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We propose an alternative route to stabilize magnetic skyrmion textures which does not require Dzyaloshinkii-
Moriya interactions, magnetic anisotropy, or an external Zeeman field. Instead, it solely relies on the emergence
of flux in the system’s ground state. We discuss scenarios that lead to a nonzero flux and identify the magnetic
skyrmion ground states which become accessible in its presence. Moreover, we explore the chiral superconduc-
tors obtained for the surface states of a topological crystalline insulator when two types of magnetic skyrmion
crystals coexist with a pairing gap. Our work opens perspectives for engineering topological superconductivity
in a minimal fashion and promises to unearth functional topological materials and devices which may be more
compatible with electrostatic control than the currently explored skyrmion-Majorana platforms.
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I. INTRODUCTION

Magnetic textures are advantageous ingredients for en-
gineering Majorana quasiparticles [1–9], since they simul-
taneously break time-reversal symmetry (TRS) and induce
Rashba spin-orbit coupling (SOC) [10–12]. One finds two
distinct ways through which magnetic textures give rise to
these excitations. The first relies on magnetic textures crystals
(MTCs), which are magnetic textures that repeat periodically
in space. The interplay of superconductivity with MTCs of
the helix and skyrmion [13–25] types gives rise to effective
p -wave topological superconductors (TSCs) in 1D [26–37]
and 2D [30,31,38–42], respectively. Recent scanning tunnel-
ing microscopy (STM) measurements in helical Fe chains
deposited on top of Re(0001) hint towards the presence of
edge Majorana zero modes (MZMs) [43], while the coexis-
tence of magnetic skyrmions and superconductivity has also
been demonstrated in 2D Fe/Ir magnets on Re(0001) [44].
In the second scenario, MZMs bind to magnetic skyrmion
defects [45–51], which are imposed in a chiral ferromagnet
[52–55] coupled to a conventional superconductor. Important
experimental advancements along these lines were recently
made in [IrFeCoPt]/Nb hybrids [56]. In particular, magnetic
skyrmions and (anti)vortices composites were experimentally
realized [57], thus setting the stage for the observation of
MZMs in these systems in the near future.
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The above exciting experimental successes towards novel
MZM platforms should be also scrutinized with respect to
their degree of functionality and their potential role as the
hardware for a topological quantum computer [58,59], in
which, a large number of MZMs would need to be simultane-
ously manipulated and braided [60]. On one hand, Fe/Ir/Re
systems typically contain a large number of domains and
inhomogeneities which may render them prone to disorder,
while they are not amenable to electrostatic tuning. Instead,
these systems can be tailored using STM tips, whose number
however is difficult to scale up. This obstacle may lead to
limitations when it comes to braiding multiple MZMs. In con-
trast, [IrFeCoPt]/Nb hybrids appear to feature a higher degree
of functionality, since it is envisaged that MZMs will be ma-
nipulated using magnetic skyrmion racetracks [61]. However,
this platform presents a caveat of different nature. Such a sys-
tem harbors both vortices and antivortices, which are induced
by the applied magnetic field and the magnetic skyrmions,
respectively. The magnetic field is required to assist the nucle-
ation of skyrmions [55], which appear in a restricted window
of the parameter space spanned by the strengths of the field,
the Dzyaloshinkii-Moriya interaction (DMI) [62,63], and the
magnetic anisotropy. Therefore here it is the mechanism for
skyrmions itself that sets constraints on the controllability and
reliability of the system as a potential quantum computing
platform, since the coexistence of different types of vortices
leads to complex dynamics that can hinder the implementation
of braiding and thus give rise to an inherent source of noise
and decoherence.

In this manuscript, we argue that these experimental hur-
dles can be surpassed by considering routes for realizing
magnetic skyrmions which are free from DMI, magnetic
anisotropy, and a Zeeman field. As we demonstrate, it is
sufficient to violate TRS in the system by means of a nonzero
“flux” ϑ , which acts as a source for the skyrmion charge C.
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Here, the flux enters as a Lagrange multiplier which shifts
the intensive free energy of the system F according to F �→
F − ϑC, where

C = 1

4π

∫
dr M(r) · [∂xM(r) × ∂yM(r)]. (1)

In the above, M(r) corresponds to the magnetization profile
of the magnetic skyrmion crystal or defect. Since C and C
become nonzero simultaneously, the term −ϑC promotes the
formation of magnetic skyrmions. For this reason, we term
this mechanism magnetic skyrmion catalysis (MSC).

Notably, a number of the above preconditions are known
to be fulfilled in quantum Hall systems. Indeed, magnetic
skyrmions have already been theoretically predicted [64,65]
and experimentally observed [66] in ferromagnetic quantum
wells more than two decades ago. Here, however, we are not
interested in situations where a strong quantizing magnetic
field is present. Instead, we focus on weakly doped quasi-2D
itinerant magnets with energy bands which feature a nonzero
Berry curvature [67]. Even more, as we show here, MSC is
also accessible in systems which contain band touching points
and thus a singular Berry curvature. In the latter case, we find
that chiral fluctuations promote magnetic skyrmions either
in a spontaneous fashion, or, due to the orbital coupling to
an external magnetic field. Notably, in this second scenario,
MSC is mediated by a phenomenon akin to the magnetic
catalysis known from high-energy physics [68], but without
the formation of Landau levels.

The magnets of interest are also assumed to feature a
pairing gap, which is either inherent due to spontaneous
Cooper pair formation or is induced by means of proximity
to a conventional superconductor [69,70]. In either situation,
we show that the synergy of a magnetic skyrmion crystal
and superconductivity renders the system an effective p + ip
superconductor which harbors chiral Majorana edge modes
[5,6]. As a consequence, such systems further set the stage for
the appearance of MZMs at point-like defects, such as, in the
cores of vortices introduced in the phase of the superconduct-
ing [2,3] or the magnetic texture [71] fields.

Our manuscript is organized as follows. In Sec. II, we de-
rive the expression of the flux ϑ which is the coefficient of the
cubic term of the free energy which appears in the presence of
the TRS violation. In Sec. III, we study the behavior of ϑ for
two standard models, which describe a Chern insulator and a
generalized Dirac-type of model. Section IV proposes possi-
ble routes to violate TRS and demonstrates that fluctuations
promote the emergence of MSC. In Sec. V, we identify all the
possible magnetic ground states that dictate itinerant magnets
with tetragonal symmetry when spin-rotational symmetry is
intact but TRS is broken. Afterwards, we show in Sec. VI
that MSC can be realized in a Dirac model with a winding
of two units. Then we move on and discuss in Sec. VII the
implications that MSC can have on engineering topological
superconductivity. This work concludes in Sec. VIII with a
summary and a discussion of possible experimental platforms
that appear prominent to harbor MSC. Finally, further expla-
nations and details regarding our calculations are given in
Appendices A–E.

II. CUBIC TERM IN THE LANDAU EXPANSION AND FLUX

We proceed with the exposition of the MSC. We consider
that the system is free of any kind of SOC and other sources of
magnetism, hence, also preserving spin rotational invariance.
In addition, we assume that the magnetic instability is driven
by Fermi surface nesting, which in turn implies that the spin
susceptibility χ (q) peaks at the star of the nesting vector Q.

The band structure results from a matrix Hamiltonian
ĥ(k)1σ , where 1σ is the unit matrix in spin space and k the
wave vector. We develop a Landau theory for the magnetic
order parameter M(r), which is expressed in energy units, and
results from the mean-field decoupling of a Hubbard interac-
tion with strength U . The magnetic order parameter couples
to the electrons through an exchange term ∝ M(r) · σ, where
σ define the spin Pauli matrices.

Under the above conditions, the single-particle Hamilto-
nian in the magnetic phase takes the following form:

ĥM (k + q, k) = ĥ(k)1σ (2π )2δ(q) + M(q) · σ, (2)

where we used the Fourier transform:

M(q) =
∫

dr e−iq·rM(r), (3)

and the Dirac delta function δ(q). The Hamiltonian is written
in the formalism of second quantization as

hM =
∫

dq
(2π )2

∫
dk ψ†(k + q)ĥM (k + q, k)ψ(k), (4)

where ψ†(k) = (ψ†
↑(k), ψ

†
↓(k)). Here, ψ

†
↑,↓(k) creates an

electron of spin projection ↑,↓ and wave vector k.
To derive a Landau expansion in powers of M(q), we em-

ploy the Matsubara formalism and integrate out the electronic
degrees of freedom in a standard fashion [72]. The lowest term
in this expansion is the quadratic one since, in contrast to the
situation taking place in quantum Hall systems [64–66], here
we assume that there is no net ferromagnetic moment in the
ground state when M(r) is absent. The expansion coefficient
at quadratic order ∝ |M(q)|2 is given by 2/U − χ (q) [38],
and determines the leading magnetic instabilities.

TRS violation allows for a cubic term in the expan-
sion that contains the term L(q, p) = M(−q − p) · [M(q) ×
M(p)], which relates to the skyrmion charge density. Similar
terms have been previously discussed in a phenomenological
fashion for chiral spin liquids [73–76], and have been also
shown to be inducible by a magnetic field [77]. However, little
attention has been paid so far to the emergence of this term as
a result of the topological properties of the band structure and
its interplay with fluctuations.

In the following, we provide an analytical expression for
the coefficient ϑ of the respective cubic free energy term,
which is written in the compact form:

F (3) = 1

4π

∫
dq

(2π )2

∫
d p

(2π )2
ϑ (q, p) L(q, p).

In the above, we inserted the flux density:

ϑ (q, p) = i
∫

dk
3π

T
∑
iων

{tr[Ĝ(iων, k)Ĝ(iων, k − q)

× Ĝ(iων, k − q − p)] − q ↔ p}, (5)
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which is expressed in terms of the Matsubara Green function
in the nonmagnetic phase:

Ĝ−1(iων, k) = iων − ĥ(k).

Here, ων denote fermionic Matsubara frequencies, T is the
temperature in energy units, and tr stands for the trace opera-
tion in the matrix space spanned by ĥ(k).

The cubic order term F (3) takes the form −ϑC when the
system is in the vicinity of a ferromagnetic instability. In this

case, we have q, p ≈ 0 and thus we expand Eq. (5) at lowest
order in q and p, which leads to

ϑ = 2iεznm

∫
dk
3π

T
∑
iων

tr

[
Ĝ(k)

∂Ĝ(k)

∂kn

∂Ĝ(k)

∂km

]
, (6)

where we set k = (iων, k) and introduced the totally antisym-
metric Levi-Civita symbol εznm, with n,m = {x, y}. Repeated
index summation is implied. Straightforward calculations lead
to one of the key results of this work:

ϑ =
∑

s=0,1,2

4

(s + 1)!s!

∑
α

∫
dk
π

iεznm〈∂kn uα (k)|[1 − P̂α (k)][εα (k) − ĥ(k)]s−2|∂km uα (k)〉∂s
μ f [εα (k) − μ], (7)

where |uα (k)〉 are the eigenvectors of ĥ(k) with corre-
sponding energy dispersions εα (k) and projectors P̂α (k) =
|uα (k)〉〈uα (k)|. f (ε − μ) is the Fermi-Dirac distribution de-
fined in the grand canonical ensemble and evaluated at an
energy ε for a chemical potential μ.

We remark that, while in the above ϑ is given by a sum of
contributions arising from each band separately, it still origi-
nates from interband-only transitions, see Appendix A. In fact,
this is reflected in the presence of the projectors 1 − P̂α (k).
Note also that for s = 2, the term inbetween the eigenstates
can be replaced by the identity operator, and thus leads to the
Berry curvature [67]

�α (k) = iεznm〈∂kn uα (k)|∂km uα (k)〉. (8)

of the αth band. The above reflects the topological origin of
the flux and Eq. (7) reveals how ϑ relates to the band structure
properties.

III. FLUX IN TWO-BAND MODELS

We evaluate ϑ for a two band model ĥ(k) = d(k) · κ, where
κ denote Pauli matrices that may relate to valley or similar
degrees of freedom. We use the energy dispersions ε±(k) =
±ε(k) with ε(k) = |d(k)|, and obtain

ϑ =
0,1,2∑

s

±1∑
α

∫
dk
π

(−2)sα1+s�(k)

(s + 1)!s![ε(k)]2−s
∂s
μ f [−αε(k) − μ],

(9)
where the quantity

�(k) = 1
2 d̂(k) · [∂kx d̂(k) × ∂ky d̂(k)] (10)

denotes the Berry curvature of the valence band [67], with
d̂(k) = d(k)/|d(k)|. In the following, we explore the behavior
of ϑ for two kinds of models. First, the case of an extended
“Dirac model,” which exhibits a single nth order band touch-
ing point, and second, the Qi-Wu-Zhang model [78], which
describes a Chern insulator or metal.

A. Case of extended Dirac model

We first obtain ϑ for the generalized “Dirac model”:

d(k) = (υ1k� sin(�φ),m, υ2k� cos(�φ)), (11)

where we used polar coordinates kx = k cosφ and ky =
k sin φ. This model yields an �-th order band touching point
for m = 0. At zero temperature and equal “velocities” υ1,2 =
υ, we find the closed form result:

ϑT =0(m) = �

3

sgn(m)

m2
[�(|m| − |μ|) − |m|δ(|m| − |μ|)],

(12)

which is manifestly independent of υ. �(ε) denotes the Heav-
iside unit step function at energy ε. We observe that the flux
term is proportional to the vorticity of the band touching point.
Quite remarkably, we find that given these conditions, the
flux is nonzero only when the chemical potential lies within
the band gap, or, when it exactly touches the band gap edge,
which yields a resonance condition arising from the delta
function.

This result appears at first sight discouraging, since the
MSC seems not to be accessible for itinerant magnets in which
magnetism is driven by the presence of a Fermi surface, which
exhibits a substantial degree of nesting. However, the obser-
vation that the flux peaks for chemical potential values |μ|
close to |m|, implies that introducing a nonzero temperature
can unlock MSC, since the temperature effectively broadens
the energy levels.

Indeed this is confirmed by the numerical evaluation of ϑ

for nonzero temperatures shown in Fig. 1(a). Therefore, when
T is comparable to |m| − |μ|, the system fulfills the resonance
condition and leads to nonzero flux. In the low tempera-
ture regime, the flux can be approximated by the following
form:

ϑres ≈ − �

3π

m

μ2

T

(|μ| − |m|)2 + T 2
. (13)

The above nontrivial dependence of ϑ on the chemical po-
tential further implies that the magnetic skyrmions contribute
to the electric charge [64] since ∂ϑ/∂μ �= 0. However, at
exactly zero temperature the magnetic skyrmions do not carry
electric charge since, in contrast to Ref. [64], our starting point
is a paramagnetic ground state and on top of that, no SOC is
present [79].

Besides the inclusion of a nonzero temperature, at this
stage, it is equally important to comment on the effects of
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FIG. 1. Behavior of the coefficient ϑ as a function of temperature
T and mass/gap parameter m. Results for the model of the gener-
alized model of Sec. III A are shown in (a), while calculations for
the Chern insulator model of Sec. III B are shown in (b). ϑ mostly
exhibits a qualitative similar behavior for the two models. However,
a crucial difference is that at T = 0, ϑ is precisely zero for |m| < |μ|
in the model of Eq. (11), while such a restriction is not present for
the Chern insulator of Eq. (14) as shown in the inset of (b). For the
calculations we used μ = 1.

velocity anisotropy. We find that the system is practically
insensitive to changing the Fermi surface properties.

B. Case of Chern insulator

In this pararaph, we briefly discuss results for a two band
Chern insulator model described by the d(k) vector:

d(k) = (sin kx, sin ky, cos kx + cos ky − m) (14)

with k ∈ [−π, π ]2. The above model supports a topologi-
cally nontrivial phases with a Chern number of a single unit
∝ sgn(m) in the interval |m| < 2.

The expression for ϑ is once again given by Eq. (9).
Since obtaining analytical results is tedious, we restrict to a
numerical investigation that reveals the salient features that
characterize the behavior of this system. Our calculations
shown in Fig. 1(b) confirm that a nonzero ϑ is obtainable even
for |μ| > |m|, albeit with a relatively small magnitude. Never-
theless, the coefficient can be further boosted by considering
a low nonzero temperature.

IV. MASS INDUCTION MECHANISMS

So far, the origin of the flux ϑ and the mass term m in
Eq. (11) have remained unspecified. The sole requirement
to generate these, is that the energy bands see a nonzero
Berry curvature. Therefore prominent candidates appear to
be narrow gap magnetic semiconductors. Preferably, these
should be of a low electronic density in order to be tunable
via electrostatic gating.

MSC also arises in weakly doped semimetals which con-
tain higher order band touching points as in Eq. (11) for
m = 0. However, this is possible only in the presence of
fluctuations in the channel which gives rise to m. Indeed,
the presence of such chiral fluctuations enables the system
to spontaneoussly induce a nonzero m, since this allows for
MSC to take place and, in turn, minimize the free energy
by stabilizing a magnetic skyrmion crystal ground state. In
the remainder of this section, we focus on �th-order band
touching points as in Eq. (11).

We make the above scenario plausible by adopting a
phenomenological approach along the lines of prior works
discussing fluctuations mechanisms in different contexts
[80–82]. We focus on the mass sector of the free energy, which
takes the form

Fm =
(

1

Vm
− χm

)
m2

2
− ϑ (m)C − Mz(m)Bz,

where χm denotes the respective “mass-mass” susceptibility.
Bz denotes an out-of-plane magnetic field, which is suffi-
ciently weak to consider the Zeeman effect fully negligible.
Thus Bz couples to the electrons via the orbital effects. The
latter is here introduced by means of the zero temperature
orbital magnetization Mz [67,83], which is a function of m,
and is obtained from the expression:

Mz(m) = μ

�0

∑
α

∫
dk
2π

�α (k) f [εα (k) − μ],

where we introduced the magnetic flux quantum �0. Note
that here we neglected the contribution of C to the orbital
magnetization, since C is examined at the level of an insta-
bility analysis. For a two band model of the form Eq. (11), the
orbital magnetization reads

Mz(m) = �mμ

�0

[
�(|m| − |μ|)

|m| + �(|μ| − |m|)
|μ|

]
, (15)

which already includes a factor of 2 due to spin.
In the remainder we assume low temperatures, as well

as a value |μ| > |m| but for a chemical potential slightly
above the conduction band bottom. These conditions allow
us to approximately write Mz(m) ≈ sgn(μ)�m/�0. The same
conditions allow us to obtain an analogous expression for
ϑ (m). Specifically, we assume a thermally activated MSC and
employ Eq. (13). After further simplifications, we consider
ϑ ≈ −�m/3πμ2T .

We now move on with identifying m. The interaction po-
tential Vm is non-negative and thus attractive in the channel
of m. Here, m is considered not to emerge, which is reflected
in the relation 1/Vm − χm > 0 assumed to hold throughout.
However, the situation changes when the second and/or the
third terms are considered. The value of m induced by C
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and/or Bz, that we here term mind is found by extremizing the
free energy, i.e., dFm/dm = 0, which yields

mind = �Vm

1 − Vmχm

[ C
3πμ2T

− sgn(μ)
Bz

�0

]
.

We observe that even for C = 0, a nonzero m becomes
readily induced, due to the applied magnetic field. This
phenomenon is a manifestation of the weak-field analog of
magnetic catalysis [68,84] and was previously discussed for
field-induced chiral superconductors [85] and density waves
[80,86,87].

For the value mind, the energy of the system is reduced.
This is because a nonzero m emerges in spite of the system
being detuned from an instability in the mass channel. This
can be more transparently demonstrated by introducing the
field m̃, which is conjugate to m in the statistical mechanics
sense. Following Ref. [88], we find

m̃ = χmm + �

[ C
3πμ2T

− sgn(μ)
Bz

�0

]
.

The next step is to perform a Legendre transform which
expresses the free energy in terms of m̃. We thus find

Fm̃ = {m̃ − �[C/3πμ2T − sgn(μ)Bz/�0]}2

2χm
− Vm

m̃2

2
.

By plugging in the above the induced value of m̃ due to C
and/or Bz, we find that the energy is reduced by the amount

δE = −�2

2

[C/3πμ2T − sgn(μ)Bz/�0]2

1/Vm − χm
. (16)

The above also reveals that chiral fluctuations mediate a cou-
pling between C and Bz, with the latter acting now as a source
of magnetic skyrmion density.

Conclusively, we find that chiral fluctuations favor a
nonzero C, as they open up an additional route to reduce the
free energy. Whether a nonzero C finally appears, will be
decided by the remaining magnetic contributions to the free
energy.

V. MAGNETIC GROUND STATES IN THE PRESENCE
OF FLUX

We now proceed with discussing aspects of the magnetic
instability and phase diagram for generic antiferromagnets.
We assume a system with square lattice symmetry which
exhibits tendency to develop magnetic ground states at the star
of the ordering wave vectors ±Q1,2, with Q1 = Q(1, 0) and
Q2 = Q(0, 1). In the presence of the nonzero flux, the cubic
term also enforces ordering at wave vectors Q± = Q1 ± Q2.1

Notably, Q± do not belong to the star ±Q1,2. Hence, if Q1,2 are
to define the leading magnetic instability, the susceptibility at
Q± is not expected to show an equally sharp peak. Therefore

1Such a multi-Q magnetic ground state can be alternatively sta-
bilized by an external field instead of flux, as it was recently
experimentally observed in Ref. [89].

the respective magnetic orders MQ± ≡ M± would not undergo
an instability when considered alone.2

Let us now discuss the above rather general implemen-
tation for a square lattice in more detail. We focus on the
relevant order parameter subspace and write

FM1,2,± = FM1,2 + ᾱ
(|M+|2 + |M−|2)

−ϑ1,2[M∗
+ · (M1× M2)− M∗

− · (M1× M∗
2 )+ c.c.],

(17)

where ϑ1,2 corresponds to ϑ (q, p) after being evaluated for
all permutations of the momenta q, p = {Q1,Q2,Q±}. In the
above, we introduced

FM1,2 = α(|M1|2 + |M2|2) + β̃

2
(|M1|2 + |M2|2)2

+ β − β̃

2

(∣∣M2
1

∣∣2 + ∣∣M2
2

∣∣2) + (g − β̃ )|M1|2|M2|2

+ g̃

2
(|M1 · M2|2 + |M1 · M∗

2|2). (18)

All the magnetic ground states of FM1,2 , have been analyti-
cally and precisely identified in Ref. [90]. Notably, skyrmion
type of crystals do not belong to the thermodynamically stable
magnetic ground states of FM1,2 . However, among the acces-
sible ground states of the free energy in Eq. (18) one finds
noncollinear and noncoplanar phases which can be converted
into skyrmionic textures crystals. These phases correspond to
the so-called spin vortex (SVC) [91] and spin whirl (SWC4)
[90] crystal phases, and are going to be of relevance in this
work.

In contrast to Eq. (18), the free energy of Eq. (17) in
principle allows skyrmion phases by virtue of the cubic term
which appears due to the TRS violation. Indeed, we verify this
by obtaining an analytical solution also here, in spite of the
two extra terms. In fact, an exact solution becomes possible
here because the order parameters M± are essentially driven
by the magnetic instability at Q1,2, and ᾱ is a non-negative
number. These two conditions allow us to integrate out M±.
The Euler-Lagrange equations of motion yield the constraints

M+ = +ϑ1,2

ᾱ
M1 × M2 and M− = −ϑ1,2

ᾱ
M1 × M∗

2. (19)

Plugging the above back into Eq. (17), we find an effective
free energy depending only on M1,2:

FM1,2 = FM1,2 − γ

2
(|M1 × M2|2 + |M1 × M∗

2|2),

where we introduced the variable

γ = 2ϑ2
1,2

ᾱ
� 0. (20)

2Note that in crystal lattices with trigonal and hexagonal symmetry,
the cubic term involves three magnetic order parameters with all
entering the magnetic skyrmion charge and determining the leading
instability.
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TABLE I. The four magnetic leading instabilities of Eq. (17) which possess a nonzero skyrmion charge in the presence of a nonzero γ .
The four magnetic phases build upon the nonskyrmion analog phases which are obtained for γ = 0 and are solutions of Eq. (18). The magnetic
phases Sk-MS||MH and Sk-SWC2 are found only as local minima (metastable) solutions.

Phases Magnetic order parameters: M1, M2, M± Skyrmion charge in a magnetic unit cell

Sk-SVC M1 = M(1, 0, 0), M2 = M(0, 1, 0), M± = ±M̃(0, 0, 1) |C| = 2, M̃ �= 0

Sk-MS‖MH M1 = M cos η(0, 0, 1), M2 = M sin η(i sin λ, 0, cos λ), M± = M̃(0, i sin λ, 0) |C| = 2, M̃ �= 0

Sk-SWC4 M1 = M(i cos λ, 0, sin λ), M2 = M(0, i cos λ, sin λ)

{∣∣C∣∣ = 1 |M| > |M̃ cot λ|∣∣C∣∣ = 2 |M| < |M̃ cot λ|
M± = M̃(i sin λ,±i sin λ, cos λ)

Sk-SWC2 M1 = M cos η(1, 0, i), M2 = √
2M sin η( cos λ, i sin λ, 0)

{∣∣C∣∣ = 1
∣∣M̃∣∣ < |M|| cos η + √

2 sin η cos λ|∣∣C∣∣ = 2
∣∣M̃∣∣ > |M|| cos η + √

2 sin η cos λ|
M± = M̃(1,±i cot λ, i)/2

One observes that the emergence of MSC in square lattice
systems relies on a fluctuations type of mechanism, which is
mediated now by the noncritical order parameters M±. This
is a peculiarity of the given crystal symmetry group, since
it does not support ordering at three or more wave vectors
which add up to the null vector. In addition, it is worth noting
that although FM1,2 alone respects TRS, magnetic skyrmion
crystal ground states are now possible thanks to the additional
presence of M±.

To show this, we minimize FM1,2 with respect M1,2. This
task is carried out in Appendix B. Remarkably, we find that
the types of accessible magnetic ground states obtained in
Ref. [90] persist even after switching on γ . Moreover, the
type of magnetic ground state which minimizes FM1,2 , can
be obtained from the magnetic phase diagram of FM1,2 , by
employing the renormalized coefficients:

g �→ g − γ and g̃ �→ g̃ + γ . (21)

A proof for the above mapping is given in Appendix B.
With M1,2 at hand, we obtain M± using Eq. (19) and, after a
Fourier transform, we determine M(r). Appendix C presents
the order parameters and respective magnetization profiles of
all the double-Q magnetic ground states of the free energy in
Eq. (17).

Table I discusses the properties of the four magnetic
ground states of FM1,2,± , which feature a nonzero skyrmion
charge for γ �= 0. These are related to the following four
respective ground states of Eq. (18), i.e., the SVC, the SWC4,
as well as the MS||MH and the SWC2. The difference be-
tween SWC4 and SWC2 is that the former respects and
the latter violates fourfold rotational symmetry. Note that
SWC2,4 generate noncoplanar magnetic profiles, while the
SVC and MS||MH collinear. Even more, we remark that
only the SVC and SWC4 constitute thermodynamically stable
magnetic ground states of the free energy in Eq. (18). As
a result, also Sk-MS||MH and Sk-SWC2 have a metastable
character.

We find that starting from a SVC (SWC4) ground
state for γ = 0 with M± = 0, can induce a Sk-SVC
(Sk-SWC4) phase with |C| = 2 (|C| = 1, 2) when γ is
switched on. This is because M± are now nonzero and
modify M(r).

VI. MAGNETISM ON THE SURFACE OF A
TOPOLOGICAL CRYSTALLINE INSULATOR

In this section, we demonstrate the mechanism of MSC
using as our starting point a concrete 2D model:

ĥ0(k) = kxky

m1
κ1 + k2

x − k2
y

2m2
κ3, (22)

which leads to a single quadratic band touching point. Among
other possible applications, this model also describes the pro-
tected surface states of a bulk topological crystalline insulator
(TCI) [92].

To explore the emergence of MSC for the present sys-
tem, we phenomenologically introduce a mass term mκ2 to
the Hamiltonian of Eq. (22), thus obtaining the model of
Eq. (11) for � = 2. The mass term can be induced through
the mechanisms discussed in Sec. IV and its origin is not
further specified in the following. We further assume that the
chemical potential lies energetically outside the gap opened
by the mass term, therefore leading to a Fermi surface. For
instance, in the panels (a) and (b) of Fig. 2, we show two
distinct type of Fermi surfaces which generally emerge for the
TCI surface states. These are obtained by means of varying
the chemical potential and/or the Schrödinger masses m1,2.
For suitable parameter values, the conduction band is dictated
by well-nested Fermi segments. In the presence of a Hubbard
interaction, which is diagonal in valley κ space, nesting pro-
motes magnetic ordering at Q1,2.

To identify the accessible magnetic ground states for this
system, we evaluate the Landau coefficients of the free energy
in Eq. (17). We follow a standard approach that we detail in
Appendix D. We find that a Fermi surface of the type shown
in Fig. 2(a), favors the stabilization of the collinear so-called
charge-spin density wave (CSDW) phase [91]. In contrast,
a Fermi surface of type shown in Fig. 2(b) promotes the
establishment of the SVC phase. Such a tendency is in accor-
dance with previous results for models of Fe-based systems
[93]. There, it was shown that Fermi surfaces and interactions
which are featureless in valley space, such as in Fig. 2(b),
promote the SVC over the CSDW phase.

These results hold both in the presence and absence of m.
However, in the presence of the latter additional phenomena
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FIG. 2. Trajectories of the leading instabilities upon varying the mass term m, which is added to the model of Eq. (22). The dashed line
indicates the trajectory for γ = 0, i.e., without including it for the minimization of the free energy. Instead, the solid line is obtained after
including the effects of a nonzero γ which stems from a nonzero m. The two panels show two general Fermi surface shapes which are obtained
when varying the Schrödinger masses m1,2. For the Fermi surface in panel (a) [(b)], we have m2 = 0.3m1 (m2 = 0.7m1). In all cases, the
chemical potential is accordingly tuned so that the Fermi surface exhibits nesting with roughly the same Q1,2 throughout each phase diagram.
When m = 0, the CSDW (SVC) phase constitutes the leading instability in the (a) [(b)] case. Remarkably, for a nonzero γ the original trajectory
is pushed towards the Sk-SVC phase which now replaces the SVC phase which is obtained only for m = 0. The axes of the phase diagram
are given in terms of the variables G = (g − γ − β̃ )/|β − β̃| and G̃ = (g̃ + γ )/|β − β̃|. The values of the coefficients employed to draw the
phase diagram are given in Appendix D.

take place. When the system is originally in the SVC phase,
the noncritical M± components are also generated. Hence, a
nonzero m converts the SVC phase into the Sk-SVC phase
with |C| = 2. In stark contrast, the MSC does not manifest
itself in the same fashion when the starting point is the CSDW
phase. This is because the order parameters M1,2, which mi-
minize the free energy in Eq. (18), are parallel in spin space.
Nonetheless, for a system with CSDW instability at m = 0,
switching on m can allow for a first order transition to the
Sk-SVC phase with |C| = 2.

Numerical results confirming the above are shown in
Fig. 2. The values for the related coefficients of the free energy
in Eq. (17) are given in Appendix D.

VII. TOPOLOGICAL SUPERCONDUCTIVITY

In this section, we continue with the investigation of the
types of topological phases which become accessible in the
event of coexistence of the Sk-SVC and Sk-SWC4 ground
states with spin-singlet s -wave superconductivity. Here we
have in mind situations of hybrid systems where, e.g., the
surface of a bulk TCI in proximity a conventional supercon-
ductor. Nonetheless, our results can also find applicability to
individual material candidates, which exhibit the microscopic
coexistence of magnetism and superconductivity. Note that,
while in this work, we restrict to conventional pairing terms,
unconventional pairing gaps also lead to topological phases in
conjunction with noncollinear and noncoplanar magnetism.

A detailed exploration of the types of topological phases
under various configurations of magnetic texture crystals
and (un)conventional superconductivity has been presented
in Ref. [42]. There, it was found that the symmetries dic-
tating the magnetic profile and the superconducting gap are
pivotal for stabilizing fully gapped and nodal TSCs, which
support a variety of strong, weak and crystalline phases. In
the same work, the topological properties of a SWC4 phase in

coexistence with conventional superconductivity were inves-
tigated. For a single band model, the symmetries dictating
the SWC4 magnetization profile impose that only nodal topo-
logical superconductivity is accessible in such a case. In the
presence of an edge, these nodal TSCs harbor so-called bidi-
rectional Majorana modes, which are dispersive modes that do
not have a fixed sign for their group velocity. The topological
mechanism that leads to these modes has a one-dimensional
origin and the modes are protected by weak Z2 topological
invariants [42], which are linked to band inversions at the X
and Y points of the magnetic Brillouin zone (MBZ).

Transitions to fully gapped topological phases become
possible in the SWC4 phase only after certain types of per-
turbations are added [42]. As we show in the following
paragraphs, a nonzero γ which stabilizes the Sk-SWC4 leads
to a gap in the spectrum and engineers a chiral TSC harboring
a number of |C| = 1, 2 branches of chiral Majorana modes
per given edge. A similar analysis for the Sk-SVC phase
leads to a chiral TSC with |C| = 2 number of chiral Majorana
modes per edge. Remarkably, the number of the arising chiral
edge modes is given by the respective skyrmion charge of the
magnetic phase. These results qualitatively hold for any single
band model that respects the square lattice symmetries and
features the same type of nesting.

In the next paragraphs, we confirm the above mentioned
topological phases stemming from the Sk-SVC and Sk-SWC4

magnetic orders for the model of Eq. (22), with the remain-
ing parameter values shown in Fig. 3. Note that, while the
Sk-SWC4 magnetic order does not emerge as the leading mag-
netic instability for this model, the results of our investigation
have a general character and can be applicable to systems that
actually harbor this magnetic ground state.

A. Bogoliubov - de Gennes formalism

The description of topological superconductivity from
magnetic texture crystals requires folding the energy
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dispersions of the Hamiltonian in Eq. (22) down to the
MBZ [42]. For a continuum model, this process gener-
ates a band structure with an infinite number of bands.
Nonetheless, only the bands crossing the Fermi level are
important for inferring the topological properties of the
systems under consideration. This holds as long as the
magnetic and pairing gaps are sufficiently weak to allow

us to restrict to only the bands contributing to the Fermi
surface. In the remainder, we assume that this assumption
holds.

Within this framework, the respective many-
particle Hamiltonian takes the form HBdG =
1
2

∫
dk X †(k)ĤBdG(k)X (k), where we introduced the

low-energy Bogoliubov - de Gennes (BdG) Hamiltonian:

ĤBdG(k) =

⎛
⎜⎜⎝

Ĥsc(k − q+) M1 · σ M2 · σ M+ · σ

M∗
1 · σ Ĥsc(k + q−) M∗

− · σ M2 · σ

M∗
2 · σ M− · σ Ĥsc(k − q−) M1 · σ

M∗
+ · σ M∗

2 · σ M∗
1 · σ Ĥsc(k + q+)

⎞
⎟⎟⎠, (23)

which is defined in terms of the spinor

X †(k) = (�†(k − q+), �†(k + q−), �†(k − q−), �†(k + q+)), (24)

with q± = Q±/2. X (k) is in turn defined in terms of the
subspinor:

�†(k) = (χ†
↑(k), χ†

↓(k), χ↓(−k), −χ↑(−k)), (25)

where χ†
↑,↓(k)/χ↑,↓(k) are creation/annihilation operators of

electrons with ↑,↓ spin projection. Furthermore, for a fixed
spin, χ consists of two components which correspond to the
valley degree of freedom κ which leads to the valence and
conduction bands of the TCI surface states of the Hamiltonian
in Eq. (22). With no loss generality, the magnetic order is
assumed to be diagonal in valley space.

In the general presence of a mass term m, the Hamiltonian
Ĥsc(k) describes the arising superconductor in the nonmag-
netic phase, and is given as

Ĥsc(k) = [ĥ0(k) − μ]τ3 + mκ2 + �τ1, (26)

where we assumed that the surface states feel a uniform pair-
ing gap � induced by means of proximity to a conventional
superconductor. The Hamiltonian above is expressed in terms
of the Nambu Pauli matrices τ. The latter are further supple-
mented by the respective identity matrix 1τ . Note that we
omit writing unit matrices and Kronecker product symbols
throughout.

The Hamiltonian Ĥsc(k) belongs to symmetry class C
since it is dictated by a charge conjugation symmetry
�̂

†
CĤsc(k)�̂C = −Ĥsc(−k), which is effected by the operator

�̂C = τ2K̂. K̂ defines complex conjugation. Superconductors
in class C exhibit topologically nontrivial properties in 2D
which are classified by a Z topological index [94–98]. In the
present situation, the emergence of topologically nontrivial
behavior is linked to the band inversion at k = 0, which takes
place when the criterion |m| =

√
μ2 + �2 is satisfied.

B. Projection onto the conduction band of the TCI surface states

The above topological properties are however not relevant
for the cases of interest. Here, the Fermi level crosses the
conduction band and the desired topological properties arise
from energies near the Fermi level. Hence, under the assump-
tion that the gaps induced by the magnetic and pairing terms
are much smaller than the energy difference |μ| − |m|, it is

eligible to project onto the conduction band of TCI surface
states, and even fully discard the presence of m in the resulting
Hamiltonian since it leads to a minor modification of the
Fermi surface shape.

The legitimacy of this approach is confirmed by comparing
the resulting band structure in the MBZ of the full model and
the model which only restricts to the conduction band and mκ2

is dropped. As one observes in Fig. 4 for � = 0, the main
difference between the full and projected model arises near the
M point of the MBZ, which corresponds to the k = 0 point of
the unfolded k space. Nevertheless, under the weak-coupling
assumption for the pairing and magnetic gaps, no band inver-
sion takes place at M, which lies sufficiently high in energy.
Therefore, using the projected model allows to qualitatively
capture all the features which arise from the interplay of
superconductivity and the magnetic skyrmion texture crystal
near the Fermi level.

FIG. 3. (a) Example of a nested Fermi surface for the model of
Eq. (22) with m1 = 1, m2 = 0.7, m = 0.038, and μ = 0.082. We
find that for these parameter values the leading magnetic instability
is of the Sk-SVC type. (b) Fermi surface after downfolding to the
magnetic Brillouin zone (MBZ) for the nesting vectors Q1,2. Note
that the � point of the original Brillouin zone becomes the M point in
the MBZ. On the other hand, the points X and Y of the MBZ originate
from points of the Fermi surface experiencing single-Q nesting with
Q1,2, respectively. Finally, the � point of the MBZ (orange dot) stems
from a point which lies energetically away from zero and experiences
nesting with Q±.
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FIG. 4. (a) Comparison of the bare band structures (� = 0) for the full and approximate models of Eq. (26) (solid black line) and (27)
(red dashed line), after downfolding to the magnetic Brillouin zone for the nesting vectors Q1,2. For the model of Eq. (26), we used the same
parameter values employed in Fig. (3). The same values of m1,2 were also considered for the model in Eq. (27). However, in the latter case,
we reduced the chemical potential by ≈11%, in order to recover the same nesting properties and be in a position to compare the two band
structures. Note that the full model yields twice as many bands, due to the additional presence of the valence band. As we show, the two
band structures agree quite well near the Fermi level. As the energy is increased, one finds that there is a discrepancy in the vicinity of the
M point, which corresponds to the k = 0 point in the unfolded scheme. Therefore, as long as the pairing and magnetic gaps to be added are
safely smaller than |μ| − |m|, the approximate model describes quite accurately the band structure. (b) Here we depict the bare band structure
obtained only from the model of Eq. (27) after downfolding to its respective MBZ. (c) In this panel, we consider the effect due to the addition
of a conventional superconducting gap on the band structure of (b). In all panels the energy scales are given in units of the chemical potential
value μ = 0.082.

Given the above observations, in the following we approx-
imate Ĥsc(k) of Eq. (26), according to

Ĥsc(k) ≈ ε(k)τ3 + �τ1, (27)

which involves the energy dispersion:

ε(k) =
√

(kxky/m1)2 + [(
k2

x − k2
y

)
/2m2

]2 − μ, (28)

where we also incorporated the chemical potential μ in it for
convenience. Note, that the approximate model in Eq. (27)
sees new nesting vectors, which have slightly modified lengths
compared to the ones of the full model. Since our analysis
has mainly a qualitative character, we perform our upcoming
study in the MBZ defined for the nesting vectors of Eq. (27).
Figure 4(c) depicts the low-energy band structure in the MBZ
obtained from the approximate Hamiltonian in Eq. (27).

To this end, we remark that dropping mκ2 from the Hamil-
tonian in order to facilitate the exploration of TSC phases
stemming solely from the conduction band, does not at all
imply that m is fully discarded. The presence of m is still cap-
tured in an indirect fashion. This is because we account for the
additional emergence of the magnetic order components M±
which appear only when ϑ is present. We remind the reader
that the latter is induced by a nonzero m via the occurence of
MSC.

C. Compact representation of the BdG Hamiltonian

The Hamiltonian in Eq. (27), as well as the one in Eq. (23),
can be both written in a compact manner, which exposes their
symmetries in a more transparent way. This is achieved by
first introducing the Pauli matrices λ1,2,3 and ρ1,2,3 related
to foldings in the ky and kx directions, respectively. These
matrices correspondingly act in {k, k + Q2} and {k, k + Q1}
spaces. Subsequently we consider the unitary transformation:

Ĥ ′
BdG(k) = Û†

λ Û†
ρ ĤBdG(k)ÛρÛλ, (29)

where Ûζ = (ζ3 + ζ2)/
√

2. Using the above, the downfolded
Hamiltonian of Eq. (27) takes the form

Ĥ ′
BdG;sc(k) = εs(k)τ3 + εx(k)ρ2τ3 + εy(k)λ2τ3

+ εxy(k)λ2ρ2τ3 + �τ1, (30)

where we introduced the linear combinations:

εs(k) = ε(k − q+) + ε(k + q−) + ε(k − q−) + ε(k + q+)

4
,

εx(k) = ε(k − q+) − ε(k + q−) + ε(k − q−) − ε(k + q+)

4
,

εy(k) = ε(k − q+) + ε(k + q−) − ε(k − q−) − ε(k + q+)

4
,

εxy(k) = ε(k − q+) − ε(k + q−) − ε(k − q−) + ε(k + q+)

4
.

The indices appearing above are chosen after atomic orbitals,
in order to reflect the behavior of the above functions under
the inversions kx �→ −kx and/or ky �→ −ky.

The Hamiltonian in Eq. (30) is invariant under spin ro-
tations and commutes with λ2ρ2. Moreover, it is invariant
under complex conjugation K̂ and usual time-reversal opera-
tion T̂ = iσyK̂, while it possesses a chiral symmetry effected
by �̂ = τ2 and a charge conjugation symmetry �̂D = τ2σyK̂.
Note that additional antiunitary symmetries can be defined by
virtue of the unitary symmetry [30]. As we discuss in the next
section, a subset of these symmetries persist inspite of the
addition of magnetism.

D. Topological phases: Sk-SVC ground state

For a Sk-SVC phase, the magnetic order parameters
take the form M1 = M(1, 0, 0), M2 = M(0, 1, 0), and M± =
±M̃(0, 0, 1). This leads to the BdG Hamiltonian in the new
frame:

Ĥ ′
BdG(k) = Ĥ ′

BdG;sc(k) − Mρ1σx − Mλ1σy − M̃λ3ρ3σz. (31)

The above Hamiltonian preserves the earlier found antiu-
nitary charge conjugation symmetry effected by the operator
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FIG. 5. Energy band structure for a Sk-SVC coexisting with a conventional pairing gap � = 0.25, given the bare energy dispersion shown
in Fig. 4(b). The latter is obtained using the parameters for m1,2 and μ discussed in Fig. 3. Red (black) color denotes dispersions in the presence
(absence) of the M± magnetic order parameters on top of a SVC phase. (a)–(d) and (e)–(h) show the full (top row) and a zoom-in (bottom row)
of the band structure, respectively. The Sk-SVC leads to a fully-gapped spectrum with a Hamiltonian which belongs to class D ⊕ D due to a
unitary symmetry. The spectra of the two blocks are identical and allow for phases with an even number of chiral Majorana modes per edge.
In all panels the energy scales are given in units of the chemical potential value μ = 0.082. Finally, we assumed the ratio M̃ = M/4.

�̂D = τ2σyK̂, whose presence ensures the emergence of Ma-
jorana excitations. Moreover, Eq. (31) features a unitary
symmetry generated by the operator O = λ2ρ2σz. Its presence
allows us to block diagonalize the Hamiltonian by means of
an additional unitary transformation which renders O diago-
nal. We thus consider the unitary transformation effected by
S = (O + σx )/

√
2 and obtain the two-block-diagonal Hamil-

tonian:

Ĥ ′′
BdG(k) = Ĥ ′

BdG;sc(k) − Mρ1σx + Mλ3ρ2 + M̃λ1ρ1σx.

(32)
An additional unitary transformation effected by the opera-

tor S ′ = (ρ3 + ρ1σx )/
√

2 decomposes the above Hamiltonian
into the two identical blocks:

ĥBdG,σ (k) = ĥ′
BdG;sc(k) − Mρ3 − Mλ3ρ2 + M̃λ1ρ3, (33)

which are labeled by the quantum number σ , that behaves as
spin in the rotated frame. ĥ′

BdG;sc(k) is identical to Ĥ ′
BdG;sc(k)

but restricted to a single σ block. The appearance of two
identical blocks can be viewed as an emergent SO(2) spin
rotational invariance in the new frame.

In Fig. 5, we present the energy bands resulting from the
Hamiltonian in Eq. (31). We indeed confirm that the Sk-SVC
phase leads to a fully gapped twofold degenerate spectrum.
The gap is opened thanks to the presence of M± which are
induced due the violation of TRS.

Gap closings and reopenings are also accessible, and these
happen only at the � point. The related band inversions sta-
bilize chiral TSC phases. Indeed, we find that each one of
these two blocks is dictated by a charge conjugation symmetry
generated by �̂ = ρ2τ2K̂, which renders each Hamiltonian in
class D, and allows for chiral TSCs with an integer topological
invariant N . Since the two blocks are identical we in fact have
N ∈ 2Z, and an even number of chiral Majorana modes are
expected to appear per edge.

To demonstrate the emergence of chiral TSC phases, we
focus on one of the two blocks and rewrite it as

ĥBdG,σ (k) = ĥ′
BdG;sc(k) −

√
2Meiπλ3ρ1/4ρ3 + M̃λ1ρ3.

As a next step, we perform a unitary transformation which
transfers the phase factor eiπλ3ρ1/4ρ3 from the magnetic part
of the Hamiltonian to ĥ′

BdG;sc(k). We proceed by focusing near
the � point, which undergoes band inversions. We thus expand
ĥ′

BdG;sc(k) up to linear order in kx and ky about k = 0 and
obtain the expression

ĥ′
BdG,σ (k) ≈

√
2eiπλ3ρ1/4(υxkxρ2 + υykyλ2)τ3 − μ�τ3

+�τ1 − (
√

2M − M̃λ1)ρ3, (34)

where
√

2υx,y = ∂kx,yεx,y(k)|k=0. μ� defines the effective
chemical potential at �. Depending on the values of M and
M̃, the band inversion at � occurs for an eigenstate with fixed
projection of λ1, i.e., ±1. Therefore it is eligible to project the
above Hamiltonian onto, say, the λ1 = −1 sector, and find

ĥ′
BdG,σ,λ1=−1(k) = (υxkxρ2 + υykyρ1)τ3 − μ�τ3

+�τ1 − (
√

2M + M̃ )ρ3. (35)

The topologically nontrivial properties of the above Hamil-
tonian are known from previous works [99,100], and arise
from phase transition mediated by the band inversion at k = 0.
Therefore each class D Hamiltonian block of interest gives
rise to a single branch of chiral Majorana modes at a line
defect [98].

Concluding with the analysis of this system, it is impor-
tant to comment on the stability of the here-obtained chiral
TSC phases with N = 2, since these were derived under the
presence of the unitary symmetry generated by O. Hence, it is
particularly interesting to examine the fate of these phases in
the presence of perturbations such as charge inhomogeneities
and Zeeman fields, which violate O. Such a study is car-
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FIG. 6. Energy dispersions for a Sk-SWC4 phase coexisting with a conventional pairing gap � = 0.25. given the bare energy dispersion
shown in Fig. 4(b). The latter is obtained using the parameters for m1,2 and μ discussed in Fig. 3. Red (black) color denotes dispersions in the
presence (absence) of the M± magnetic order parameters on top of a SWC4 phase. (a)–(d) and (e)–(h) show the full (top row) and a zoom-in
(bottom row) of the band structure, respectively. The Sk-SWC4 leads to a fully gapped spectrum with the respective Hamiltonian belonging
to class D. Note that, in contrast to the Sk-SVC case, here there is no additional twofold degeneracy. For the calculations we considered the
Sk-SWC4 structure shown in Table I, with λ = π/4 and M̃ = M/4. Finally, note that in all panels the energy scales are given in units of the
chemical potential value μ = 0.082.

ried out in Appendix E and we find that there indeed exists
a certain window of stability for these phases against O-
symmetry-breaking perturbations.

E. Topological phases: Sk-SWC4 ground state

The analysis of the Sk-SWC4 can be immediately inferred
from the previous investigations of topological superconduc-
tivity stemming from the SWC4 phase. Specifically, Ref. [42]
showed that only nodal TSCs become accessible, and sup-
port Majorana bidirectional modes. In fact, the nodes in the
spectrum are not removable due to an emergent Kramers
degeneracy arising at the � point of the band structure. As it
was discussed there, lifting this degeneracy, as for instance by
an out-of-plane field, permitted the appearance of chiral TSCs
with a single chiral Majorana mode branch per edge.

Interestingly, the addition of the magnetization compo-
nents M±, renders the spectrum fully gapped and achieves
the removal of this Kramers degeneracy at the �. Therefore
a band inversion is now possible, and allows the system to
enter the topologically nontrivial phase. Given the fact that
the Hamiltonian resides in class D, a single band inversion at
� converts the system into a chiral TSC with N = 1 and a
single chiral Majorana branch per line defect.

The above statements are backed by our numerical calcula-
tions. Representative results are presented in Fig. 6, where we
show the pivotal character of the extra magnetic terms ∝ M±
in splitting the degeneracy at �, which appears in a system
with only the SWC4 magnetic phase.

VIII. CONCLUSIONS AND OUTLOOK

We bring forward an alternative route to controllably stabi-
lize magnetic skyrmion ground states. Our mechanism that we
here term as magnetic skyrmion catalysis (MSC) is free from

the requirement of Dzyaloshinkii-Moriya interaction, mag-
netic anisotropy and the application of an external Zeeman
field. In contrast, it solely relies on time-reversal symmetry
(TRS) violation, and the presence of flux ϑ in the ground state.
As such, it opens perspectives for functional topological su-
perconducting platforms that may be amenable to electrostatic
or other types of control.

For our exploration, we adopt a Landau-type of approach,
and consider that the magnetization field M(r) is a weak per-
turbation to a paramagnetic ground state. Due to the violation
of TRS, the Landau free energy contains a term proportional
to the quantity

∫
drM(r) · [∂xM(r) × ∂yM(r)] which is crucial

for the catalysis of magnetic skyrmions. In our study the spa-
tial variation of both the modulus |M(r)| and the orientation
M(r)/|M(r)| of the magnetization are important for the stabi-
lization of the skyrmion magnetic ground state. This has to be
contrasted with the approach adopted in a recent study [101],
which considers the stabilization of smooth skyrmion textures
originating from a ferromagnetic ground state. While also the
authors of Ref. [101] independently discuss the possibility
of promoting magnetic skyrmions due to Dirac points in the
band structure and TRS violation, the underlying mechanism
stabilizing skyrmions differs from ours.

Under the above assumptions, we provide a closed-form
analytical expression for the flux ϑ , which acts as a source
of magnetic skyrmion charge. Using this expression, we de-
termine the value of this coefficient for two typical models
characterized by a nonzero Berry curvature. In these cases,
we study the behavior of the intrinsic flux and show that
it becomes enhanced when the temperature is tuned to the
energy difference between the Dirac mass m and the chemical
potential μ. Since m acts as a source of ϑ and, thus, is re-
sponsible for the MSC, we further discuss possible scenarios
that allow stabilizing a nonzero m. An appealing possibility
is to generate m spontaneously via an attractive interaction in
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this channel. Nonetheless, even away from criticality, m and in
turn a magnetic skyrmion crystal ground state can be favored,
solely by means of fluctuations. Alternatively, in the presence
of fluctuations, a nonzero m can be imposed by means of
the orbital coupling to an applied magnetic field. The above
results also reveal that skyrmion crystal ground states and
topological phases generated via the MSC are compatible with
the additional presence of an external orbital magnetic field
and thus, in turn, with the appearance of superconducting vor-
tices. Hence, new promising possibilities open up for pinning
Majorana zero modes using skyrmion-vortex excitations, in
analogy to the ones currently explored [57]. Within the MSC
framework, this can become possible by means of locally
controlling flux in space, and generating isolated magnetic
skyrmion excitations.

In addition, we obtain the full set of possible magnetic
ground states which become accessible for itinerant magnets
with tetragonal symmetry, and preserve the full spin-rotational
group, but violate TRS. This is achieved by restricting to
the principal harmonics entering the magnetization profile.
We find that there are two thermodynamically stable phases
which acquire a nonzero skyrmion charge by means of MSC.
These are the Sk-SVC and Sk-SWC4 and emerge as the
skyrmion variants of the spin-vortex (SVC) and spin-whirl
(SWC4) crystal phases which are obtained in the presence of
TRS. We demonstrate the emergence of the Sk-SVC phase
for a concrete extended Dirac model, which gives rise to a
quadratic band crossing in the massless case, and can de-
scribe the protected surface states of a topological crystalline
insulator.

Apart from the magnetic phase diagram, we also investi-
gate the topological phases obtained for the above extended
Dirac model when the two magnetic skyrmion crystal ground
states mentioned above, coexist with a conventional pairing
gap. This can be for instance induced to the system either
by proximity to a conventional superconductor or sponta-
neously due to interactions. We find that the Sk-SVC leads to
a chiral topological superconductor (TSC) with a topological
invariant N = 2, which implies that chiral Majorana modes

can be trapped at line defects. Instead, the Sk-SWC4 allows
for phases with both N = 1, 2, depending on the details of
the magnetic order parameter. Therefore our results open
alternative perspectives for engineering topological supercon-
ductivity using the mechanism of MSC, which is in principle
less demanding than existing schemes for inducing magnetic
skyrmion phases.

Concerning the experimental realization of MSC, we note
that the SVC phase has been already found in CaKFe4As4

[102], while the SWC4 has been theoretically predicted [90]
for hole-doped BaFe2As2. Hence, Fe-based systems with co-
existing magnetism and superconductivity [103–108] appear
promising to exhibit intrinsic chiral TSCs once flux emerges.
Another category of potential intrinsic TSCs is the recently
discovered family of Kagome superconductors [109–112].
These are known to exhibit both superconductivity and a flux
phase [113–115], which can lead to a nonzero Berry curvature
in the energy bands [116,117]. Therefore the possible addi-
tional emergence of magnetism promises to enable the MSC
and allow in turn for chiral TSC phases.

Apart from materials, further potential candidates include
hybrids structures based on topological crystalline insulators
[92] or graphene systems [118,119]. These are prominent
for manipulating MZMs, since they can be in principle elec-
trostatically gated. Quite remarkably, one notes that twisted
bilayer graphene appears to provide all the necessary ingredi-
ents for MSC to take place, since it harbors superconductivity
[120], magnetism [121], and Chern phases [122,123], while
it has been also theoretically predicted to harbor magnetic
skyrmions due to long range Coulomb interactions in its quan-
tum Hall ferromagnetic phases [124].
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APPENDIX A: ADDITIONAL DETAILS REGARDING THE CALCULATION OF ϑ

The expansion of Eq. (5) for q, p ≈ 0, yields

ϑ (q, p) = i
∫

dk
3π

T
∑
iων

{
tr

[
Ĝ(iων, k)

∂Ĝ(iων, k)

∂kx

∂Ĝ(iων, k)

∂ky

]
− ∂

∂kx
↔ ∂

∂ky

}(
qx py − qy px

)
.

Since the integrand of F (3) is antisymmetric in p ↔ q, the factor qx py − qy px can be replaced by 2qx py. Therefore, near a
ferromagnetic instability, the cubic term reads F (3) = −ϑC where

ϑ = 2i
∫

dk
3π

T
∑
iων

{
tr

[
Ĝ(iων, k)

∂Ĝ(iων, k)

∂kx

∂Ĝ(iων, k)

∂ky

]
− ∂

∂kx
↔ ∂

∂ky

}
.

Using the relation for a general Green function ĜĜ−1 = 1 ⇒ ∂Ĝ = −Ĝ(∂Ĝ−1)Ĝ = Ĝ(∂Ĥ)Ĝ, we obtain

tr

[
Ĝ(iων, k)

∂Ĝ(iων, k)

∂kx

∂Ĝ(iων, k)

∂ky

]
= tr

[
Ĝ(iων, k)Ĝ(iων, k)

∂ ĥ(k)

∂kx
Ĝ(iων, k)Ĝ(iων, k)

∂ ĥ(k)

∂ky
Ĝ(iων, k)

]
.
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We now proceed by expressing the Green functions with the help of projectors. At this point, we consider that the system
is described by a band structure with energy dispersions εα (k). For calculating ϑ, we will additionaly introduce a chemical
potential μ and work in the grand-canonical ensemble. Under these conditions, we obtain

tr

[
Ĝ(iων, k)

∂Ĝ(iων, k)

∂kx

∂Ĝ(iων, k)

∂ky

]
=

∑
α,β

tr

[
P̂α (k)

[iων + μ − εα (k)]3

∂ ĥ(k)

∂kx

P̂β (k)

[iων + μ − εβ (k)]2

∂ ĥ(k)

∂ky

]
.

Notably, in the above sum only the α �= β contributions will survive due to the antisymmetry under the exchange of the
derivatives. Therefore we have

ϑ = 2i
∫

dk
3π

∑
α �=β

T
∑
iων

1

[iων + μ − εα (k)]3

1

[iων + μ − εβ (k)]2

{
tr

[
P̂α (k)

∂ ĥ(k)

∂kx
P̂β (k)

∂ ĥ(k)

∂ky

]
− ∂

∂kx
↔ ∂

∂ky

}

and after symmetrizing, we find

ϑ = i
∫

dk
3π

∑
α �=β

T
∑
iων

εα (k) − εβ (k){
[iων + μ − εα (k)][iων + μ − εβ (k)]

}3

{
tr

[
P̂α (k)

∂ ĥ(k)

∂kx
P̂β (k)

∂ ĥ(k)

∂ky

]
− ∂

∂kx
↔ ∂

∂ky

}
.

We can further simplicify the above expression using relations satisfied by the eigenstates of the system |uα (k)〉. We specifically
obtain

ϑ = i
∫

dk
3π

∑
α �=β

T
∑
iων

[εα (k) − εβ (k)]3{
[iων + μ − εα (k)][iων + μ − εβ (k)]

}3

[〈
∂kx uα (k)

∣∣uβ (k)
〉〈

uβ (k)
∣∣∂ky uα (k)

〉 − ∂kx ↔ ∂ky

]
.

After the Matsubara summation we obtain

ϑ = i
∫

dk
6π

∑
α �=β

〈
∂kx uα (k)

∣∣uβ (k)
〉{

12
f [εα (k) − μ] − f [εβ (k) − μ][

εα (k) − εβ (k)
]2 − 6

f ′[εα (k) − μ] + f ′[εβ (k) − μ]

εα (k) − εβ (k)

+ f ′′[εα (k) − μ] − f ′′[εβ (k) − μ]
}〈

uβ (k)
∣∣∂ky uα (k)

〉 − ∂kx ↔ ∂ky .

To obtain the result of Eq. (7), we first exchange the band indices α ↔ β in the terms containing the Fermi-Dirac distributions
of the β bands. This gives rise to an overall factor of 2 to the terms containing the Fermi-Dirac distribution of the α bands.
Afterwards, we eliminate the dependence on the β bands by expressing εβ (k) in the operator form ĥ(k). One finally arrives at
Eq. (7) is finally by expressing the sum containing the various orders of derivatives of the Fermi-Dirac distribution in a compact
fashion.

APPENDIX B: MINIMIZATION OF THE MAGNETIC FREE ENERGY FOR A NONZERO FLUX

In this Appendix, we minimize the free energy in Eq. (17) with respect M1,2 and identify also the constrained M±. Our
analysis follows the spirit of Ref. [90]. At quadratic order of the expansion of the free energy for M1,2, a degeneracy and
enhanced symmetry emerges. Hence, this allows us to adopt the parametrization M1 = M cos η n̂1 and M2 = M sin η n̂2, with
|n̂1,2|2 = 1 and η ∈ [0, π/2]. Thus the Landau functional reads

FM1,2 = αM2 + β̃

2
M4 + β − β̃

2

(
cos4 η

∣∣n̂2
1

∣∣2 + sin4 η
∣∣n̂2

2

∣∣2)
M4

+
[

g − β̃ + g̃
|n̂1 · n̂2|2 + |n̂1 · n̂∗

2|2
2

− γ
|n̂1 × n̂2|2 + |n̂1 × n̂∗

2|2
2

]
sin2(2η)

M4

4
. (B1)

The presence of a nonzero γ solely affects the double-Q phases. There we focus on these. In order to extremize the free energy
functional in the case of double-Q phases (η �= 0, π/2), it is convenient first to write the explicit form of the two complex spin
vectors as n̂s = (|as|eiζs , |bs|eiξs , |cs|eiωs ) with s = 1, 2. By virtue of translational invariance, we can arbitrarily choose the overall
phase factor of each complex vector. This allows us to set ωs = 0 (s = 1, 2). We can now proceed by further decomposing the
complex vectors n̂s (s = 1, 2) into real and imaginary parts, as in the previous paragraph. After taking into account translational
invariance and by also exploiting the SO(3) spin-rotational invariance allowing us to fix the spin orientation of one of the four
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real vectors (n̂s,Re, n̂s,Im), we can write

n̂1,Re = cos λ1(0, 0, 1),

n̂1,Im = sin λ1(cosχ, sin χ, 0),

n̂2,Re = cos λ2(sin ρ cosω, sin ρ sin ω, cos ρ),

n̂2,Im = sin λ2(cosφ, sin φ, 0).

For compactness, we now define the coefficients

P = |n̂1 · n̂2|2 + |n̂1 · n̂∗
2|2

2
= (n̂1,Re · n̂2,Re)2 + (n̂1,Im · n̂2,Im )2 + (n̂1,Re · n̂2,Im )2 + (n̂1,Im · n̂2,Re)2,

K = |n̂1 × n̂2|2 + |n̂1 × n̂∗
2|2

2
= (n̂1,Re × n̂2,Re)2 + (n̂1,Im × n̂2,Im )2 + (n̂1,Re × n̂2,Im )2 + (n̂1,Im × n̂2,Re)2.

Let us now calculate a number of terms that appear in the free energy∣∣n̂2
1

∣∣2 = cos2(2λ1),∣∣n̂2
2

∣∣2 = cos2(2λ2) + sin2(2λ2) sin2 ρ cos2 δ2,

(n̂1,Re · n̂2,Re)2 = cos2 λ1 cos2 λ2 cos2 ρ,

(n̂1,Im · n̂2,Im )2 = sin2 λ1 sin2 λ2 cos2 δ1,

(n̂1,Re · n̂2,Im )2 = 0,

(n̂1,Im · n̂2,Re)2 = sin2 λ1 cos2 λ2 sin2 ρ cos2 δ3,

(n̂1,Re × n̂2,Re)2 = cos2 λ1 cos2 λ2 − (n̂1,Re · n̂2,Re)2,

(n̂1,Im × n̂2,Im )2 = sin2 λ1 sin2 λ2 − (n̂1,Im · n̂2,Im )2,

(n̂1,Re × n̂2,Im )2 = cos2 λ1 sin2 λ2 − (n̂1,Re · n̂2,Im )2,

(n̂1,Im × n̂2,Re)2 = sin2 λ1 cos2 λ2 − (n̂1,Im · n̂2,Re)2,

where we set δ1 = φ − χ , δ2 = ω − φ and δ3 = χ − ω. From the above, we find the relation K = 1 − P. This implies that one
can go back to the start and rewrite the Landau functional as

FM1,2 = αM2 + β̃

2
M4 + β − β̃

2

(
cos4 η

∣∣n̂2
1

∣∣2 + sin4 η
∣∣n̂2

2

∣∣2)
M4 +

[
g − γ − β̃ + (g̃ + γ )

|n̂1 · n̂2|2 + |n̂1 · n̂∗
2|2

2

]
sin2(2η)

M4

4
.

(B2)

Thus we find that the presence of a nonzero χ , renormalizes the following parameters at χ = 0 according to the replacement
g �→ g − γ and g̃ �→ g̃ + γ .

APPENDIX C: MAGNETIC GROUND STATES IN THE
PRESENCE OF NONZERO FLUX

Based on the above results, we find that all the magnetic
ground states obtained in the presence of a nonzero flux can
be obtained using the ground states for zero flux discussed in
Ref. [90]. First of all, we note that the single-Q phase, i.e., the
magnetic stripe and helix do not induce nonzero M±. There-
fore their expression remain as previous. From the double-Q
phases, we also find that neither the CSDW induces the two
additional magnetization components, since it is a collinear
phase. The expression for the remaining six magnetic ground
states are presented in Table II.

APPENDIX D: LANDAU FREE ENERGY COEFFICIENTS
AND PHASE DIAGRAM DETAILS

We can explicitly calculate the coefficients for the Landau
free energy Eq. (17) given the concrete model we consider
in Eq. (22) after phenomenologically adding a mass term
m. The Hamiltonian of the system can be written as ĥ(k) =
d(k) · κ with the help of the Pauli matrix vector κ and d(k) =

(kxky/m1,m, (k2
x − k2

y )/2m2). We introduce the bare Matsub-
ara Green function (for convenience we employ a slighly
modified notation below):

Ĝ(iων, k) = 1

iων − ĥ(k)
= 1

2

∑
α=±

1 + αd̂(k) · κ

iων − εα (k)

=
∑
α=±

P̂α (k)

iων − εα (k)
= Gα

iων,kP̂α (k). (D1)

Here, P̂α (k) = [1 + αd̂(k) · κ)]/2 is the projector represent-
ing the valley degree of freedom, d̂(k) ≡ d(k)/|d(k)|, and
Gα

iων,k
= (iων − εα (k))−1. It is helpful to define the following

quantities:

A(n)
k1,α1;k2,α2;······ ;knαn

= tr{P̂α1 (k1)P̂α2 (k2) · · · · · · P̂αn (kn)}.
(D2)

The coefficients of the Landau free energy are given by
taking the derivatives of it with respect to the order parameters
Mq. The free energy functional is expressed in terms of the
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TABLE II. The coordinate-space magnetization profile M(r), for the six double-Q magnetic phases of Ref. [90], which become modified
in the presence of a nonzero flux in the free energy of Eq. (17).

Phases M1(r), M2(r), M±(r)

Sk-SVC M1 = M( cos (Q1 · r), 0, 0), M2 = M(0, cos (Q2 · r), 0), M± = ±M̃ cos (Q± · r)(0, 0, 1)
Sk-MS‖MH M1 = (0, 0,M cos η cos(Q1 · r)), M2 = M sin η( sin λ sin (Q2 · r), 0, cos λ cos (Q2 · r))

M± = (0, M̃ sin λ sin η cos η sin (Q± · r), 0)
Sk − SWC4 M1 = M(cos λ sin(Q1 · r), 0, sin λ cos(Q1 · r)), M2 = M(0, cos λ sin(Q2 · r), sin λ cos(Q2 · r))

M± = M̃(sin λ sin(Q± · r),± sin λ sin(Q± · r), cos λ cos(Q± · r))
Sk − SWC2 M1 = M cos η(cos(Q1 · r), 0, sin(Q1 · r)), M2 = √

2M sin η(cos λ cos(Q2 · r), sin λ sin(Q2 · r), 0)
M± = M̃(cos(Q± · r),± cot λ sin(Q± · r), sin(Q± · r))/2

˜MS ⊥ MH M1 = (0, 0,M cos η cos(Q1 · r)), M2 = M sin η(sin(Q2 · r), cos(Q2 · r), 0)/
√

2
M± = M̃ sin η cos η(∓ cos(Q± · r), sin(Q± · r), 0)

˜DPMH M1 = M(sin(Q1 · r), 0, cos(Q1 · r))/
√

2, M2 = M(sin(Q2 · r), 0, cos(Q2 · r))/
√

2
M± = M̃(0, (i ∓ i) sin(Q± · r), 0)

perturbation in operator form V̂ = Mq · σ:

F = F0 − T Tr ln(1 − ĜV̂ )

= F0 + T
∞∑

n=1

1

n
Tr(ĜV̂ )n ≡ F0 +

∞∑
n=1

F (n). (D3)

1. Second-order terms

The second-order contribution to the free energy F (2) is
written as

F (2) = α(|M1|2 + |M2|2) + ᾱ(|M+|2 + |M−|2). (D4)

The coefficients α and ᾱ contain the spin susceptibility,
which is given by the expression

χ (q) = −2T

N

∑
iων,k

∑
α,β=±

A(2)
k,α;k+q,βGα

iων,kGβ

iων,k+q (D5)

with the projector A(2)
k,α;k′,β = (1 + αβd̂k · d̂k′ )/2. Consid-

ering a Hubbard interaction with strength U , yields the
coefficients α = 2/U − χ (Q1,2), and ᾱ = 2/U − χ (Q±).
Specifically, the interaction strength U is set to meet
the Stoner criterion 2 = Uχ (Q1,2), and thus we have:
ᾱ = χ (Q1,2) − χ (Q±).

2. Third-order terms

The third-order free energy is written as

F (3) = T

3N

∑
k

Tr{Ĝ(iων, k)Mk−k′ · σĜ(iων, k′)Mk′−k′′ · σĜ(iων, k′′)Mk′′−k · σ}

= −ϑ1,2[M∗
+ · (M1 × M2) − M∗

− · (M1 × M∗
2 ) + c.c]. (D6)

We can start with calculating the projector:

A(3)
k,s;k′,s′;k′′,s′′ = Tr{P̂s(k)P̂s′ (k′)P̂s′′ (k′′)} = 1

4

(
1 + ss′d̂k · d̂k′ + ss′′d̂k · d̂k′′ + s′s′′d̂k′ · d̂k′′ + iεi j�ss′s′′d̂

i
kd̂

j
k′ d̂

�

k′′
)
. (D7)

For term of M∗
+ · (M1 × M2), the expression of the coefficient is generated by considering the functional derivatives:

ϑ1,2 = −2iT

N

∑
iων,k

∑
s,s′,s′′=±

(
A(3)

k,s;k−Q2,s′;k+Q1,s′′Gs
iων,kGs′

iων,k−Q2
Gs′′

iων,k+Q1
− A(3)

k,s;k−Q1,s′;k+Q2,s′′Gs
iων,kGs′

iων,k−Q1
Gs′′

iων,k+Q2

)
, (D8)

where we note that

A(3)
k,s;k′,s′;k′′,s′′ =A(3)

k′,s′;k′′,s′′;k,s;
= A(3)

k′′,s′′;k,s;k′,s′ . (D9)

If TRS holds for the system, the projector A(3) is real and the coefficient ϑ1,2 is zero. When the TRS of the system breaks, the
triple product term of d̂k in the A(3)

k,s;k′,s′;k′′,s′′ becomes nonzero and leads to an imaginary factor. Notice that here the imaginary

parts of A(3)
k,s;k−Q2,s′;k+Q1,s′′ and A(3)

k,s;k−Q1,s′;k+Q2,s′′ have the opposite sign when integrated, so the expression of the coefficients can
be simplified as

ϑ1,2 = 2T

N

∑
iων,k

∑
s,s′,s′′=±

2 Im
(
A(3)

k,s;k−Q2,s′;k+Q1,s′′Gs
iων,kGs′

iων,k−Q2
Gs′′

iων,k+Q1

)
. (D10)
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FIG. 7. (a) The table shows the data employed to obtain Fig. 2(a) using the expressions defined in Appendix D. Each column of the table
corresponds, one-to-one from left to right, to a pair of points in Fig. 2 which are obtained for by discarding and including, respectively, the
contribution of γ which is induced by a nonzero m. Our calculations are carried out for the temperature value T = 1/30 and the chemical
potential is μ = 0.17 when m = 0. The Schrödinger masses are set to be m1 = 1 and m2 = 0.3. For all our calculations, the chemical potential
is suitably adjusted throughout to fix the electron density of the system. Thus the shape of the Fermi surface stays practically unchanged and
the corresponding nesting vectors are pinned around Q1 � (0.7, 0) and Q2 � (0, 0.7) with χ (Q1,2) � 0.98. To ensure nesting at the above
nesting vectors, the chemical potential is suitably adjusted throughout. (b) The table shows the data of the corresponding point from right to
left in Fig. 2(b), upon varying m. The calculation is obtained when the temperature is T = 1/70 and the chemical potential is μ = 1/14 when
m = 0. The Schrödinger massses are set to be m1 = 1 and m2 = 0.7. The chemical potential is tuned to fix the shape of the Fermi surface, and
thus the corresponding nesting vectors are pinned around Q1 ∼ (0.65, 0) and Q2 ∼ (0, 0.65).

3. Fourth-order terms

Similarly, we can write down the fourth-order free energy of the system:

F (4) = T

4N

∑
iων,k

Tr{Ĝ(iων, k)Mk−k′ · σĜ(iων, k′)Mk′−k′′ · σĜ(iων, k′′)Mk′′−k′′′σĜ(iων, k′′′)Mk′′′−k · σ}

= β̃

2
(|M1|2 + |M2|2)2 + β − β̃

2

(∣∣M2
1

∣∣2 + ∣∣M2
2

∣∣2) + (g − β̃ )|M1|2|M2|2 + g̃

2
(|M1 · M2|2 + |M1 · M∗

2|2). (D11)

Once again we start with the calculation of the trace of the projectors:

A(4)
k,s;k′,s′;k′′,s′′;k′′′,s′′′ = Tr{P̂s(k)P̂s′ (k′)P̂s′′ (k′′)P̂s′′′ (k′′′)}

= 1
8

(
1 + ss′d̂k · d̂k′ + ss′′d̂k · d̂k′′ + ss′′′d̂k · d̂k′′′ + s′s′′d̂k′ · d̂k′′ + s′s′′′d̂k′ · d̂k′′′ + s′′s′′′d̂k′′ · d̂k′′′

+ iεi jkss′s′′d̂
i
kd̂

j
k′ d̂

k
k′′ + iεi jkss′s′′′d̂

i
kd̂

j
k′ d̂

k
k′′′ + iεi jkss′′s′′′d̂

i
kd̂

j
k′′ d̂

k
k′′′ + iεi jks′s′′s′′′d̂

i
k′ d̂

j
k′′ d̂

k
k′′′

+ (δi jδkl − δikδ jl + δilδ jk )ss′s′′s′′′d̂
i
kd̂

j
k′ d̂

k
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. (D12)

The fourth-order free energy contains two type of terms. The one only involves one of the two order parameters M1,2, while
the other involves both. We find the following expressions:
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,
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,
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FIG. 8. Band structure for a Sk-SVC topological superconductor in the additional presence of a Zeeman field B. The field enters the BdG
Hamiltonian through the term B · σ. Blue (red) color shows the dispersions in the presence (absence) of the field. (a)–(d) and (e)–(h) show two
different cases of field configurations. For the top [bottom] row we have B = 0.01(1,

√
2,

√
5) [B = 0.1(1,

√
2,

√
5)]. From the above results,

we find that the twofold degeneracy becomes generally split but persists at the � point. Hence, the band inversion takes place simultaneously
for the two class D Hamiltonian blocks, until the magnetic field strength becomes sufficiently strong to fully split the bands. For the remaining
parameters, we used the values in Fig. 5.
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By using the following relation:

∑
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, (D13)

the above expressions are simplified as follows:

g = 2T
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.

The numerical calculation of the above coefficient is performed with a cutoff of |kx|, |kx| � 1.5 and a mesh of N = 1002

points in k space. Figure 7 collects our results for the magnetic phase diagrams discussed in the main text.

APPENDIX E: ADDITIONAL CALCULATIONS ON THE ROBUSTNESS OF THE SK-SVC
CHIRAL TOPOLOGICAL SUPERCONDUCTOR

This Appendix presents additional numerical calculations in order to investigate the stability of the chiral TSC with N = 2
which emerges for the case of a Sk-SVC phase. Figures 8 and 9 discusses the stability against the addition of an external field
(of charge density wave terms).
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FIG. 9. Band structure for a Sk-SVC topological superconductor in the additional presence of a combination of charge density wave terms
with parameters WQ1,2,± ≡ W1,2,±. Each charge density wave component enters the BdG Hamiltonian in a similar fashion to M1,2,± · σ, albeit
that the respective Hamiltonian term is diagonal in spin space and contains a τ3 matrix instead of 1τ . We consider the configuration where
W1 = We−iπ/5, W2 = We−iπ/4, W+ = We−iπ/3, and W− = We−iπ/7. Black (red) color shows the dispersions in the presence (absence) of the field.
(a)–(d) and (e)–(h) show two different cases for the strength of the charge density waves. For the top (bottom) row W = 0.001 (W = 0.1).
From the above results, we find that the twofold degeneracy persists at all point for weak values of W . However, also here, when W becomes
sufficiently strong, it splits the twofold degeneracy in the entire MBZ. For the remaining parameters, we used the values considered in Fig. 5.
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