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Evidence of the Coulomb gap in the density of states of MoS2
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MoS2 is an emergent van der Waals material that shows promising prospects in semiconductor industry
and optoelectronic applications. However, its electronic properties are not yet fully understood. In particular,
the nature of the insulating state at low carrier density deserves further investigation, as it is important for
fundamental research and applications. In this study we investigate the insulating state of a dual-gated exfoliated
bilayer MoS2 field-effect transistor by performing magnetotransport experiments. We observe a positive and
nonsaturating magnetoresistance, in a regime where only one band contributes to electron transport. At low
electron density (∼1.4 × 1012 cm−2) and a perpendicular magnetic field of 7 Tesla the resistance exceeds by
more than one order of magnitude the zero field resistance and exponentially drops with increasing temperature.
We attribute this observation to strong electron localization. Both temperature and magnetic field dependence
can, at least qualitatively, be described by the Efros-Shklovskii law, predicting the formation of a Coulomb gap
in the density of states due to Coulomb interactions. However, the localization length obtained from fitting the
temperature dependence exceeds by more than one order of magnitude the one obtained from the magnetic field
dependence. We attribute this discrepancy to the presence of a nearby metallic gate, which provides electrostatic
screening and thus reduces long-range Coulomb interactions. The result of our study suggests that the insulating
state of MoS2 originates from a combination of disorder-driven electron localization and Coulomb interactions.
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I. INTRODUCTION

The resistivity ρ of some semiconductors shows a metal-
insulator transition as a function of the electron density n
[1]. For densities larger than a critical value nc the resistiv-
ity shows a metallic temperature dependence (dρ/dT > 0),
while below nc it shows an insulating temperature dependence
(dρ/dT < 0). This metal-insulator transition attracted great
interest in the late 1990s [2–5]. In two-dimensional (2D) semi-
conductors the origin of the metallic phase is controversial
[6–8], as it was predicted that any amount of defects would
inexorably lead to electron localization at zero temperature
in a 2D system [9,10]. The insulating phase at low densities
can be due to either intriguing correlated states, like Wigner
crystals [11], or disorder-induced electron localization [5], as
well as a combination of the two effects.

In highly disordered systems, charge transport at low tem-
peratures occurs via electron hopping between localized states
[12], known as variable-range hopping (VRH). The conduc-
tivity in hopping transport at zero magnetic field is usually
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described by an exponential dependence on the temperature
of the form

σ (T ) ∝ exp

[
−

(
T0

T

)p]
,

where T0 and p � 1 are constants that depend on the hopping
mechanism. In a noninteracting system, the density of states
close to the Fermi energy is constant (but finite) and the con-
ductivity is described by Mott’s law [13], for which p = 1/3
(for two-dimensional systems). When electrons are strongly
localized, the long-range Coulomb potential is not efficiently
screened. Electron correlations result in a Coulomb gap in the
density of states close to the Fermi energy [14,15]. The mod-
ified density of states changes the temperature dependence of
the hopping conductivity, which is now characterized by the
parameter p = 1/2, as described by the Efros-Shklovskii (ES)
theory [16].

The insulating phase of MoS2 has been experimen-
tally studied in monolayers [17] and multilayers [18,19],
where both thermally activated transport at intermediate tem-
peratures (T ∼ 50 K–100 K) and Mott VRH transport at
lower temperatures have been observed. In addition, it is
expected that electron-electron interactions play a major role
in determining the electronic properties due to the large elec-
tron effective mass [m∗ ≈ (0.4–0.6)m0] of MoS2, especially
at low densities. Indeed, signatures of interaction effects have
already been reported in the literature [20,21], among which
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FIG. 1. (a) The top panel shows optical micrographs of the sample before (left) and after (right) depositing the metallic top gate. The
MoS2 flake is outlined in the left figure. The scale bar in the left figure is 4 µm. The dimensions of the device are W = 8 µm, L1 = 12 µm, and
L2 = 4 µm. A schematic side view of the device is shown in the lower panel. (b) Current (ISD) versus voltage (VSD) characteristics for different
VTG (step 2V). Inset shows the output characteristics for the lowest voltage VTG = 1.5 V. (c) Four-terminal conductivity (σ ) as a function of
top gate voltage (VTG) at VBG = 0. The dashed and dotted lines are linear fits, which highlight a kink in σ (VTG ) (marked by the number 2).
(d) Derivative of the conductivity dσ/dVBG as a function of top and bottom gate voltages. The black dashed lines follow the constant total
density condition. The dashed dotted lines mark a local maximum and minimum of the conductivity. The numbers 1, 2, 3, 4 represent the band
edges of the four bands (see discussion in Sec. II A) that contribute to electron transport.

there was also the observation of a Wigner crystal in MoSe2

[22]. Therefore, MoS2, and in general, semiconducting transi-
tion metal dichalcogenides (TMDs), are good candidates for
the observation of the Coulomb gap in the density of states.
However, the observation of interaction effects is restricted
to low densities, where the Coulomb energy dominates over
the kinetic energy of electrons. Transport experiments in this
density range are challenging in most materials and require
low defect densities [23]. The observation of the Coulomb gap
in MoS2 remains to date elusive [19] due to the large density
of intrinsic defects.

Here, we investigate magnetotransport in bilayer MoS2

encapsulated in hexagonal boron nitride (hBN). We first
demonstrate the high quality of our device and a complete
understanding of the bands that contribute to electron trans-
port. Then we tune the density, such that electron transport
occurs in a single (twofold degenerate) band. In this regime
we observe a metal-insulator transition at the electron density
nc ≈ 1.7 × 1012 cm−2. Below this transition the zero-field re-
sistance and the magnetoresistance show an exponential decay
with increasing temperature, which is qualitatively consistent
with the Efros-Shklovskii law [16], suggesting that electron
correlations open a gap in the density of states. However,
the localization length obtained by fitting the temperature
dependence exceeds by more than one order of magnitude

the one obtained from the magnetic field dependence. We
attribute this discrepancy to the presence of a nearby metallic
gate, which provides electrostatic screening and thus reduces
long-range Coulomb interactions.

II. RESULTS AND DISCUSSION

In this study a bilayer MoS2 with dual gated architecture
is employed to study electron transport. Figure 1(a) shows
optical images (upper panel) and a schematic side view (lower
panel) of the device. The fabrication starts by assembling a
thin hBN and graphite layers onto a silicon/silicon dioxide
chip (285 nm of oxide layer). The graphite serves as the
bottom gate, while the hBN is the gate dielectric material.
The layers are stacked together by means of a dry-transfer
technique (see Refs. [21,24,25] for details). We pattern metal-
lic contacts (Cr/Au: 5 nm/10 nm) with standard electron
beam lithography and electron beam evaporation. The region
of the contacts is then cleaned thoroughly with the tip of
an atomic force microscope in contact mode. This step is
crucial to remove the residues of the lithography process. The
bilayer MoS2 is obtained by mechanically cleaving a bulk
MoS2 crystal from natural sources (SPI Supply) and identified
by optical contrast, which has proven to be a very reliable
method [26–29]. A second stack with a layer of hBN and the
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bilayer MoS2 is assembled, then aligned and deposited on top
of the contacts. Both exfoliation and assembling take place
in a glove box with argon atmosphere (H2O, O2 < 0.1 ppm).
The metallic top gate is patterned with standard lithography
processes and covers the entire MoS2 flake. In the final step
we vacuum anneal the sample at 250 ◦C for 4 h to improve the
contact interface. All measurements presented in this work (if
not explicitly stated otherwise) are performed at a temperature
of 1.3 K at low frequency (∼30 Hz) and low excitation voltage
(V rms

SD = 100 µV) with standard lock-in techniques.
First, we characterize the contacts to ensure Ohmic behav-

ior and low contact resistance. The dc output characteristics
are shown in Fig. 1(b) for different top gate voltages (VTG).
The two-terminal resistance changes from <1 k� to ∼1 M�

as a function of VTG. The current shows a linear dependence on
the applied source-drain voltage VSD down to the lowest VTG

(inset), indicating a vanishing Schottky barrier. The average
contact resistance of source and drain contacts (1 and 2) is
<300 � for VTG � 6 V and does not depend on the applied
bottom gate voltage (VBG). To the best of our knowledge, this
is one of the lowest values reported in the literature and is
comparable to bismuth contacts [30]. The vanishing Schottky
barrier and the low contact resistance allow us to study elec-
tron transport at low densities (down to 1.4 × 1012 cm−2) at
low source-drain voltage (100 µV).

The four-terminal conductivity (σ ) as a function of VTG

is shown in Fig. 1(c). We identify two voltage ranges,
where the conductivity features a linear dependence on
VTG, which differs by the slope. The two slopes of σ (VTG)
yield the mobilities ∼1000 cm2 V−1 s−1 (dotted line) and
∼2400 cm2 V−1 s−1 (dashed line). This specific shape of the
four-terminal conductivity is a general property of high-
quality single-gated MoS2 devices [see Fig. 1(c) in Ref. [20]
and Fig. 1(d) in the supplemental material of Ref. [21] for a
direct comparison]. The kink marked with the number 2 is
related to the population of the upper spin-orbit (SO) split
band, as it will be demonstrated below.

Figure 1(d) shows the derivative of the conductivity
dσ/dVBG as a function of VTG and VBG. For VBG < 0.7 V
the VBG dependence of the conductivity is monotonic and
resembles its VTG dependence. There are two distinct rates
dσ/dVBG that are separated by a black dashed line (number
2). This line follows constant density conditions, separating
the single band from the two-band regime. From this result
we conclude that the separation between the bands is not dis-
placement field dependent (i.e., the SO gap is not tunable with
the electric field). In contrast, for VBG > 0.7 V the dependence
of the conductivity on VBG is nonmonotonic. The conductivity
features a local maximum (number 3) that is almost indepen-
dent of VTG. The origin of the negative dσ/dVBG is related to
the population of the bottom layer and will be discussed in
Sec. II A.

So far we have characterized the field effect transistor
at zero magnetic field. Understanding the contribution of
the bands in multilayer MoS2 devices is an essential step
for interpreting their electronic properties. In the following
we will demonstrate that all features observed in the con-
ductivity can be attributed to the population of different
bands in the MoS2 bilayer. To verify this hypothesis, we
now turn our attention to magnetotransport measurements,

from which we determine the electron density and the band
occupation.

A. Band and layer occupation

The aim of this part is determining how the different bands
are filled with electrons as we change the gate voltages. For
this purpose we measure the magnetoconductivity σxx, apply-
ing a perpendicular magnetic field B. The conductivity σxx is
obtained by tensor inversion of the two-dimensional resistivity
with components ρxx = WV3,4/(IL2) and ρxy = V3,5/I . From
the Shubnikov–de Haas oscillations (SdHO) we determine the
density ni of band i as we did in previous works [21,24,25].
The total density is given by

ntot = 1

e
(CT VTG + CBVBG), (1)

where CT = 146 nF/cm2 and CB = 225 nF/cm2. The total
density is related to the band densities via ntot = ∑

i ni. We do
not determine the total density from the Hall effect, because
the contacts extend across most of the conducting channel,
leading to an overestimation of the density.

Figure 2(a) shows the derivative of the magnetoconduc-
tivity dσxx/dVBG as a function of B and VBG for VTG =
11.5 V. The conductivity features oscillations periodic in B−1,
as we expect for SdHO. From the Fourier spectrum of the
dσxx/dVBG(1/B) (see Ref. [24,25] for details) we determine
the densities ni shown in Fig. 2(b). As in Ref. [24], we at-
tribute a twofold valley degeneracy to each band i, which
accounts for the two K valleys (see schematics in the lower
right panel of Fig. 2). In the regime VBG < 0.7 V, where we
find only two frequencies in the Fourier spectrum, there is
remarkable agreement between the calculated ntot and the
experimentally defined density n1 + n2. In our interpretation,
the densities n1 and n2 belong to the top MoS2 layer. In
the regime VBG > 0.7 V, the density n1 + n2 saturates, be-
cause the bottom MoS2 layer becomes conducting, screening
the field effect of the bottom gate. This behavior is in complete
agreement with the behavior found and explained in previous
studies [24,25].

The layer occupation can be controlled in dual-gated de-
vices. For VTG > 0 and VBG < 0, only the top layer is occupied
by electrons and we can tune between single- and double-
band transport. The onset of n2 (marked by the number 2)
corresponds to the population of the upper SO split band of
the top layer (see schematics of the band structure in Fig. 2).
To support this interpretation we determine the density nSO ≈
3.5 × 1012 cm−2 that is required to start filling the upper SO
split band. In an effective mass approximation this density
corresponds to an energy �SO ∼ 14 meV, in agreement with
the value reported in Ref. [24].

Figure 2(c) shows dσxx/dVBG at B = 7 T as a function of
the voltage applied to the top and bottom gates. This mea-
surement defines a phase diagram for the bilayer MoS2 that
is divided into five different regimes by the dashed (dotted)
lines. Each line indicates the onset of a specific band (from 1
to 4 increasing VBG). The bilayer is tuned from an insulating
into a conducting phase, where up to four bands contribute
to electron transport. In the remaining part of this paper, we
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FIG. 2. (a) Numerical derivative of the conductivity (dσxx/dVBG) as a function of B and VBG for VTG = 11.5 V [for color scale see (c)].
(b) Density as a function of VBG. The total density ntot is obtained by Eq. (1), n1,2,3 are determined from the Fourier spectrum of the
transconductivity in (a), and n4 = ntot − n1 − n2 − n3. (c) dσxx/dVBG at B = 7 T as a function of VTG and VBG. Lower right panels (1–4)
show the schematic of the conduction band and the layer occupancy of the single-layer (1 and 2) and bilayer (3 and 4) regimes. The color of
the bands encodes the spin polarization.

focus on the narrow single-band transport regime enclosed by
the dashed lines in Fig. 2(c).

B. Strong electron localization

We now turn our attention to the magnetoresistance in the
single-band transport regime. According to the Drude model,
the longitudinal resistance does not depend on magnetic field.
However, we observe a nonsaturating positive magnetore-
sistance in the low-density range (<3.5 × 1012 cm−2). The
magnetoresistance increases by more than one order of mag-
nitude at B = 7 T and ntot = 1.4 × 1012 cm−2, as shown in
Figs. 3(a)–3(c). A qualitatively similar positive magnetoresis-
tance was observed in monolayer MoS2 [31], where a negative
magnetoresistance (due to weak localization) gradually turned
into a positive magnetoresistance as the temperature and den-
sity were lowered. This effect was attributed to the transition
from weak localization to weak antilocalization, despite the
authors realizing that the shape of the magnetoresistance was
not well described by the theory of weak antilocalization.
Also, in other bilayer [24,32] and three-layer MoS2 devices
[25] a similar behavior has been observed, but was not further
investigated. The observation of a positive magnetoresistance
in samples prepared and studied in different research groups
suggests that there is a common origin for this effect. Owing
to the relatively low electron mobility in MoS2 and the large

intrinsic defect density [33], we consider the role of disorder
[34] and electron localization to describe the nonsaturating
positive magnetoresistance.

Figures 3(a)–3(c) show the four-terminal longitudinal re-
sistivity ρ as a function T for three different densities (from
1.4 × 1012 cm−2 to 3.5 × 1012 cm−2) and various magnetic
fields. At zero magnetic field (violet curve) we observe a
metal-insulator transition as we lower the density. It is re-
markable that this transition occurs at relatively high densities
∼1.7 × 1012 cm−2, where the ratio between Coulomb and
kinetic energy is still moderate rs = EC/Ekin ∼ 7. Therefore,
the transition is more likely to be a manifestation of strong
electron localization when the Fermi energy approaches
the bottom of the conduction band, rather than an insulat-
ing state due to correlations. At the lowest temperature, we
estimate the product (kF × �e) between the Fermi wave vec-
tor (kF) and electron mean free path (�e). Strong electron
localization occurs for kF × �e � 1 [as shown in Fig. 3(a)],
while band conduction occurs for kF × �e � 1. Applying a
perpendicular magnetic field breaks this condition, inducing a
metal-insulator transition even for kF × �e > 1 [see Fig. 3(b)].

The resistivity is plotted on a logarithmic scale as a func-
tion of T −1/2 in Fig. 3(d) for the lowest density and various
magnetic fields. At low temperature (<10 K) all the curves
follow a linear dependence, as predicted by the ES theory.
The slope of the curves increases with increasing magnetic
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FIG. 3. (a)–(c) Resistivity ρ as a function of temperature T for three electron densities, from 1.4 × 1012 to 3.5 × 1012, and various
magnetic fields. Color bar in (d). (d) Resistivity plotted on a logarithmic scale versus T −1/2 for n = 1.4 × 102 cm2 and various magnetic
fields. The plot shows that the temperature dependence is in agreement with ES law for any magnetic field between 0 and 7 T. (e) Similar to
(d) but at B = 7T and various densities. The plot shows the transition from insulating to metallic temperature dependence. (f) The parameter
T 1/2

∗ obtained from (d) for two exemplar densities. The solid red lines are linear fits. (g) The parameter T 1/2
∗ obtained from (e) for B = 0 and

B = 7 T.

field. We therefore define a parameter T∗(B) that depends on
the magnetic field, such that the resistivity is described by

ρ(T, B) = ρ0 exp

[(
T∗(B)

T

)1/2]
.

This function seems to capture the temperature dependence
of the resistivity for T < 10 K, while above this tempera-
ture the resistance shows a weaker temperature and magnetic
field dependence. The parameter T 1/2

∗ obtained from the fit is
shown in Fig. 3(f). This parameter depends roughly linearly
(at least above B ≈ 1 T) on the applied magnetic field and the
slope decreases with increasing electron density. Similarly, we
plot the resistivity for different densities [see Fig. 3(e)] and
extrapolate the parameter T 1/2

∗ as a function of densities. The
density dependence of T 1/2

∗ is shown in Fig. 3(g), where we
see T 1/2

∗ increasing rapidly for decreasing density.
We considered other models to describe our data, such

as Mott’s law (p = 1/3) and thermally activated nearest-
neighbor hopping (p = 1). While thermally activated hopping
clearly fails in describing the temperature dependence of the
resistivity, we obtain reasonable fits also with Mott’s law,
which yields a slightly larger least-mean-square error. Based
on the temperature dependence of the resistivity, we cannot
reliably distinguish between the two models, because the re-
sistivity does not change by several orders of magnitude. For
this reason we also consider the role played by the magnetic
field.

At finite magnetic fields the tails of the electron wave
functions decay faster and the overlap between the localized
wave functions decreases. This leads to a reduction of the
tunneling probability and thus to an increase of the resistance.
This effect results in an exponential increase of the resistance
of the form [12]

ρ(B) ∝ exp(Bm),

where m depends on the range of magnetic field and the
assumptions made in the theoretical model [12,35,36].

First, we focus on the low magnetic field range (�B � a,
�B being the magnetic length and a the localization length),
where the effect of B can be treated as a small correction
to T0. The low magnetic field correction of the percolation
parameter ξ is given by [37]

�ξ (B) = ξ (B) − ξ (0) = C2
a4

�4
B

(
T0

T

)3/2

= A(T )B2,

where C2 = 0.002 is a numerical parameter, and �B = √
h/eB.

This expression yields the magnetoresistivity

�ρ(B)

ρ(0)
= exp[A(T )B2] − 1 ≈ A(T )B2, (2)

which can be expanded in a quadratic expression for
A(T )B2 	 1.

Figures 4(a) and 4(b) show the low magnetic field
range of the resistivity at the density 1.54 × 1012 cm−2 (i.e.,
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FIG. 4. (a and b) Magnetoresistivity �ρ(B)/ρ(B = 0) as a function of B for T = 10 K and T = 1.3 K. Inset: same measurement but shown
in a larger magnetic field range. (c) The curvature A(T ) of �ρ(B)/ρ(B = 0) as a function of T on a log-log scale. The dashed (dotted) line
shows the expected temperature dependence according to ES (Mott) law. (d) ρ(B) in a logarithmic scale at the lowest temperature (1.3 K). The
dashed line is a linear fit and serves as a guide for the eyes. The dotted line is the parabolic fit shown in (b).

below nc) and for two exemplary temperatures. At T = 10 K
the resistivity shows a quadratic dependence on B, as pre-
dicted by Eq. (2). At this temperature the model fits the
data well in the entire magnetic field range probed in our
experiments, as shown by the inset of Fig. 4(a). The range
of magnetic field for which this model is able to describe
the data shrinks with lowering the temperature, because the
parameter �ξ (B) grows with lowering the temperature (∝
T −3/2), thus limiting the magnetic field range for which
our approximation is valid. Therefore, it is not surpris-
ing that at T = 1.3 K [Fig. 4(b)] the model deviates from
the data at Bc ≈ 1 T, where �ξ/ξ0 ≈ 0.5 becomes a large
correction.

Fitting the magnetoresistance at different temperatures pro-
vides the temperature dependence of the curvature, which is
the only fitting parameter. The result of the fit is shown in
Fig. 4(c) on a log-log scale for the density 1.54 × 1012 cm−2.
The data follow the temperature dependence T −(1.6±0.1). For
comparison we show the temperature dependence (T −1) pre-
dicted by the Mott theory, which clearly deviates from the
trend of our data, while the data are in good agreement with
ES theory (T −3/2). Based on this observation, we conclude
that, in “diluted” MoS2, long-range Coulomb interactions lead
to the formation of a gap in the density of states at the Fermi
energy. This conclusion is further supported by the interac-
tion parameter rs ∼ 7, which is modest but indicates that the
Coulomb energy is significantly larger than the kinetic energy
of free electrons.

At this point we would like to discuss our quantitative
results. By fitting the data with ES law we can estimate the

localization length a according to

kBT0 = C1
e2

4πε0εra
, (3)

where εr ≈ 7 is the relative dielectric constant of MoS2,
and C1 = 6.2 is a numerical constant [37]. This equation,
however, provides localization lengths of a few microme-
ters, which is surprisingly large considering the interparticle
spacing (n−1/2 ∼ 10 nm). To verify the validity of this re-
sult, we estimate the localization length from the curvature
of the magnetoresistance and compare the two results. By
inserting T0 (obtained from the temperature dependence) in
the definition of A(T ) we obtain a ≈ 100 nm at a density of
1.54 × 1012 cm−2. This result differs by more than one order
of magnitude from the one obtained by Eq. (3).

Here, we offer an argument that might explain the discrep-
ancy between these two results. We note that in our device
the metallic gate is only separated from the 2D electron
system by a thin hBN layer (d = 13 nm). This distance is
comparable to the interparticle distance n−1/2 ∼ 10 nm. As a
consequence, the metallic gate screens Coulomb interactions
at large distance (r � d), where the Coulomb potential be-
comes dipole-like (∝ r−3). The presence of the metal plate
partially suppresses the Coulomb gap due to its screening
effect [38–43]. For small hopping distances the density of
available states still has a gap, while for long hopping dis-
tances the density of states is constant. At lower temperatures,
long-distance hopping becomes favorable and VRH is deter-
mined by the constant density of states (like in the Mott VRH).
Therefore, it is expected that in the presence of a nearby
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metallic gate, there is a critical temperature

Tc = e2

4πε0εrkB

a

d2

below which the system shows a transition from ES to the
“screened” Mott VRH [41]. This VRH is different from the
usual Mott VRH, which is characterized by a different density
of states.

We estimate this temperature to be around 20 K by assum-
ing a ≈ 100 nm, placing our system just below the transition
temperature. In contrast, the hopping distance

rh ∼ 1

4
a

(
T0

T

)1/2

∼ 10 nm

is of the order of d , thus still in the Coulomb gap regime.
Therefore, it is not clear from these characteristic quantities
in which regime our sample is. As we argued above, we
cannot, based on the temperature dependence, clearly dis-
tinguish between ES and Mott VRH. Under this condition
Eq. (3) may not be valid, as we are close to the transition
between the two hopping transport regimes. On the other
hand, the magnetic field promotes electron localization and
reduces the probability of long-range hopping (less overlap
of wave function tails). As shown in Fig. 3(f), the magnetic
field dependence of the fitting parameter T∗(B) ∝ B2 is com-
patible with the wave-function shrinking effect. In addition,
the curvature A(T ) clearly establishes that at finite field VRH
follows ES theory. For this reason we consider our estimation
of the localization length from the analysis shown in Fig. 4 to
be valid, from which we estimate a ∼ 100 nm.

Finally, we consider the asymptotic limit at high mag-
netic fields (a � �B). The typical hopping distance is strongly
reduced by the effect of the magnetic field and the typical
hopping energy increases. As a consequence, the Coulomb
gap might be negligible at high B fields, as proposed by
Nguyen [37]. The resistivity is expected to follow the asymp-
totic behavior described by Eq. (4),

�ρ(B)

ρ(0)
∝ exp(C

√
B), (4)

with C ∝ T −1/2 being a temperature-dependent coefficient.
This equation captures the temperature dependence of the
resistivity at high magnetic fields. However, the resistivity
seems to follow exp(CB) instead of Eq. (4), as shown in
Fig. 4(d). Given the divergent susceptibility of MoS2 at low
density [20], we speculate that the spin polarization might
contribute in increasing the magnetoresistance. As it was re-
ported in Ref. [44] the mechanism that provides an enhanced
magnetoresistance is related to the blocking of hopping due
to spin polarization. Disentangling spin from orbital effects

requires in-plane magnetic fields. However, the in-plane mag-
netic field does not couple to the electron spins in the K
valleys of MoS2, because the spin is locked out-of-plane due
to SO coupling [20,45].

III. CONCLUSION

The low-temperature resistivity of bilayer MoS2 undergoes
a transition from metallic to insulating temperature depen-
dence at a critical density nc ≈ 1.7 × 1012 cm−2. This density
is one order of magnitude larger than in silicon metal-oxide-
semiconductor field-effect transistors [46] and three orders
of magnitude larger than in GaAs quantum wells [47,48].
We attribute this transition to a disorder-induced transition,
in agreement with other metal-insulator-transition observed
in disordered materials [46]. In fact, our observation is in
line with the proposal of Klapwijk and Das Sarma [5], which
states that the transition should be observed when the electron
density is close to a few electrons per ionized impurity. The
ionized impurities may be sulfur vacancies, which are known
to have an inhomogeneous distribution with average density
of 1 × 1012−1 × 1013 cm−2 [49], thus the same order of mag-
nitude as nc in our sample.

In the insulating phase, the resistance drops exponentially
with increasing temperature, compatible with variable-range
hopping. The limited temperature range considered in our
experiments does not provide a conclusive distinction be-
tween Mott and Efros-Shklovskii laws. On the other end, the
magnetic field dependence at low fields closely follows an
Efros-Shklovskii law. The Coulomb gap is likely to appear
in the density of states of MoS2, as the interaction parameter
(rs ∼ 7) suggests that Coulomb energy is the dominant en-
ergy scale. However, the presence of a nearby metallic gate
could contribute in the suppression of the gap in the density
of state at large distances (rh > 2d) [39,41–43]. Despite the
screening effect, we observe the presence of the Coulomb gap
by applying a perpendicular magnetic field. We interpret this
result based on the wave function shrinking, which reduces
long-distantce hopping.
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