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Bacterial strategies in prolonged stationary phase:
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In continuous starvation, bacteria will enter an extended stationary phase after the death phase. Growth-
advantaged genetic mutations gradually emerge in the long-term stationary phase. The different competition
patterns between younger and aged cultures, and the constant density and heterogeneity of living cells in very-
aged cultures indicate the complexity of population dynamics under prolonged starvation. Based on resource
conservation and protein allocation, here we constructed a simple growth-death-recycling model to describe the
population dynamics of one or two bacterial strains during long-term starvation. Through analytical derivation or
numerical simulation, we produced the survival-extinction phase diagram of one strain at steady state, and that
of two strains at steady state, in a limited detection time, or consuming different nutrients. By relating allocated
proteomic fractions to growth, death, and recycling rates, we showed the effects of proteome allocation on the
phase diagrams. The constraints and optimization of protein allocation lead to the tradeoff between processes
for cell growth, maintenance (repair), and nutrient recycling. The results reveal multiple strategies of bacterial
survival and coexistence during long-term starvation.
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I. INTRODUCTION

Bacteria need to consume nutrients for continuous growth
and proliferation. However, unlike in the laboratory, the bac-
teria do not easily obtain continuous rich nutrients from the
natural environment, and may even endure long-term starva-
tion. The dynamics of the bacterial population is influenced
by qualities and levels of environmental nutrients. The fluc-
tuation of nutrient availability in the bacterial life has been
described by a prevalent “feast-famine” model [1]. In the
long-term batch incubation, bacterial population growth un-
dergo several classical phases: Lag, exponential, stationary,
death, and long-term stationary phases [1–3]. When the bacte-
ria grow in the exponential phase, it is easy to do steady-state
analyses and define an exponential growth rate; the growth
rate dependence of parameters related to cell composition,
macromolecules’ synthesis, or gene expression has been well
characterized [4,5]. Most of nutrients in the culture will be
consumed at the exponential phase. When nutrients are nearly
exhausted, stringent response signals (e.g., ppGpp and σS) will
be produced to limit and eventually stop the growth of cells
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and trigger the transition from the exponential growth to the
stationary phase of 2-3 days [1–3]. The further incubation of
batch culture after the stationary phase will lead to continuous
death (even extinction) of the bacteria (i.e., the death phase)
[1–3]. Recent evidence showed that the death rate caused by
nutrient deprivation depends on the initial density of viable
cells [6] and pregrowth conditions [7].

In the laboratory, a prolonged stationary phase following
the death phase has been observed when the bacteria were
continuously incubated in a container without nutrient supple-
mentation [1,6,8,9]. In the prolonged stationary phase, a low
density of surviving bacterial population can last for months
and even years [1,8,10]. Competition experiments of “young”
and “aged” cultures or different “aged” cultures demonstrated
that mutations resulting in the phenotype of growth advan-
tage in stationary phase (GASP) can emerge in the long-term
(e.g., 10 days) incubation [11,12]. The GASP mutant emerged
in the older culture can gradually take over the population
along with the death of cells from younger cultures and the
consecutive emergence of GASP mutants lead to the dynamic
alternation of GASP populations [1,10,12]. GASP mutations
have been identified in some global genes, e.g., alternative
sigma factor gene rpoS and transcription factor gene lrp
[1,10,13] and specific stress genes, e.g., cold shock genes cspB
and cspl [9].

The coexistence of multiple bacterial mutants has been
observed in the seasonal [14] or space-heterogeneous nu-
trient environment [15]. This reflects alternate or separated
growth advantages of coexisting mutants with the change
in the time or space. The diversity of bacterial population
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in long-term starvation cultures suggests different GASP
mutants coexist in a spatiotemporal homogeneous environ-
ment [1,3,10,12]. There are fewer studies of the coexistence
of different bacterial mutants in spatially and temporally
homogeneous environments compared with heterogeneous
environments. The conditions under which bacteria coexist in
a homogeneous environment may differ from those in a het-
erogeneous environment. The observed coexistence of GASP
mutants may result from the slow selection of GASP popula-
tions, or may indicate that different mutants can achieve close
growth advantages by adopting different strategies. In this
study, we aim to characterize survival and coexistence strate-
gies of bacterial mutants in the long-term stationary phase
with a simple model for bacterial population dynamics. In
the model, for simplicity, we assume that one or two bacterial
species (mutant strains) exist at the beginning of the incuba-
tion and ignore additional mutations during the incubation.
In this way, we use the population dynamics of one or two
strains to reflect characteristics of the long-term stationary
phase. This is reasonable because the states that one GASP
mutant dominates surviving cells and a younger GASP mutant
gradually surrenders to, takes over, or coexists with an older
dominating GASP mutant are representative in the long-term
stationary phase.

The distribution of proteome among different physiologi-
cal processes determines the bacterial exponential growth rate
under various conditions [16–18]. Recent studies showed that
proteome allocation also affects the competitive growth ad-
vantage when external resources are available [19], the death
rate when external nutrients are depleted [20,21], and the
growth-maintenance tradeoff from feast to famine [7]. The
GASP mutants emerging in long-term stationary phase may
also gain growth advantages by optimizing protein allocation.
Here, we investigate how proteome allocation affects survival
and coexistence strategies in the prolonged starvation.

The Gerland group discovered a constant death rate (ex-
ponential decay of cell viability) in carbon starvation, which
they linked to the balance between nutrient demand by viable
cells and nutrient supply by recycled dead cells [20]. They
also found a correlation between cell growth rate and death
rate (or maintenance rate) and proposed a mathematical model
of proteome-based growth-death coupling to show the tradeoff
between fast growth and long survival [7]. They emphasized
the maintenance of viability rather than the regrowth of viable
cells by consuming nutrients leaked from dead cells because
no regrowth was detected in death phase cultures. However,
the regrowth of viable cells by consuming recycling nutrients
should be an important dynamic process in the long-term
stationary phase. When a GASP mutant is emerged in the
aged culture, the debris of dead cells will be the only nutrient
source for the new GASP mutant growing and taking over the
population. Macromolecules (e.g., proteins, DNA, lipids, and
peptidoglycan) originated from dead cells can be degraded
into small components for living cells to consume as nutri-
ents [13,22–25]. Experiments show that some GASP mutants
acquire growth competition fitness by improving the ability of
using amino aids as sole carbon and energy sources [13,23].
DNA can also be used as the sole carbon and energy source for
bacterial growth; some gene mutations make bacteria lose the
ability to consume DNA and competitive growth advantage

during prolonged stationary phase [24,25]. It suggests that the
death of viable cells, the recycling of macromolecules from
dead cells, and the regrowth of viable cells by consuming
recycled nutrients should all be considered for characterizing
population dynamics in the long-term stationary phase.

Takano et al. [6] constructed a kinetic model for describing
the growth, death, and recycling of bacterial cells to account
for the variation of surviving cell density during the 30-days
cultivation. However, they assumed two complex functions to
describe the dependence of growth and death rates on nutrient
concentration and density of viable cells. Here we developed
a simpler model to describe the growth, death, and recycling
of the bacteria in long-term stationary phase by assuming
constant death and recycling rates and a linear dependence
of growth rate on nutrient concentration. With our model, we
produced the population evolution of one or two species over
time, which is consistent with representative experimental
observations. Through analytical or numerical derivation, we
obtained the extinction-survival-coexistence phase diagram of
bacterial population in different cases (at steady state or in a
limited detection time, with one or two species, sharing the
same nutrient or using different nutrients). We also provided
conditions of one species’ survival and two species’ coexis-
tence in each case. The results show that our simple model
is sufficient to characterize bacterial survival and coexistence
strategies.

The bacteria can obtain fitness advantage by raising growth
or recycling rate or reducing death rate. However, protein cost
is required for all the processes of growth, maintenance, and
recycling. Therefore the bacteria need to optimize the pro-
teome allocation among these processes. Changes in growth
rate or mortality under certain perturbations have been found
to be associated with proteome redistribution [7,16–18,21].
As an extension, we linked growth, death, and recycling rates
to proteomic fractions allocated to corresponding processes
in the model for the long-term stationary phase. Through
analytical or numerical derivation, we obtained effects of pro-
teome allocation on the extinction-survival-coexistence phase
diagram and the survival and coexistence conditions in differ-
ent cases. The results suggest the tradeoff between processes
of cell growth, maintenance-repair, and nutrient recycling
which results from the limitation and optimization of protein
allocation.

II. RESULTS

A. A growth-death-recycling kinetic
model for one bacterial strain

In the long-term stationary phase of bacterial culture, the
featured events include the death of viable cells, the recy-
cling of dead cells into nutrient substrate and the growth
(proliferation) of viable cells by consuming recycled nutrients
[Fig. 1(a)]. To describe the long-term surviving kinetics of
bacterial population simply, we make the following settings
or assumptions. First, we partition bacterial culture into three
coarse-grained parts: Viable cells, dead cells, and nutrients;
viable cells can grow and proliferate by consuming recy-
cled nutrients from dead cells; dead cells include cell debris
that has not been broken into reusable nutrients; the initial
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FIG. 1. The population dynamics of one bacterial strain shows
the survival and extinction regimes at steady state, which can be
determined by the ratio of β to αXmax. (a) Schematic illustration for
the bacterial population dynamics: Viable cells (X ) die into dead cells
(Y ) and grow by consuming nutrient substrate (S) recycled from dead
cells (Y ). (b) Phase diagram of bacterial survival density at steady
state: When αXmax/β > 1, the bacteria survive; when αXmax/β < 1,
the bacteria become extinct. The open circle, triangle, and square
correspond to (c)–(e), respectively. [(c)–(e)] Three examples of the
evolution of viable cells (X ), dead cells (Y ), nutrient substrate (S)
with the time. The blue circles and triangles indicate the experimental
viable cell densities from Takano et al. [6]. (c) and (d) show surviving
population at steady state, while (e) shows the population becomes
extinct before the steady state. At a steady state corresponding to (e),
dead cells will be recycled into the nutrient completely, i.e., Y = 0
and S = Xmax. Parameters are listed in Appendix B.

culture includes only a fixed number of viable cells and the
recycling of dead cells is the only source of nutrients; the recy-
cled nutrients can be consumed for the growth (proliferation)
or/and maintenance of viable cells [20]. Second, we ignore
the mutation possibility, cell-to-cell variability, and complex
composition of nutrients; the most limited nutrient is used
to indicate all nutrients. Third, we assume that viable, dead,
and reproduced cells have the same single-cell mass; nutrient
substrate is in the unit of cells per volume.

When the culture includes only one bacterial strain, we use
X to denote the density of viable cells, Y to denote the density
of dead cells, and S to denote the concentration of nutrient
substrate. Viable cells uptake the nutrient and grow with a rate
μS/(S + KS ). In the long-term stationary phase, only a small
cell population are viable in the culture [1,8], which implies
that the nutrient is limited to very low level, i.e., S � KS .
Thus μS/(S + KS ) ≈ αS, where α = μ/KS . Living cells die
with a rate β; dead cells are recycled into nutrients with a
rate γ ; recycled nutrients were consumed at a rate kd that may
depend on S to maintain one cell’s energy dissipation [20].

Accordingly, the ODEs for describing changes in X , Y , and S
with time are

dX

dt
= αSX − βX, (1)

dY

dt
= βX − γY, (2)

dS

dt
= γY − αSX − kd X. (3)

The boundary conditions are X,Y, S � 0. If the growth term
αSX is much smaller than other terms, and the total amount
of dead cells and nutrients stay constant, i.e., d (Y +S)

dt = 0, we
obtain − 1

X
dX
dt ≈ β ≈ kd , which reflects the balance between

nutrient demand for energy dissipation and nutrient supply
from cell death. This situation is similar to the death phase
scenario described by Schink et al. [20], in which no cell
regrowth is detected and the death rate is determined based on
the balance between maintenance cost and biomass recycling.
However, regrowth (proliferation) by consuming recycled nu-
trients is a common feature of long-term starved bacteria
(see Introduction), so we retain the growth term as well as
the death and recycling terms in the model. If kd > 0, the
recyclable nutrients will be irreversibly consumed until the
cell population becomes extinct (note that d (X+Y +S)

dt = −kd X ).
If irreversible nutrient depletion is significant (kd is large
enough) during long-term starvation, the population will be
reduced to a hard-to-detect level in a relatively short period of
time, which conflicts with the long-term (e.g., >5 years’ [1])
viability of the detected starving bacteria. Therefore kd should
be small enough during long-term starvation, which is con-
sistent with experimental evidence that reduced maintenance
rate leads to prolonged survival under carbon starvation [7].
In order to simplify the model and highlight the growth, death
and recycling processes, we omit the slow and irreversible
nutrient consumption for maintenance, i.e., let kd = 0, in the
following results (examples for effects of energy dissipation
in the case of kd > 0 on starving population dynamics is
present in Appendix C). Thus Eqs. (1)–(3) satisfy the mass
conversation [Fig. 1(a)], and we denote the total culture mass
as Xmax.

For simplicity, we assume that α, β, and γ are constant.
Thus the steady-state solution (X ∗,Y ∗, S∗) can be derived
analytically. We analyzed the stability of each steady state
by linearizing Eqs. (1)–(3) near the steady state point and
deriving the characteristic root of the corresponding Jaco-
bian matrix (Appendix A). When β > αXmax, there is only
one steady state: (0, 0, Xmax), which is stable. This case
corresponds to the extinction of the bacteria. When β �
αXmax, there are two steady states: (0, 0, Xmax) (unstable)
and ( γ

β+γ
(Xmax − β

α
), β

β+γ
(Xmax − β

α
), β

α
) (stable). This case

reflects the long-term survival of the bacteria. Figure 1(b)
shows a survival-extinction phase diagram, where the diago-
nal β = αXmax in the plot of β versus αXmax separates survival
and extinction regimes. The change in the growth rate con-
stant α, total culture mass Xmax, or the death rate β shifts
the bacterial population between the survival and extinction
regimes [Figs. 1(b)–1(e)]. Simulations with different values of
Xmax show different evolutions of cell population and different
final survival densities [Figs. 1(c)–1(e)], which basically
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agrees with long-term cultivation experiments with different
initial bacterial densities [6,26]. As shown in Figs. 1(c)–1(e),
the fast (e.g., approximately exponential [20,26]) decay of
viable cell density leads to the rapid accumulation of dead
cells during early few days, while the slow recycling of dead
cells causes the amount of recycled nutrient increases more
slowly. When Xmax is high, the nutrient can be recycled to
an amount that meets the need of remaining viable cells
in the population before it is extinct [e.g., Figs. 1(c) and
1(d)]; otherwise, the population becomes extinct before the
nutrient is recycled enough [e.g., Fig. 1(e)]. Figures 1(c) and
1(d) present two survival instances with different population
dynamics: The former exhibits monotonic changes, whereas
the latter exhibits fluctuating changes. They are similar to
the overdamping and underdamping phenomena in electrical
circuits. Because of the limitation on the measurement time
and precision, the seeming ‘extinction’ state in the experiment
may correspond to a steady state in the survival regime rather
than in the extinction regime [Fig. 1(d)]. Figure 1(e) presents a
theoretical extinction example. Note that dead cells shown in
Fig. 1(e) are still being recycled into nutrients after 200 days,
although there are no viable cells, which reflects the slowness
of the recycling process.

B. Incorporation of proteome allocation into the
growth-death-recycling kinetic model for one bacterial strain

The limitation of bacterial cell resources leads to the
tradeoff between the resources allocated to various cellu-
lar processes. Scott et al. systematically investigated the
trade-offs between metabolic and translation processes under
nutrient and translation limitations and proposed a simple
mathematic model to describe proteome reallocation between
these processes [16]. To study the effect of stress on protein
maturation, we previously extended their model to include
two extra processes, protein maturation and degradation, thus
dividing the proteome into more sectors [18]. Here, we con-
sider the allocation of protein resources among cell growth
(including uptake, metabolic, and translational processes),
maintenance (including death factors’ resistance and repair
processes), and recycling of death cells (including various
degradation processes). Analogous to the idea of previous
models [16,18], we divide the proteome into three classes:
P1 (for growth), P2 (for maintenance), and P3 (for recycling)
and use φ1, φ2, and φ3 to denote the corresponding pro-
teomic fractions. Note that this proteome partitioning is highly
coarse-grained. The biological consideration of partitioning is
that one gene can be classified into one sector according to
its main function and change modes under particular stresses
[16–18].

Transporters, metabolic enzymes, and ribosomes are lim-
ited for cellular growth, so the growth rate constant can be
expressed as a linear function of φ1 [16–18], i.e.,

α = a(φ1 − φ1,0), (4)

where the new growth rate constant a is independent of pro-
teomic allocation fractions and φ1,0 denotes the inactive or
inefficient part of φ1. φ1,0 includes the proteome fraction for
inactive ribosomes and the proteome cost due to the lack of
tRNA required for saturated translation speed [27,28]. φ1,0

may depend on growth rate as well as the proteome fraction

for inactive ribosomes [28]. We tested the linear dependence
of φ1,0 on growth rate, which results in the α-φ1 relationship in
a form similar to Eq. (4) with constant φ1,0 (see Appendix E).
Therefore we assume that φ1,0 is a constant independent of
growth rate.

P2-class proteins maintain the normal physiological state
of cells to reduce the death rate. They include molecular
chaperons, repair enzymes, and other proteins that contribute
to the maturation, stability, and integrity of biological macro-
molecules. In cells, the synthesis of those macromolecules
should be much more laborious than the production of
P2-class proteins. Economically, cells will tend to minimize
the abnormal maturation, instability, and incompleteness of
laboriously produced macromolecules by preparing enough
P2-class proteins. The Michaelis-Menten equation is widely
used to represent the kinetics of enzymatic reactions, and the
action of an inhibitor can be represented by K/(K + I ), where
I is the inhibitor concentration and K is the Michaelis con-
stant. Thus we consider that β is a Michaelis-Menten function
of φ2, i.e.,

β = b
Km

Km + φ2
, (5)

where the death rate constant b and Michaelis constant Km

do not depend on proteomic allocation fractions. Equation (5)
quantitatively describes the inhibitory effect of P2-class pro-
teins on the death rate at high yet subsaturation levels. It is
similar to the formula for the relationship between aberrant
protein maturation flux and proteomic fraction for chaperons,
which has been used to explain the growth rate independence
of chaperon proteomic fraction (∼0.05) from mass spectrom-
etry [18].

P3-class proteins required for the recycling of dead cells
include degradation enzymes for proteins, RNA, DNA, lipids,
and other biological macromolecules. Just as metabolic
enzymes are limited to external nutrients [16–18], these degra-
dation enzymes should also be limited to the recyclable
macromolecules. Otherwise, the building blocks of the macro-
molecules will accumulate to wasteful levels, unable to offset
the cost of producing these degrading enzymes. Thus the
recycling rate γ can be represented as a linear function of φ3,
that is,

γ = cφ3. (6)

The recycling rate constant c does not depend on proteomic al-
location fractions. This is similar to that the aberrant proteins’
degradation flux linearly depends on the proteomic fraction
for proteases, which has been used to account for the growth
rate independence of protease proteomic fraction (∼0.02)
from mass spectrometry [18]. The normalization condition for
φ1, φ2, and φ3 is φ1 + φ2 + φ3 = 1.

The bacteria suffering from long-term starvation have the
opportunity to regain exogenous nutrients. In order to in-
crease the probability of survival under the starvation or
other common stresses, the bacterial population should tend
to maximize the number of viable cells. Here, we assume
that bacteria achieve this object by optimizing protein allo-
cation among P1, P2, and P3. When β � αXmax, the bacterial
population will be always extinct. When β < αXmax, the op-
timization object is to maximize the function X ∗(φ1, φ2) =
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FIG. 2. The effect of protein allocation on the population survival
of one bacterial strain. (a) Four distinct regimes exists for the survival
space and the optimal survival point. Regime I represents that the
survival space satisfies φ1,2,3 > 0 and the optimal survival point sat-
isfies φ

opt
1,2,3 > 0. Regime II represents a zero survival space. Regime

III represents that φ1,3 > 0, φ2 � 0, φopt
1,2,3 > 0. Regime IV represents

that φ1,3 > 0, φ2 � 0, φopt
1,3 > 0, and φ

opt
2 = 0. [(b)–(e)] The examples

of regimes I–IV shown in (a), respectively. The colorbar shows the
steady-state survival density. The black line represents the border be-
tween the survival regime (white II) and the extinction regime (white
I). The white star indicates the optimal survival point. Parameters:
a = 0.009 [(b) and (c)] or 0.05 ml/(cell h) [(d) and (e)]; b = 1 h−1;
c = 1 h−1; Km = 0.1 (b), 0.9 [(c) and (d)], or 1.2 (e).

c(1−φ1−φ2 )
bKm/(Km+φ2 )+c(1−φ1−φ2 ) (Xmax − bKm

aφ1(Km+φ2 ) ), where φ1, φ2 � 0
and φ1 + φ2 � 1 (notice that φ1 + φ2 + φ3 = 1 has been
used).

Each set of proteomic allocation fractions (φ1, φ2, φ3) must
satisfies φ1,2,3 � 0 and φ1 + φ2 + φ3 = 1, which defines a
feasible space. With each set of proteomic allocation fractions,
we can analytically derive the corresponding steady state. We
define a survival space in which the density of viable cells
is nonzero at steady state, and the optimal survival point
(φopt

1 , φopt
2 , φopt

3 ), which gives the maximal steady-state density
of living cells. Considering the difference in survival space
or optimal survival point, we obtained four distinct regimes
(see Fig. 2): (I) when 1 < b

aXmax
� (1+Km )2

4Km
and Km < 1, φ1,2,3

and φ
opt
1,2,3 are nonzero in the survival space [e.g., Fig. 2(b)];

(II) when Km < 1 and b
aXmax

> (1+Km )2

4Km
, or when Km � 1 and

b
aXmax

> 1, the survival space does not exist [e.g., Fig. 2(c)];

(III) when b � aXmax and Km < 1, φ1,3 and φ
opt
1,2,3 are nonzero

in the survival space [e.g., Fig. 2(d)]; and (IV) when b �
aXmax and Km � 1, φ1,3 and φ

opt
1,3 are nonzero, and φ

opt
2 = 0

in the survival space [e.g., Fig. 2(e)]. The factors causing cell

death may increase the death rate constant b or Michaelis
constant Km. According to above results, bacteria have differ-
ent strategies of proteomic allocation in response to different
effects of death factors on b and Km. If the death rate constant
is larger than growth rate constant times the total culture mass
(i.e., b > aXmax), the bacteria will tend to allocate a nonzero
proteomic fraction to maintenance processes for reducing the
death rate [Fig. 2(b)]. However, if death rate constant is large
enough to satisfy b

aXmax
> (1+Km )2

4Km
, or the Michaelis constant is

not smaller than 1 (i.e. Km � 1) in addition to b > aXmax, the
death factor is hard to alleviate and the bacteria will become
extinct no matter how they allocate the proteome [Fig. 2(c)]. If
the death rate constant is not larger than growth rate constant
times the total culture mass (i.e., b � aXmax), bacteria will
have a wider proteomic allocation space to survive, and even
they can leave the death to happen by minimizing protein
cost for maintenance to zero [Fig. 2(d)]. If, in addition, the
Michaelis constant is not smaller than 1 (i.e., Km � 1), the
zero maintenance cost will be the optimal choice [Fig. 2(e)].
In conclusion, above results indicate that protein reallocation
is one effective mechanism for bacteria to survive in long-term
starvation.

C. A growth-death-recycling model for two bacterial strains
sharing recycling nutrients

To study the long-term coexistence strategies of different
bacterial strains, we consider that two bacterial strains (Nos. 1
and 2) are mixed and incubated in the same container for
a long time. We develop a growth-death-recycling model to
describe population dynamics for two species sharing recy-
cling nutrients as below. Use X1 and X2 to denote densities
of corresponding viable cells, Y1 and Y2 to denote densities
of dead cells, and S to denote the concentration of recycled
nutrient substrate (in the unit of cells per volume) from the
dead debris of the two strains. A schematic diagram is shown
by Fig. 3(a). The ODEs for population dynamics of the two
strains are

dX1

dt
= α1SX1 − β1X1, (7)

dY1

dt
= β1X1 − γ1Y1, (8)

dX2

dt
= α2SX2 − β2X2, (9)

dY2

dt
= β2X2 − γ2Y2, (10)

dS

dt
= γ1Y1 − α1SX1 + γ2Y2 − α2SX2. (11)

where X1,Y1, X2,Y2, S � 0 and X1 + Y1 + X2 + Y2 + S =
Xmax.

The steady-state solution (X ∗
1 ,Y ∗

1 , X ∗
2 ,Y ∗

2 , S∗) can be
derived analytically. We analyzed the stability of each steady
state by linearizing Eqs. (7)–(11) near the fixed points and
deriving the characteristic root of the corresponding Jacobian
matrix (Appendix A). When Xmax � min(β1/α1, β2/α2),
there is only one steady state (0, 0, 0, 0, Xmax), which is
stable. It corresponds to the case in which both strains are
extinct [e.g., Fig. 3(c)]. When β1/α1 < min(Xmax, β2/α2), the
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FIG. 3. Population dynamics of two strains sharing the recycling
nutrient. (a) Schematic illustration for the population dynamics of
two bacterial strains sharing the nutrient substrates. Viable cells of
strains 1 and 2 (X1 and X2) grow by consuming the same nutrient
substrate (S), which is recycled from dead cells of strains 1 and
2 (Y1 and Y2). (b) Phase diagram of four regimes for the survival
strain number. Regimes I-IV represent the cases of the coextinction
of both strains, only strain 1 surviving, only strain 2 surviving, and
co-survival of both strains. [(c)–(f)] The evolution of viable cells
(X1 and X2), dead cells (Y1 and Y2), nutrient substrate (S) with the
time, corresponding to red circle, triangle, square, and diamond
in regimes I–IV shown in (B). (g) If the survivability of strain 1
which occupies the majority of the population satisfies the extinct
condition i.e., SF1 = α1Xmax/β1 < 1, strain 2 as the minority af-
fects little the survival density of strain 1 (e.g., overlapping solid
blue and dashed blue lines), no matter the survivability of strain
2 satisfies SF2 = α2Xmax/β2 > 1 (e.g., green dashed line) or <1
(e.g., green solid line). (h) If strain 1 satisfies SF1 > 1, strain 2
overwhelms strain 1 when SF2 > SF1 (e.g., dash-dotted blue and
dash-dotted green lines), surrenders to strain 1 when SF2 < SF1

(e.g., solid blue and solid green lines), and coexists with strain 1
when SF2 = SF1 [e.g., dashed blue (overlapping solid blue line) and
dashed green lines].

stable steady state is ( γ1(Xmax−β1/α1 )
β1+γ1

,
β1(Xmax−β1/α1 )

β1+γ1
, 0, 0, β1/α1),

which means that strain 2 all die, while strain 1 finally survives
[e.g., Fig. 3(d)]. When β2/α2 < min(Xmax, β1/α1), the stable
steady state is (0, 0,

γ2(Xmax−β2/α2 )
β2+γ2

,
β2(Xmax−β2/α2 )

β2+γ2
, β2/α2),

which indicates that strain 1 is extinct, while strain 2 survives
[e.g., Fig. 3(e)]. When β1/α1 = β2/α2 < Xmax, the stable

steady state is (X ∗
1 ,

β1

γ1
X ∗

1 ,C0X ∗
1

α1
α2 ,C0

β2

γ2
X ∗

1

α1
α2 ,

β1

α1
), where

C0 = X2(0)/X
α1
α2

1 (0) and X ∗
1 can be determined by solving the

equation X ∗
1 + C0X ∗

1

α1
α2 = Xmax−β1/α1

1+β1/γ1
. In this case, two strains

coexist at steady state and their densities at steady state are
dependent on initial densities [e.g., Fig. 3(f)]. Thus steady
states of population dynamics of strains 1 and 2 define four
distinct regimes based on ratios α1Xmax/β1 and α2Xmax/β2

[Fig. 3(b)]: (I) both strains become extinct, (II) only strain
1 survives, (III) only strain 2 survives, and (IV) both strains
survive. As shown by Fig. 3(b), the coexistence of strains 1
and 2 occurs only on the line α1Xmax/β1 = α2Xmax/β2 > 1,
i.e., α1/β1 = α2/β2 > 1/Xmax. These competition modes
of two strains are similar to those observed in competition
experiments of mixing “aged” and “young” cultures [11,12].
Note that initial conditions do not affect the phase diagram
[Fig. 3(b)], which is determined by the total density (Xmax),
growth rate constants (α1 and α2), and death rate constants (β1

and β2). However, initial densities of viable cells [X1(0) and
X2(0)] may affect steady-state densities. When one bacterial
strain shares the same nutrients with another, a higher initial
viable cell density can lead to a higher steady-state viable cell
density [Fig. 3(f)]. This reflects the continuity of competitive
advantage.

According to the above results, the factor αiXmax/βi re-
flects the survivability of strain i. If the survivability factor
(abbreviated to SF ) of one strain is higher than 1, the popu-
lation only containing this strain will survive; otherwise, the
population will die out. Above results and Fig. 3(b) have
shown specific conditions under which strain 2 surrenders
to, coexists with, or replaces strain 1. To better reflect the
emergence of GASP mutant in the long-term starvation, we
simulated the population dynamics by fixing SF of strain 1
(SF1), which initially occupies the majority of the population,
and varying SF of strain 2 (SF2), which is the minority at
the beginning [Figs. 3(g) and 3(h)]. When strain 1 satisfies
SF1 < 1, strain 1 will die out independent of the survivability
of strain 2, and strain 2 will take over the population if SF2 � 1
[Fig. 3(g)]. When SF1 � 1, the survivability’s diversity of
the emergent strain 2 leads to that strain 2 surrenders to (if
SF2 < SF1, i.e., α2/β2 < α1/β1), coexists with (if SF2 = SF1,
i.e., α2/β2 = α1/β1), or overwhelms strain 1 (if SF2 > SF1,
i.e., α2/β2 > α1/β1) [Fig. 3(h)]. This roughly repeats different
competition modes of “young” and “aged” cultures [11,12]
and more clearly points to the condition of the emergence of
GASP mutant.

Next, we consider the effect of protein allocation on the
survival and coexistence strategies to show the tradeoff be-
tween cellular growth, maintenance, and recycling. For the
sake of convenience, we assume that the two strains only
differ in proteomic fractions. Use φi(i ∈ 1, 2, 3) and ψi(i ∈
1, 2, 3) to denote proteomic fractions allocated to growth,
maintenance, or recycling for strains 1 and 2, respectively.
As similarly done for the case of one strain, we formulate
the growth, maintenance, and recycling rates as: α1 = aφ1,
β1 = b Km

Km+φ2
, γ1 = cφ3, α2 = aψ1, β2 = b Km

Km+ψ2
, γ2 = cψ3,

where a, b, and c are rate constants and Km is Michaelis
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FIG. 4. Tradeoff between cell growth and maintenance and co-
existence of two strains sharing the recycling nutrient at steady
state under the constraint γ1 = γ2 = const (i.e., φ3 = ψ3 = const).
(a) The coexistence conditions of two strains show that the coexisting
strains can have different compromised growth and death rates (i.e.
different values of α and β). γ = 0.1c. (b) The φ1-ψ1 phase diagram
of two strains’ survival and coexistence. II–IV denote the regimes
in which only strain 1 survives, only strain 2 survives, and two
strains co-survive, respectively. The red circle corresponds to that
both strains choose the α-β values at the red circle shown in (a). The
left (right)-pointed triangle corresponds to that both strains choose
the α-β values at the left (right)-pointed triangle shown in (a). The
diamonds correspond to that the two strains choose the α-β values
at the left and right-pointed triangles shown in (a), respectively.
Parameters: φ3 = ψ3 = 0.1, a = 0.09 ml/(cell h), b = 0.05 h−1, and
Km = 0.1.

constant. Under the constraints of normalization conditions
φ1 + φ2 + φ3 = 1 and ψ1 + ψ2 + ψ3 = 1, the degree of free-
dom of the system is 4. To provide an example to show
the dependence of two strains’ coexistence on allocation
fractions, we consider additional constraints: φ3 = ψ3 = 0.1,
which means that the two strains have the same proteomic
fraction for the recycling. Accordingly, γ1 = γ2 = 0.1c and
φ1 + φ2 = ψ1 + ψ2 = 0.9. The degree of freedom is reduced
to 2. We consider φ1 and ψ1 as the two free parameters.
According to the above results, the coexistence of the two
strains requires α1/β1 = α2/β2 > 1/Xmax. Thus the specific
coexistence condition here is that (α1, β1) and (α2, β2)
should be located at the intersection between the straight line
β = kα (k < Xmax) and the curve α/a + Km(b/β − 1) = 0.9
[Fig. 4(a)]. The curve reflects the tradeoff between growth
and maintenance, while the two intersections [see triangles in
Fig. 4(a)] show the possibility of the coexistence of two strains
differing in the compromised growth and death rates. Corre-
sponding to the two intersections, there are four solutions of
(φ1, ψ1) [see triangles and diamonds in Fig. 4(b)]. Here we
consider Xmax large enough so that 1/Xmax ≈ 0. Finally, the
coexistence points constitute two diagonal lines: ψ1 = φ1 and
ψ1 + φ1 = 0.9 + Km [see phase diagram in Fig. 4(b)]. The co-
existence points on the line ψ1 + φ1 = 0.9 + Km suggest that
the coexisting strains can have different proteomic allocation
fractions. The case in which only strain 1 survives requires
that α1/β1 > α2/β2, i.e., (φ1 − ψ1)(φ1 + ψ1 − 0.9 − Km) <

0, corresponding to the top and bottom regions separated by
coexistence lines in Fig. 4(b). The case in which only strain
2 survives requires that α2/β2 > α1/β1, i.e., (φ1 − ψ1)(φ1 +
ψ1 − 0.9 − Km) > 0, corresponding to the left and right re-
gions separated by coexistence lines in Fig. 4(b).

In above results, the survival of bacterial population is
determined under steady state. However, two limitations exist

FIG. 5. Phase diagram and some examples of population dynam-
ics for two strains sharing the recycling nutrient under a limited
time. (a) Phase diagram of the co-growth of two strains (1 and 2).
Four regimes are formed: (I) both strains are extinct; (II) strain 1
survives, whereas strain 2 is extinct; (III) strain 2 survives, whereas
strain 1 is extinct; and (IV) both strains survive. α is the adjustable
parameter. [(b)–(d)] Examples for regimes II-IV. Blue circles and red
squares denote experimental data from [29]. Parameters are present
in Appendix B.

in detecting bacterial survival in the experiment. One is the
limitation of the measurement time, that is, the measurement
time may be not enough to reach the steady state (see above).
Actually, a too long measurement will get into a state in which
the mutation frequently occur. However, our model cannot
describe the population dynamics with frequent mutations.
The other is the limitation of the detection precision, namely,
there is a nonzero minimal survival density that can be de-
tected. In the wet-lab, therefore, the survival of bacteria is
usually determined by observing whether the survival den-
sity is detectable at the final detection time. The effect of
the limited detection time depends on initial values and the
measurement duration. If we use small enough death rates
(e.g., β1 = β2 = 0.001 h−1) while changing the growth rates,
and let γ1 = γ2 = 3 × 10−6 h−1, X1(0) = X2(0) = Xmax/2 =
0.5 × 109 cells/ml, Y1(0) = Y2(0) = S(0) = 0, the limited de-
tection time is 14 days and the minimal detectable survival
density is 100, both strains will survive in the entire ranges of
α1Xmax/β1 and α2Xmax/β2 shown in Fig. 3(b). This is under-
standable because the duration before the population becomes
extinct (the density is lower than the minimal detectable)
(extinction time) is much longer than the total detection time.
The extinction time can be reduced by increasing the minimal
detectable survival density or the death rate. With higher death
rates (e.g., β1 = β2 = 0.05 h−1) (other parameters have the
same values as above), four regimes emerge and the coex-
istence regime is pencil-shaped [Fig. 5(a)] rather than a line
[Fig. 3(b)]. Moreover, the results for different initial densities
of viable and dead cells (Appendix D and Fig. 10) indicate
that initial conditions can affect the phase diagram as well
as final densities. However, if the initial conditions are not
extremely abnormal (such as no viable cells of strain 1 or 2),
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FIG. 6. The φ1-ψ1 phase diagram of the survival and coexistence
of two strains sharing the recycling nutrient under a limited time and
a constraint γ1 = γ2 = const (i.e., φ3 = ψ3 = const). II–IV denote
the regimes in which only strain 1 survives, only strain 2 survives,
and two strains cosurvive, respectively. See related parameters in
Appendix B.

the four regimes remain and the coexistence regime is still
pen shaped (Fig. 10). Finally, we can adjust the parameters to
compare theoretical results to three experimental data sets of
cell viability as a function of the time [29], which correspond
to three different regimes: (1) strain 1 survives, whereas strain
2 is extinct [Fig. 5(b)], (2) strain 1 is extinct, whereas strain
2 survives [Fig. 5(c)], and (3) both strains survive [Fig. 5(d)].
One complex case is also observed in the experiment [29], in
which one strain conquers another strain in the early stage,
but the advantage of the first strain is surpassed by the second
strain in the late stage. This case implies that a genetic change
leading to a larger growth advantage occurs in the second
strain. Our model does not involve the mutation, so it cannot
explain this complex case directly.

With the above-used limited detection time (14 days) and
the minimal detectable survival density (100), we reproduced
the survival-extinction phase diagram of the two strains based
on the proteomic allocation (i.e., φ1 and ψ1). The results show
that the coexistence regime becomes an irregular star shape
(Fig. 6) instead of a cross [Fig. 4(b)]. Above results indi-
cate that bacterial survival and coexistence spaces observed
in actual experimental conditions may be different from that
obtained at the steady state.

D. The growth-death-recycling model for two bacterial strains
using different recycling nutrients

Evidence shows that bacteria strains especially GASP mu-
tants can use amino acids or DNA as the sole carbon and
energy source [13,23–25]. In addition, different GASP mu-
tants may prefer different categories of amino acids [13,23].
The sgaA GASP mutation can lead to a loss of consum-
ing oligopeptides but an increase in utilizing amino acids
monomers [30]. These results suggest that different bacterial
strains may uptake and metabolize different recycling nutri-
ents in prolonged starvation. To study this case, we construct
a model with two bacterial strains consuming two different
types of recycling nutrients. Use S1 and S2 to denote concen-
trations of limiting nutrients (in the unit of cells per volume),
X1 and X2 to denote densities of viable cells, and Y1 and Y2 to
denote densities of dead cells for strains 1 and 2, respectively.

FIG. 7. Schematic diagram and phase diagram for two strains
using different recycling nutrients. (a) Schematic diagram. Xi, Yi,
and Si are the density of viable cells, density of dead cells, and
concentration of nutrient source of strain i (i ∈ {1, 2}), respectively.
(b) The α1Xmax/β1-α2Xmax/β2 phase diagram of the survival and
coexistence of the two strains, independent of specific values of
the parameters. “I” and “IV” indicate coextinction and coexistence
regimes, respectively.

A relevant schematic diagram is shown by Fig. 7(a). The
corresponding ODEs are

dX1

dt
= α1S1X1 − β1X1, (12)

dY1

dt
= β1X1 − γ1Y1, (13)

dX2

dt
= α2S2X2 − β2X2, (14)

dY2

dt
= β2X2 − γ2Y2, (15)

dS1

dt
= −α1S1X1 + ρ1γ1Y1 + (1 − ρ2)γ2Y2, (16)

dS2

dt
= −α2S2X2 + ρ2γ2Y2 + (1 − ρ1)γ1Y1, (17)

where Xi,Yi, Si � 0 (i ∈ {1, 2}), 0 � ρi � 1 (i ∈ {1, 2}), and∑2
i=1(Xi + Yi + Si ) = Xmax. ρi represents the mass fraction

of dead cells recycled to the nutrient Si, while 1 − ρi rep-
resents the remaining fraction recycled to the other nutrient.
When ρ1 = ρ2 = 0, all resources circulate between strains
1 and 2. When ρ1 = ρ2 = 1, no resources flow between the
two strains, equivalent to two isolated single strain systems.
Below we only consider ρ1, ρ2 �= 1. When 0 < ρ1, ρ2 < 1, a
portion of resources circulate between the two strains. The
circulation of resources between the two strains implies strong
cooperation between them, as opposed to competition for
resources while consuming the same nutrient. The steady-
state solution (X ∗

1 ,Y ∗
1 , X ∗

2 ,Y ∗
2 , S∗

1 , S∗
2 ) of Eqs. (12)–(17)

can be derived analytically. There are two possible steady-
state solutions: SS1 = (0, 0, 0, 0, S∗

1 , Xmax − S∗
1 ) and SS2 =

( XC
β1ξ

, XC
γ1ξ

,
ηXC

β2ξ
,

ηXC

γ2ξ
,

β1

α1
,

β2

α2
), where XC = Xmax − β1

α1
− β2

α2
, ξ =

1/β1 + η/β2 + 1/γ1 + η/γ2, and η = (1 − ρ1)/(1 − ρ2). If
Xmax − β2/α2 � S∗

1 � β1/α1, SS1 is stable; otherwise, the so-
lution is unstable. If α1 > β1, α2 > β2, and Xmax > β1/α1 +
β2/α2, SS2 exists, and it is stable at least when γ1, γ2, A, and
B is close to zero. We use H to denote the Harmonic mean
of α1Xmax/β1 and α2Xmax/β2. When H � 2, both strains are
extinct, whereas when H > 2, both strains survive. This forms
an coextinction-coexistence phase diagram of two strains us-
ing different nutrients as shown by Fig. 7(b). In the phase
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FIG. 8. Tradeoff between cell growth and maintenance in the co-
existence of two strains using different recycling nutrients under the
constraint γ1 = γ2 = const (i.e., φ3 = ψ3 = const). (a) The φ1-ψ1

phase diagram of the survival and coexistence of two strains. “I” and
“IV” indicate co-extinction and coexistence regimes, respectively.
[(b)–(d)] The survival density of strain 1 (X1), strain 2 (X2), or their
sum (X1 + X2) as a function of φ1 and ψ1. White stars indicate
corresponding maximum points. Parameters: Xmax = 107cells/ml,
φ3 = ψ3 = 0.1, Km = 0.1, a = 8 × 10−7 ml/(cell h), b = 6 h−1, and
c = 10−5 h−1.

diagram, there are only two regimes: (I) both strains are
extinct and (IV) both strains survive. To gain the coexistence,
unlike in the case of two strains consuming the same nutrient,
two strains consuming different nutrients are not required
to have the same growth rate/death rate ratio. It indicates
a higher coexistence freedom when different bacteria strains
consume different nutrients. Note that, as in the case of shar-
ing the same nutrient, the phase diagram is determined by
the total density and growth rate and death rate constants,
independent of initial conditions. The steady state is affected
by rate constants (αi, βi, and γi), total mass Xmax, and mass
fractions, but not by specific initial values. This reflects the
robustness of this system, compared with the system of two
strains sharing the nutrient that may depend on initial condi-
tions (see above).

When two strains use different nutrients, the φ1-ψ1 phase
diagram also consists of two regimes (I) both strains are
extinct; and (IV) both strains survive. The regime (IV) has
a square shape with arc edges [Fig. 8(a)]. This also indicates a
higher coexistence freedom when the strains consume differ-
ent nutrients, compared with the case of the strains consuming
the same nutrient. The maxima of the density of strain 1, the
density of strain 2 and their sum are not at the same (φ1, ψ1)
point. If both strains tend to optimize their own density, nei-
ther of them can reach the maximum of the density, and their
densities’ sum cannot reach the maximum, either. If the two
strains cooperate with each other, they can achieve the max-
imal sum of their densities. This is similar to the prisoner’s
dilemma. It suggests that the cooperation between different
GASP mutants may be an effective strategy to increase the
survival probability of the entire population in the long-term
stationary phase culture.

III. DISCUSSION

In this study, we modelled the growth-death-recycling dy-
namics of one or two strains and found the survival condition
of one strain and cosurvival condition of two strains. We also,
for the first time, characterize effects of proteome allocation
on the survival and coexistence strategies. The results suggest
the tradeoff between growth, maintenance, and recycling. Our
model could be extended to describe the population dynamics
and coexistence of more than two microbial species under
the long-term starvation or other stresses. The related results
could be checked by well-designed experiments. When revis-
ing this manuscript, we found that the model of Takano et al.
[6] had been simplified by Shoemaker et al. [31] into a form
similar to our single strain model. But neither their model nor
the one of Takano et al. has been used to study the co-survival
of multiple strains and the influence of proteome allocation.

Many regulatory mechanisms underlie the tradeoff of
growth-maintenance-recycling processes [1,13]. One well-
known candidate is the regulation of the level of alternative
sigma factor σ S , which can modulate the tradeoff by chang-
ing the allocation of proteome between different processes
[18,32]. The emergence of GASP mutations in rpoS [1,13]
points to a tradeoff adjustment in adaptation to the state vari-
ation of bacterial populations and nutrients. In the early stage
(e.g., early stationary phase and death phase), bacteria tend
to cease growth and maintain a long survival, whereas, in the
late stage (e.g., prolonged stationary phase), bacteria tend to
increase proteomic fractions for the recycling of dead cells
and the regrowth of viable cells. The shift from persistence
and resistance of nongrowth cells to scavenging recycling
nutrients and resuming growth is analogous to the change
from cooperation to defection in the prisoner’s dilemma [33].

This study highlights the tradeoff underlying the prolonged
starvation. Tradeoff between growth, maintenance, and recy-
cling may exist when bacteria suffer other long-term stresses.
For example, a linear correlation between bacterial growth
rate and lysis rate mediated by β-lactam has been observed
under various additional stresses modulating cell growth [34],
suggesting a universal tradeoff between growth and mainte-
nance.

In the model, two underlying assumptions are the spatially
uniform and constant environmental conditions (no external
nutrient supply and no change in temperature). It has been
found that the space-segregation [15] or seasonal environment
[14] can also facilitate the coexistence of different bacterial
strains. The model could be advanced to quantify effects of the
heterogeneity of nutrient or other signaling factors in space or
time on bacterial survival and coexistence.

Our work points to a bacterial evolution strategy in the
long-term shortage of nutrients, i.e., the GASP mutant can
acquire growth advantage by optimizing proteomic fractions
for growth, maintenance, and recycling. The successive emer-
gence of GASP mutants in long-term starvation cultivation is
a good target for studying the evolution of microbial commu-
nities [12,13]. It might be possible to involve mutations in our
model or other similar models.

Nongrowth cells need to consume nutrients (or energy) to
maintain their viability, which has been described by some
theoretical models [20,35–37]. Schink et al. [20] proposed

013119-9



QING ZHANG, YINING CHEN, AND HUALIN SHI PHYSICAL REVIEW RESEARCH 5, 013119 (2023)

that during the death phase, nutrients provided by the lysis of
dead cells are in balance with nutrients (free energy) needed
to maintain the viability of nongrowth cells. Based on this as-
sumption, they explained the exponential decay of population
viability in death phase and the increase in death rate with
the overexpression of a wasteful protein [20]. The quantifica-
tion of microbiological maintenance is still in debate [36,37].
The proposition of Schink et al. [20] on the nutrient supply-
demand balance needs further detailed testing. As mentioned
above, our model for one strain [Eqs. (1)–(3)] decays to the
scenario described by Schink et al. [20] when αSX ≈ 0 and
d (Y +S)

dt = 0. However, when we do not consider energy dissi-
pation [i.e., kd = 0 in Eq. (3)], the results of our model can
also reflect the exponential decay during the death phase. In
the framework of our model without energy dissipation, if the
rate of recycling dead cells to nutrients that are usable for
viable cells is very slow and the initial nutrient concentration
is close to zero, the concentration of recycled nutrients in the
dead phase will be very low [e.g., the case before 15 days
shown in Fig. 1(c)]. Thus the growth term αSX in Eq. (1)
can be ignored, in agreement with experimental evidence
that no growing cells were observed in the death phase [20].
Finally, according to Eq. (1), the density of viable cells will
decrease with the time exponentially [e.g., the case before 15
days shown in Fig. 1(c)]. With our model involving proteome
allocation, the decrease in death rate with the overexpression
of a wasteful protein can be easily explained by the de-
crease in the proteomic fraction allocated to maintaining cell
viability.

Some phenomena, such as viable but nonculturable
(VBNC) state or stationary phase contact-dependent inhibi-
tion (SCDI) [2,38], that have been observed in experiments
reflect special survival strategies in response to the prolonged
starvation. The VBNC cells stay dormant in most cases, and
recover from the dormancy only under special conditions
[2]. At the VBNC or dormant state, the strain has a nearly
zero growth rate but a very long survival, corresponding to
the case of φ1 = φ3 ≈ 0, φ2 ≈ 1, and Km ∼ 0 in our model
[see Eqs. (4)–(6)]. This reflects an extreme tradeoff between
growth, maintenance and recycling. In the SCDI phenomenon,
emerging strains kill the parent strain or inhibit the growth
of the parent strain [38]. The inhibitory relationship between
two strains can be added in our model, in which case the
extinction-survival phase diagram should vary with the in-
hibitory strength.

IV. CONCLUSION

Here, we developed a kinetic model to describe the sur-
vival, death, and recycling of bacterial strains. With the model,

we studied the population dynamics of one bacterial strain or
two bacterial strains sharing the same nutrients or using dif-
ferent nutrients, produced the survival-extinction-coexistence
phase diagram at the steady state or in the limited mea-
surement time, and determined the conditions of one strain’s
survival and two strains’ coexistence. We also showed effects
of constraints and optimization of proteome allocation be-
tween processes for cell growth, death, and recycling nutrients
on the phase diagrams, which reflect the tradeoff between
theses processes. Our results quantitatively characterize bac-
terial survival and coexistence strategies during the prolonged
starvation. Especially, our results suggest that bacteria could
achieve growth advantages by regulating tradeoff between cell
growth, death and recycling processes via protein reallocation.
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APPENDIX A: THE STABILITY
ANALYSIS OF EACH SYSTEM

The stability of the system at each steady state can be
obtained by deriving the sign of the characteristic roots (the
real part, if the root is a complex number).

1. The system with one strain

For the system described by Eqs. (1)–(3), the Jacobian
matrix at the steady state (X ∗,Y ∗, S∗) is

J =
⎡
⎣αS∗ − β 0 αX ∗

β −γ 0
−αS∗ γ −αX ∗

⎤
⎦. (A1)

The characteristic equation J − λE = 0 has three roots:
λ1,2,3 = αS∗ − β, −γ , and −αX ∗. Equations (1)–(3) have
two possible steady-state solutions: SS1 = (0, 0, Xmax) and
SS2 = ( β(Xmax−β/α)

γ+β
,

γ (Xmax−β/α)
γ+β

, β/α). (1) The steady state SS1

always exists. When αXmax � β, λ1,2,3 � 0, so SS1 is stable;
when αXmax > β, λ1 > 0, so SS1 is unstable. (2) The steady
state SS2 exists only when αXmax > β; when αXmax > β,
λ1,2,3 � 0, so SS2 is stable.

2. The system with two strains sharing the same nutrient

For the system described by Eqs. (7)–(11), the Jacobian
matrix at the steady state (X ∗

1 ,Y ∗
1 , X ∗

2 ,Y ∗
2 , S∗) is

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

α1S∗ − β1 0 0 0 α1X ∗
1

β1 −γ1 0 0 0

0 0 α2S∗ − β2 0 α2X ∗
2

0 0 β2 −γ2 0

−α1S∗ γ1 −α2S∗ γ2 −α1X ∗
1 − α2X ∗

2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A2)
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The characteristic equation J − λE = 0 has five roots. Equa-
tions (7)–(11) have four possible steady-state solutions:

SS1 = (0, 0, 0, 0, Xmax),

SS2 =
(

0, 0,
γ2

(
Xmax − β2

α2

)
β2 + γ2

,
β2

(
Xmax − β2

α2

)
β2 + γ2

,
β2

α2

)
,

SS3 =
(

γ1
(
Xmax − β1

α1

)
β1 + γ1

,
β1

(
Xmax − β1

α1

)
β1 + γ1

, 0, 0,
β1

α1

)
,

SS4 =
(

X ∗
1 ,

β1

γ1
X ∗

1 ,C0X ∗
1

α1
α2 ,C0

β2

γ2
X ∗

1

α1
α2 ,

β1

α1

)
,

where C0 = X2(0)/X
α1
α2

1 (0) and X ∗
1 can be determined by solv-

ing the equation X ∗
1 + C0X ∗

1

α1
α2 = Xmax−β1/α1

1+β1/γ1
.

Next, we give the existence and stability of these
four steady-state solutions. (1) The steady state SS1 al-
ways exists. At the steady state SS1, the character-
istic roots λ1,2,3,4,5 = 0,−γ1,−γ2, α1Xmax − β1, α2Xmax −
β2. When Xmax � min(β1/α1, β2/α2), Rel (λ2,3,4,5) < 0, SS1

is stable; otherwise, SS1 is unstable. (2) The steady
state SS2 exists when β2/α2 < Xmax. At the steady
state SS2, the characteristic roots λ1,2,3,4,5 = 0,−γ1,

α1
α2

β2 −
β1,

−(B+γ2 )−√
�

2 ,
−(B+γ2 )+√

�

2 , where � = (B − γ2)2 − 4Bβ2

and B = γ2(α2Xmax−β2 )
γ2+β2

. When β2

α2
<

β1

α1
, Rel (λ2,3,4,5) < 0, SS2

is stable; otherwise, SS2 is unstable. (3) The steady

state SS3 exists when β1/α1 < Xmax. At the steady
state SS3, the characteristic roots λ1,2,3,4,5 = 0,−γ2,

α2
α1

β1 −
β2,

−(A+γ1 )−√
�

2 ,
−(A+γ1 )+√

�

2 , where � = (A − γ1)2 − 4Aβ1

and A = γ1(α1Xmax−β1 )
γ1+β1

. When β1

α1
<

β2

α2
, Rel (λ2,3,4,5) < 0, SS3

is stable; otherwise, SS3 is unstable. (4) SS4 exists
when β1/α1 = β2/α2 < Xmax. The characteristic equation is
λ2 f3(λ) = 0, where f3(λ) = (λ + γ1)(λ + γ2)(λ + A + B) +
Bβ2(λ + γ1) + Aβ1(λ + γ2) (A and B are defined as above).
So λ1,2 = 0 and λ3,4,5 are given by the cubic equation f3(λ) =
0. It can be demonstrated that Rel(λ3,4,5) < 0 (see below), so
SS4 is always stable.

The equation f3(λ) = 0 can be transformed to λ3 + bλ2 +
cλ + d = 0, where b = γ1 + γ2 + A + B > 0, c = γ1γ2 +
(A + B)(γ1 + γ2) + Aβ1 + Bβ2 > 0, and d = γ1γ2(A + B) +
Bβ2γ1 + Aβ1γ2 > 0. It has bc − d > 0. A cubic equation with
one variable has at least one real root. We assume that
f3(λ) = 0 has a real root λ1, then it can be factorized into
(λ − λ1)(λ + eλ + f ) = 0, where e and f are real numbers.
So b = e − λ1, c = f − eλ1, and d = − f λ1. Combining the
above inequality formulas, we have λ1 < 0, e < 0, and f < 0,
and then Rel(λ1,2,3) < 0. Therefore SS4 is stable.

3. The system with two strains using different nutrients

For the system described by Eqs. (12)–(17), the Jacobian
matrix at the steady state (X ∗

1 ,Y ∗
1 , X ∗

2 ,Y ∗
2 , S∗

1 , S∗
2 ) is

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1S∗
1 − β1 0 0 0 α1X ∗

1 0

β1 −γ1 0 0 0 0

0 0 α2S∗
2 − β2 0 0 α2X ∗

2

0 0 β2 −γ2 0 0

−α1S∗
1 ρ1γ1 0 (1 − ρ2)γ2 −α1X ∗

1 0

0 (1 − ρ1)γ1 −α2S∗
2 ρ2γ2 0 −α2X ∗

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A3)

The characteristic equation J − λE = 0 has six roots.
Equations (12)–(17) have two possible steady-state
solutions: SS1 = (0, 0, 0, 0, S∗

1 , Xmax − S∗
1 ) and SS2 =

( XC
β1ξ

, XC
γ1ξ

,
ηXC

β2ξ
,

ηXC

γ2ξ
,

β1

α1
,

β2

α2
), where XC = Xmax − β1

α1
− β2

α2
,

ξ = 1/β1 + η/β2 + 1/γ1 + η/γ2, and η = 1−ρ1

1−ρ2
. Next,

we give the existence and stability of these two
steady-state solutions. (1) The steady-state SS1 always
exists. At SS1, the characteristic roots are λ1,2,3,4,5,6 =
0, 0,−γ1,−γ2, α1S∗

1 − β1, α2(Xmax − S∗
1 ) − β2. when

Xmax − β2/α2 � S∗
1 � β1/α1, λ1,2,3,4,5,6 � 0, SS1 is stable;

otherwise, it is unstable. (2) The steady-state SS2 exists
when Xmax > β1/α1 + β2/α2. The characteristic equation is
g3(λ)h3(λ) − ABβ1β2(1 − ρ1)(1 − ρ2)γ1γ2 = 0, where
g3(λ) = λ(λ + γ1)(λ + A) + Aβ1λ + Aβ1γ1(1 − ρ1) and
h3(λ) = λ(λ + γ2)(λ + B) + Bβ2λ + Bβ2γ2(1 − ρ2) and
A = α1X ∗

1 and B = α2X ∗
2 . If A, B, γ1, γ2 ≈ 0, then g3(λ) ≈ 0

and h3(λ) ≈ 0. Equation g3(λ) = 0 can be transformed
to λ3 + bλ2 + cλ + d = 0, where b = γ1 + A > 0,
c = A(β1 + γ1) > 0, and d = Aβ1γ1(1 − ρ1) > 0. It has
bc − d > 0. So Rel (λ) < 0, i.e. g3(λ) = 0 has three roots

with negative real part. In the same way, h3(λ) = 0 also has
three roots with negative real part. The characteristic roots all
have negative real part. So SS2 is stable.

APPENDIX B: SOME PARAMETERS USED FOR FIGURES

Parameters for Figs. 1(c)–1(e): X (0) = Xmax = 107

cells/ml (c), 105 cells/ml (d), or 102 cells/ml (e);
Y (0) = S(0) = 0; α = 1.7 × 10−5 ml/(cell h); β = 0.02 h−1;
and γ = 7.74 × 10−6 h−1. In particular, the parameters for
Figs. 1(c) and 1(d) were determined based on experimental
data of Takano et al. [6]. Xmax was set to the initial
experimental cell density. At the early stage, the death
dominates the population dynamics, so β was determined
from the first two experimental data points (t1, X1) and (t2, X2)
by the formula − ln(X2/X1)/(t2 − t1); the β values obtained
from experimental data for Figs. 1(c) and 1(d) were averaged.
The steady-state viable cell density for Fig. 1(c) was estimated
to be the average of the last two experimental densities,
which gives a quantitative relationship between α and γ ,
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FIG. 9. Dependence of starving population dynamics on the rate
at which a cell consumes nutrients due to energy dissipation (k∗

d ).
Parameters except k∗

d are the same to those for Figs. 1(c) and 1(d),
respectively. [(a) and (b)] A small k∗

d value (k∗
d = 1 × 10−5 h−1)

affects population dynamics little, compared with the case of k∗
d = 0.

[(c) and (d)] A large k∗
d value (k∗

d = 0.01 h−1) leads to a bigger
decrease in the density of living cells, compared with the case of
k∗

d = 0.

i.e., γ

β+γ
(Xmax − β/α) ≈ X5+X6

2 . Then γ can be expressed as

a function of α, i.e., γ = Aβ/(1 − A), where A = X5+X6
2(Xmax−β/α) .

Thus we determined the unique free parameter α by fitting
experimental cell densities as a function of time using the
least square method. Finally, we fixed γ according to the
above function.

Parameters for Figs. 3(c)–3(h): Xmax = 109 cells/ml;
Y1(0) = Y2(0) = S(0) = 0; β1 = β2 = 0.02 h−1; γ1 = γ2 =
3 × 10−6 h−1; X1(0) = 0.9Xmax [(c)–(f)] or (1 − 10−5)Xmax

[(g) and (h)]; X2(0) = 0.1Xmax [(c)–(f)] or 10−5Xmax [(g)
and (h)]; α1 = 1.2 × 10−11 [(c), (e), and (g)] or 9 × 10−7

ml/(cell·h) [(d), (f), and (h)]; α2 = 1.2 × 10−11 [(c), (d), solid
blue and solid green lines in (g) and (h)], 9 × 10−7 [(e), (f),
dashed blue and dashed green lines in (g) and (h)], or 1.2 ×
10−6 ml/(cell h) [dash-dotted blue and dash-dotted green lines
in (h)].

Parameters for Fig. 5(a): Xmax = 109 cells/ml; α1 and α2

are variables; β1 = β2 = 0.05 h−1; γ1 = γ2 = 3 × 10−6 h−1;
X1(0) = X2(0) = Xmax/2; Y1(0) = Y2(0) = S(0) = 0; the lim-
ited detection time is 14 days; the minimal detectable survival
density is 100.

Parameters for Figs. 5(b)–5(d): X1(0) = 1.04 × 103 (b),
9.12 × 104 (c), or 4.15 × 104 cells/ml (d); X2(0) = 3.85 ×
109 (b), 8.06 × 109 (c), or 7.36 × 109 cells/ml (d); Y1(0) =
Y2(0) = S(0) = 0; α1 = 4 × 10−4 (b), 4.84 × 10−6 (c), or
0.021 ml/(cell h) (d); α2= 2.2 × 10−6 (b), 1.5 × 10−5 (c),
or 1.5 × 10−5 ml/(cell h) (d); β1=0.068 (b), 0.067 (c), or
1.2 h−1 (d); β2 = 0.068 (b), 0.085 (c), or 0.027 h−1 (d);
γ1= 4.5 × 10−4 (b), 1.58 × 10−4 (c), or 4.5 × 10−4 h−1 (d);
γ2 = 4.5 × 10−4 (b), 1.58 × 10−4 (c), or 0.011 h−1 (d). Initial
values were determined based on the experimental data at the
first time point. We fixed the other parameters by adding extra
constraints (according to characteristics of experimental data

FIG. 10. Effects of initial densities on the phase diagram of
two strains (1 and 2) sharing the recycling nutrient in a lim-
ited time. Four regimes are formed with different initial densities:
(I) both strains are extinct; (II) strain 1 survives, whereas strain
2 is extinct; (III) strain 2 survives, whereas strain 1 is extinct;
and (IV) both strains survive. Parameters are the same as those
used for Fig. 5(a), except the initial densities for viable and dead
cells: X1(0) = 0.99Xmax, X2(0) = 0.01Xmax, Y1(0) = Y2(0) = 0 (a);
X1(0) = (1 − 10−9)Xmax, X2(0) = 10−9Xmax, Y1(0) = Y2(0) = 0 (b);
X1(0) = X2(0) = 0.01Xmax, Y1(0) = Y2(0) = 0.49Xmax (c); X1(0) =
X2(0) = 10−9Xmax, and Y1(0) = Y2(0) = (0.5 − 10−9)Xmax (d).

or arbitrarily) and fitting the experimental data (least-square
method was used). For panel (b), we considered additional
constraints β1 = β2 and γ1 = γ2 (arbitrarily); β2 (and then
β1) was determined by fitting experimental X2 values (red
squares) at the first three time points; the average of X1 values
at the last two time points were assigned to γ1

β1+γ1
(X2(0) − β1

α1
),

with which, α1 and α2 (and then γ1 and γ2) were fixed by
fitting all related experimental data. For panel (c), β1 and β2

were determined by fitting experimental X1 and X2 values at
the first three time points; the average of X2 values at the
last two time points were assigned to γ2

β2+γ2
(X2(0) − β2

α2
), with

which, α2 (and then γ2) were fixed by fitting experimental data
for strain 2 (red squares); the additional constraint γ1 = γ2

was also used (arbitrarily); finally, α1 was fixed by fitting all
related experimental data. For panel (d), β2 was determined
by fitting the experimental data for strain 2 at the first six
time points (red squares); α2 (γ1) was assigned the same value
as for panel (b)[(a)] (arbitrarily); finally, α1, β1, and γ2 were
determined by fitting all related experimental data.

Parameters for Fig. 6: Xmax = 107 cells/ml, X1(0) =
X2(0) = Xmax/2; Y1(0) = Y2(0) = S(0) = 0; φ3 = ψ3 = 0.1,
a = 0.27 ml/(cell h), b = 0.15 h−1, c = 3 × 10−5 h−1,
Km = 0.5; the limited detection time is 14 days; the minimal
detectable survival density is 100 cells/ml.

APPENDIX C: THE EFFECT OF ENERGY DISSIPATION

The rate at which a cell consumes nutrients due to energy
dissipation is expressed by kd in Eq. (3). Here we consider
kd (> 0) as a function of the nutrient concentration S: kd (S) =

013119-12
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k′
d

S
S+Kd

. At high nutrient deficiencies, S � Kd and kd (S) ≈
k∗

d S, where k∗
d = k′

d/Kd . Our results show that the effect of en-
ergy dissipation on population dynamics depends on the size
of k∗

d : When k∗
d is small, the dynamics changes little compared

with the case without energy dissipation (i.e., k∗
d = 0); when

k∗
d is large, the dynamic changes are significant and the living

cells are reduced to a lower level compared with the case of
k∗

d = 0 (Fig. 9).

APPENDIX D: THE DEPENDENCE OF PHASE DIAGRAM
OF TWO STRAINS SHARING THE RECYCLING

NUTRIENT IN A LIMITED TIME ON THEIR INITIAL
DENSITIES

In order to test the influence of initial densities on the
phase diagram of two strains competing for growth over a
limited period of time, we used different values of X1(0),
X2(0), Y1(0), and Y2(0), to regenerate the phase diagram, in
comparison with the case of X1(0) = X2(0) = 0.5Xmax and
Y1(0) = Y2(0) = 0 shown in Fig. 5(a). The results show that

the phase diagram, especially the coexistence region, changes
more or less with the change of initial conditions (Fig. 10).
However, the dependence of the phase diagram on initial
conditions does not change our main conclusion: Four distinct
regimes can be formed, and the coexistence regime is still
a pen-shaped area [except under extremely abnormal initial
conditions, such as X1(0) or X2(0) = 0].

APPENDIX E: THE EFFECT OF THE GROWTH RATE
DEPENDENCE OF φ1,0

As a source of φ1,0, inactive ribosomes were found to
decrease with increasing growth rate during slow growth [28].
Therefore φ1,0 may also vary with growth rate. Here we con-
sider the linear growth rate dependence of φ1,0, as Dai et al.
did for the proteome fraction devoted to inactive ribosomes
[28], i.e., φ1,0 = φ1,0∗ − bα. Substituting this relationship into
Eq. (4), we obtain α = a

1−ab (φ1 − φ1,0∗ ), which has the same
form as Eq. (4).
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