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Ultralong-range Rydberg molecules provide an exciting testbed for molecular physics at exaggerated scales.
In the so-called trilobite and butterfly Rydberg molecules, the Born-Oppenheimer approximation can fail due to
strong nonadiabatic couplings arising from the combination of radial oscillations and rapid energy variations in
the adiabatic potential energy curves. We utilize an accurate coupled-channel treatment of the vibronic system
to observe the breakdown of Born-Oppenheimer physics, such as nonadiabatic trapping and decay of molecular
states found near pronounced avoided crossings in the adiabatic potential curves. Even for vibrational states
localized far away from avoided crossings, a single-channel model is quantitatively sufficient only after including
the diagonal nonadiabatic corrections to the Born-Oppenheimer potentials. Our results indicate the importance of
including nonadiabatic physics in the description of ultralong-range Rydberg molecules and in the interpretation

of measured vibronic spectra.

DOLI: 10.1103/PhysRevResearch.5.013114

I. INTRODUCTION

Molecular states of Rydberg atoms and atoms or ions fea-
ture exotic binding mechanisms and offer novel opportunities
to investigate fundamental physics. In ultralong-range Ryd-
berg molecules, the Rydberg atom binds to ground-state atoms
via an attractive interaction induced by the scattering of the
Rydberg electron from the atoms [1-3]. In charged Rydberg
molecules, the Rydberg atom binds to an ion due to long-
range electrostatic interactions, leading to an avoided crossing
of an attractive polarization potential and a repulsive dipole
potential [4-6]. In Rydberg macrodimers, two Rydberg atoms
bind at the avoided crossing of attractive and repulsive van der
Waals potentials [7-9]. All of these molecules feature bond
lengths on the 0.1-10 um scale, leading to slow vibrational
dynamics which can be observed in real time [10].

Due to the high density of states in Rydberg atoms and the
correspondingly small energy gaps, nonadiabatic couplings
play a crucial role in Rydberg molecules. They are known to
modify the vibrational spectrum of macrodimers [11] and pro-
vide a decay channel for charged Rydberg molecules [12]. In
ultralong-range Rydberg molecules, nonadiabatic couplings
have been considered at the level of the Landau-Zener ap-
proximation to predict electronic transitions [13]. Conical
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intersections in their molecular potentials can be exploited to
control atomic collisions and lifetimes over a wide range of
principal quantum numbers and temperatures [14].

Ultralong-range Rydberg molecules have very unusual
properties, such as oscillatory Born-Oppenheimer potentials,
rapid changes of electronic character, and extreme sensitivity
to external fields. Therefore they provide a unique environ-
ment to test molecular physics on slow vibrational timescales,
allowing direct observation of effects arising from the en-
tanglement of vibrational and electronic degrees of freedom
and offering abundant opportunities to examine concepts of
molecular physics in energetic and spatial regimes very dif-
ferent from those relevant for ground-state molecules. Despite
these promising opportunities, an ab initio treatment of nona-
diabatic couplings in ultralong-range Rydberg molecules has
not been performed yet.

In this article we study ultralong-range Rydberg molecules
in a complete coupled-channel treatment for the electronic
and vibrational degrees of freedom. The arising nonadiabatic
couplings lead to vibronic interactions. We focus on molecular
states formed in the vicinity of the avoided crossing of the
trilobite and butterfly electronic states. These polar molecules
have high electronic orbital angular momentum character, and
their nonadiabatic coupling can become singular. We discuss
several strategies for diabatization of the adiabatic representa-
tion of the total molecular wave function in order to solve the
molecular Hamiltonian.

We find that nonadiabatic corrections to the molecular po-
tentials are crucial for an accurate interpretation of molecular
spectra. This sheds new light on measurements of electron
scattering phase shift relying on Rydberg molecules [15-19],
as the level shifts caused by nonadiabatic corrections could
be misidentified as stemming from inaccurate scattering prop-
erties. Furthermore, off-diagonal nonadiabatic couplings lead
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to the formation of molecular states without single-channel
counterparts. Their structure resembles the quantum reflec-
tion states observed in single-channel calculations [20,21],
although they are classically trapped by a potential barrier
created by nonadiabatic coupling. Other classes of molecular
states decay nonadiabatically. Spectral signatures for the ex-
perimental observation of the vibronic interaction effects are
discussed.

This manuscript is structured as follows. In Sec. II we
lay out the theory and methods used throughout. Section IT A
introduces in detail the nonadiabatic representation before we
elaborate on diabatization in Sec. II B. This is to promote and
simplify adaptation of this framework for future investiga-
tions. Details of the model for ultralong-range molecules and
the physical parameters are provided in Sec. II C. Section III
contains the results, firstly introducing the adiabatic potential
energy curves in IIT A, secondly considering variations in the
electronic structure in III B, thirdly providing the molecular
spectra in III C, and finally focusing on vibronic interactions
in [II D. We provide a conclusion and an outlook in Sec. I'V.

II. THEORY & METHODS

We consider two atoms, one excited to a high-lying
Rydberg state, separated by a large distance R along the z
axis of the coordinate system. The total Hamiltonian reads (in
atomic units)

, v:  V?
H:____+Vc(r)+vea(r9R)s (1)
21 2
where p is the reduced mass of the diatomic system, r is
the coordinate of the Rydberg electron, V, is the interac-
tion between the Rydberg electron and the ionic core, and
V.. the interaction of the Rydberg electron with the distant
ground-state atom. The last three terms of Eq. (1) form the
electronic Hamiltonian H,(r, R). To determine the eigenstates
of H, we employ the adiabatic representation and expand
the total wave function in terms of solutions of the electronic
Hamiltonian [22,23],

Y, R) =) xu(R)Wu(r;R), )

such that the sum over R-dependent coefficients Y_, | x4 |* can
be interpreted as a vibrational wave function of the nuclei, and

H,(r, R)Yro(r;R) = Vo (R)Yo (r; R) 3)

defines the adiabatic electronic eigenstates 1/, with eigenvalue
V. given a fixed nuclear configuration R. V,(R) are the adia-
batic potential energy curves.

A. Nonadiabatic couplings

Applying the Hamiltonian (1) to Eq. (2) and project-
ing out the electronic eigenstates leads to a general set of
coupled-channel, radial Schrodinger equations for the vibra-
tional motion [24],

Vi _ 1
[_ﬂ + Vo (R) — Ei| Xa(R) = ﬂ ; Ao X (R), )

for a total energy £ and assuming zero rotational angular
momentum. Vg indicates the derivative with respect to the
radial, nuclear coordinate R. The right-hand side contains the
nonadiabatic coupling operator

Ago = 2Paa’vR + Qaa’v (5)

which consists of the derivative coupling elements

Poor = / dr o (r; R)Vryo (r; R) (6)

and the nonadiabatic scalar coupling elements

Our = [ v RV i) )

For all practical purposes, the sum in Egs. (2) and (4) needs
to be truncated. In the Born-Oppenheimer approximation,
all nonadiabatic terms are neglected. The right-hand side of
Eq. (4) vanishes, and the resulting decoupled equations can
be solved individually. In the Born-Huang approximation,
only the diagonal nonadiabatic terms are considered. In many
cases, these terms are crucial to capture qualitative corrections
[25,26]. It is helpful to absorb the diagonal couplings in the
potential energy curves through the definition

1
Wa(R) = Va(R) - EQQQ(R)- (8)

Note that P,, = 0, due to the anti-Hermiticity of the deriva-
tive coupling operator. Since the diagonal elements Q,, are
strictly negative [compare Eq. (12) below], this leads to a shift
to larger potential energies W, > V,,.

In principle, the nonadiabatic coupling elements are
straightforwardly obtained from the adiabatic electronic
states. However, numerical difficulties frequently arise in
practice. With respect to the electronic states, the opera-
tor Ay, is Hermitian while P, is anti-Hermitian. Hence,
Qe 1s non-Hermitian, and numerical inaccuracies or round-
off errors in its computation can easily lead to an overall
non-Hermitian matrix and nonphysical complex energy eigen-
values. This can be avoided by recasting

Ower = P2y + ViPyy ©)

and using partial integration to ensure Hermiticity of the ma-
trix elements of the nonadiabatic coupling. To this end, let us
introduce a basis of the vibrational Hilbert space B;(R), such
that any R-dependent function can be conveniently expanded
as

fR) =Y cBi(R), (10)

L

with constant coefficients ¢;. The matrix elements of the nona-
diabatic coupling operator in this basis are

/dRB[BjAaa’ = /dR [(B,B/j - B;Bj)Paa’ +BiBjPo%oz’]'
an

As the first term is the product of two anti-Hermitian operators
in the vibrational and electronic Hilbert subspaces, respec-
tively, and the second term is the product of two Hermitian
operators, this guarantees a total Hermitian representation. It
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additionally avoids the need to compute second derivatives of
the electronic wave functions, because

Po%u/ = _/drVRl/f;(r;R)vaa’(r;Rl (]2)

In conclusion, we can solve Eq. (4), e.g., by performing
an exact diagonalization in the electronic and the vibra-
tional degree of freedom. In some circumstances, however,
the derivative coupling elements may contain highly singular
points such that Eq. (4) becomes formally ill-defined [27]. It is
then reasonable to switch to a representation that circumvents
such difficulties.

B. Diabatic representation

We can recast Eq. (4) in the following form:
1 N .
[—ﬂ(vk +PY?+VR) - E:|x(R) =0, (13)

where the first term is understood to contain a dressed kinetic
energy operator that has absorbed all nonadiabatic couplings.
Note that Eq. (13) is a matrix equation where V is a matrix
that contains the V,, along the diagonal and y is a vector of
all yq.

Equation (13) is invariant under unitary transformations
S (R). Exact diabatization is achieved when S satisfies [28]

(VrS +PS) =0, (14)

in which case Eq. (13) becomes

[_VI% A }N’
+UR) - E [x(R) =0, (15)
2p

where X = 3 X is the total wave function expressed in the

diabatic representation and U = §'V § is the diabatic potential
matrix. In general, § is not unique, but as long as there is only
a single adiabatic parameter (in our case R), Eq. (14) does
possess a unique solution and can be solved analytically [29].
Considering two adiabatic electronic states, S is given as a
simple rotation about the angle

P (R) = /oodR/Plg(R’). (16)
R

The solution for three and four electronic states is given in
Appendix D. There exist other strategies for diabatization
[30-32], typically related to achieving an electronic represen-
tation that provides continuity of some physical observable,
such as electronic dipole moments or charge distributions.
These are especially useful if § is not known. We discuss
dipole diabatization and a related approach in Appendixes B
and C.

C. Ultralong-range Rydberg molecules

We consider ultralong-range Rydberg molecules of rubid-
ium. The adiabatic potential energy curves are obtained from
diagonalizing the electronic Hamiltonian in a basis of atomic
states ¢,;,,. These states are labeled by the principal and
orbital angular momentum quantum numbers of the Rydberg
atom n, [, and m, and satisfy the Rydberg atom’s Schrédinger

equation,
V2
_TV +VL(I‘) ¢nlm(r) =Enl¢nlm(r)v (17)
where E,; = —m, and p; is an angular-momentum-

dependent but energy-independent quantum defect. These
quantum defects shift the atomic states from the degenerate
Rydberg manifold at energy —#, especially those with low
angular momentum / < 3. We use quantum defect data from
[33].

The electron-atom interaction is modeled using the Fermi
pseudopotential [34,35],

Vea(r, R) = 2ma,(R)5(r — Re,)
+ 6ma,(R)V,8(r — Re;)V,, (18)

where ay(,) is the scattering length (volume) in the s-(p)-wave
channel. These depend on R via the semiclassical kinetic en-
ergy of the electron, k* =2E, + 2/R. We use scattering data
from [19], where the zero-energy s-wave scattering length is
as(0) = —15.24 qy.

To represent the electronic degrees of freedom for a Ry-
dberg molecule formed by a Rydberg atom excited to the
principal quantum number n, we include in our atomic ba-
sis all states with n and n — 1. From this we obtain good
qualitative agreement with more accurate Kirchhoff integral
methods based on the Coulomb Green’s function [36,37]. This
descriptive level serves our goal to quantify and elucidate the
importance of nonadiabatic physics, which can be obscured
by the complexity of the full molecular picture. This would
include quantitative corrections to the electronic structure
resulting from higher partial wave scattering [38] and the
electronic and nuclear spins of both atoms [39,40]. For the
potential crossing between the trilobite and butterfly states
studied here, specifically for the considered quantum num-
bers, we do not expect electronic spin couplings to influence
the molecular structure up to global energy shifts. However,
at higher energies additional crossings due to additional but-
terfly potentials of different hyperfine character may occur;
compare, e.g., Refs. [40,41].

To represent the vibrational degree of freedom, we employ
B splines [42]. Due to the banded structure of the involved
matrices, this is numerically very efficient. Depending on
the principal quantum number, we use 500-1500 splines of
order 12 and uniformly spaced knot points to converge the
vibrational energies and wave functions.

To simulate an absorption spectrum, the standard experi-
mental observable to study Rydberg molecules, we account
for the dipole transition strength of the total wave function
assuming a two-photon excitation from the 5s ground state via
the 6p intermediate state and for the Franck-Condon factor
assuming a homogeneous and isotropic gas of ground-state
atoms, i.e., a uniform distribution of the initial vibrational
state:

o(E) x f dRR? f drrge,(r)V(r, R), (19)

where the wave functions are defined in Eq. (2) and below.
Specifically, only the atomic S- and D-state character of the
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FIG. 1. Adiabatic potential energy curves V; and V, for principal
quantum number n = 43. Other adiabatic potentials are printed as
gray, dotted lines. The inset shows a zoom of the avoided crossings.
Additional labels show the dominant electronic character of these
adiabatic states, which varies with R: the atomic § state (s), trilobite
(t), butterfly (b), and F' state (f). Energies are given relative to the
degenerate atomic Rydberg level.

total wave function contribute to the spectral signal. Natu-
rally, a one-photon transition directly from the 5s ground state
changes the spectral characteristics. Furthermore, a Gaussian
profile for the line broadening of the excitation laser with a
width of 1 MHz is assumed.

III. RESULTS AND DISCUSSION

In the following we present the characteristic properties of
the electronic, the vibrational, and the spectral structure of
neutral Rydberg molecules, taking into account nonadiabatic
couplings. To illustrate the main physical phenomena, we
focus on a representative subset of principal quantum num-
bers n = 43-45, through which we can elaborate on generic
n-dependent features that we found studying a larger range
between n = 25 and 70.

A. Structure of the adiabatic potential curves

Let us first consider the adiabatic potential curves shown
in Fig. 1 for n = 43. The level structure of Rydberg molecules
is such that these fall into two classes. The electronic states
of dominant low-/ character are, due to their quantum defects,
only weakly perturbed by the interaction with the ground-state
atom. Their potential energy curves are nearly flat on the scale
of Fig. 1. Two additional adiabatic potential energy curves
split away from the degenerate Rydberg manifold. Loosely
speaking, each of these can be associated with the interaction
channels given by the two terms in Eq. (18). The resulting s-
wave-dominated and p-wave-dominated molecular states are
called trilobite and butterfly states, respectively [1,36]. These
two states have a prominent avoided crossing [37] shown in
the inset. Nonadiabatic effects are expected to be strongest in
its vicinity.

Based on this Rydberg level structure, the adiabatic eigen-
states Y| and v, defining the potentials V; and V, shown in
Fig. 1 are subject to several changes in the dominant electronic
character. Three avoided crossings occur for V| (solid blue).
Starting asymptotically at large R, V| has dominant F-state
character. Going inward towards smaller R values, firstly V)
attains trilobite character, secondly attains butterfly character,
and lastly, at much lower energies, attains S-state character.
For V; on the other hand (solid red), four avoided crossings
occur. Starting asymptotically at large R, V, has dominant
trilobite character. Going inward towards smaller R values,
firstly V, attains F-state character, secondly attains butterfly
character, thirdly attains trilobite character, and lastly attains
F -state character once more.

We obtain converged results for the vibronic spectra in
the examined energy ranges shown in the following sec-
tions by selecting only these two adiabatic states for the
calculation. No deviations were found between these calcu-
lations and those performed with three and four channels,
including also the asymptotic S and F adiabatic potentials
shown in Fig. 1. Additionally, to obtain molecular states, we
set a variable hard-wall boundary at small Ry and average
the results over 50 different Ry, values. This is the stabi-
lization method established for ultralong-range molecules in
Ref. [20].

B. Variation of the electronic structure

Let us consider how the adiabatic potential energy curves,
the off-diagonal derivative coupling element, and the diabatic
potential curves vary as a function of n. These quantities are
plotted in Fig. 2. The derivative coupling element P,, is a
prefactor to a derivative operator of the vibrational degree of
freedom in the total Schrodinger equation, Eq. (4). There-
fore multiplying P,, by a unit length and dividing by the
molecule’s reduced mass results in a unit of energy, allow-
ing us to show it alongside the electronic adiabatic potential
energy curves. Hence we can compare the relative strengths
of nonadiabatic couplings for molecules at different n.

All of the avoided crossings discussed previously are ac-
companied by signatures in the derivative coupling element
P,, shown as solid green line. Note, for example, the peak at
the outermost avoided crossing at large R. The most unusual
feature of P, is its large value over the entire range where
the two adiabatic states have trilobite and butterfly character,
even when the potential curves are relatively well separated
in energy. Pj, displays its most significant feature near the
avoided crossing, where it either has one or two sharp peaks,
depending on the principal quantum number. At n = 43, in the
leftmost subfigure we find a symmetric double-peak structure
in Pjp. At n =44, in the middle subfigure, we find a very
sharp peak in Py, that extends beyond the range of the figure.
Specifically here, a treatment in the adiabatic representation
becomes impossible, because the functional behavior of the
coupling elements cannot be accurately represented on a fea-
sible radial grid. At n =45, in the rightmost subfigure, we
find an asymmetric double-peak structure in Pj,. These are
the main characteristics of the derivative coupling element
for the two underlying adiabatic states over the full range of
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FIG. 2. Adiabatic potential energy curves Vi, V, the off-diagonal derivative coupling element Py, and the diabatic potential matrix elements
Uiy, Uy, and U,; for principal quantum numbers n = 43-45 (left to right). Other adiabatic potentials are printed as gray, dotted lines, additional
labels as in Fig. 1. Energies are given relative to the degenerate atomic Rydberg level.

n between 25 and 70. The patterns repeat in increments of
approximately 3—4 n levels. In the case of a single sharp peak,
the avoided crossing of the two potentials becomes extremely
narrow. This is remarkable given the overall energies of the
molecular system. It resembles the cases of conical intersec-
tions discussed in Ref. [14]. Due to the singular character of
the coupling elements, methods to solve the total Hamiltonian
(1) that rely on the adiabatic representation fail. It is useful to
transform to the diabatic representation.

The elements of the diabatic potential matrix are shown as
dashed lines in Fig. 2. The diagonal elements (diabatic poten-
tial curves) are shown in purple and blue, and the off-diagonal
coupling is depicted in beige. Notably, over all regions where
the dominant character of the adiabatic states are trilobite and
butterfly, all elements of the diabatic potential matrix have
strong oscillatory character. As the rotation angle of the trans-
formation between the adiabatic and diabatic representation is
the integral of the derivative coupling element Py, this behav-
ior may not seem surprising. After all, P, is large in that entire
region. It is, however, rather unusual, as the diabatic potentials
do not provide any physical intuition for the molecular system.
The oscillatory behavior is known, however, to occur for states
which are coupled by a large dipole transition element [43].
This is certainly true for the trilobite and butterfly state. We
notice that the n-dependent structure of the derivative coupling
element does not have a significant influence on the struc-
ture of the diabatic potential matrix elements. A simplified
model, including only trilobite and butterfly and neglecting
quantum defect states, is studied in Appendix A reproducing
these diabatic potentials. The strange behavior of the diabatic
potentials poses no problem for a numerical solution of the
coupled channel problem. In regimes where the derivative
coupling elements are nonsingular, it yields identical results as
the adiabatic representation. When nearly singular couplings
make the adiabatic representation unstable numerically, the
diabatic representation is not at all affected.

The overall magnitude of the nonadiabatic coupling el-
ements, both for Py, and Q,., is approximately constant
across all n. On the other hand, the energies of the adiabatic
potentials scale as n=3, in line with the scaling of the level

splittings in Rydberg atoms. As a result, nonadiabatic effects
play a more important role at large n. The diagonal scalar
coupling terms lead to an overall energy shift of the potentials
on the order of 5 MHz. At low n < 30, this is more or less
negligible. However, at large n = 60, this shift is larger than
the energy spacing of molecular states. Figure 3 shows the
adiabatic potentials for n = 65 as solid lines along with the
Born-Huang corrected potentials, which include the diagonal
scalar coupling, as dashed lines. The lower inset shows that
the Born-Huang terms give rise to a correction on the order
of 5 MHz, which leads to a significant overall shift of the
molecular states. Additionally, the upper inset shows the po-
tential barrier that appears at the narrow avoided crossing due
to these diagonal nonadiabatic coupling terms. This barrier
is a result of the narrow energy gap of the two states at the

0.0 ...........................................................................................................
0.5
0.0
-o5( \ | s
=
X
T
o —-1.0
. ¥ —1.04f
- -1.05}
sl T V2 -1.06}
—— W -1.07}
W —-1.08¢ ‘ ]
i 2200 3000 3800
1000 2000 3000 4000 5000 6000
R (ap)

FIG. 3. Adiabatic potential energy curves Vi, V,, and Born-
Huang corrected potentials W), W, for principal quantum number
n = 65. The insets show zooms of relevant regions. Energies are
given relative to the degenerate atomic Rydberg level.
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FIG. 4. Simulated absorption spectra employing a single channel neglecting (including) scalar coupling, i.e., using Born-Oppenheimer
(Born-Huang) potentials, and employing coupled channels for principal quantum numbers n = 43—45 (left to right). Markers correspond to
specific states shown in Fig. 5. Energies are given relative to the degenerate atomic Rydberg level.

crossing and the correspondingly sharply peaked derivative
coupling element.

C. Vibrational structure and molecular spectrum

Let us now turn to the energy eigenfunctions of the total
Hamiltonian (1). Figure 4 shows the simulated spectral sig-
nal obtained from the total wave functions depending on the
underlying model: in blue, the single-channel model using
the adiabatic potential energy curves V| and V,, the Born-
Oppenheimer spectrum; in orange, the single-channel model
using the Born-Huang corrected potential energy curves W,
and W,, which include the diagonal scalar couplings Q;; and
0, the Born-Huang spectrum; and in green (mirrored for vis-
ibility), the two-channel model in the diabatic representation,
the exact spectrum.

Two features are immediately striking. Firstly, both the
Born-Huang spectrum and the exact spectrum are shifted
in energy compared to the Born-Oppenheimer spectrum.
Secondly, the Born-Huang spectrum reproduces the exact
spectrum quite accurately over most of the energy range. This
clearly shows the importance of including at least the diagonal
nonadiabatic couplings for investigations of ultralong-range
Rydberg molecules. That said, we do find signals in the ex-
act spectrum that have no counterpart in the single-channel
spectra. At n =43, in the leftmost subfigure, around E =
—3.68 GHz there is a broad peak (highlighted by a marker)
next to a sharp peak with rather strong signal. The single-
channel spectra only show a single asymmetric peak of
weaker signal. At around £ = —3.51 GHz, there is a weak
peak in the exact signal not found in the single-channel
spectra. At n = 44, in the middle subfigure, the Born-Huang
spectrum 1is astonishingly accurate. Some of the peaks with
weaker signal are slightly shifted towards higher energies
compared to the exact spectrum. At n =45, in the right-
most subfigure, at around E = —3.18 GHz the exact spectrum
features a double-peak structure (highlighted by a marker)
significantly shifted from a similar but weaker in signal
double-peak in the Born-Huang spectrum. Interestingly, the
Born-Oppenheimer spectrum predicts a single peak at the

correct energy. Between E = —3.03 and £ = —3.07 GHz, the
single-channel spectra each predict a peak completely absent
in the exact spectrum.

D. Off-diagonal nonadiabatic couplings

Some of these spectral features have their origin in strong
off-diagonal nonadiabatic couplings that cannot be described
in a single-channel model. In order to gain a better understand-
ing of these situations, we now turn to study the molecular
wave functions directly. Figure 5 shows selected molecular
eigenstates after tracing over the electronic degree of freedom,
shifted according to their eigenenergies. The corresponding
squared wave functions can be interpreted as vibrational prob-
ability distributions. Here, states that are strongly suppressed
in the spectra due to their vanishing Franck-Condon overlaps
are not shown. This holds also for states resembling box states,
which are artifacts related to the inner hard-wall boundary.
The energy window is the same as that for the spectra plotted
in Fig. 4. The gray curves represent the adiabatic potentials
Vi and V, shown in Fig. 2. Additionally, the black curves
represent the Born-Huang corrected potentials W; and W,.
In line with the color scheme used in Fig. 4, the eigenstates
are obtained from the different models: Born-Oppenheimer
states in blue, Born-Huang states in orange, and exact states
in green. As the spectra suggest, most of the molecular wave
functions obtained from the different models do not differ
strongly. For example, the states that localize in the individual
potential wells of the trilobite potential only deviate in energy.
These are the states that correspond to strong signals in Fig. 4.
Molecular states that have no counterpart in a different model
localize in the vicinity of the avoided crossing where nonadia-
batic couplings are particularly strong; these are located in the
leftmost region of each subfigure.

For n = 43, in the leftmost subfigure, most notably around
E = —3.68 GHz, a molecular state localizes at around R =
16502y (highlighted by a marker). Although this state ap-
pears to be trapped in the Born-Huang potential well, the
lack of a corresponding Born-Huang state shows that the
potential well alone is not suitable to support such a state.
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FIG. 5. Selected molecular eigenstates obtained using a single-channel calculation excluding (blue) and including (orange) scalar coupling,
as well as those from the two coupled channel calculations (green). The Born-Oppenheimer (gray) and Born-Huang (black) potentials for
principal quantum numbers n = 43-45 (left to right) are also shown. These states correspond to the spectral signals shown in Fig. 4, including

some states highlighted with markers. Energies are given relative to the degenerate atomic Rydberg level.

In other words, this molecular state is trapped nonadiabat-
ically by the off-diagonal derivative couplings. The exact
state has a very small but finite amplitude towards small
R, resembling states trapped by internal quantum reflection,
discussed extensively throughout the literature on ultralong-
range Rydberg molecules [19-21]. At higher energy, around
E = —3.55 GHz, and at similar internuclear distance, there is
a Born-Oppenheimer state localizing in a potential well that
is shifted upwards by the Born-Huang correction. This state
cannot be identified in the spectrum because it is degenerate
in energy with molecular states localizing at large internuclear
distances, around R = 2500 aj, where nonadiabatic couplings
are generally much weaker. The corresponding Born-Huang
state is at approximately £ = —3.53 GHz, barely visible in the
figure. There is no exact counterpart to these states. In other
words, these states are subject to rapid nonadiabatic decay into
the continuum of the lower potential. At n = 44, in the middle
subfigure, the only region with significant differences between
different models is again the potential formed by the avoided
crossing, where single-channel states localize (highlighted by
markers) but exact states do not occur. At n =45, in the
rightmost subfigure, the overall structure is very similar to
n =43.

To summarize the most important observations here, we
find that the potential well formed by the avoided crossing of
the trilobite and butterfly does not support localized molec-
ular bound states, as would be suggested by single-channel
calculations. This is in marked contrast to other types of
Rydberg molecules, most prominently, Rydberg macrodimers,
where a potential well is formed by the crossing of induced
dipole potentials, and in charged Rydberg molecules, where
a potential well is formed by the crossing of an attractive
polarization potential and a repulsive dipole potential. Both
of these cases are known to support bound molecular states
[6,11]. In ultralong-range Rydberg molecules, nonadiabatic
couplings are too strong for such states to exist. On the other
hand, nonadiabatic couplings can lead to the formation of
quantum-reflection-type states at the same radial position but
at energies much lower than the potential well. Counterin-

tuitively, both the observed effects, nonadiabatic decay and
nonadiabatic trapping, are more pronounced at principal quan-
tum numbers where the derivative coupling element features
a double-peak structure. In the case of a single narrow peak
of Py, such effects are less significant. We attribute this to the
fact that nonadiabatic couplings are strongly pronounced over
a much wider range of R in double-peak situations. Opposed
to this, the single peak can become arbitrarily narrow. Its
integral converges at 7, corresponding to a complete inversion
of the adiabatic character.

Overall, the vibronic effects described in this section are
not limited to the quantum numbers n = 43-45. On the
contrary, we find similar patterns over a wide range of n.
Independent of n, the total energy shift between exact molec-
ular states and states obtained within the Born-Oppenheimer
approximation is approximately 5 MHz. For states localizing
in the vicinity of the avoided crossing, the shift can be much
larger. Vibronic interaction effects are less pronounced at prin-
ciple quantum numbers featuring highly singular P-matrix
elements resembling conical intersections.

IV. CONCLUSIONS AND OUTLOOK

We have studied vibronic interaction effects in ultralong-
range Rydberg molecules focusing on trilobite and butterfly
states. The avoided crossing between these two states gives
rise to nonadiabatic trapping of molecular states including
internal quantum reflection resonances. Nonadiabatic decay
is also observed. Overall, nonadiabatic corrections to the adia-
batic molecular structure lead to energy shifts of spectral lines
on the MHz scale. Similar energy shifts in theoretical potential
energy curves can be caused by small changes in the scattering
lengths, an input into the calculation, or by finite-size basis
effects [44]. As such, comparison with experiment has been
useful to help benchmark convergence in the basis or to ad-
just scattering lengths. Although this was done for different
molecular states than those studied here, our results show
that care must be taken in such endeavors in order to avoid
misattributing nonadiabatic effects to these other causes.
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This work opens a pathway to study nonadiabatic inter-
action effects in Rydberg molecules. We consider multiple
scenarios to be of high relevance: Firstly, nonadiabatic decay
of molecular states correlated to Rydberg quantum defect
states. This is important to understand molecular lifetimes.
Secondly, nonadiabatic effects are naturally more pronounced
in lighter molecules such as Li*Li, Li*Rb, or Na*Na, where
they might lead to more striking effects. Thirdly, the methods
developed for this study can be applied to other species of
Rydberg molecules such as charged molecules and
macrodimers. Lastly, exposing molecules to additional
external fields is a promising perspective, especially as the
gap between trilobite and butterfly curves can be controlled
by an external electric field [45]. It may lead to more control
of molecular properties while causing more complexity, such
as many-state interaction dynamics.

Notably, in the scenario considered here, the molecular
channels are coupled but closed. In ultralong-range Rydberg
molecules, however, scenarios can be investigated involv-
ing open and closed channels. This introduces coupling to
continuum states and can lead, for example, to Feshbach reso-
nances. In general, Rydberg molecules are highly asymmetric
and imbalanced objects. Similar systems are encountered in
semiconductor materials based on Rydberg excitons. Their
nonadiabatic interaction effects may lead to unexpected ma-
terial response properties.
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APPENDIX A: NEGLECTING QUANTUM DEFECT STATES

To highlight the counterintuitive structure of the diabatic
potential curves in the case of the trilobite and butterfly, Fig. 6
shows potentials in an artificial setup. Here all quantum de-
fects of rubidium have been set to zero. This can also be
interpreted as the electronic structure of H*¥*Rb molecules.
Only two nontrivial adiabatic eigenstates remain: the trilobite
and the butterfly (solid curves). The diabatic potentials (dotted
curves) are oscillatory over the full range of R. The P-matrix
element of these two states is large over the full range of R
leading to this behavior. This is related to the fact that the
two states have an extremely large dipole transition element,
orders of magnitude larger than for low-angular-momentum
states [37,39].

APPENDIX B: DIPOLE DIABATIZATION

Another way to represent the coupled system of equa-
tions (4) is diabatization by aid of diagonalizing the electronic

207
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FIG. 6. Adiabatic potential energy curves V, V, and the diagonal
diabatic potential matrix elements Uj;, Uy, for principal quantum
number n = 43, neglecting quantum defect states. The inset shows a
zoom. Energies are given relative to the degenerate atomic Rydberg
level.

dipole transition matrix, i.e., the position operator

Dy = /drrw:(r;R)tpar(r; R). (B1)
The goal is to find a representation of the electronic basis
that is dipole decoupled. Diagonalizing D(R) equips us with
a transformation S(R) between the adiabatic and the dipole
diabatic representation. It is defined via

d =5"Ds, (B2)
where d(R) is a diagonal matrix. The Schrodinger equa-
tion becomes

Bl
+U—-E|x=—Ax, (B3)
21 21

where x =S8'x, U =§'VS, and A = §'AS. While this is
formally equivalent to Eqs. (4) and (15), the point of this
representation is that residual couplings A are expected to be
small, such that the right-hand side of this equation is set to
zero. In the following we will show that this is not an accurate
assumption in our setup.

APPENDIX C: HYBRIDIZED BASIS

The dipole diabatic representation is closely related to an-
other approach originating in results found in Refs. [46,47]
and developed previously in Refs. [41,48,49]. Here a hy-
bridized electronic basis employing analytic functions of the
trilobite and butterfly states

1
1) = ;;m(mw(r), (C1)

1 !
2= ;%(Rm(r), (€2)
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FIG. 7. Potential energy curves v, (left), derivative .- (middle), and scalar coupling elements p,.,+ (right) for principal quantum number
n = 43 obtained via the hybridized basis approach. Energies are given relative to the degenerate atomic Rydberg level.

with two (R-dependent) normalization constants 72 =
>4 lppl® and B> =3, |¢, %, is used to expand the total
wave function. This ansatz suffers from the fact that the
two basis states are not orthogonal. In fact, for large R they
become linearly dependent. The off-diagonal overlap matrix
element here is (1|2) = ’;i;, where M? = Y ¢'(R)¢(R). Still,
the resulting potential and nonadiabatic coupling terms pro-
vide some intuitive understanding of the physical situation.
Employing the hybridized basis, the total Schrodinger equa-
tion contains a nondiagonal potential matrix,

a,T? a,Lm?
D= 05} (k|Veal') = (angz asz ) (C3)
KK' T

where « = {1, 2} labels the two basis states, and O_, is the
matrix element of the inverse overlap matrix. The potential
curves in ¥ almost exactly reproduce the dipole diabatic po-
tentials for the trilobite and butterfly states in I/. We attribute
the slight differences merely to the fact that dipole diabati-
zation provides an orthogonal basis. The elements of ¥ are
shown in Fig. 7 on the left. Although this approach reduces the
singularity of nonadiabatic couplings, they remain nonzero in
this approach. The derivative coupling matrix,

=" 0.} (| Velc')

M?(M?*—M?*N?/B?) B
_ |~ T?B>—M* T
— \ TBWI*-M*N*/B*) M) (€4
T2B2_M* - Tz

is not anti-Hermitian due the nonorthogonality of the under-
lying basis states. The additional terms encountered in this
expression are M2 = Y ¢"(R)¢p(R) and N> = > ¢"(R)¢'(R).
For the same reason, the scalar coupling matrix p does not
obey the usual relation (9). In fact, given this nonorthogonal
basis, it is not clear how to analytically obtain a transformation
to the adiabatic representation. After all, this transformation
is not unitary at large R. While the analytic matrix elements
of the potential and couplings are not straightforward, they
all result in smooth functions of R and »n, which are shown
in Fig. 7. Notably, the derivative coupling elements (middle)
become large asymptotically at large R.

APPENDIX D: ADIABATIC TO DIABATIC
TRANSFORMATIONS

The unitary transformation between adiabatic and diabatic
representation can be found analytically, as long as there is
only a single adiabatic parameter (in our case R). As these
transformations are often useful, however, to our knowledge
typically not provided in the literature, we reproduce here the
explicit transformations for three- and four-channel systems.
Considering three adiabatic states, the unitary transforma-
tion is a general rotation in three dimensions that can be
expressed via three angles, e.g., the Euler angles. Here we
choose

Sip(R) =Rz(a)-Rx(m/2— B)-Rz(y), (D)

where I?,-((p) is a rotation in three dimensions around the axis
i by the angle ¢. Solving Eq. (14) for a general three-state P
matrix,

0 P12 P13
—P12 0 P23 |
-piz —psn O

Py = (D2)

leads to a set of coupled differential equations for the three
angles «, 8, and y:

o' = p1p —tan B (p13 cosa + pa3 sina), (D3)
B = pi3sina — pycosa, (D4)
y' =sec B (p13cosa + pysina). (D5)

This approach extends to higher-dimensional systems. A gen-
eral rotation in d dimensions can be characterized by d(d —
1)/2 angles governing simple rotations that leave a (d — 2)-
dimensional subspace unchanged.

In four dimensions, general rotations are parameterized by
six angles. The derivation and solution of the correspond-
ing differential equations gets increasingly involved for more
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states. Let’s call the four axes in four dimensions {w, x, y, z},
then simple rotations leave a plane unchanged. Say R;;(6) is a
rotation of angle 6 in the i- j-plane, e.g.,

cos@ 0 —sinf O

N 0 1 0 0
Ruy = sinf 0 cosf O (D6)

0 0 0 1

We choose (somewhat arbitrary) an ansatz for a unitary matrix
allowing general rotations in four dimensions as

Sup = Ryx(@) - Ryy(B) - Ry (v) - Riy(—=8) - Ry(€) - Ry (0)

(D7)
and the general P matrix
0 P12 P13 P14
o —D12 0 23 24
Pp=|"" b P (D8)
—p13 —D23 0 D34
—pis —pu —pu O

The angle o mixes P-matrix elements, leading to the follow-
ing shorthand notations:
a; = pp3sina — pa3cosa, (DY)

a, = pussina — prgcosa, (D10)

aj = pi3cosa + pysina, (D11)

a; = piacosa + prsine, (D12)
and likewise for S:

b~ = af sin B — psacos B, (D13)

b" = aj cos B + paasin B, (D14)
and likewise for §:

d~ =b"sind —a, cosd, (D15)

d* =b" cos$ +aj sin, (D16)

such that the following set of differential equations is obtained
for the six angles:

o = pp+a;tanf +ay secBtany, (D17)

B =aj +b tany, (D18)

Y = b, (D19)

8 =ajsecf+ajtanBtany —d secytane, (D20)
€ =—dsecy, (D21)

' =d secy sece. (D22)
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