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First-principles method justifying the Dieke diagram and beyond
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We present a method to determine the model Hamiltonians to treat rare-earth multiplets in solids from the
results of the quasiparticle self-consistent GW (QSGW) method. We apply the method to trivalent Eu compounds
EuCl3, EuN, and Eu-doped GaN after examining free rare-earth ions. We solve the model Hamiltonian by the
exact diagonalization. Our results justify applying the Dieke diagram to ions in solid, while its limitation is
clarified. In particular, we show that the crystal fields cause sizable breaking of the Russell-Saunders coupling.
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I. INTRODUCTION

The photoluminescence of rare-earth atoms (PLR) embed-
ded in solids is one of the essential physical phenomena,
which has a wide range of possible applications for light
emitters. For example, Eu-doped GaN is a candidate for
trichromatic LEDs, thanks to red-light emission by PLR of
Eu [1–3]. It is favorable to assist the investigation of such
PLR with the computations, that is, the computational mate-
rials design (CMD). However, CMD for PLR is not so easy
because we do not have a reliable theoretical basis to perform
computations for PLR even today.

Historically, the model-Hamiltonian methods based on
the atomic multiplet theory had been developed to explain
complex spectra of PLR, where the model Hamiltonian was
parametrized by the Slater integrals [4], which are treated as
material-dependent parameters. The atomic multiplet theory
to determine the model Hamiltonian was given by Racah
[5], followed by further developments [6–10]. Particularly,
a comprehensive study by Dieke and Crosswhite on doubly
and triply ionized rare earth (RE) is well known. The energy
level diagram for all lanthanides in the study called the Dieke
diagram is taken as a standard for analyzing experimental
results even now [11]. The material-dependent parameters
to give the Dieke diagram are determined experimentally so
as to reproduce the optical spectra of PLR. Since we had
no means to determine the parameters by computation, the
model-Hamiltonian methods were quite limited from the view
of CMD.

One of the recent theoretical approaches to treating the
multiplets was given by Ungur and Chibotaru, who success-
fully applied the complete active space self-consistent-field
method (CASSCF) [12] to lanthanide complexes [13,14].
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However, applying CASSCF to handle RE in solids such as
semiconductors should be difficult. This is because we have
to consider the screening effects of the Coulomb interaction
between 4 f electrons caused by the polarization of host semi-
conductors. Furthermore, 4 f orbitals can hybridize well with
atomic orbitals in solids: the 4 f orbitals can be itinerant or
localized depending on their environments [15–18]. We have
to use a method reproducing the properties of both RE and
solids on the same footing. In CASSCF, it is hopeless from the
view of high computational demand to use sufficiently large
enough active space to reproduce the properties of solids.
CASSCF is applicable to only the cases where 4 f electrons
are very localized.

We have other first-principles-based methods to handle the
multiplets until now. Most of these methods have two key
steps. One is how to determine the model Hamiltonian, and
the other is how to solve the model, namely the solver. For the
solver, we have extensive developments until now. Assuming
the LDA+U model Hamiltonian, the Hubbard-I approxi-
mation [19,20] (HIA) and the dynamical mean-field theory
(DMFT) have been developed to predict multiplet properties
and peak structures of the excitation spectra [21–24].

A serious problem is in the first step. The reliability of
widely used LDA+U is quite questionable. We usually have
to give the size of U by hand. LDA+U assumes a very sim-
ple double-counting term. There are no parameters to control
the center of 4 f bands relative to the anion bands, that is, we
simply assume that the center is determined in LDA. Consid-
ering these facts, we guess that LDA+U is often abused with
little theoretical justifications as was analyzed by Lee, Kotani,
and Ke [25]. Moreover, the multiplet excitation of RE is not
controlled by U but by the 2nd Slater integral F2 as we will
explain later on.

In this paper, we will give a new method for the first
step, deducing the parameters in the model Hamiltonian from
the results of the quasiparticle self-consistent GW (QSGW)
method [26]. QSGW is a reliable mean-field approximation
in the sense that the one-particle Hamiltonian determined in
QSGW gives a good independent-particle picture for a wide
range of materials [26,27] including not only semiconductors
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but also 4 f systems [28]. QSGW is roughly identified to be a
“screened” Hartree-Fock method where the screening effect is
internally determined self-consistently. Both excitation ener-
gies and quantities such as spin fluctuations can be reproduced
well based on the one-particle Hamiltonian in QSGW [29].
Let us explain our core idea about how to deduce the parame-
ters in the model Hamiltonian. Our core idea is that we require
“QSGW applied to the model Hamiltonian” should reproduce
the (model part of) one-body Hamiltonian given in QSGW.
In contrast to LDA, we have no theoretical problem applying
QSGW to the model Hamiltonian.

In this paper, we apply our new method to the multiplets
of 4 f orbitals in RE compounds, EuCl3, EuN, and Eu-doped
GaN, after examining trivalent RE ions (RE3+) in the super-
cell. The parameters of the model Hamiltonian for describing
4 f electrons are obtained based on our core idea. With the
exact diagonalization applied to the model Hamiltonian, we
show the eigenvalues of multiplets of RE 4 f orbitals and
discuss the relation with experiments.

II. METHOD

We assume a model Hamiltonian of the multiplets with
a fixed number of electrons of 4 f orbitals. Here we neglect
the hybridization of 4 f orbitals with the other orbitals. Thus,
the dimension of the model Hamiltonian is the number of the
electronic configurations of 4 f electrons, i.e., 14Cn where n is
the number of 4 f electrons. Then, the model Hamiltonian is
written as

H = H0 + HCF + HSOC + HC. (1)

H0 is a constant matrix to give the base level of 4 f . The
level is irrelevant to energy spectra since we do not consider
the hybridizations. The non-spherical part of the one-body
potential is given by the crystal field term HCF. In addition,
we have the spin-orbit coupling (SOC) term HSOC, and the
effective Coulomb interaction term HC. Surrounding atoms of
the RE atom affect not only HCF but also HC through the size
of interaction, and HSOC as well via the shape of 4 f orbitals.
HSOC and HC are given as

HSOC = ξ
∑
mm′
σσ ′

(
lmm′
x sσσ ′

x + lmm′
y sσσ ′

y + lmm′
z sσσ ′

z

)
ĉ†

mσ ĉm′σ ′ ,

(2)

HC = 1

2

∑
m1,m2,
m3,m4

∑
σσ ′

gσσ ′
m1m2m3m4

ĉ†
m1σ

ĉ†
m2σ ′ ĉm4σ ′ ĉm3σ . (3)

Here indices m, m′, mi(i = 1, 2, 3, 4) are for the magnetic
quantum number, σ and σ ′ for spins, and ĉmσ is the electron-
annihilation operator. HSOC is made of the strength of SOC ξ

and the angular-momentum and spin matrices lmm′
x , sσσ ′

x , . . ..
We assume the effective Coulomb interactions gσσ ′

m1m2m3m4
are

given as

gσσ ′
m1m2m3m4

= (−1)m1−m3δm1+m2,m3+m4

×
l∑

p=0

F 2p
σσ ′c2p(m1, m3)c2p(m2, m4), (4)

where we have the Gaunt coefficients cp(m, m′) [30] and the
Slater-Condon parameters F 2p

σσ ′ for 4 f orbitals [4,31]. We use
the scaled-Slater-Condon parameters F0,ΔF0, and F2 to rep-
resent F 2p

σσ ′ as ⎧⎪⎪⎨
⎪⎪⎩

F 0
σσ ′ = F0 + δσσ ′ΔF0

F 2
σσ ′ = 225F2

F 4
σσ ′ = 1089×0.138F2

F 6
σσ ′ = 7361.64×0.151F2

(5)

in the manner of Ref. [32] for analyzing the RE3+ elements.
Here we fix the ratios F 4

σσ ′/F 2
σσ ′ and F 6

σσ ′/F 2
σσ ′ as in Ref. [33]

respecting the case of hydrogen. The spin-dependent term
δσσ ′ΔF0 is introduced to make a compromise in our fitting
procedure to the QSGW results with keeping the spin-space
symmetry of the model Hamiltonian.

We assume a general crystal field that corresponds to
the symmetry of each material. Using Steven’s operators
(O0

4)mm′ , (O4
4)mm′ , and so on [34], HCF is given as

HCF =
∑
mm′
σσ ′

(hCF)mm′ ĉ†
m,σ cm′,σ ′ (6)

hCF =
{

B0
4

(
O0

4 + 5O4
4

) + B0
6

(
O0

6 − 21O6
6

)
(cubic)

B0
2O0

2 + B0
4O0

4 + B0
6O0

6 + B6
6O6

6 (hexagonal)
,

(7)

where B0
4, B0

6, B0
2, B6

6 are the parameters to specify crystal
fields. Thus, the model Hamiltonian H of Eq. (1) is specified
by parameters ξ, F0,ΔF0, F2, and Bm

l .
To apply our core idea shown in the introduction, we

should apply QSGW to the model Hamiltonian. Here we
neglect the correlation part since we expect little screening
effects of 4 f orbitals by themselves. That is, we apply the
Hartree-Fock approximation to H instead, resulting in the
Hartree-Fock model Hamiltonian (HFMH) HHF as

HHF = H0 + HSOC + HCF + H HF
C ,

H HF
C =

∑
m1,m3

∑
σ

[ ∑
m2,m4

(
gσσ

m1m2m3m4
− gσσ

m1m2m4m3

)〈c†
m2σ

cm4σ 〉

+ gσσ
m1m2m3m4

〈c†
m2σ

cm4σ 〉
]

ĉ†
m1σ

ĉm3σ , (8)

where H HF
C is the mean-field approximation to HC. σ denotes

the opposite spin to σ , and 〈. . . 〉 means the expectation values
for the ground state. Based on our core idea, we compare HHF

with the 4 f part of the one-body Hamiltonian HQSGW
4 f given in

QSGW, so as to determine parameters in H .
We use the ecalj package [35] to perform QSGW calcula-

tions. In practice, we use 20% LDA mixing (QSGW80) so as
to reduce too-large exchange effects. We can take QSGW80 as
a quick remedy to include the effects of the vertex correction,
which enhances the screening effect by ∼20% [36,37]. In
fact, QSGW80 can reproduce the experimental band gap very
well [27,38]. We obtain HQSGW

4 f based on localized Wannier

functions (it was implemented in ecalj) as 〈wm|H QSGW
4 f |wm′ 〉.

Here wm and wm′ are the Wannier functions generated by
the one-shot projection of 4 f -type atomic-like seed orbitals
[35,39].
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FIG. 1. [(a), (b)] Band structure of QSGW (black) and HQSGW
4 f (green) for free Eu3+ in a fcc supercell. [(c), (d)] DOS and PDOS

corresponding to the QSGW band structure. (e)–(h) are for analyzing contributions of parameters ξ, F0, ΔF0, and F2 to HHF. We show
eigenvalues (e) only with ξ ; (f) only with F0; and (g) only with F0 and F2. (h) Comparison of eigenvalues of HQSGW

4 f (red) and HHF (blue).
Spin-dependence is not resolved in (e)–(h).

In the QSGW calculations, we add the SOC term H QSGW
SOC

in the LzSz-only approximation. We obtain ξ by an average

ξ =
√√√√(∑

n

∣∣〈wn|H QSGW
SOC |wn〉

∣∣2

)/
14. (9)

Other parameters F0,ΔF0, F2, and Bm
l of H are determined to

minimize the difference of eigenvalues between HQSGW
4 f and

HHF. Then, we can obtain eigenvalues of H by the exact
diagonalization [40].

In a summary, we mainly added two approximations to our
core idea. One is HHF instead of applying QSGW to the model
Hamiltonian. The other is the QSGW80 instead of QSGW.
In addition, we fix the ratios F 4

σσ ′/F 2
σσ ′ and F 6

σσ ′/F 2
σσ ′ . We

utilize the fixed ratio to enhance numerical stability and sim-
ple interpretation. In principle, our core idea is rather general
for extracting an essential degree of freedom from the first-
principles calculations. One of the advantages of our core idea
is that we do not calculate effective interaction directly. The
calculation of effective interaction is somehow complicated as
discussed in Refs. [36,37], especially when we like to include
vertex corrections.

III. RESULTS

Prior to discussion of the RE in compounds, we have ex-
amined free RE+3 in QSGW to confirm the performance of
our method. For the calculation of the free RE+3, we use a
fcc supercell placing RE+3 at their centers, where RE+3 are
separated by 7.07 Å. We assume a homogeneous background
charge to keep charge neutrality.

In Figs. 1(a) and 1(b), we show the calculated band struc-
ture of Eu3+ in QSGW. We superpose that of HQSGW

4 f with
green flat lines (seven lines per spin). PDOS of 4 f orbitals is

shown in Figs. 1(c) and 1(d). Up to ∼18 eV, the calculated
bands corresponding to 4 f , 5d , and 6s are almost flat, indicat-
ing that our supercell is large enough. On the other hand, 6p
bands around ∼20 eV have band width ∼1 eV because of the
finite size of our supercell. The eigenvalue at � point around
∼21.5 eV is identified to be the vacuum level, the bottom of
the scattering states. The band gap (LUMO-HOMO gap) is
13.7 eV, much larger than the LDA value of 4.85 eV. The
majority bands of 4 f orbitals except for m = 3 are occupied,
that is, the ground state is Jz = Lz + Sz = −3 + 3 = 0, corre-
sponding to 7F0. Thus, our results are consistent with Hund’s
rule. Generally speaking, a good mean-field approach should

TABLE I. Parameters in eV determined in our method for free
trivalent ions. The empirical studies in the right column correspond
to the empirical values of Dieke’s review paper [11]. These values are
derived from many experimental and theoretical data [6,7,42–49].

Our method Empirical study

F0 ΔF0 ξ F2 ξ F2

Pr 16.107 0.025 0.106 0.043 0.091 [47] 0.038 [47]
Nd 16.573 0.108 0.123 0.049 0.109 0.042
Pm 16.672 0.282 0.143 0.062 0.133 [48] 0.043 [48]
Sm 17.479 0.352 0.162 0.059 0.149 0.046 [6]
Eu 14.803 0.481 0.195 0.058 0.164 [7] 0.050 [7]
Gd 17.317 0.000 0.208 0.058 0.196 0.050
Tb 15.740 –0.274 0.236 0.055 0.211 [7] 0.054 [7]
Dy 16.867 0.000 0.265 0.068 0.236 0.052 [6]
Ho 16.817 0.000 0.296 0.071 0.268 [48] 0.056 [48]
Er 16.905 0.000 0.329 0.078 0.303 [49] 0.053 [49]
Tm 16.228 0.192 0.365 0.080 0.329 0.056
Yb 10.610 0.000 0.404 0.073 0.357
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FIG. 2. Eigenvalues of RE ions. Dieke diagram is shown by
the black points. Our results are superposed by red lines. Both are
calculated from parameters in Table I.

satisfy Hund’s rule since the ground states of atoms should
be essentially described by the electronic configuration of a
single Slater determinant.

We determine F0, ΔF0, and F2 in HHF so as to reproduce
eigenvalues of HQSGW

4 f . We see the eigenvalues match well as
shown in Fig. 1(h). Figures 1(e)–1(h) show our analysis of
how the parameters affect the eigenvalues of HHF. Figure 1(e)
shows ξ splits into seven states with degeneracy between mσ

and −mσ . Figure 1(f) shows that F0 makes the difference
between occupied and unoccupied states. Figure 1(g) shows
that F0 with F2 is still not enough to reproduce HQSGW

4 f . The
parameter ΔF0 is for describing larger effective interaction
between occupied orbitals than that between occupied and
unoccupied orbitals. This is reasonable because occupied 4 f
orbitals are localized more than unoccupied orbitals.

In Table I, we summarize obtained ξ , F0, ΔF0, and F2 for
RE+3 in our method. The QSGW results are in the Supplemen-
tal Material [41]. We skipped Ce since QSGW did not give
localized 4 f eigenfunctions. Table I shows that ξ and F2 in our
method give good agreements with those of empirical studies:
their differences are only ∼10%. This is a justification for our
method. F0, corresponding to U of LDA+U , is changing sys-
tematically along the atomic number. Except for Gd, F0 is the

largest in the middle of the first half and the latter half of the
4 f series, namely at Sm when filling majority electrons, and at
Er when minority. The latter half of the species shows a little
larger values than the first half. F2 systematically becomes
larger along the atomic number. For example, the F2 values
of Tm and Pr are 0.080 eV and 0.043 eV, and the difference
is 0.037 eV in our method, while the empirical study shows
these F2 values are 0.056 eV and 0.038 eV, and the difference
is as 0.018 eV.

In Fig. 2, we compare the excitation energies of free RE3+
by the parameters of our method and by those of empirical
studies in Table I. The latter exactly reproduced the original
Dieke diagram [11]. In free RE3+, the excitation energies only
depend on ξ and F2. Although the lowest excitation energies
show good agreements (except for Tm with a little large error
of ∼30%), we see disagreements overall. This is because
the excitation energies are somehow sensitive to the small
differences of ξ and F2 in Table I.

Let us show our main results of Eu compounds, EuCl3,
EuN, and Eu-doped GaN. For Eu-doped GaN in the wurtzite
structure, we use a 2×2×2 supercell (32 atoms per cell) sub-
stituting one Ga with Eu. We perform QSGW calculations for
the crystal structure optimized by Quantum Espresso [50,51].
We show the QSGW results for EuCl3 and EuN in the Sup-
plemental Material [41]. In Table II, we show ξ , F0, ΔF0, F2,
and Bm

l . We see F0 and ΔF0 are strongly reduced from those
of the free Eu ion. However, F2 is not so different from that
of free Eu ion. This finding suggests that F2 given by Dieke
is reasonable probably even in other solids. However, we see
some complicated behavior of F2 in detail: F2 = 0.058 eV
for the free Eu ion is reduced to be F2 = 0.053 eV for EuN
while a little enhanced to be F2 = 0.075 eV for EuCl3. On
the other hand, ξ = 0.195 eV for free Eu ion is very dif-
ferent from ξ = 0.093 eV for Eu-doped GaN. Considering
the expression of SOC, this is due to the delocalization of
4 f orbitals in Eu-doped GaN, suggesting hybridization with
other surrounding orbitals. The parameters for CF should be
material dependent. In particular, we see that B0

2 for the c-axis
anisotropy is rather large (= 2.217 eV) for EuCl3, while B0

2= 0.346 eV for Eu-doped GaN. Let us focus on Eu-doped
GaN. As shown in Figs. 3(a) and 3(b), QSGW80 gives the
band gap 3.78 (3.69) eV for the majority (minority) spin,
corresponding to the experimental value of GaN 3.4 eV. Just
above the bottom of the conduction band, we have an unoccu-
pied band of m = ±3 for the majority spin. In contrast to the
unoccupied band, the occupied 4 f orbitals are hybridized well
with valence bands of GaN. Such hybridization is also seen
in the calculations of the HSE functional [54]. In Fig. 3(c),
we compare the eigenvalues of HHF (blue lines) and those of

TABLE II. Parameters in eV determined by our method for Eu3+ in Eu compounds. See text for their definitions. For the calculations, we
use crystal structures in references.

Material ξ F0 ΔF0 F2 B0
4 B0

6 B0
2 B6

6

Free Eu ion (Table I) 0.195 14.803 0.481 0.058
EuCl3 [52] 0.203 8.773 0.340 0.075 0.017 0.004 2.217 –0.080
EuN [53] 0.156 5.565 0.150 0.053 0.000 –0.006
Eu-doped GaN 0.093 6.703 −0.057 0.046 0.021 –0.002 0.346 –0.063

013111-4



FIRST-PRINCIPLES METHOD JUSTIFYING THE DIEKE … PHYSICAL REVIEW RESEARCH 5, 013111 (2023)

FIG. 3. [(a), (b)] The QSGW band structure of majority (minor-
ity) spin for Eu-doped GaN (black). We superpose band structure
of HQSGW

4 f (green). (c) Comparison of eigenvalues of HQSGW
4 f (red)

and those of HHF (blue). [(d), (e)] DOS and PDOS corresponding
to the QSGW band structure. (f) The plot of eigenvalues of H
for Eu-doped GaN classified by J neglecting HCF. (g) The plot of
eigenvalues of H for Eu-doped GaN classified by J .

HQSGW
4 f (red lines). A little matching error indicates room for

improving our method, while the error may not change our
conclusions.

We show the eigenvalues of H in Fig. 3(g) obtained by the
exact diagonalization. Here we classify the eigenvalues by the
expectation values of total angular momentum J . In Fig. 3(f),
we show eigenvalues when we neglect HCF in H . With-
out HCF, each eigenstate is represented by Russell-Saunders
states. In Fig. 3(f) without CF, there is a large gap between
7F and 5D. The size of this gap is ∼2 eV. This corresponds
to the observed red emission, which is experimentally iden-
tified to be the transition from 5D0 to 7F2 [2]. Comparison
of Figs. 3(f) and 3(g) shows that HCF is large enough to
mix low-J and high-J eigenstates, resulting in a middle size
of J . That is, HCF causes a sizable breaking of the Russell-
Saunders coupling. However, HCF is not large enough to alter
the overall structure. That is, we see remnants of 5D and 7F in
Fig. 3(g) while the excitation gap between them is preserved.
This justifies the use of the Dieke diagram for the analysis of
PLR.

IV. CONCLUSION

In summary, we presented a new method to determine the
model Hamiltonian from the QSGW calculations. By the ex-
act diagonalization of the model Hamiltonian, we can justify
the applicability of the Dieke diagram to RE in solids and
its limitations. Along the line of our method, it is possible to
include the hybridization of 4 f electrons with others. In fact,
our QSGW calculation shows we have large hybridization of
occupied 4 f orbitals with valence bands. We now have an
extension of our method applied to multiplets of 3d orbitals
working well [55].
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