the system
settles into a pure state where only even number of excitations
are populated [see Eq. (31)]

P(ne )
squeezed = |Y�,mne

(
π
2 , 0

)|2xmne /2∑�
mi=−� |Y�,mi

(
π
2 , 0

)|2xmi/2
, (33)

with � = 1
2 Nat and mne = ne − 1

2 Nat. In both cases the lattice
constant is k0a = 2π .

Finally, in Fig. 5(c) the array is centered at k0zc = π/4 with
lattice constant k0a = π/4. At these points the atoms dimerize
with central and exterior dimers probing two different quadra-
tures. The population is zero for odd excitation numbers, and

P(ne )
dimer =

( 1
2 Nat

ne

)(
Nph + 1

2Nph + 1

) 1
2 Nat

xne (34)

for even excitation numbers.
The transition between dimer, melted dimer, and uncorre-

lated states follows from the correlations of the underlying
field. Atomic arrays can act as sensitive probes for quantum
fields extending in space, mapping the spatial distribution of
the field through decay paths and steady states.

VI. CONCLUSION

Motivated by recent developments in atomic control and
environment engineering, we have described the collective
radiation of an emitter array into a squeezed vacuum. We
found that the correlated fluctuations of the environment drive
the array into pure, highly entangled dark states. These states
can be manipulated to display pairwise correlations or all-
to-all correlations by changing the relative positions of the
emitters.

The stabilization follows an efficient transfer of correla-
tions from the squeezed field into the array. This was made
possible by tailoring the spatial profile of the squeezed modes
and array pattern. The former sets a fluctuating background
characterized by two-point correlations, while the latter deter-
mines how the atoms probe this background field collectively.
Following the cascaded system perspective presented here it is
possible to move past this white noise limit and study quantum
light characterized by correlations to all orders [58–61]. Such
extension sets a promising path to study the transfer of infor-
mation between light and extended atomic ensembles capable

of emulating the correlated photons that form the field. It also
raises the possibility to extend the transfer of correlations to
atoms coupled at different points of the waveguide [62,63].
For these giant atoms, the concept of subsequent pairs is lost,
thus raising the possibility to study degenerate or frustrated
states, which is a topic of our future research.

Our study is grounded on a simplified picture of super-
conducting quantum circuits. The extraordinary developments
on squeezed environments [19,20] together with the explo-
ration of arrays of artificial atoms [15,16] make this platform
ideal to study the transfer of correlations. The drastic change
in the steady state of the atoms, in turn, can be used to
probe the extent and decay of spatial noise correlations in
these circuits. By probing the collective steady state of two
or more atoms it is possible to map how environment cor-
relations propagate. Proper characterization of this noise is
central to optimize device performance and can impact circuit
design [64,65].
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APPENDIX: PATHS OUT OF THE DIMERIZED CHAIN

We show that, due to destructive interference of the es-
caping paths, only one pairing is stable for dimerized chains
(sin ak0 	= 0). We consider the paths described in Sec. IV A
and evaluate a vanishing escape probability amplitude
cesc = 0 in two cases: (i) za1, za2 < zb1, zb2 and (ii) za1 < zb1 <

za2, zb2 to give

sin k0(z̄b − z̄a) cos 1
2 k0(zrb + zra)[1 ± e2ik0(z̄b−z̄a )]

= − cos k0(z̄b − z̄a) sin 1
2 k0(zrb + zra)[1 ∓ e2ik0(z̄b−z̄a )].

(A1)

Upper (lower) signs refer to case (i) [(ii)] and the atomic
positions of the �th pair are written using center and relative
coordinates

z�1 = z̄� − 1
2 z�r, z�2 = z̄� + 1

2 z�r .

Since all pairs satisfy cos 2k0z̄ = ±1, Eq. (A1) excludes
nested pairs (za1 < zb1 < zb2 < za2) with same center z̄b = z̄a

for separations k0a < π/2. The center of at least one pair has
to be shifted from the rest.

Having a shift between centers, condition cos 2k0z̄� = ±1
can be understood as that of finding the fundamental wave
vector 2k0 connecting all centers. For case (i), where all cen-
ters are separated by 2a the fundamental mode is 2k0 = π/2a
or k0a = π/4. In all other cases the separations range from
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a to a(Nat − 3/2). These separations are commensurate with
a/2 to give the fundamental mode k0a = π . Commensurabil-
ity then requires k0a = nπ/4.

We focus then on possible dimers for k0a = nπ/4. For
k0a = π/2 the interaction matrix Hnm = 〈en|Hscatt|gm〉 is zero
along the diagonal and cycles between {0,± 1

2 h̄γ } as we ad-
vance along rows or columns. Being a symmetric matrix, this

cycle is interrupted at the diagonal where it reverses. This
change leads to more positive than negative entries, so the
only way to reach cesc = 0 is to cancel the entries above
and below the diagonal by pairing neighboring atoms starting
from the boundaries. The same argument follows for k0a =
π/4 after accounting for the sign change between neighboring
centers.
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