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Valley Hall effect and kink states in topolectrical circuits
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We investigate the emergence of topological valley Hall and kink states in a two-dimensional topolectrical
(TE) model as a result of broken chiral and reflection symmetries. The TE system consists of two segments
hosting distinct topological states with opposite (similar) signs of the valley Hall index, and separated by a
heterojunction to exhibit valley kink (Chern insulating) phases at the interface. In the practical circuit, the
valley Hall index can be flipped between the two segments by modulating the on-site potential on the sublattice
nodes of the respective segments. The presence of grounding connections in the circuit array subsequently leads
to the emergence of gapped and gapless valley and kink states in the admittance spectra. These topological
modes can be detected electrically by the impedance readouts of the system, which can be correlated to its
admittance spectra. Finally, we confirm the robustness of the valley Hall and kink states via realistic LTspice
simulation, taking into account the tolerance windows and parasitic effects inherent in circuit components. Our
study demonstrates the applicability of TE circuit networks as a platform to realize and tune valley-dependent
and kink topological phenomena.
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I. INTRODUCTION

The study of topological phases has emerged as a key
topic in condensed-matter physics due to the unconventional
properties of such phases [1–3], which possess a nontrivial
band topology. The valley property meanwhile constitutes a
new degree of freedom that can be found in lattice models
with various symmetries [4–7]. This additional valley degree
of freedom is useful in various technologically significant
applications such as robust electronic transport [8,9], energy
propagation [10], and information processing [11,12]. As a
result, the valley degree of freedom has given rise to a new
branch of technology named “valleytronics” [13–15] that has
found applications in many existing fields such as photonics
[16,17], metamaterials [18,19], condensed matter [20], acous-
tics [21,22], and next-generation quantum computing [23–26].
Breaking the inversion symmetry in a lattice model results in
a valley-dependent Hall conductivity and a quantum valley
Hall effect [27,28]. The inversion symmetry can be broken
by inducing alternating mass terms in the lattice Hamiltonian
[29]. A domain wall-type interface is created when two lattice
segments with opposite valley responses are joined together.
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Robust valley kink states appear at the interfaces of such
heterojunctions [30,31]. These novel valley kink states are
useful in many promising phenomena such as Klein tunnel-
ing [32–36], anti-Klein tunneling [37], spin-valley locking
[38,39], and quantum memory [40,41].

More recently, topological boundary states have been real-
ized in many Hermitian [42,43] and non-Hermitian systems
[44–47]. These topologically nontrivial boundary states are
characterized by the topological index (i.e., Chern number
[48] and Hall conductivity [49]) of their gapped bulk en-
ergy bands, and they exhibit gapped and gapless states on
their boundaries depending on the model parameters. These
novel topological boundary phases and valley Hall states
have recently been demonstrated in different platforms such
as photonic systems [24,50,51], metamaterials [19,22,52,53],
and quantum wells [54]. Although boundary states and valley
kink modes promise to bring dramatic changes to existing
technologies, it is difficult to realize and observe multiple
topological valley and boundary phases in the same lattice
model because of difficulties in the dynamical modulation of
the system parameters (e.g., fixed lattice constants and weak
spin-orbit coupling). Additionally, all these platforms involve
experimentally complex sample preparation, which is very
vulnerable to perturbations and impurities.

Lattice arrays comprising electrical components such as
inductors and capacitors known as topolectrical (TE) circuits
[37,55–59] have become the frontier experimental testbed in
the quest for alternative platforms to study different topolog-
ical states. Compared to other platforms, TE circuits offer
better tunability of system parameters such as the interaction
strength and phases. Recently, many exotic and novel features
such as edge states [56,60,61], corner states [62,63], quan-
tum spin Hall states [64,65], chiral magnetic effects [66,67],
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FIG. 1. (a) Schematic of the valley TE lattice model that hosts valley-dependent topological phases. Here, the magenta and orange circles
represent the A and B sublattice nodes, respectively. The unit cell is delineated by the dotted box. The two alternating sublattices are connected
by a capacitor C1 and inductor of −C1 [i.e., an inductance of 1/(ω2C1)] along the x direction for the intracell and intercell connections,
respectively. Along the y direction, neighboring nodes on opposite sublattices are connected by a capacitor Cy and nodes on the same sublattice
connected through alternating sequences of resistive elements ±Rv/2. (Note that there is a π phase difference in the resistive coupling between
the A-A and B-B connections along the y direction within the same unit cell.) (b) We can make use of the negative resistance converter to realize
the π phase difference between the A-A and B-B connections along the y direction. The combination of resistors R1 and Rv/2 along with an
ideal operational amplifier with supply voltages V − and V + acts as a negative resistance converter with current inversion. (c) Grounding
mechanism of our valley TE circuit. All nodes are connected to ground by a common capacitor (C) and inductor (L). Furthermore, each A and
B node is coupled to the ground with the same magnitude but opposite signs of the coupling strength by an on-site capacitor and an inductor,
respectively.

topological photonic states [68], and nodal ring states
[69–72] have been proposed in electrical circuit networks
[36,56,58,59,73]. The topological states depend on the con-
nectivity between the electrical components rather than their
relative locations in real space. The TE circuit models also
provide better flexibility in varying the system parameters
coupled with the convenient and accurate readout of system
characteristics.

In this paper, we design and propose a general framework
to realize various topological valley phases, kink states, and
Chern insulating phases based on the electrical responses in
a two-dimensional TE circuit model. We have explained in
detail the fundamental relationship between the admittance
band structure and the impedance profiles through the circuit
Green’s function in our previous works [36,55,57]. By tun-
ing the on-site interaction strength on the different sublattice
nodes, we obtain a transition from gapless to gapped edge
states in the admittance spectra. The valley-dependent Hall
conductivity is calculated using the analogous Kubo formula
and verified through the impedance spectrum. We study the
valley kink (Chern insulating) states that result from cascading
two TE segments with opposite (same) signs of the valley
Hall responses together. The opposite signs of the valley
Hall responses can be realized by reversing the sign of the
on-site capacitance, and hence the Laplacian mass term, on
both sides of the heterojunction. Both gapless and gapped
kink states can be obtained by varying the relative strengths
of the on-site capacitance to the resistive coupling strength.
The topological kink states are localized at the interface of
the heterojunction and can be distinguished by their terminal
impedances. Since such TE circuit models can be imple-
mented in typical breadboards or printed circuit boards with

basic electrical components, our model not only opens new
experimental possibilities and directions for the realization of
various topological valley phases, but also helps in the design
of multifunctional valleytronic devices.

II. TOPOLECTRICAL VALLEY CIRCUIT MODEL

Consider the TE circuit model consisting of basic electrical
components such as inductors and capacitors in Fig. 1. An
AC current of angular frequency ω flows through the circuit,
which comprises two different types of sublattice nodes la-
beled as the A- and B-type nodes, respectively, indicated as
the magenta and orange circles in the figure. Along the x
direction, the two adjacent sublattice nodes within the same
unit cell are connected by an inductor with an admittance
equivalent to that of a capacitance of −C1 [i.e., an inductance
of 1/(ω2C1)]. The adjacent nodes in neighboring unit cells
are connected by a capacitance C1 [see Fig. 1(a)]. Along the
y direction, adjacent nodes on different sublattices are con-
nected by a capacitance Cy while nodes on the same sublattice
are connected through alternating sequences of positive and
negative resistive elements Rv = 1

iωr , where r is a resistance.
Note that the A-A and B-B couplings along the y direction have
a relative π phase difference in their resistive couplings within
the same unit cell. Such π phases in the resistive elements can
be obtained using negative resistance converters (NRCs) [see
Fig. 1(b)], which break the reflection symmetry along the y
direction. Each A and B node is connected to the ground via
a common capacitor C and inductor L. Each A and B node is
further grounded by another on-site potential capacitor Cg and
inductor equivalent to a capacitance of −Cg, respectively. The
common grounding inductor (L) is used to adjust the offset
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of the admittance dispersion to a common value for all nodes
[36,44,74].

III. LAPLACIAN PHASES

The TE circuit can be described by its Laplacian, which
is analogous to the tight-binding Hamiltonian in quantum
physics [36,55,56]. The Laplacian at the resonant frequency
of ωr = 1/

√
2CyL multiplied by iωr , which we shall refer

to from now on as the normalized Laplacian for short, is
given by

LTE(kx, ky) = [−C1 + C1 cos(kx ) + 2Cy cos(ky)]σx

+ C1 sin(kx )σy + [Cg + Rv sin(ky)]σz, (1)

where σ = (σx, σy, σz ) are the Pauli matrices denoting the
A/B sublattice degree of freedom.

The circuit hosts both topologically trivial and nontrivial
phases depending on the relative magnitudes of the circuit
parameters Cg, Rv , C1, and Cy. We first investigate the tran-
sition points between the topologically trivial and nontrivial
phases in the (Cg, Rv,C1,Cy) parameter space at which the
eigenvalue spectrum of the Laplacian in Eq. (1) becomes
gapless. This happens when the coefficients of all the Pauli
matrices in Eq. (1) are simultaneously zero for some real �k
in the Brillouin zone. For the coefficient of σz to be zero,
we require ky = ± sin−1(Cg/Rv ), which has a real solution
when |Rv| � |Cg|, while the coefficient of σy is zero when
kx = 0, π . Substituting kx = π and ky = cos−1(Cg/Rv ) into
the coefficient of σx in Eq. (1), we have C1[1 − cos(kx )] +
2Cy cos(ky) = 2[−C1 ± Cy

√
1 − (Cg/Rv )2]. This is zero when

(C1/Cy)2 + (Cg/Rv )2 = 1. Thus, the phase transition points
occur at (C1/Cy)2 + (Cg/Rv )2 = 1 and at |Cg| = |Rv|.

Figure 2(a) shows the surfaces on which these phase tran-
sition points lie in the (Cg, Rv,C1) space at Cy = 1.5 μF. To
determine which side of the phase transition surfaces corre-
sponds to the topologically nontrivial phases, we numerically
calculated the Chern numbers of the normalized Laplacian
using the Fukui-Hatsugai-Suzuki algorithm [75], which pro-
vides a numerical means of evaluating the Chern number on
a discretized lattice. Figure 2(b) shows the Chern numbers at
Cy = 0.5 μF and Cg = 0.1 μF. The topologically nontrivial
phases with finite Chern numbers occur at the intersections of
(C1/Cy)2 < 1 − (Cg/Rv )2 and |Rv| > |Cg|.

The latter condition can also be obtained analytically by
considering the linear response of the system. Expanding
Eq. (1) around �k0 = (0, η π

2 ), η = ±1, we obtain

Lη

DP(�q) = 2ηCyqyσx + C1qxσy + (Cg + ηRv )σz, (2)

where �q ≡ �k − �k0. One may thus identify the two �k0 points
as the Dirac points (DPs) of massive Dirac fermion Hamilto-
nians Eq. (2) associated with the two valleys, so that η takes
the meaning of a valley index, where η = +1(−1) denotes
the K and K ′ valley index, respectively. The low-admittance
dispersion is given by

ε
η
± = ±

√
(2Cyqy)2 + (C1qx )2 + (Cg + ηRv )2, (3)

where ± denotes the particle- and hole-like bands, respec-
tively. In a condensed matter system, the Hall conductivity

σxy at each valley can be calculated through the standard Kubo
formula [76] as

ση
xy =

∫
dq2

π2

1

(εη
+ − ε

η
−)2

Im(Mη+
x (�q)Mη−

y (�q)), (4)

where Mη±
x (�q) = 〈+, �q, η|(∂qx L

η

DP)|−, �q, η〉 and Mη∓
y (�q) =

〈+, �q, η|(∂qy L
η

DP)|−, �q, η〉. Here, |±, �q, η〉 is the right eigen-
vector of Eq. (2), and 〈±, �q, η| is its Hermitian conjugate.
Even though the notion of a Hall conductivity is not appli-
cable in a TE context, the direct analogy between the TE
Laplacian matrix and the Hamiltonian in a condensed matter
system implies that the presence of any topological edge states
predicted from the Hall conductivity in the latter will directly
translate into the presence of edge modes in the former when
Eq. (4) is applied to the eigenvectors of the circuit Laplacian.
Therefore, we shall borrow the terminology from condensed
matter physics for the quantity calculated using Eq. (4) and
continue to refer to it as the valley Hall conductivity with the
understanding that it does not physically refer to a Hall current
in the TE context.

For our Laplacian, the valley-dependent Hall conductivity
can be evaluated as

ση
xy = − 1

8π2
SgnC1Cy(ηCg + Rv ). (5)

We define the valley Hall conductivity as σ
valley
xy ≡ ση=1

xy −
ση=−1

xy and the Chern number as σ
valley
xy ≡ ση=1

xy + ση=−1
xy . For

|Cg/Rv| < 1, ση
xy has the same sign for both values of η = ±1.

This results in a finite Chern number, which agrees with
the numerical results of a finite Chern number in Fig. 2(a)
for large |C1| and |Rv| and corresponds to a Chern insula-
tor state. [The Chern number is 0 there at small |C1| due
to the contributions of the Berry curvature near kx = π and
ky = cos−1(Cg/Rv ), where the bands may touch if (C1/Cy)2 +
(Cg/Rv )2 = 1. These contributions were numerically found to
be negligibly small at large C1 and Rv .]

In contrast, when |Cg/Rv| > 1, the two valleys have oppo-
site signs of Hall conductivities. Although the Chern number
is zero in this case, there is a finite quantum valley Hall
conductivity. We hence refer to this regime as the valley
Hall regime. As we shall show shortly, edge states will still
emerge when boundaries are introduced along certain di-
rections, although these edge states do not cross the band
gap. Figure 2(c) shows the dispersion relations at represen-
tative points on the Rv-C1 plane for nanoribbon geometries
of the TE circuit in which the circuits have infinite length
along the x direction and 10 unit cells in the y direction
(left), and in which the circuits have infinite length along
the y direction and 10 unit cells in the x direction (right).
(The admittance dispersion is the TE analog of the energy
dispersion in quantum-mechanical systems.) In general, the
dispersion relations for the finite-x and finite-y nanoribbons
appear markedly different from one another, although their
topological character remains unchanged when the finite di-
rection is exchanged. Points (i) and (iii) in Fig. 2(b) exemplify
the |Rv| < |Cg| scenario, with |C1| > |Cy| at point (i) and
|C1| < |Cy| at point (iii). At both of these points, no edge states
exist when the nanoribbon confinement direction is along the
y direction. However, edge states emerge when the nanoribbon
confinement is along the x direction. The edge states are more
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FIG. 2. (a) The phase transition surfaces in (Cg, Rv,C1) space at a fixed Cy = 0.5 μF. The green surfaces outlined by the dotted lines
denote the (C1/Cy )2 + (Cg/Rv )2 = 1 surfaces, and the blue planes the |Rv| = |Cg| planes. The unfilled orange box denotes the Cg = 0.1 μF
plane shown in panel (b). (b) The Chern numbers as functions of C1 and Rv at Cg = 0.1 μF and Cy = 0.5 μF. The gray areas denote the
topologically trivial phase where the Chern number is zero. The dark blue lines denote the |Rv| = |Cg| lines, and the green lines are the
projections of (C1/Cy )2 + (Cg/Rv )2 = 1 onto the Cg = 0.1 μF plane. The points (i)–(iv) denote the values of Rv and Cg at which the dispersion
relations in the finite x-width and finite y-width nanoribbon geometries are plotted in panel (c). The (Cg,Cy,C1, Rv ) values of these points are
(i) (0.1, 0.5, 0.6, 0.025) μF, (ii) (0.1, 0.5, 0.8, 0.3) μF, (iii) (0.1, 0.5, 0.1, 0.025) μF, and (iv) (0.1, 0.5, 0.1, 0.5) μF. (c) Admittance band
dispersions of the TE model at the four (C1, Rv ) points denoted in panel (b) in the nanoribbon geometry with (left) infinite length along the
x direction and 10 unit cells along the y direction, and (right) infinite length along the y direction and 10 unit cells along the x direction. The
nanoribbon geometries are schematically illustrated by the schematics at the top of the figure where the thick black borders at the edges denote
open boundary conditions at the edges while the borderless edges extend to infinity. The thick lines in the admittance plots denote the edge
states. Note that those edge states associated with (i), (ii), and (iv) are trivial because they do not cross the band gap, while that of (iii) are
nontrivial and band-gap crossing.

prominent at |ky| < π/2 in the case of |C1| > |Cy| correspond-
ing to point (i), whereas the edge states are confined to a
narrow range of ky in the vicinity of |ky| = ±π/2 in the case of
|C1| < |Cy| corresponding to point (iii). Point (iv) corresponds
to the scenario of |Rv| > |Cg|, (Cy/C1)2 > 1 − (Cg/Rv )2. In
contrast to points (i) and (iii) discussed previously, edge states
appear on point (iv) only when the nanoribbon confinement
direction is in the x direction, but not in the y direction. Note
that the edge states corresponding to (i), (iii), and (iv) do not
cross the band gap. Finally, point (ii) exemplifies the Chern
insulator phase, which exists when |Rv| > |Cg|, (Cy/C1)2 <

1 − (Cg/Rv )2. Edge states that cross the bulk gap are present
for both nanoribbon confinement directions. In the remainder
of this paper, we will focus on the phases exemplified by

points (ii) (Chern insulator) and (i) (valley Hall insulator) for
the case of |C1| > |Cy|.

To further investigate the effect of Cg and Rv on the TE
model when |C1| > |Cy|, we simulated the circuit in LTspice
with realistic device parameters and plot the admittance and
impedance spectra as functions of the wave vector ky for open
boundary conditions along the x direction [see Figs. 3(a)–
3(c)]. The impedance between any two lattice sites p and q
in the TE network model is given by

Zpq =(LTE)−1
pp − (LTE)−1

pq + (LTE)−1
qq − (LTE)−1

qp

=
N∑

k=1

|φkp − φkq|2
εk

,
(6)
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FIG. 3. Simulated admittance and impedance profiles of the valley TE circuit. The simulation is performed via the electric circuit simulation
software LTspice. The top rows show the admittance dispersion relations of x-confined nanoribbons with 10 unit cells along the x direction
at the resonant frequency f = 25.250 Hz. For a realistic simulation, the components are selected from the LTspice component database i.e.,
C1 = 3 μF (2× Murata GRM033R60G155ME14D), and Cy = 1.5 μF (Murata GRM033R60G155ME14D) for (a) edge states with Cg = 0 μF
and Rv = 0, (b) the Chern insulator phase Cg = 0.56 μF (KEMET C1206C564K3RACTU) and Rv = 2 μF, and (c) the Hall valley phase
with Cg = 2.2 μF (KEMET C0603C225K9PAC) and Rv = 0.5 μF. For the common grounding inductors, L = 10 μH (Würth Elektronik
744042100) is used. To realize the negative resistive element Rv , we performed the simulation with the high precision operational amplifier
LT1056. The bottom rows show the respective spectra of the impedances measured between the two edges of the nanoribbons.

where φi j is the value of the ith eigenvector at the jth lat-
tice point, and εi is the ith nonsingular eigenenergy of the
Laplacian matrix. Note that the LTspice simulations took into
account tolerance windows and parasitic effects. Even after
including such effects/imperfections, the topological behav-
ior remains largely unaffected.

In the upper plot in Fig. 3(a), we find well-defined
edge states for zero Cg and Rv . Moreover, the whole ad-
mittance spectrum is symmetric about the zero admittance
line. This is due to the chiral symmetry of the Laplacian
CLTE(�k)C−1 = −LTE(�k), where C = σz is the chiral inver-
sion operator. However, the boundary mode evolution differs
for a finite mass term, i.e., (Cg + ηRv) in Eq. (2). When
|Cg| < |Rv|, gapless edge modes emerge [see Fig. 3(b)], where
the zero-energy edge states split into two tilted boundary
states that intersect each other. However, when the resistive
coupling becomes stronger than the on-site capacitor (i.e.,
|Cg| > |Rv|), gapped boundary modes appear, as shown in
Fig. 3(c). Interestingly, a finite mass term breaks the symmetry
of the admittance dispersion about the E = 0 line [Figs. 3(b)
and 3(c)].

The impedance spectra for Figs. 3(a)–3(c) are shown in
the lower plots of the corresponding panels. The nearly zero-
admittance edge states in Fig. 3(a) are marked by a very large
impedance for |ky| � π/2, which agrees with the inversely
proportional relation between the eigenvalue (admittance) and
the impedance in Eq. (6). However, the impedance falls signif-

icantly in the presence of a mass term in the circuit Laplacian,
and only discrete impedance peaks are found when the ad-
mittance gap between the two bands reaches close to zero
[see Figs. 3(b) and 3(c)]. The gapless and gapped edge states
are indicated by comparatively large and small impedance
peaks, respectively [compare the sharp peak in Fig. 3(b)
with the broader lower peak of Fig. 3(c)]. The close cor-
respondence between the admittance spectra and impedance
readouts obtained from the LTspice simulation demonstrates
the experimental realization of valley-dependent features and
their electrical characterization under realistic conditions.

IV. CHERN AND VALLEY KINK STATES

In the previous section, we studied the relation between
the valley-dependent topological phases and the emergence
of edge states. In this section, we study the evolution of the
boundary states in a heterojunction between two TE seg-
ments in which the Chern numbers or Hall conductivities of
each valley have opposite signs in the two segments. More
explicitly, we realize a topolectrical valley kink state at the
domain-wall-like interface between two TE circuit arrays with
opposite signs of the Chern numbers or Hall conductivities
as shown in Fig. 4. Such heterojunctions can be realized
by simply reversing the sign of the on-site capacitance Cg

between the two array segments for a fixed |Rv| < |Cg|. The
TE lattice on the left and right sides of the interface have
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(a)

(b)

FIG. 4. Schematic of a TE circuit heterojunction that exhibits kink states. (a) Chern/valley kink circuit. (b) Schematic of the wiring between
each node and the ground in the two regions. Note that the on-site potential parameter (i.e., Cg) changes sign between the two regions. This
guarantees that the Hall conductivity of each of the valleys switches sign across the heterojunction interface. All the other parameters are the
same in both regions.

the same model parameters except for the on-site potential
Cg, which is positive and negative on the left and right sides,
respectively. Such a sign change in one of the mass parameter
terms (i.e., Cg) across the heterojunction will induce valley-
dependent kink states localized at the interface. Here, we
focus on heterojunctions where the interface is parallel to the
y direction.

We first focus on the Chern kink states that are at the
interface between two TE segments with finite Chern numbers
of opposite signs. Figure 5 shows the admittance dispersions
of the left [Fig. 5(a)] and right [Fig. 5(b)] halves of the
heterojunction [Fig. 5(c)] in isolation from each other, and
that of the entire heterojunction when both halves of the
heterojunction are connected together. In the particular het-
erojunction under consideration, the TE circuit array to the
left of the heterojunction has a positive Cg while the right
half has a negative Cg of the same magnitude, and C1 > Cy,
which puts the system into the Chern insulator regime. One
way of ascertaining the topological character of a particular
state is to plot its spatial distribution. Hence, the square of
the voltage amplitudes summed over the A and B nodes in
each unit cell is plotted for some of the bands as a function of
the x coordinate across the transverse width of the TE. The
square of the voltage amplitude constitutes the TE analogs
of the quantum-mechanical probability densities ψ†

x ψx for
states described by the wave-function spinor ψx, and they shall

be loosely referred to as “probability densities” for brevity
henceforth. The probability densities in panels (a) and (b)
show that the bands crossing the admittance band gap (ii, iii,
vi, and vii) consist of edge states exhibiting edge localization.
Furthermore, when the edge states have positive (negative) ky

slopes, i.e., ii and vi (iii and vii), the corresponding states are
localized on the left (right) edges of the nanoribbon. The other
bands labeled as i, iv, v, and viii consist of bulk states where
the highest probability densities occur near the center of the
nanoribbon and away from the edges. Comparing Figs. 5(a)
and 5(b), we find that the ky dispersion of nanoribbons with
opposite signs of Cg are reflections of each other about the
ky axis. This reflection symmetry can be understood from the
form of the Laplacian Eq. (1): the Laplacian is invariant upon
the simultaneous replacement of Cg → −Cg and a reflection
about the x axis, which brings kx → −kx and σy,z → −σy,z.

When the two halves of the heterojunction are connected
together in the heterojunction, the resultant dispersion relation
of the bulk bands is roughly given by the superposition of the
bulk band dispersions in the isolated halves of the heterojunc-
tion, as shown in Fig. 5(c). There is a slight increase in the
energy separation between corresponding pairs of bulk bands
from each of the isolated halves in the heterojunction due
to the band anticrossing. Note that the edge states localized
away from the heterojunction interface in either half of the
TE heterojunction circuit are not significantly perturbed when
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FIG. 5. The plots on the left show the admittance dispersions for TE circuits with C1 = 3 μF, Rv = 0.75 μF, Cy = 1.5 μF for (a) a
10-unit-cell-wide Cg = 0.5 μF nanoribbon, and (b) a 10-unit-cell-wide Cg = −0.5 μF nanoribbon. The thicker lines in panel (c) show the
dispersion relation of the heterojunction consisting of the nanoribbon in (a) on the left and the nanoribbon in (b) on the right connected
together along the y direction with the dispersion relations of the isolated left and right nanoribbons superimposed as thinner lines. The thicker
green lines denote the valley kink states. The plots on the right indicate the voltage amplitudes of the bands labeled i–xii in the dispersion
relations at ky = 0.8.

the heterojunction is formed. For instance, the dispersion and
spatial distribution of band xi (x) is virtually identical to that
of band vii (ii), which is localized at the right (left) edge of the
isolated half circuits. In contrast, the edge states of the isolated
halves localized at the edges adjacent to the heterojunction
interface (iii and viii) have disappeared in the heterojunction.
They are replaced by bands ix and xii that emerge in the
TE heterojunction circuit, which do not have corresponding
counterparts in the isolated halves of the heterojunction cir-
cuit. These new bands correspond to the valley kink states

localized at the heterojunction interface as depicted in the
spatial variation of |V |2 in Fig. 5(c).

Analogous trends are observed in the valley Hall regime
when two TE segments with zero Chern numbers but opposite
signs of the valley Hall conductivities are connected together
to form a heterojunction. Figure 6 shows the admittance dis-
persions of the left [Fig. 6(a)] and right [Fig. 6(b)] halves
of an exemplary heterojunction in isolation from each other,
and that of the entire heterojunction when both halves are
connected together [Fig. 6(c)]. Each half of the heterojunction
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FIG. 6. The plots on the left show the admittance dispersions for TE circuits with C1 = 0.6 μF, Rv = 0.025 μF, Cy = 0.5 μF for (a) a
10-unit-cell-wide Cg = 0.1 μF nanoribbon, and (b) a 10-unit-cell-wide Cg = −0.1 μF nanoribbon. The thicker lines in panel (c) show the
dispersion relation of the heterojunction consisting of the nanoribbon in (a) on the left and the nanoribbon in (b) on the right connected
together along the y direction with the dispersion relations of the isolated left and right nanoribbons superimposed as thinner lines. The thicker
green lines denote the valley kink states. The plots on the right indicate the voltage amplitudes of the bands labeled i–xii in the dispersion
relations at ky = 1.2.

comprises 10 unit cells of the TE circuit represented by point i
of Fig. 2(b) (i.e., C1 = 0.6 μF, Rv = 0.025 μF, Cy = 0.5 μF)
except that Cg = 0.6 μF on the left half and Cg = −0.6 μF
on the right half. The facts that |Cg| > |Rv| and that Cg have
opposite signs on the two halves imply that the two halves
of the heterojunction have finite values of the valley Hall
conductivities with opposite signs. Figures 6(a) and 6(b) show
that in the valley Hall regime, each half of the heterojunction
in isolation has edge states (i, ii, vi, and vii) that are more
substantially localized at either edge of the circuit than the
bulk states (i, iv, v, and viii). When the two halves of the

heterojunction are connected together [Fig. 6(c)], the edge
states in the two halves localized at the edges away from the
interfaces are relatively unaffected (states x and xi correspond
to states ii and vi, respectively). In contrast, the edge states
in the isolated segments that were originally localized near
the interface (iii and vii) now hybridize to form valley kink
states that are localized around the interface (ix and xii) with
admittances that are substantially shifted from those of the
constituent states. These valley kink states are the valley kink
analogs of their Chern kink states labeled as ix and xii in
Fig. 5. For this particular set of parameter values, the x and
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FIG. 7. Parts (a) and (b) show the band dispersions of 10-unit-cell-wide TE nanoribbons with C1 = 3 μF, Rv = 0.75 μF, Cy = 1.5 μF and
(a) Cg = 3 μF and (b) Cg = −3 μF. Part (c) shows the dispersion relation of the heterojunction formed when the Cg = 3 μF nanoribbon is on
the left and the Cg = −3 μF nanoribbon on the right, and (d) that of the heterojunction when the Cg = −3 μF nanoribbon is on the left and the
Cg = 3 μF nanoribbon on the right. The valley kink states are indicated as the darker lines in panels (c) and (d).

xi edge states that are localized away from the interface form
a pair of edge states that cross the bulk band gap. It should
be noted that this crossing of the bulk band gap does not
necessarily occur for every parameter set inside the valley Hall
regime, as we shall show in the next example.

Figure 7 shows the effect of swapping the left and right
halves of the heterojunction in the valley Hall regime with
another parameter set. Panels (a) and (b) show the disper-
sion relations for the isolated nanoribbons with positive and
negative values of Cg, respectively, where |Cg| > |Rv|. The
particlelike (holelike) edge states with positive (negative) ky

slopes, i.e., i and iv (ii and iii), are localized at the left (right)
edges of the isolated nanoribbons. The dispersion relations
and the energies of the kink states in the heterojunction de-
pend on the signs of Cg in the two halves of the heterojunction.
When the positive (negative) Cg nanoribbon is on the left
(right) half of the heterojunction, the particlelike edge bands
of both the left and right isolated halves [i.e., bands (i) and
(iii)], which are localized away from the heterojunction in-
terface, are still preserved in the heterojunction circuit, while
the resultant valley kink states are holelike [i.e., bands (ii) and
(iv)], as shown in Fig. 7(c). Conversely, when the negative
(positive) Cg nanoribbon is on the left (right) half of the
heterojunction, the holelike edge states of the isolated halves
are preserved in the heterojunction circuit while the resultant
valley kink states would be particlelike. Although the edge
states localized away from the interface in the heterojunc-
tion do not cross the bulk gap in this instance, these edge
states are still topological in nature because they arise from

the valley Hall conductance, which is a topological invariant.
Finally, the heterojunction circuit with the presence of Chern
and valley kink states can be characterized by their unique
impedance signatures, as shown in Fig. 8. Unlike the isolated
nanoribbons, which exhibit only a single impedance peak as a
function of ky across the Brillouin zone, the impedance disper-
sion of the heterojunction circuit has a ky-reflection symmetry
that leads to a pair of impedance peaks. The impedance peaks
in the impedance dispersion of the gapped valley kink het-
erojunction circuit are located near the points where the hole-
and particlelike bands have their minimum energy separation
[Fig. 8(b)], similar to the dispersion of isolated nanoribbon
in Fig. 3(c). In contrast, the impedance peaks of the gapless
Chern heterojunction circuit [Fig. 8(a)] are displaced from
ky = 0 where the hole- and particlelike bands meet. The gap-
less valley kink circuit [Fig. 8(c)] has a similar displacement
of the main impedance peaks away from ky = 0, and the
main impedance peaks are substantially broader than those
of the Chern heterojunction circuit. Furthermore, the peak
impedance of the Chern heterojunction is much higher than
its valley Hall counterparts.

V. SUMMARY

In summary, we proposed a highly tunable TE platform
that exhibits topological valley Hall states, valley kink, and
Chern insulating modes. The circuit can be switched between
different topological Chern and valley Hall states simply by
varying the sign of the on-site capacitance. Moreover, gapped
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FIG. 8. Parts (a)–(c) show the band dispersions (thin lines) and the terminal impedance between the leftmost and rightmost nodes of the
gapless Chern kink heterojunction in Fig. 5(c), the gapped valley kink heterojunction in Fig. 7(c), and the gapless valley kink heterojunction
in Fig. 6(c), respectively.

and gapless boundary states emerge in the admittance spectra
with proper tuning of the mass parameters. We also realize
valley kink states by connecting two TE circuits with opposite
signs of Hall conductivities together. We analytically derived
the boundary conditions between the Chern and valley Hall
regimes. The gapped and gapless states can be switched from
one to the other by tuning the grounding capacitance. The
topological boundary modes or valley kink states are localized
in the interface of the kink circuit. There are significant differ-
ences in the impedance dispersion for the different boundary
modes, leading to measurable and distinguishable circuit re-
sponses for different topological valley and kink states in
the uniform and heterojunction TE circuits, respectively. In

summary, our work based on the TE circuit model provides
an accessible testbed to realize various topological valley
and kink phases, and allows the efficient modulation and
switching between different topological states for valleytronic
applications.
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M. Greiter, T. Kiessling, D. Wolf, A. Vollhardt, A. Kabaši
et al., Reciprocal skin effect and its realization in a topolectrical
circuit, Phys. Rev. Res. 2, 023265 (2020).

[59] W. Zhang, D. Zou, J. Bao, W. He, Q. Pei, H. Sun, and X.
Zhang, Topolectrical-circuit realization of a four-dimensional
hexadecapole insulator, Phys. Rev. B 102, 100102(R)
(2020).

[60] N. A. Olekhno, E. I. Kretov, A. A. Stepanenko, P. A. Ivanova,
V. V. Yaroshenko, E. M. Puhtina, D. S. Filonov, B. Cappello,
L. Matekovits, and M. A. Gorlach, Topological edge states of
interacting photon pairs emulated in a topolectrical circuit, Nat.
Commun. 11, 1436 (2020).

[61] S. M. Rafi-Ul-Islam, Z. B. Siu, H. Sahin, C. H. Lee, and
M. B. A. Jalil, System size dependent topological zero modes in
coupled topolectrical chains, Phys. Rev. B 106, 075158 (2022).

[62] S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp,
T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert
et al., Topolectrical-circuit realization of topological corner
modes, Nat. Phys. 14, 925 (2018).

[63] S. M. Rafi-Ul-Islam, Z. B. Siu, H. Sahin, and M. B. A. Jalil,
Type-II corner modes in topolectrical circuits, Phys. Rev. B 106,
245128 (2022).

[64] W. Zhu, Y. Long, H. Chen, and J. Ren, Quantum valley Hall
effects and spin-valley locking in topological Kane-Mele circuit
networks, Phys. Rev. B 99, 115410 (2019).

[65] C. Sun, S. M. Rafi-Ul-Islam, H. Yang, and M. B. A. Jalil, Spin
Nernst and anomalous Nernst effects and their signature outputs
in ferromagnet/nonmagnet heterostructures, Phys. Rev. B 102,
214419 (2020).

[66] X. Tan, Y. Zhao, Q. Liu, G. Xue, H. Yu, Z. Wang, and Y.
Yu, Emulating Topological Chiral Magnetic Effects in Artificial
Weyl Semimetals, Phys. Rev. Lett. 122, 010501 (2019).

[67] S.-Z. Lin, C. D. Batista, C. Reichhardt, and A. Saxena, AC
Current Generation in Chiral Magnetic Insulators and Skyrmion
Motion Induced by the Spin Seebeck Effect, Phys. Rev. Lett.
112, 187203 (2014).

[68] B.-Y. Xie, H.-F. Wang, H.-X. Wang, X.-Y. Zhu, J.-H. Jiang,
M.-H. Lu, and Y.-F. Chen, Second-order photonic topolog-
ical insulator with corner states, Phys. Rev. B 98, 205147
(2018).

[69] K. Luo, R. Yu, and H. Weng, Topological nodal states in circuit
lattice, Research 2018, 6793752 (2018).

[70] S. M. Rafi-Ul-Islam, Z. B. Siu, and M. B. Jalil, Non-Hermitian
topological phases and exceptional lines in topolectrical cir-
cuits, New J. Phys. 23, 033014 (2021).

[71] K. Luo, J. Feng, Y. Zhao, and R. Yu, Nodal manifolds bounded
by exceptional points on non-Hermitian honeycomb lattices and
electrical-circuit realizations, arXiv:1810.09231 (2018).

[72] L. Li, C. H. Lee, and J. Gong, Emergence and full 3D-imaging
of nodal boundary Seifert surfaces in 4D topological matter,
Commun. Phys. 2, 135 (2019).

[73] S. M. Rafi-Ul-Islam, H. Sahin, Z. B. Siu, and M. B. A. Jalil,
Interfacial skin modes at a non-Hermitian heterojunction, Phys.
Rev. Res. 4, 043021 (2022).

[74] H. Sahin, S. M. Rafi-Ul-Islam, Z. B. Siu, C. H. Lee, and M.
Jalil, Interfacial corner modes in a topolectrical heterojunction,
Bull. Am. Phys. Soc. 67 (2022).

[75] T. Fukui, Y. Hatsugai, and H. Suzuki, Chern numbers in dis-
cretized Brillouin zone: efficient method of computing (spin)
Hall conductances, J. Phys. Soc. Jpn. 74, 1674 (2005).

[76] M. Tahir, A. Manchon, K. Sabeeh, and U. Schwingenschlögl,
Quantum spin/valley Hall effect and topological insulator phase
transitions in silicene, Appl. Phys. Lett. 102, 162412 (2013).

013107-12

https://doi.org/10.1103/PhysRevB.103.035420
https://doi.org/10.1103/PhysRevResearch.2.023265
https://doi.org/10.1103/PhysRevB.102.100102
https://doi.org/10.1038/s41467-020-14994-7
https://doi.org/10.1103/PhysRevB.106.075158
https://doi.org/10.1038/s41567-018-0246-1
https://doi.org/10.1103/PhysRevB.106.245128
https://doi.org/10.1103/PhysRevB.99.115410
https://doi.org/10.1103/PhysRevB.102.214419
https://doi.org/10.1103/PhysRevLett.122.010501
https://doi.org/10.1103/PhysRevLett.112.187203
https://doi.org/10.1103/PhysRevB.98.205147
https://doi.org/10.1155/2018/6793752
https://doi.org/10.1088/1367-2630/abe6e4
http://arxiv.org/abs/arXiv:1810.09231
https://doi.org/10.1038/s42005-019-0235-4
https://doi.org/10.1103/PhysRevResearch.4.043021
https://doi.org/10.1143/JPSJ.74.1674
https://doi.org/10.1063/1.4803084

