
PHYSICAL REVIEW RESEARCH 5, 013105 (2023)

Nonlinear transformations in quantum computation

Zoë Holmes ,* Nolan J. Coble,† Andrew T. Sornborger,‡ and Yiğit Subaşı §
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While quantum computers are naturally well suited to implementing linear operations, it is less clear how
to implement nonlinear operations on quantum computers. However, nonlinear subroutines may prove key to a
range of applications of quantum computing from solving nonlinear equations to data processing and quantum
machine learning. Here we develop a series of basic subroutines for implementing nonlinear transformations of
input quantum states. Our algorithms are framed around the concept of a weighted state, a mathematical entity
describing the output of an operational procedure involving both quantum circuits and classical postprocessing.
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I. INTRODUCTION

Quantum computers are naturally adept at performing
linear operations because quantum mechanics is inherently
linear; that is, the time evolution of a quantum system is
governed by the Schrödinger equation, a linear equation. Or,
equivalently, quantum states evolve under unitary operations
which are necessarily linear. However, to exploit the full po-
tential of quantum computing, we need to be able to also
twist the arm of quantum devices into implementing nonlinear
operations.

Nonlinear subroutines are likely to play a key role in a
range of quantum algorithms. For example, the ability to eff-
ciently implement nonlinear operations would open up new
methods for solving nonlinear equations on quantum hard-
ware [1–3], with applications in areas from fluid dynamics
to finance. Alternatively, nonlinear subroutines could prove
valuable for developing new techniques for error mitigation
by providing a means of amplifying a signal in the presence
of background noise [4]. Finally, there is much excitement
currently about the potential of quantum neural networks
and quantum kernel methods [5–8]. However, classical neural
networks inherit much of their power from the use of non-
linear activation functions. Similarly, kernel methods rely on
nonlinear encodings. Replicating this on quantum hardware
necessitates the ability to implement nonlinear quantum oper-
ations.

While quantum mechanics is fundamentally linear, quan-
tum systems often appear to evolve nonlinearly. These
apparent nonlinearities are typically induced through mea-
surements and coarse graining. In the context of quantum
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computing, in addition to these tools, nonlinear effects can
also be introduced using classical postprocessing and by col-
lectively manipulating multiple copies of a given input state.

There is a growing body of research into developing
new methods for introducing nonlinearities into quantum
algorithms. In the context of quantum machine learning, con-
volutional [9] or dissipative [10] quantum neural networks,
that disregard qubits as the network grows, have been pro-
posed. While these methods do introduce nonlinearities, the
exact form of the nonlinearity is not readily controllable.
Algorithms for computing specific nonlinear functions of
the elements of a quantum state, have been proposed in a
wide range of contexts, including computing Rényi entropies
[11–13], the negativity of the partial transpose [14–16], and
properties of density matrix exponentials [17], as well as for
methods for solving nonlinear equations [18] and studying
chaotic systems [19,20]. In this paper we tackle the more
general problem of implementing nonlinear transformations
of quantum states. That is, rather than computing Tr[ f (ρ)] (or
Tr[ f (ρ)M]) for some function f (and specific measurement
M), here we focus on implementing ρ → f (ρ). This problem
has been previously explored using block-encoding method-
ologies [4,21,22].

In this paper we introduce an approach for preparing
nonlinear functions of quantum states, using what we call
weighted states. These are matrices, describing the output
of a quantum instrument, that act like density operators
but need not be normalized nor Hermitian. The notion of
weighted states is a generalization that includes conditional
and marginal states as special cases and shares similari-
ties with virtual state distillation [4] and state broadcasting
[23–25] in the sense that these entities allow one to reconstruct
expectation values without explicitly preparing the state in
a conventional sense. We show that through an appropriate
choice of quantum instrument and its inputs it is possible to
construct weighted states corresponding to a nonlinear trans-
formation of a density matrix. In particular, our algorithms
may be used to implement arbitrary polynomials of the ampli-
tudes of a set of pure input states.

The outline of the paper is as follows. In Sec. II A we
formally define the transformations of quantum states that

2643-1564/2023/5(1)/013105(20) 013105-1 Published by the American Physical Society

https://orcid.org/0000-0001-6841-4507
https://orcid.org/0000-0003-1167-6527
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.013105&domain=pdf&date_stamp=2023-02-13
https://doi.org/10.1103/PhysRevResearch.5.013105
https://creativecommons.org/licenses/by/4.0/


ZOË HOLMES et al. PHYSICAL REVIEW RESEARCH 5, 013105 (2023)

we aim to implement, and in Sec. II B we define the notion
of weighted states. In Sec. II C we present an algorithm to
implement the Hadamard product of states, in Sec. II D we
present an algorithm to implement the generalized transpose
of an input density operator, and in Sec. II E we describe an
algorithm that can be used to prepare a linear combination of
products of density matrices. We use these algorithms to show
how one can implement more general polynomial functions
of input quantum states. In Sec. III we analyze the sampling
complexity associated with the weighted state approach. We
conclude in Sec. IV.

II. WEIGHTED STATES

A. Statement of problem

Given a set of density operators as input ρ in = ρ (0) ⊗ · · · ⊗
ρ (K−1), we are interested in preparing weighted states (to be
explained in detail later) of the form

ρ in → τ̃ =
dout−1∑
i, j=0

f (vρin )i, j |i〉〈 j|, (1)

where vρin is the vector containing all entries of the
input density operators in the computational basis, i.e.,
vρin = (ρ (0)

0,0, ρ
(0)
0,1, . . . , ρ

(K−1)
d,d ) with ρ

(k)
i, j = 〈i|ρ (k)| j〉, and f :

Ckd2 → Cd2
out is a multilinear function of its arguments. Here

d is the Hilbert space dimension1 of the individual inputs
ρ (k) and dout is the Hilbert space dimension of the output
system τ̃ .

Crucially, if ρ in includes multiple copies of the same state
ρ, and we consider f to be a function of the unique input
states, then the transformation functions will in general be
nonlinear in the elements of ρ. For example, in the case
where the input states are all identical, i.e., ρin = ρ⊗K , we can
consider the transformation

ρ → τ̃ =
dout−1∑
i, j=0

g(uρ )i, j |i〉〈 j|, (2)

where uρ = (ρ0,0, ρ0,1, . . . , ρd,d ) is now the vector containing
all entries of ρ in the computational basis, and the transfor-
mation functions g : Cd2 → Cd2

out are in general nonlinear. In
this manuscript, we develop a series of basic subroutines that
can be concatenated to implement (a subset of) non-linear
operations of this form.

Note that this operation may depend on the chosen com-
putational basis. In general, τ̃ is not normalized, positive
definite, and might not even be Hermitian. We use a tilde to
indicate such quantum objects that are not proper quantum
states that exist on a register of a quantum computer.

A special case is pure states. In this case we assume as
input a set of pure states |ψ in〉 = |ψ (0)〉 ⊗ · · · ⊗ |ψ (K−1)〉, and
we are interested in transformations of the form

|ψ in〉 → |φ̃〉 =
∑

i

h(vψ in )i |i〉 , (3)

1The general framework allows for input systems with different
Hilbert space dimensions; however, we won’t be considering such
cases in this work.

where vψ in is the vector containing all amplitudes of
the input states in the computational basis, i.e., vψ in =
(ψ (0)

0 , ψ
(0)
1 , . . . , ψ

(K−1)
din

) where ψ
(k)
i = 〈i|ψ (k)〉, and h :

Ckd → Cdout is a multilinear function of its arguments. Again,
if |ψ in〉 includes multiple copies of the same state |ψ〉, h will
in general be nonlinear with respect to the amplitudes of |ψ〉.

B. General framework

In this section we introduce the concept of “weighted
states” which provides the backbone of all the algorithms
presented later on. To motivate this concept we start by em-
phasizing that one only ever has access to quantum states
through measurement outcomes. Thus, suppose we are inter-
ested in the outcome of measurements on the state τ , it is not
strictly necessary to prepare τ , rather it suffices to propose
an operational strategy for calculating 〈O〉τ = Tr[τO] for any
measurement operator O.

When the state we are interested in is a nonlinear trans-
formation of the input state as in Eq. (2), we cannot strictly
prepare it unless it happens to be a proper quantum state,
i.e., unless τ̃ = τ is positive semidefinite, Hermitian matrix
with unit trace. Instead, we first prepare a quantum state in an
extended Hilbert space composed of ancilla register (A) and an
input register (I). As shown in Fig. 1(a), the initial composite
state of the registers σ

f
A ⊗ ρ in

I evolves unitarily under U f such
that the final state is ρout = U f (σ f

A ⊗ ρ in
I )U f †. Here σ f is the

ancilla state to be chosen as part of the algorithm. We then
regroup the registers of ρout into a system (S), an environment
(E ), and the garbage (G). Finally, we pick a measurement
operator M f on the environment such that the following is
satisfied:

Tr[τ̃O] = TrSEG
[
ρout
(
O ⊗ M f

E ⊗ IG
)] ∀O. (4)

In other words, we map the expectation value of any system
operator O in the (possibly unphysical) state τ̃ to the expecta-
tion value of the operator O ⊗ M f ⊗ I in the composite state
ρout. Since Eq. (4) is true for any system operator O, we can
also express the weighted state as

τ̃ = TrEG
[
ρout
(
IS ⊗ M f

E ⊗ IG
)]

. (5)

This could be interpreted as a generalization of the partial
trace map. We note that the measurement of O need not be
made straightaway, rather the weighted state τ̃ can be used as
the input to another algorithm and so may be further processed
by additional subroutines before measurement.

Alternatively, one can think of weighted states in terms
of quantum instruments which are quantum operations with
both classical and quantum outputs [26]. Any quantum
instrument can be realized by applying a joint unitary trans-
formation on the input system plus an ancilla, followed
by a projective measurement on part of the resulting joint
system as in Fig. 1(b). We indicate such an instrument2

2Clearly, there is a degeneracy in the choice of the set
{σ f ,U f , M f } and different choices can result in the same in-
strument. One could eliminate this degeneracy by adopting the
convention that M f is diagonal and σ f = |0〉〈0|, which is always
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FIG. 1. Weighted state framework. Here we illustrate two equivalent ways of interpreting weighted states. (a) A weighted state τ̃ =
TrEG[ρout(IS ⊗ M f

E ⊗ IG)] is equivalent to the output of a composite state ρout after the measurement M f ⊗ I on the environment and garbage
auxiliary systems. (b) A weighted state τ̃ =∑ j λ jE j (ρ in ) is the output of a quantum instrument where conditional on measuring the jth output
on the environment register E , the quantum output in register S is weighted by λ j .

as I (σ f ,U f , M f ). In general, the classical and quantum
outputs are correlated. If the jth possible measurement out-
come λ j is observed in a realization of the measurement
of M f , the conditional quantum state on the S register
of the joint system is given by E j (ρ in )/Tr[E j (ρ in )], where
E j (�I ) = TrEG[U f (σ f

A ⊗ �I )U f †(IS ⊗ |λ j〉〈λ j |E ⊗ IG)] is a
completely positive trace-nonincreasing map and TrS[E j (ρ in)]
is the probability p j of observing said outcome [27]. Since
probabilities add up to one, E =∑ j E j is completely positive
and trace preserving and E (ρ in) = TrEG(ρout) describes the
marginal state on the S register. What we refer to as the
weighted state can be expressed as

τ̃ =
∑

j

λ j p j
E j (ρ in )

Tr[E j (ρ in)]
=
∑

j

λ jE j (ρ
in ). (6)

In this manner, the weighted state is obtained by weighting
the quantum outcomes of the quantum instrument with its
classical outcomes. In practice this weighting is implemented
in postprocessing. It is evident that conditional and marginal
states are special cases of weighted states whereby the mea-
surement operator M f is a projector and identity, respectively.
In many ways, one can think of the use of conditional states
as being the analog of rejection sampling whereas weighted
states are analogous to importance sampling.

The goal is then to find a quantum instrument
I (σ f ,U f , M f ) that implements the transformation of Eq. (1)
for a given function f for all inputs ρ in. First, let us
assume that M f is a normal operator and hence can be di-
agonalized by a unitary. A subsequent measurement in the
computational basis, with outcome j, is interpreted as the
measurement of λ j , the jth eigenvalue of M f . The physical
states E j (ρ in)/Tr[E j (ρ in)] can then be used, together with the
classical outputs λ j of the instrument, to emulate any quantum
computation that involves the (possibly unphysical) state τ̃ .

The method described in the previous paragraph assumes
M f is a normal operator. More generally, one can emulate

possible as the unitary diagonalizing M f and the one that prepares
the purification of σ f can always be absorbed into U f . However, we
believe that this convention makes it harder to build intuition about
the algorithms we describe later in the paper.

an arbitrary operator M f by randomizing over quantum
instruments. Let M f ,(k) be a normal operator corresponding
to the kth instrument and qk be the probability with which
this instrument is sampled. Then the net effect of using a
randomized instrument is captured by M f =∑k qkM f ,(k) in
Eqs. (4) and (5). Note that, in principle, any operator can be
represented this way as M f = (1/2)(M f + M f †) +
(1/2)(M f − M f †), where both the Hermitian and skew-
Hermitian parts of M are normal (but other decompositions
may prove to be more efficient). In Appendix A 4 we
show that this randomization is not necessary, and in fact a
single quantum instrument can always be constructed that
implements the transformation that a fictitious instrument
with an arbitrary nonnormal M f would. Hence, unless stated
otherwise, we will henceforth assume M f is normal.

Finally, it is important to note that ρ in can itself be a
weighted state and Eqs. (5) and (6) still hold in this case. Thus
algorithms implementing basic nonlinear transformations can
be concatenated to prepare a large class of weighted states of
the form Eqs. (1) and (3) corresponding to complex nonlinear
transformations of input states. Below we will describe three
such basic algorithms. The first algorithm multiplies two input
state density operators entrywise in the computational basis
(Hadamard product), the second implements a generalization
of the transpose operation, and the third algorithm outputs
polynomials of input density matrices.

In the rest of the paper we will drop the tilde on τ̃ as there is
no need to make a distinction between physical and weighted
states in the framework. We will also drop the superscript f
and let {σ f ,U f , M f }→ {σ,U, M} for brevity. It is always to
be understood that this set depends on f .

C. Quantum Hadamard product (QHP)

We define the quantum Hadamard product (QHP) of two
states ρ (0) and ρ (1) as

ρ (0) � ρ (1) =
∑

i j

ρ
(0)
i j ρ

(1)
i j |i〉〈 j|; (7)

that is, the matrix elements of the QHP in the computational
basis are the product of the matrix elements of the input
density operators.

013105-3



ZOË HOLMES et al. PHYSICAL REVIEW RESEARCH 5, 013105 (2023)

FIG. 2. Quantum Hadamard product (QHP). Here we show the
depth 1 circuit to implement QHP. Note that the CNOT gates act on
all pairs of qubits.

In Fig. 2 we present a circuit for implementing the
Hadamard product. The output state after applying the ladder
of CNOT gates, U = CNOT⊗n, is

ρout =
∑

i0, j0,i1, j1

ρ
(0)
i0 j0

ρ
(1)
i1 j1

|i0, i0 ⊕ i1〉〈 j0, j0 ⊕ j1| . (8)

The measurement operator is M = |0〉〈0| and there is no
garbage register. It is straightforward to verify that the
weighted state is the desired QHP, that is, we have

τ = TrEG[ρout(IS ⊗ M )] = ρ (0) � ρ (1). (9)

We note that variants of this circuit for preparing normalized
Hadamard product states have been previously been proposed
in Refs. [28,29].

Note that M is a projector. As such it amounts to per-
forming a postselection. In that viewpoint, one would obtain
the normalized state ρ (0) � ρ (1)/Tr[ρ (0) � ρ (1)] whenever the
second register is measured in the all zeros’ state. Then one
measures the observable O in this state. This process is re-
peated until enough statistics is collected. Finally, one would
have to multiply the outcome with the normalization factor
Tr[ρ (0) � ρ (1)], which can be estimated by the relative fre-
quency of the success of postselection. Thus the weighted
state formalism includes methods based on postselection as
a special case, whereby M is proportional to a projector.

In the special case where the inputs to QHP are pure
states, i.e., ρ (0) = |ψ (0)〉〈ψ (0)| and ρ (1) = |ψ (1)〉〈ψ (1)|, the
QHP transforms them into another pure state given by

|φ〉 = |ψ (0) � ψ (1)〉 ≡
∑

i

ψ
(0)
i ψ

(1)
i |i〉 . (10)

Weighted states |ψ (0) � ψ (1) � · · · ψ (K−1)〉 that are the
Hadamard product of K states can be prepared by using the
QHP algorithm iteratively as shown in Fig. 3. If the input

states are defined on n qubits, this algorithm can be imple-
mented using 2n qubits, independent of K , by resetting and
reusing qubits [30]. Of particular interest is the potential to
use iterative applications of QHP to generate powers of a state,
that is to prepare

|ψ � ψ � · · · � ψ︸ ︷︷ ︸
p times

〉 ≡ |ψ p〉 ≡
∑

i

ψ
p
i |i〉 . (11)

More generally, using the circuit in Fig. 3 with different input
states we can prepare weighted states whose amplitudes are
products of the amplitudes of different states such as∑

i

∏
j

(
ψ

( j)
i

)p j |i〉 . (12)

Such products may be used as building blocks for preparing
arbitrary polynomial functions.

If we treat ρ (0) → σ as part of the ancilla register (A) and
only ρ (1) → ρ as the input (I ) of the quantum instrument, then
the same quantum circuit as QHP shown in Fig. 2 implements
the following linear transformation

ρ → σ � ρ =
∑

i j

σi jρi j |i〉〈 j| . (13)

The only difference between the two quantum instruments is
the interpretation of what constitutes the input of the instru-
ment.

D. Generalized quantum transpose (GQT)

In this section we present an algorithm for implementing
a transformation related to the QHP that we call the gener-
alized quantum transpose (GQT). Given an input state ρ and
ancillary state σ , the GQT is defined as

ρ (T )
σ := σ � ρT . (14)

That is, the output of GQT is the transpose of the input density
operator ρ in the computational basis, with the elements of
ρT weighted by the elements of σ on an element-by-element
basis. When σ is chosen to be the plus state σ = |+〉〈+|
with |+〉 = 1√

d

∑
i |i〉, the output is the transpose of ρ up

to the dimension of the input, that is, ρ
(T )
|+〉〈+| = 1

d ρT . In the
special case of pure input states, i.e., ρ = |ψ〉〈ψ |, the GQT
implements a weighted complex conjugation operation such
that the output is σ � |ψ∗〉〈ψ∗|.

In Fig. 4 we present a circuit for implementing the GQT.
Specifically, the weighted state prepared by this circuit can be

FIG. 3. Iterated QHP. The circuit consists of n − 1 repetitions of the QHP subroutine shown in Fig. 2. This circuit can be used with
ρ (1) = ρ (2) = · · · = ρ (k) = |ψ〉〈ψ | for preparing a quantum state

∑
i ψ

k
i |i〉 in which all the amplitudes in the computational basis are raised to

some power k. We note that one could also reset alternating qubits. These two instruments would produce the same final weighted state on an
ideal device but may perform differently in the presence of noise [30].
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FIG. 4. Generalized quantum transpose (GQT). Here we show
the depth 3 circuit to implement GQT. The purple box indicates a
SWAP measurement (for breakdown see Fig. 5).

shown to be

ρout =
∑
ii′ j j′

σi jρi′ j′ |iii′〉〈 j j j′|, (15)

τ̃ = Tr2,3[ρout(I ⊗ SWAP)] (16)

=
∑
i ji′ j′

σi jρi′ j′ 〈ii′| SWAP | j j′〉 |i〉〈 j| (17)

=
∑

i j

σi jρ ji |i〉〈 j| = σ � ρT , (18)

where the trace in second equation is taken over the last two
registers. This circuit may be viewed as a implementing gen-
eralized form of quantum teleportation, as discussed further
in Appendix C. Note that the Bell basis states are eigenstates
of the SWAP operator with eigenvalues ±1. Hence the SWAP
measurement on the bottom two registers can be realized with
a depth two quantum circuit as seen in Fig. 5 [31].

GQT can be used in tandem with the other algorithms
described in this work to enlarge the set of functions f that
can be implemented. Although GQT, in its current formula-
tion, implements a linear transformation, if the ancilla state is
chosen to be ρ, or GQT is applied iteratively taking multiple
copies of the state ρ as inputs, the resulting transformation
will be nonlinear in ρ. It is worth noting that GQT can be
applied to a subsystem of a larger system to implement a
partial transpose. Thus GQT could be leveraged to witness
entanglement in mixed quantum states [14,16,32,33].

E. Quantum state polynomial (QSP)

In this section we present an algorithm that takes as input
two states ρ (0) and ρ (1) and prepares weighted states

τ̃ = α00ρ
(0) + α11ρ

(1) + α01ρ
(0)ρ (1) + α10ρ

(1)ρ (0). (19)

Note that the weighted state τ is a multilinear poly-
nomial of its two inputs ρ (0,1). Consider the algorithm
in Fig. 6. Specifically, the premeasurement output of the
circuit is

ρout =
∑
ii′ j j′

σ00ρ
(0)
i j ρ

(1)
i′ j′ |i0i′〉〈 j0 j′| + σ01ρ

(0)
i j ρ

(1)
i′ j′ |i0i′〉〈 j′1 j|

+ σ10ρ
(0)
i j ρ

(1)
i′ j′ |i′1i〉〈 j0 j′| + σ11ρ

(0)
i j ρ

(1)
i′ j′ |i′1i〉〈 j′1 j|.

(20)

FIG. 5. Swap measurement. The implementation of the SWAP
measurement with a circuit of depth 2 [31]. The readouts are x =
x1, . . . , xn and y = y1, . . . , yn, and x · y = x1y1 ⊕ · · · ⊕ xnyn.

Performing the measurement M we generate the weighted
state

τ̃ = σ00M00Tr(ρ (1) )ρ (0) + σ11M11Tr(ρ (0) )ρ (1)

+ σ01M10ρ
(0)ρ (1) + σ10M01ρ

(1)ρ (0). (21)

Hence by appropriately choosing the initial state σ and mea-
surement operator M it is possible to produce states of the
form Eq. (19) as claimed. More concretely, interpreting the
coefficients αi j as entries of a matrix α we require that

α = σ � MT � γ in. (22)

Here γ in is a matrix where the off-diagonal elements are
Input-independent with γ in

01 = γ in
10 = 1 and the diagonal en-

tries depend on the input states with γ in
00 = Tr(ρ (1) ) and γ in

11 =
Tr(ρ (0) ).

Multilinear polynomials of more than two input states,
generalizing Eq. (19), can be obtained by concatenating this
algorithm. However, only a limited subset of all multilinear
polynomials can be generated this way. In order to obtain any
arbitrary multilinear polynomial, one can either randomize
over instruments (see Appendix A 4) or forego concatenation
and implement the transformation directly with an instrument
that takes all inputs at once; see Appendix B 1.

Ozols [34] describes an alternative algorithm for the task
of QSP. In that approach there is no ancilla register. A unitary
that is a linear combination of identity and SWAP, is applied
to the two states and one of the registers is traced out. The
remaining register is in a proper quantum state that is of the
form Eq. (19). This algorithm also fits our general framework
but is less general in that it can only generate a small subset
of states that our QSP algorithm can.

FIG. 6. Quantum state polynomial (QSP). Here we show the
circuit to implement QSP. The controlled SWAP gate can be im-
plemented with three Toffoli gates. The final swap does not need to
be implemented but rather is included to match the register labeling
convention chosen in Fig. 1.
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A number of interesting families of weighted states may be
generated with QSP when σ is a physical density operator and
M is an Hermitian observable. Here we list several pertinent
examples.

Mixtures: One does not need weighted states to pre-
pare the mixture of two given states, but here we show
how that scheme fits in the larger framework of weighted
states. Here we want τ̃ = pρ (0) + (1 − p)ρ (1) for some prob-

ability 0 < p < 1. This corresponds to α = (p 0
0 1 − p

)
. We

can achieve this by choosing σA = (p 0
0 1 − p

)
and M =(1/Tr(ρ (1) ) 0

0 1/Tr(ρ (0) )

)
. When the inputs are physical states with

unit trace, the measurement M is just the identity operator, and
so the environment register may simply be traced out.

Anticommutator: The weighted state τ̃ = {ρ (0), ρ (1)} =
ρ (0)ρ (1) + ρ (1)ρ (0) corresponds to α = (0 1

1 0

)
. This may be

prepared using σ = |+〉〈+| = (1/2)
(1 1

1 1

)
and M = 2X =

2
(0 1

1 0

)
. We note that one-half of the anticommutator with

identical inputs ρ is the weighted state τ̃ = ρ2. In this special
case, the algorithm reduces to established algorithms for com-
puting Rényi entropies [30,35] and virtual state distillation
[4,36].

Commutator: The weighted state τ̃ = [ρ (0), ρ (1)] =
(ρ (0)ρ (1) − ρ (1)ρ (0) ) corresponds to α = ( 0 1

−1 0

)
. This

may be prepared with σ = |+〉〈+| = (1/2)
(1 1

1 1

)
and

M = 2iY = 2
(0 −1

1 0

)
.

Linear combinations of pure states: A particularly promis-
ing application of the QSP algorithm is to prepare linear
combinations of pure quantum states. In this case the weighted
state is τ = |ψ〉〈ψ | where |ψ〉 = α0|ψ (0)〉 + α1|ψ (1)〉, corre-
sponding to

α =
⎛⎝ |α0|2 α0α

∗
1

〈ψ0|ψ1〉
α1α

∗
0

〈ψ1|ψ0〉 |α1|2

⎞⎠. (23)

Note that unlike previous algorithms we presented, in this
case, as α depends on the overlap between the input states,
the functional form of g in Eq. (2) depends on the input
state. In particular, one needs to know in advance, or estimate,
the overlaps between the input states in order to specify the
quantum instrument that prepares the desired weighted state.

We have freedom in how to pick the initial state σ and
measurement M. Suppose we take σ to be the arbitrary pure
state σ = |β〉〈β| with |β〉 = β0|0〉 + β1|1〉 then we need

M =
⎛⎝ |α0|2

|β0|2〈ψ1|ψ1〉
α1α

∗
0

β1β
∗
0 〈ψ1|ψ0〉

α0α
∗
1

β0β
∗
1 〈ψ0|ψ1〉

|α1|2
|β1|2〈ψ0|ψ0〉

⎞⎠. (24)

Note that M is an Hermitian operator. In Sec. III we discuss
how to choose |β〉 in order to minimize the sampling com-
plexity.

We note that the denominator for the off-diagonal elements
in Eq. (24) will vanish if |ψ0〉 and |ψ1〉 are orthogonal. Even
if the denominator does not vanish, for close to orthogonal
states it can become very small. As we will demonstrate in
the error analysis in Sec. III this leads to precision issues.
First, the overlap 〈ψ0|ψ1〉 will have to be estimated with high

precision. Second, even if this overlap is known exactly the
eigenvalues of M, i.e., the weights, will be large. This in turn
increases the sampling complexity. Hence, this method is not
recommended for preparing linear combinations of orthogo-
nal, or close to orthogonal, states. In Appendix B we discuss
alternative methods for preparing such combinations.

One can prepare linear combinations of many states by
iterating this method for preparing the linear combination of
a pair of states. This ability to take the linear combinations of
states is expected to prove valuable for a number of applica-
tions since it can be used as a primitive to prepare arbitrary
polynomials of quantum states. In particular, by taking the
linear combination of powers of quantum states (generated
via the QHP algorithm) one may approximately implement
any function of the quantum state that may be expanded as a
power series as

|ψ〉 → |g(ψ )〉 =
d∑

i=1

g(ψi ) |i〉 , (25)

where g(ψi ) =∑K
k=1 αk (ψi )k . For example, this could be used

to approximately implement the reciprocal operation g(x) = 1
x

to amplify basis states with small amplitudes. Or one could
potentially use this method to implement the g(x) = tanh(x)
activation function used to introduce nonlinearities into neural
networks.

A polynomial of order K of an n-qubit pure state can
be implemented via a concatenation of QSP and QHP using
O(nK ) 2-qubit gates. More generally the QSP, GQT, and
QHP may be concatenated to implement complex nonlinear
transformations of the form

|ψ〉 → |h(ψ )〉 =
KL∑

k,l=1

d∑
i=1

αkl (ψi )
k (ψ∗

i )l |i〉 . (26)

The number of two qubit gates required in this case scales as
O(nχ2) where χ = max{K, L}.

In Appendix B we discuss alternative methods for prepar-
ing linear combinations of states. The first of these is similar
in spirit to the QSP method but creates the linear combination
of multiple states in a single step (rather than via concate-
nation) with a single global measurement. This method is a
more general than the QSP, capturing it as a special case.
The second method we detail is of different spirit to the other
algorithms detailed here (i.e. it does not fall naturally within
the weighted state framework) and uses a combination of
Hadamard tests and classical post-processing. This method
requires shorter depth circuits and thus is more appropriate
for near-term hardware as shown in Appendix F.

Physically measurements are associated with normal op-
erators. If we require M to be a normal operator in the QSP
circuit, then it follows from Eq. (22) that not all α matrices
can be obtained. In Appendix E we provide a detailed classi-
fication of the classes of weighted states that can be realized
when M is a normal operator. To go beyond, as previously
noted, we can express arbitrary operators as sums of normal
operators Nl via M =∑l clNl . The right-hand side of Eq. (4)
now has a summation, which means that we need to operate
multiple quantum instruments to obtain the weighted state.
As an example of weighted states that can be prepared only
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via QSP through such means consider products of density
matrices, i.e., τ = ρ (0)ρ (1).

III. SAMPLING COMPLEXITY ANALYSIS

We are interested in the expectation value of an Hermi-
tian operator O in a weighted state τ , i.e., Tr[τO]. Due to
Eq. (4) this quantity is nothing but the expectation value of
O ⊗ M ⊗ I in the state ρout and can be estimated by repeatedly
running the quantum instrument of Fig. 1 and then measuring
the operator O on the quantum output, i.e., the system register.
This estimator takes the form

Ô = 1

s

s∑
i

λm(i)μo(i), (27)

where λm(i) and μo(i) are the random outcomes of M and O
measurements at the ith run of the circuit, respectively, and s is
the total number of runs. Note that Ô is an unbiased estimator
since it estimates a quantum expectation value in the standard
way:

E [Ô] = Tr[ρout(O ⊗ M ⊗ I)] = Tr[τO], (28)

where E [·] denotes the expectation value.
The variance of Ô is

Var(Ô) = 1

s
[Tr[ρout (O ⊗ M ⊗ I)2] − Tr[τO]2]. (29)

Note that, in general, the variance of an observable can
not be expressed in terms of the weighted state τ alone.
Consequently, two instruments that implement the same trans-
formation and hence prepare the same weighted state, can
result in estimators with different variances. Since variance is
inversely proportional to sampling complexity we would like
to find instruments that minimize it. As is clear from Eq. (29),
the variance manifestly depends on the measurement O per-
formed on the weighted state and so to compare the sampling
complexity of different instruments it is desirable to derive an
operator independent bound on the variance. Assuming that
||O||∞ � 1, it follows that

Var(Ô) � Tr[ρout(I ⊗ M ⊗ I)2]

s
. (30)

We use Eq. (29) [Eq. (30)] to compute (bound) the number of
samples needed for QHP, GQT, and QSP algorithms in order
to achieve a desired precision. Here we restrict our scope to
weighted states that are prepared using quantum instruments
whose inputs are physical states3 and for which M is an Her-
mitian operator. We also suppose that the system observable
O is Hermitian. Here we summarize our findings. The more
detailed and general analysis can be found in Appendix D.

3Note that if the input states are weighted states themselves, one
needs to take into account the quantum instruments associated with
them in order to analyze the variance. This can be achieved by
treating the concatenated quantum instruments as a single quantum
instrument with more registers.

FIG. 7. Error analysis for powers of states. Here we plot the
absolute sampling error

√
Var(Ô) (solid), the analytically com-

puted expectation value E(Ô) (dotted), and the relative error√
Var(Ô)/E(Ô) (dashed) after running the powers of state circuit

for the normalized states |ψ〉 ∝∑ j ψ j | j〉, with the functions ψ j

indicated in the legend, as a function of power k. In all cases we
consider an n = 6 qubit state |ψ〉, we measure the all zero projector
O = |0〉〈0|, and we suppose s = 1000 shots are used.

A. Quantum Hadamard product

For the QHP algorithm the variance takes the form

Var[Ô] = 1

s
(Tr[τO2] − Tr[τO]2). (31)

Thus the variance has the form of a standard quantum observ-
able, except that in this case τ may be a subnormalized state
with Tr[τ ] � 1. This expression, Eq. (31), also holds when
the QHP circuit is applied iteratively to generate higher order
powers and polynomials of the input states.

In Fig. 7 we plot the absolute and relative sampling errors
when applying the QHP algorithm for generating increasing
powers of different input states. While the additive error (solid
lines) remains approximately constant as k is increased, the
relative error √

Var(Ô)

Tr[τO]
=
√

1

s

(
Tr[τO2]

Tr[τO]2
− 1

)
(32)

typically increases dramatically with power (dashed lines).
This follows from the fact that the amplitudes of |ψ〉 are typ-
ically less than 1 (for proper quantum states) and so Tr[τ ] =∑

i |ψi|2k typically decreases exponentially with k (dotted
lines).

B. Generalized quantum transpose

For the GQT circuit shown in Fig. 2, the variance is given
by

Var(Ô) = 1

s
{Tr[D(σ )O2] − Tr[(σ � ρT )O]2}, (33)
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where D(σ ) is the dephased version of the ancilla state σ , i.e.,
D(σ ) =∑i σii|i〉〈i|, and we used the fact that SWAP2 = I.

We recall that the GQT may be used to compute expecta-
tion values of the transpose of the state ρ if σ is chosen to
be the plus state |+〉〈+| and the observable dO is measured.
The factor of d compensates for the normalization factor in
ρ

(T )
|+〉〈+| = 1

d ρT [where here we use the notation for the gen-
eralized transpose introduced in Eq. (14)]. While this is one
possible use of GQT, in this case the variance is given by

Var(Ô) = 1

s
(dTr[O2] − Tr[ρT O]2), (34)

such that the sampling error scales with d and so exponen-
tially in the number of qubits of the input system. Thus for
large-scale problems GQT is not efficient. However, if GQT
is used to implement the partial transpose to a ds dimensional
subsystem then the variance will scale as ds. Hence even for
large-scale problems it should be possible to implement the
partial transpose of a constant-sized subsystem.

C. Linear combination of states

Here we focus on analyzing the sampling complexity of the
linear combination of states algorithm; see Appendix D for a
presentation of the errors in the general case of the quantum
state polynomial circuit. Using Eq. (30), one can show that for
the linear combination of states algorithm the variance may be
bounded as

Var(Ô) � 1

s

[
|α0|2

( |α0|2
|β0|2 + |α1|2

q1r

)
+ |α1|2

( |α0|2
|β0|2r

+ |α1|2
|β1|2

)]
:= BVar, (35)

where r = |〈ψ0|ψ1〉|2 is the overlap between the input states.
As remarked earlier, for this algorithm there is a freedom
in how the ancilla state and measurement operator may
be chosen. We can use the above bound to approximately
determine the optimum β0 value which minimises the vari-
ance of the estimator. Specifically, we find that the β0 value
that minimizes BVar is

β
opt
0 (p, r)

=
√

p − p2 + p2r + r−1h(p, r)

2p − 2p2 + r − 2pr + 2p2r + 2r−1h(p, r)
, (36)

where we use the shorthand p := |α0|2 and define

h(p, r)

:=
√

(p2 − p)(−p + p2 − r + 2pr − 2p2r − pr2 + p2r2).

(37)

We plot β
opt
0 against |α0|2 in Fig. 8. For states with small

overlaps, r → 0, the approximately optimum strategy is to use
β0 = 1/

√
2 for any choice in α0, whereas, for states with large

overlaps, r → 1, the optimum β0 value increases monotoni-
cally with increasing α0.

In Fig. 9 we plot the exact variance of the estimator (for
the analytic expression see Appendix D) and the bound on the
variance BVar from Eq. (35) as a function of β0, for different

FIG. 8. Optimum choice in β parameter. We plot β
opt
0 , the opti-

mum β0 parameter that minimizes BVar, the upper bound on the error
for the linear combinations of states circuit, as a function of |α0|2 for
different overlaps r.

overlaps r and weight α0. While the bound is not tight it is use-
ful in coming up with strategies to minimize the variance of
the estimator. In particular, the optimum β0 given by Eq. (36),
found by minimizing the bound Eq. (35), closely agrees with
the true optimum (found by numerically minimizing the true
variance for the given examples). As expected given that the
algorithm breaks down for orthogonal input states, both the
bound and exact variance diverge for input states with vanish-
ing overlap (r → 0).

IV. DISCUSSION

In this work we introduced a framework for implementing
nonlinear transformations in quantum computers by associ-
ating so-called weighted states with the output of quantum
instruments. More specifically, weighted states are quantum
objects describing the output of an operational procedure
involving quantum circuits, measurements and classical post-
processing. While playing a similar role to standard density
matrices, weighted states are liberated from the constraints of
positivity, Hermiticity, and normalization and hence can be
generic functions of input states.

We have introduced three algorithms for implementing
nonlinear transformations of the elements of a set of quantum
states. The quantum Hadamard product algorithm takes two
states ρ (0) and ρ (1) as inputs and generates a state ρ (0) � ρ (1)

as an output; that is, QHP outputs a weighted state where
the elements of ρ (0) and ρ (1) have been multiplied in the
computational basis. The generalized quantum transpose im-
plements the transpose of an operator ρ in the computational
basis, with the elements of ρT reweighted by the elements
of an operator σ . The quantum state polynomial algorithm
takes ρ (0) and ρ (1) as inputs and outputs the polynomial
α00ρ

(0) + α11ρ
(1) + α01ρ

(0)ρ (1) + α10ρ
(1)ρ (0). When applied

to pure states, iterative applications of QHP, GQT, and QSP
can be used to generate arbitrary polynomials of the ampli-
tudes of a set of pure states.
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FIG. 9. Error analysis for linear combination of unitaries. Here we plot the the actual standard deviation of the estimator,
√

Var(Ô), (solid)
and its upper bound

√
BVar (dashed) for the linear combination of states algorithm for an n = 6 qubit circuit evaluated using N = 100 shots

when O is a random separable measurement operator. We plot the results for pairs of randomly generated states with a small overlap (r = 0.067,
left), median overlap (r = 0.58, middle), and large overlap (r = 0.95, right) for three different choices in amplitude: α0 = 0.25 (blue), α0 = 0.5
(green), and α0 = 0.95 (yellow). The dotted lines indicate the value of |β0|2 corresponding to the minimum error and minimum of the bound,
respectively, with the close agreement between these two minima indicating that the optimum |β0|2 determined from the bound, Eq. (D26), is
close to the true optimum. In agreement with Fig. 8 the optimal |β0|2 value is close to 0.5 for small r but has a stronger dependence on α0 for
larger r values.

In Appendix F we show results from a proof of principle
implementation of QSP and QHP on IBMQ-Bogota. While
the implementations correctly capture the qualitative effect
of performing nonlinear transformations of quantum states,
the low CNOT and qubit reset fidelities lead to nonnegligible
deviations from the expected results. However, it is important
to note that, due to their amenability to qubit resets [30,36],
these algorithms do not require large numbers of qubits. In
particular, QSP, GQT, and QHP can be concatenated and
iterated an arbitrarily many times with at most three times the
number of qubits of the input states. Thus a polynomial of
order p of an n-qubit pure state can be implemented using at
most 3n qubits (for any p).

It is important to note that distinct quantum instruments
can implement the same transformation with differing com-
plexities. In other words, in this framework, the complexity
associated with a transformation is not an inherent property of
the transformation. However, one can ask what is the optimal
quantum instrument for a given transformation. A promising
setting in which this question might be tractable is when the
cost of implementing unitaries is neglected, in other words we
are only concerned with minimizing the sampling complexity.
How exactly to do this optimization is an open question;
however, in Sec. III C we were able to do a partial optimization
for one of our algorithms (namely, QSP as applied to imple-
menting linear combinations of states).

In this paper we focused on primitives that implement in-
tuitive transformations and require relatively simple quantum
circuits for their implementation. These primitives can be con-
catenated to yield complex nonlinear transformations of input
states. While concatenation is qubit efficient, in Appendix D 8
we provide examples of cases where a transformation can
be implemented more efficiently directly. Thus it would be
valuable to have a method for directly designing quantum
instruments for a target transformation. More generally, it
would be interesting to investigate the breadth of applicability
of the weighted state methodology by quantifying the full
set of transformations that can be implemented within this
framework.
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APPENDIX A: QUANTUM INSTRUMENTS

In this section we elaborate on the quantum instruments
associated with the quantum Hadamard product, quantum
generalized transpose, and density matrix polynomial algo-
rithms and provide alternative derivations of these algorithms
from this perspective.

1. Quantum Hadamard product

The quantum instrument for the QHP is shown in Fig. 2.
Let x be the outcome of a measurement in the computational
basis. Given this classical output of the quantum instrument,
the associated quantum output is proportional to

Ex(ρ (0) ⊗ ρ (1) ) =
∑
i, j

ρ
(0)
i j ρ

(1)
i⊕x, j⊕x |i〉〈 j| . (A1)

The weighting in this case corresponds to postselection; only
x = 0 has unit weight and all other outcomes have zero
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weight:

τ̃ =
∑

x

δx,0Ex(ρ (0) ⊗ ρ (1) ) (A2)

=
∑
i, j

ρ
(0)
i j ρ

(1)
i, j |i〉〈 j| = ρ (0) � ρ (1). (A3)

Note that one can generate a large family of weighted states
by projecting onto states other than |0〉 and/or nontrivially
weighting all outcomes of the measurement.

2. Generalized quantum transpose

The quantum instrument for the GQT is shown in Fig. 4. In
practice the measurement of SWAP operator is implemented
by measuring pairs of qubits in the Bell basis as seen in Fig. 5
[31]. This can be achieved by first acting with a CNOT on
qubit pairs and then Hadamard gates on the control qubits,
and finally measuring all qubits in the computational basis.
Let x and y be the binary strings that are the outcome of the
measurements in the two registers where SWAP operator is
measured. Given this classical output of the quantum instru-
ment, the associated quantum output is proportional to

Ex,y(σ ⊗ ρ) = 1

2n

∑
i j

σi, jρi⊕y, j⊕y(−1)x·(i⊕ j)|i〉〈 j|, (A4)

where n is the number of qubits in each input register. The
weighted state is obtained by weighting the quantum out-
comes of the instruments as

τ̃ =
∑
x,y

(−1)x·yEx,y(σ ⊗ ρ) (A5)

=
∑

y

∑
i j

σi, jρi⊕y, j⊕y

[
1

2n

∑
x

(−1)x·(i⊕ j⊕y)

]
|i〉〈 j|(A6)

=
∑

i j

σi, jρ j,i = σ � ρT , (A7)

where going from the second to the last line we used the
fact
∑

x(−1)x·(i⊕ j⊕y) = 2nδy,i⊕ j and i ⊕ i ⊕ j = j. All sum-
mations are modulo 2.

3. Quantum state polynomial

The quantum instrument for QSP is shown in Fig. 6. Let
|ψl〉 be the state that correspond to the lth outcome of the
M measurement. Given this classical output of the quantum
instrument, the associated quantum output is proportional to

El (ρ
(0) ⊗ ρ (1) )

=
∑
i, j

σi j 〈 j|ψl〉 〈ψl |i〉 [δi jTr(ρ (i⊕1))ρ (i)+(1−δi j )ρ
(i)ρ ( j)].

(A8)

The weighted state is obtained by weighting the quantum
outcomes of the instrument as

τ̃ =
∑

l

λlEl (ρ
(0) ⊗ ρ (1) ) (A9)

=
∑
i, j

σi j 〈 j|
(∑

l

λl |ψl〉〈ψl |
)

|i〉

× [δi jTr(ρ (i⊕1))ρ (i) + (1 − δi j )ρ
(i)ρ ( j)] (A10)

=
∑

i j

(σ � MT )i j[δi jTr(ρ (i⊕1))ρ (i) + (1 − δi j )ρ
(i)ρ ( j)]

(A11)

= σ00M00Tr(ρ (1) )ρ (0) + σ11M11Tr(ρ (0) )ρ (1)

+ σ01M10ρ
(0)ρ (1) + σ10M01ρ

(1)ρ (0), (A12)

where we used the fact M =∑l λl |ψl〉〈ψl |.

4. Going beyond normal measurement operators

Let us consider a set of quantum instruments Ik (σ,U, Nk ),
labeled by k, that share the same ancilla state σ and that apply
the same unitary U , but differ in terms of the measurement op-
erators M now referred to as Nk to emphasize they are normal.
Data from such quantum instruments can be compounded
to emulate a fictitious quantum instrument Ik (σ,U, M̄ ) with
a nonnormal measurement operator M =∑k ckNk . This fol-
lows from Eq. (4) via linearity; that is, as∑

k

ckTr[ρout(O ⊗ Nk ⊗ I)]

= Tr

[
ρout

(
O ⊗

∑
k

ckNk ⊗ I

)]
= Tr[ρout(O ⊗ M ⊗ I)], (A13)

it follows that
∑

k ckIk (σ,U, Nk ) ∼= Ik (σ,U, M̄ ). It is easy to
see that this allows us to effectively implement any M since
any operator can be written as the sum of its Hermitian and
anti-Hermitian components via

M = 1
2 (M + M

†
) + 1

2 (M − M
†
). (A14)

As both parts are normal, we could pick two instruments
N0 = (M + M

†
) and N1 = (M − M

†
) with c0 = c1 = 1/2 to

achieve our goal. We emphasize that this example is intended
only as a proof of existence and not a recipe. There are an
infinite number of ways to satisfy Eq. (A13), and some ways
may result in better sampling complexity than others.

However, such nonnormal measurement operators are not
strictly necessary for full generality. This is because given an
instrument I (σ,U, M ), where M is a nonnormal operator it
is possible to define an alternative instrument I (σ ⊗ σ ′,U ⊗
I, M ), where M is a normal operator, and the alternative in-
strument implements the same transformation as the original.

To see how let us, without loss of generality, assume ck > 0
and
∑

k ck = 1. The alternative quantum instrument I (σA ⊗
σ ′

A′ ,UAI ⊗ IA′ , ME ′E ), where we now include subscripts to
explicitly denote the relevant subsystem, shown in Fig. 10.
There is an additional ancilla register initially prepared in the
state σ ′

A′ =∑k ck|k〉〈k|. The unitary is the same as before and
does not act on this new ancilla register. The environment
register on the output now includes the added ancilla register.
The measurement operator is given by ME ′E =∑k |k〉〈k|E ′ ⊗
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FIG. 10. Capturing a non-normal measurement within the standard weighted state framework. Here we show two equivalent quantum
instruments I(σA,UAI , ME ) and I(σA ⊗ σ ′

A′ ,UAI ⊗ IA′ , ME ′E ).

(Nk )E , which is normal by construction. The quantum state be-
fore the measurement is ρ ′out

SEE ′G = ρout
SEG ⊗ σ ′

E ′ and so we have

TrSEE ′G
[(

ρout
SEG ⊗ σ ′

E ′
)
(OS ⊗ MEE ′ ⊗ IG)

]
= TrSEG

{
ρout

SEG

[
OS ⊗

∑
k

ck (Nk )E ⊗ IG

]}
(A15)

= TrSEG
[
ρout

SEG(OS ⊗ ME ⊗ IG)
]
. (A16)

Thus I (σA,UAI , ME ) ∼= I (σA ⊗ σ ′
A′ ,UAI ⊗ IA′ , ME ′E ) as

claimed. Note that this construction is equivalent to randomly
sampling quantum instruments with measurement operator
Nk with probability ck , but the formulation in terms of a single
instrument allows us to simplify notation for the rest of the
discussion.

APPENDIX B: ALTERNATIVE METHODS FOR
PREPARING A LINEAR COMBINATION OF STATES

Given L + 1 states {|ψi〉}L
i=0, our goal is to simulate the

effect of having access to a superposition of these states:

|〉 =
L∑

l=0

αl |φl〉 . (B1)

The states {|φi〉}L
i=0 do not form an orthonormal basis, and |〉

does not have to be normalized. In the main text we describe
a method for generating such linear combinations of states
via repeated applications of the quantum state polynomial
algorithm. Here we describe three alternative methods for this
task.

1. “All-at-Once” weighted state method

In this section we describe a weighted state methodology
where the linear combination of states is generated in a single
step via a global measurement. This approach is more general
than the iterative application of QSP algorithm, capturing it as
a special case.

Consider the quantum circuit shown in Fig. 11. Here σ =
|β〉〈β| where

|β〉 =
L∑

l=0

βl |l〉 . (B2)

The controlled unitary is given by

|l〉〈l| ⊗ π̂l , (B3)

where π̂l is a permutation that maps the lth state to the zeroth
state

π̂l |φ0〉 ⊗ |φ1〉 ⊗ · · · ⊗ |φL〉 = |φl〉 ⊗ |φπl (1)〉 · · · ⊗ |φπl (L)〉 ,

(B4)

i.e., πl (0) = l for the state labels.4 Beyond this specification,
we leave the permutations πl underspecified. The state at the
end of this operation is given by

L∑
l=0

βl |l〉 ⊗ |φl〉
L⊗

k=1

|φπl (k)〉 . (B5)

The next step is to trace out all but the top two registers. To do
so, we first write the density operator for the pure state of all
the registers given above:

L∑
l,l ′=0

βlβ
∗
l ′ |l〉〈l ′| ⊗ |φl〉〈φl ′ |

L⊗
k=1

|φπl (k)〉〈φπl′ (k)| . (B6)

Then tracing out the registers 1 through L we get

L∑
l,l ′=0

βlβ
∗
l ′

L∏
k=1

〈φπl′ (k)|φπl (k)〉 |l〉〈l ′| ⊗ |φl〉〈φl ′ | . (B7)

Next we swap the top two registers and compute the expecta-
tion value of an operator M on the lower register and output

4One could equivalently see this operation as mapping the zeroth
register to the lth register.
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FIG. 11. Direct linear combination of states algorithm. Here we
show a circuit to directly compute the linear combination of many
states. π̂l is a permutation that maps the lth state to the zeroth state.
The final swap does not need to be implemented but rather is included
to match the register labeling convention chosen in Fig. 1.

the top register. This leaves us with a weighted state given by

L∑
l,l ′=0

βlβ
∗
l ′ 〈l ′|M|l〉

L∏
k=1

〈φπl′ (k)|φπl (k)〉 ⊗ |φl〉〈φl ′ | . (B8)

We want this to match the density operator

|〉〈| =
L∑

l,l ′=0

αlα
∗
l ′ |φl〉〈φl ′ | . (B9)

Matching term by term we demand

〈l ′|M|l〉 = αlα
∗
l ′

βlβ
∗
l ′
∏L

k=1 〈φπl′ (k)|φπl (k)〉
. (B10)

We remark that M is Hermitian, i.e., M∗
ll ′ = 〈l|M|l ′〉∗ =

〈l ′|M|l〉 = Ml ′l , and hence is a valid observable. If we have
access to multiple copies of the states φl we can estimate the
overlaps in the denominator. For small L we can construct the
matrix M and compute its eigenvalues efficiently. Moreover,
we can classically compute a unitary UM that diagonalizes
M, i.e., U †

MMUM is diagonal, and find a quantum circuit that
implements it on a quantum computer. Then the measurement
of M can be achieved by first applying UM and then measuring
in the computational basis and recording the associated eigen-
value. Thus the circuit shown in Fig. 11 can be used to prepare
the weighted state |〉.

Similarly, to the method for generating linear combinations
of states via repeated applications of the quantum state poly-
nomial algorithm, this algorithm breaks down if any one of
the states {|φl〉}L

l=0 is outside the space spanned by the rest of
the states. In the next two subsections we propose alternative
methods that may be used in these cases.

2. Incoherent postprocessing method

If our goal is simply to apply some unitary V to |〉 and
make a measurement of O, we can achieve this by applying
unitaries to {|φl〉} individually and computing matrix elements
of M in this new set; that is, one can compute

〈|V †OV |〉 =
L∑

l,l ′=0

αlα
∗
l ′ 〈φl ′ |V †OV |φl〉 (B11)

by computing each 〈φl ′ |V †OV |φl〉 term, reweighting it by
αlα

∗
l ′ and then summing together the outputs.
Computing the diagonal terms 〈φl |V †OV |φl〉 is straightfor-

ward. This is simply done by evolving |φl〉 under V and then
measuring O. The off-diagonal terms 〈φl ′ |V †OV |φl〉, for l �=
l ′, can be computed using the Hadamard test if one has access
to the controlled versions of the unitaries Wl that prepare |φl〉.
To do so, we have to first expand the measurement operator
as as a linear combination of unitaries, e.g., as O =∑i riUi.
Equipped with this linear combination we then have

〈φl ′ |V †OV |φl〉 =
∑

i

ri 〈0|W †
l ′ V

†UiVWl |0〉 . (B12)

Thus 〈φl ′ |V †OV |φl〉 is a weighted sum of the expectation
value of the unitaries W †

l ′ V
†UiVWl in the state |0〉, and each of

these expectation values may be computed with a Hadamard
test. In applications where the gate sequence for implementing
Wl is known, a controlled version can be obtained with a
constant factor overhead.

3. Linear combination of unitaries (LCU) method

Here we assume that we have access to the controlled ver-
sions of the unitaries Wl that prepare |φl〉. In order to prepare
the linear combination of states in Eq. (B1) we act on the |0〉
state with the LCU given by

L∑
l=0

αlWl . (B13)

The LCU method [37] has the same restriction as the in-
coherent method in that it requires access to the controlled
version of the unitaries Wl . The main difference is that the
LCU method actually prepares the normalized state

|N 〉 = |〉
‖|〉‖ = 1√∑

ll ′ α
∗
l αl ′ 〈φl |φl ′ 〉

L∑
l=0

αl |φl〉 (B14)

with probability (‖|〉‖/‖α‖1)2, where ‖α‖1 =∑l |αl |. This
probability can be boosted by amplitude amplification. In
addition, note that we need to know ‖|〉‖ in order to compute
quantities of interest in terms of |〉 using the actual state
|N 〉. This can be done by computing the overlaps 〈φl |φl ′ 〉 =
〈0|W †

l Wl ′ |0〉 using the Hadamard test, since we assume access
to the controlled Wl ’s.

APPENDIX C: LINEAR STATE TRANSFORMATIONS
VIA QUANTUM TELEPORTATION

In conventional quantum teleportation, shown in Fig. 12(a),
a quantum state is teleported from some register A to register
B as

TrAB[(ρA ⊗ |+〉〈+|BC )(|+〉〈+|AB ⊗ IC )] = 1

d2
ρC

(C1)

by preparing a Bell state |+〉〈+|BC on registers B and C and
then performing a Bell measurement |+〉〈+|AB on registers
A and B. In this section we show how linear, potentially
nonpositive, maps can be implemented on a quantum state via
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FIG. 12. Linear state transformations via teleportation. (a) We show the standard probabilistic circuit for quantum teleportation. With
probability 1/d2 the state ρ is teleported from the lower to upper register. Or, in the language of this paper, the output from the quantum
instrument is the weighted state ρ/d2. (b) We show a generalized version of the teleportation circuit where (1) instead of inputting the
ancilla state |+〉〈+| one may input a generic state σ and (2) instead of measuring the Bell state |+〉〈+| one measures its mapped variant
Ẽ (|+〉〈+|). In this case the output state is 1

d σ � E (|+〉〈+|). (c) This generalized teleportation algorithm is equivalent to the generalized
transpose algorithm (see Fig. 4) for the case where Ẽ (|+〉〈+|) = E (|+〉〈+|) = d (|+〉〈+|)T = SWAP.

a generalization of the basic quantum teleportation algorithm.
We further show how the generalized transpose algorithm can
be understood within this framework.

The first possible generalization of the quantum teleporta-
tion involves changing the input state. Rather than preparing
the initial ancillary qubits in a Bell state, the ancillary qubits
are prepared in the state

ρ
(σ )
in = CNOT(σ ⊗ |0〉〈0|)CNOT , (C2)

where σ is an arbitrary quantum state. We note that if σ =
|+〉〈+| we get back the standard teleportation protocol with
ρ

(σ )
in = |+〉〈+|. However, the effect of performing telepor-

tation with arbitrary σ is to reweigh the teleported state with
the amplitudes of sigma; that is, the output teleported state
is given by the quantum Hadamard product 1

d σ � |ψ〉〈ψ |.
Thus this algorithm provides another means to implement the
quantum Hadamard product of two states.

For the second generalization, instead of measuring
the Bell state |+〉〈+|AB one can measure the operator
ẼA(|+〉〈+|AB) where we have introduced the map ẼX =∑

i J (i)
X (· · · )K (i)

X with J (i)
X and K (i)

X generic operators. In this
case, rather than teleporting the state 1

d2 ρ we teleport 1
d2 E (ρ)

where EX (· · · ) =∑i K (i)
X · · · J (i)

X . To see why this works, note
that

1

d2
EC (ρC )

= TrAB[(EA(ρA)⊗|+〉〈+|BC )(|+〉〈+|AB⊗IC )]

=
∑

i

TrAB
[(

K (i)
A ρAJ (i)

A ⊗|+〉〈+|BC
)
(|+〉〈+|AB⊗IC )

]
=
∑

i

TrAB
[
(ρA⊗|+〉〈+|BC )

(
J (i)

A |+〉〈+|ABK (i)
A ⊗IC

)]
= TrAB[(ρA⊗|+〉〈+|BC )(ẼA(|+〉〈+|AB)⊗IC )]; (C3)

that is, one can use this method to implement the transforma-
tion ρA → 1

d2 EC (ρC ).
These two generalizations can be combined to implement

the transformation

1

d
σ � E (|ψ〉〈ψ |), (C4)

as shown in Fig. 12(b).
In the case of the generalized transpose operation we have

E (· · · ) = Ẽ (· · · ) = d (· · · )T and thus the required measure-

ment is d (|+〉〈+|AB)TA = SWAPAB.5 Thus, as is apparent
from comparing Figs. 12 and 4, we see that the generalized
transpose algorithm, is effectively a special case of this more
general method to implement a mapping 1

d σ � E (|ψ〉〈ψ |) via
quantum teleportation.

A natural question to ask is what class of mappings can
be implemented via this method. If we require the measure-
ment operator to be an Hermitian observable, then we require
that ẼA(|+〉〈+|AB) = ẼA(|+〉〈+|AB)† or equivalently
that

∑
i J (i)

A (|+〉〈+|AB)K (i)
A =∑i K (i)†

A (|+〉〈+|AB)J (i)†
A .

These identities constrain the allowed operators for J (i)
A and

K (i)
A and so the maps E that may be implemented.

However, one could more generally allow the measurement
operation to be a normal operator or a probabilistic combina-
tion of normal operators. For example, for the case of a single
qubit one can implement a transformation that swaps the order
of the two rows of the density operator,[|α|2 αβ∗

α∗β |β|2
]

→
[
α∗β |β|2
|α|2 αβ∗

]
, (C5)

by measuring |ψ−〉〈φ+|. This operator is nonnormal but
can be “measured” by measuring |ψ−〉〈φ+| + |φ+〉〈ψ−| and
i(|ψ−〉〈φ+| − |φ+〉〈ψ−|) with equal probabilities and mul-
tiplying the output of the second measurement by a factor
of −i.

APPENDIX D: SAMPLING COMPLEXITY ANALYSIS

1. General analysis for weighted states

In the approach outlined in Sec. II the expectation value
of an operator O in a weighted state τ̃ is obtained from the
expectation value of the operator O ⊗ M in a state ρout; see
Eq. (4). In this Appendix we analyze the sampling complex-
ity of estimating expectation values using this approach in
general before focusing on specific applications in the follow-
ing sections. Unlike in the main text where M was Hermitian,
here we allow it to be an arbitrary normal operator. The total

5To see this note that the transpose operation on a single qubit can
be implemented as (· · · )T = |0〉〈0| · · · |0〉〈0| + |1〉〈1| · · · |1〉〈1| +
|1〉〈0| · · · |1〉〈0| + |0〉〈1| · · · |0〉〈1|. The generalization to multiple
qubits can be seen by considering the tensor product of multiple
transpose maps.
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operator whose expectation value we need to estimate is given
by

T = O ⊗ M ⊗ I. (D1)

We estimate 〈T 〉 with T̂ using

T̂ = 1

s

s∑
i=1

νt (i). (D2)

Here s is the number of circuit evaluations and νt (i) is the out-
come of ith measurement i.e., the t (i)th eigenvalue of T . Since
T is a normal operator T̂ is a complex random number. This
estimator is unbiased since it relies on the standard method
for estimating a quantum expectation value. The variance is
defined as

Var(T̂ ) = E [|T̂ |2] − |E [T̂ ]|2 (D3)

= 1

s
{Tr[ρout(OO† ⊗ MM† ⊗ I)] − |Tr[τO]|2}. (D4)

In Appendix A 4 we explained how to express a quan-
tum instrument with a nonnormal measurement operator M =∑

k ckNk in terms of an instrument with a normal measure-
ment operator M. In this case the above analysis can be
repeated to yield

Var(T̂ ) = 1

s

{∑
k

ckTr[ρ̄out(OO† ⊗ NkN†
k ⊗ I)]−|Tr[τO]|2

}
.

(D5)

Ideally one wants to minimize the number of shots s, i.e.,
circuit evaluations, needed to achieve a desired variance for
the estimator. This can be done, in theory, by optimizing
over all quantum instruments {I (σ,U, M )} that implement
the desired transformation. However, it is an open question
how to do this in practice. In addition, there may be other
considerations than sampling complexity. For instance, in
order to measure a normal operator we first need to apply
the diagonalizing unitary, which might be hard to compute
classically or hard to implement on a quantum computer. Such
considerations should also be taken into account when for-
mulating the optimization task, especially when using noisy
quantum devices.

2. Proof of operator independent bound on variance

To compare the sampling complexity associated with
different quantum instruments implementing the same trans-
formation and provide an observable independent analysis
of the complexity of our algorithms, it is advantageous to
derive an operator independent bound on the variance. Here
we provide proofs of our operator independent bounds on the
variance quoted in the main text. We start by proving [38]

σ 2
XY � 2σ 2

X ||Y ||2∞ + 2|〈X 〉|2σ 2
Y , (D6)

for the general case where X and Y are complex random
variables. To derive this we consider two complex random

variables A = (X − 〈X 〉)Y and B = 〈X 〉Y , and note that

Var(XY ) = Var(A + B) (D7)

� 2Var(A) + 2Var(B) (D8)

= 2Var[(X − 〈X 〉)Y ] + 2|〈X 〉|2Var(Y ). (D9)

We then note that

Var[(X − 〈X 〉)Y ] � 〈|X − 〈X 〉)Y |2〉 (D10)

� Var(X )||Y ||2∞, (D11)

and thus we obtain Eq. (D6). Applying this to evaluating
Var(Ô), and assuming O is Hermitian, we have that

Var(Ô) � 2

s

(
σ 2

M ||O||2∞ + |〈M〉|2σ 2
O

)
. (D12)

Assuming that the largest eigenvalue of O is bounded by 1 we
have that ||O||2∞ � 1 and σ 2

O � 1, and so

Var(Ô) � 2

s

(
σ 2

M + |〈M〉|2) = 2〈|M|2〉
s

. (D13)

Alternatively, we can bound Var(Ô) as follows

Var(Ô) = E [|Ô|2] − |E [Ô]|2

= 1

s
(Tr[ρout(OO† ⊗ MM† ⊗ I)] − |Tr[τO]|2)

� 1

s
Tr[ρout(OO† ⊗ MM† ⊗ I)]

= 1

s

∑
i j

p(oi, mj )|oi|2|mj |2

� ||O||2∞
s

∑
j

p(mj )|mj |2

= ||O||2∞〈|M|2〉
s

� ||O||2∞||M||2∞
s

. (D14)

In the case that ||O||2∞ � 1 this bound is tighter than Eq. (D13)
by a factor of 2. In the following sections we evaluate the
variance Var(O) and its bound,

BVar := 〈|M|2〉
s

, (D15)

for the primitive nonlinear subroutines that we have intro-
duced in this paper.

3. Hoeffding’s inequality analysis

Hoeffding’s upper bound on the probability that the sum
of bounded independent random variables deviates from its
expected value provides an alternative means of analysing the
convergence of our weighted state algorithms. Specifically,
Hoeffding’s inequality entails that

P(|T̂ − 〈T 〉| � ε) � 2e
−2Nε2

(μmax−μmin )2 , (D16)
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where μmax and μmin are the maximum and minimum eigen-
values of T = O ⊗ M, respectively.

We have that |μmax − μmin| � 2‖O ⊗ M‖∞ =
2‖O‖∞‖M‖∞. It thus follows that the probability that
the computed value of the target observable O deviates from
the true average 〈O〉τ in weighted state τ can be bounded as

P(|T̂ − 〈O〉τ | � ε) � 2e
−Nε2

2||O||2∞||M||2∞ . (D17)

Or, turning it around, to ensure that the deviation from the true
mean is greater than ε occurs with probability at most δ, i.e.,
P(|T̂ − 〈O|〉τ � ε) � δ, the number of shots required is

N � 2||O||2∞||M||2∞ log
(

2
δ

)
ε2

. (D18)

Thus we see find the same quadratic dependence on ||O||2∞
and ||M||2∞ as in Eq. (D14).

4. Quantum state polynomial

For the case of the quantum state polynomial algorithm the variance of the estimator evaluates to

Var(Ô) = 1

s
(σ00[M†M]00Tr[ρ0O2] + σ11[M†M]11Tr[ρ1O2]

+ σ01[M†M]10Tr[ρ0ρ1O2] + σ10[M†M]01Tr[ρ1ρ0O2] − |Tr[τO]|2). (D19)

Since we have α = σ � MT � γ in, it follows that

Var(Ô) = 1

s

[
σ00

( |α00|2
|σ00|2 + |α10|2

|σ10|2
)

Tr[ρ1]Tr[ρ0O2] + σ11

( |α11|2
|σ11|2 + |α01|2

|σ10|2
)

Tr[ρ0]Tr[ρ1O2]

+
(

α00

σ00

α∗
01

σ ∗
01

+ α∗
11

σ ∗
11

α10

σ10

)
σ01Tr[ρ0ρ1O2] +

(
α∗

00

σ ∗
00

α01

σ01
+ α11

σ11

α∗
10

σ ∗
10

)
σ10Tr[ρ1ρ0O2] − |Tr[τO]|2

]
. (D20)

We note that this expression is real since the off-diagonal elements are complex conjugate of one another. We can use the operator
independent bound, Eq. (D14), to bound this variance as

Var(Ô) � 2

s

{[
σ00

(
α2

00

σ 2
00

+ α01α10

σ01σ10

)
+ σ11

(
α2

11

σ 2
11

+ α01α10

σ01σ10

)]
Tr[ρ0]Tr[ρ1] +

(
α00

σ00
+ α11

σ11

)
(α01 + α10)Tr[ρ0ρ1]

}
. (D21)

5. Linear combination of states via QSP algorithm

For the special case of a linear combination of states we have α00 → |α0|2/〈ψ0|ψ0〉, α11 → |α1|2/〈ψ1|ψ1〉, α01 → α0α
∗
1/〈ψ0|ψ1〉, α10 → α1α

∗
0/〈ψ1|ψ0〉 and σ00 → |β0|2, σ11 → |β1|2, σ01 → β0β

∗
1 , σ10 → β1β

∗
0 . Therefore in this case we have

Var(Ô) = 1

s

[
|β0|2N1

( |α0|4
|β0|4N0

+ |α0|2|α1|2
|β0|2|β1|2r

)
Tr[ρ0O2] + |β1|2N0

( |α1|4
|β1|4N1

+ |α0|2|α1|2
|β0|2|β1|2r

)
Tr[ρ1O2]

+ 2

( |α0|2
|β0|2

√
N0

+ |α1|2
|β1|2

√
N1

)
Re(α0α

∗
1〈ψ0|O2|ψ1〉) − Tr[τO]2

]

= 1

s

[
|α0|2N1

( |α0|2
|β0|2N0

+ α1|2
|β1|2r

)
Tr[ρ0O2] + |α1|2N0

( |α1|2
|β1|2N1

+ |α0|2
|β0|2r

)
Tr[ρ1O2]

+ 2

( |α0|2
|β0|2

√
N0

+ |α1|2
|β1|2

√
N1

)
Re(α0α

∗
1〈ψ0|O2|ψ1〉) − Tr[τO]2

]
, (D22)

where N0 = |〈ψ0|ψ0〉|2, N1 = |〈ψ1|ψ1〉|2, and r = |〈ψ0|ψ1〉|2.
With the weighted state method for generating linear combinations of states there is some freedom in how the final

measurement operator is chosen depending on the state of the ancilla qubit. To assess the optimum strategy, i.e., the optimum
ancilla state and measurement pair that minimizes the sampling complexity, it is advantageous to use the operator independent
bound on the variance (D14). It follows from Eq. (D14) and Eq. (D22) that

〈M2 ⊗ I〉 = |α0|2
( |α0|2

|β0|2 + |α1|2
|β1|2r

)
+ |α1|2

( |α0|2
|β0|2r

+ |α1|2
|β1|2

)
. (D23)

Setting |α0|2 = p and |β0|2 = q this can be rewritten as

〈M2 ⊗ I〉 = p

[
p

q
+ (1 − p)

(1 − q)r

]
+ (1 − p)

[
p

qr
+ (1 − p)

(1 − q)

]
= f (p, q, r). (D24)
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Given 0 � p � 1 and 0 � r � 1, f (p, q, r) is minimized when

qopt (p, r) =
2p − 2p2 + 2p2r + 2r

√
(−p+p2 )(−p+p2−r+2pr−2p2r−pr2+p2r2 )

r2

2
[
2p − 2p2 + r − 2pr + 2p2r + 2r

√
(−p+p2 )(−p+p2−r+2pr−2p2r−pr2+p2r2 )

r2

] . (D25)

This expression thus gives us a way of picking the ancilla state specified by β0 given a target state specified by α0 and
r = |〈ψ0|ψ1〉|2. In Fig. 8 we use (D25) to plot the optimum |β0|2 as a function of |α0|2 and r. In the limit that r → 0, we
have that qopt =→ 1/2, that is the optimum strategy is picking |β0| ≈ 1/

√
2. Conversely, in the limit that r → ∞ we have

|β0|2 = qopt → p
p+√

(1−p)p
.

6. Linear combination of states via incoherent postprocessing method

Suppose instead we compute the expectation value of an observable O with respect to the state |ψ〉 using purely classical
postprocessing; that is, as discussed in Appendix B 2, we compute

〈ψ | O |ψ〉 = |α0|2 〈ψ0| O |ψ0〉 + |α1|2 〈ψ1| O |ψ1〉 + α∗
0α1 〈ψ0| O |ψ1〉 + α0α

∗
1 〈ψ1| O |ψ0〉

= |α0|2 〈ψ0| O |ψ0〉 + |α1|2 〈ψ1| O |ψ1〉 + 2Re(α∗
0α1)Re(〈ψ0| O |ψ1〉) − 2Im(α∗

0α1)Im(〈ψ0| O |ψ1〉) (D26)

by computing the terms 〈ψ0| O |ψ0〉, 〈ψ1| O |ψ1〉, Re(〈ψ0| O |ψ1〉), and Im(〈ψ0| O |ψ1〉) separately. To measure the off-diagonal
terms Re(〈ψ0| O |ψ1〉) and Im(〈ψ0| O |ψ1〉) we can expand the measurement operator O as a sum of unitaries,6 i.e., O =∑i ηiUi,
and then use pairs of Hadamard tests to obtain the real and imaginary parts of the overlap terms 〈ψ0|Ui |ψ1〉; that is, in total one
evaluates each of the terms in

〈ψ | O |ψ〉 = |α0|2 〈ψ0| O |ψ0〉 +|α1|2 〈ψ1| O |ψ1〉 + 2
∑

i

ηi[Re(α∗
0α1)Re(〈ψ0|Ui |ψ1〉) − Im(α∗

0α1)Im(〈ψ0|Ui |ψ1〉)]. (D27)

Let use denote the estimators of the terms 〈ψ0| O |ψ0〉, 〈ψ1| O |ψ1〉, Re(〈ψ0|Ui |ψ1〉), and Im(〈ψ1|Ui |ψ0〉) in Eq. (D27) by
P̂0, P̂1, P̂2,i and P̂3,i respectively. Following the approach of Ref. [39] we will suppose that our total shot quota is divided
between the different circuits in proportion to the prefactor in the sum. Under this approach, for a random variable of the form
Q =∑i μiQi, we use si ∝ |μi| shots to get the estimator Q̂i, resulting in a variance of

Var(Q̂) =
∑

i

|μi|2Var(Q̂i )

si
=
∑

i

|μi|2Var(Q̂i )

�|μi|s̃� ≈
∑

i

|μi|Var(Q̂i )

s̃
. (D28)

Here the normalization term s̃ is chosen such that
∑

i si =∑i�|μi|s̃� = s and the approximation at the last equality gets better
with the number of shots. The variance for the incoherent postprocessing method thus takes the form

Var(Ô) ≈ 1

s̃

[
|α0|2Var(P̂0) + |α1|2Var(P̂1) + 2|Re(α∗

0α1)|
∑

i

ηiVar(P̂2,i ) + 2|Im(α∗
0α1)|

∑
i

ηiVar(P̂3,i )

]
, (D29)

where s̃ ≈ s{|α0|2 + |α1|2 + 2[|Re(α∗
0α1)| + |Im(α∗

0α1)|]∑i ri}−1.
Since the Hadamard test requires only measuring a Pauli operator, the errors for computing the overlap terms take the form

Var(P2i ) = 1 − Re(〈ψ0|Ui |ψ1〉)2, (D30)

Var(P3i ) = 1 − Im(〈ψ0|Ui |ψ1〉)2. (D31)

Thus the total error takes the form

Var(Ô) = 1

s̃

{
|α0|2(〈ψ0| O2 |ψ0〉 − 〈ψ0| O |ψ0〉2) + |α1|2(〈ψ1| O2 |ψ1〉 − 〈ψ1| O |ψ1〉2)

+ 2Re(α∗
0α1)

∑
i

ri[1 − Re(〈ψ0|Ui |ψ1〉)2] + 2Im(α∗
0α1)

∑
i

ri[1 − Im(〈ψ0|Ui |ψ1〉)2]

}
. (D32)

In Fig. 13 we compare the convergence of the weighted state and postprocessing methods for taking the linear combination of
states. We find that with the exception of taking the linear combination of nearly orthogonal states the convergence is comparable.
It is unsurprising that the convergence for nearly orthogonal states is poor for the weighted state method since, as discussed in
the main text, this method cannot be applied to perfectly orthogonal states. In contrast for observables composed of a sum of
many unitaries (i.e., “complex” observables in Fig. 13) the weighted state approach has smaller variance than the postprocessing
method because a large number of distinct circuits need to be run for the latter.

6Without loss of generality we here assume that the ηi prefactors are real and positive, ηi > 1, by absorbing any phases into the corresponding
unitary Ui.
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FIG. 13. Comparison of weighted state and postprocessing methods. Here we plot the standard deviation of the estimator,
√

Var(Ô), for
the weighted state method (yellow) and the postprocessing method (blue) for implementing the linear combination of two n = 4 qubit states
as a function of α0. In both cases we suppose that a total of s = 100 shots are used. We plot the results for pairs of randomly generated
states with a small overlap (r = 0.067, left), median overlap (r = 0.58, middle), and maximum overlap (r = 0.95, right). We compare the
case of measuring a simple measurement (solid) composed of a single Pauli term and a complex measurement (dashed) composed of n2 Pauli
terms.

7. Powers of states via the generalized quantum transpose algorithm

The generalized quantum transpose algorithm may be used to prepare the quantum Hadamard product of a pair of states ρ (0)

and ρ (1) if one knows how to prepare the transpose of either ρ (0) or ρ (1). Moreover, the procedure for preparing the transpose of
a state may be straightforwardly computed if the procedure for preparing the original state is known in some detail. Thus GQT,
under the right circumstances, provides an alternative means of implementing the QHP and so powers of states. In this section,
we include a sampling analysis of this alternative means of implementing powers of states and compare it with the standard
method of QHP.

When the GQT circuit is repeatedly applied to implement the power of a state, the variance is given by

VarGQT (Ô) = Tr[D(|ψ〉〈ψ |)O2] − (〈ψk| O |ψk〉)2 (D33)

for any power k. Comparing this to the variance VarQHP[Ô] obtained for the QHP algorithm we have

D := VarQHP[Ô] − VarGQT[Ô] = 〈ψk|O2|ψk〉 − Tr[D(|ψ〉〈ψ |)O2]

=
∑

i j

(ψ∗
j )k (O2) jiψ

k
i −
∑

i

|ψi|2(O2)ii. (D34)

To get a handle on this quantity it is helpful to first consider the case where O2 = 1, as is the case, for example if O is a Pauli
operator. In this case, we have

D = 〈ψk|ψk〉 − 1. (D35)

Since 〈ψk|ψk〉 � 1 it follows that VarQHP[Ô] � VarGQT[Ô], i.e., the convergence of QHP is better than that of GQT.
It is also straightforward to show that when the input states are pure single qubit states we also are guaranteed that

VarQHP[Ô] � VarGQT[Ô]. To see this, let us suppose |ψ〉 = √
1 − ε|0〉 + √

ε|1〉, where we drop a relative phase between |0〉
and |1〉 without loss of generality since this phase does not contribute to the variance. For the case of a single application k = 2
we have

D =
∑

i j

(ψ∗
j )2(O2) jiψ

2
i −
∑

i

|ψi|2(O2)ii

= (1 − ε)2(O2)00 + ε2(O2)11 + ε(1 − ε)[(O2)01 + (O2)10] − (1 − ε)(O2)00 − ε(O2)11

= −ε(1 − ε)[(O2)00 + (O2)11 − (O2)01 − (O2)10]. (D36)

Without loss of generality we can write O = αII + αxX + αyY + αzZ such that O2 = (α2
I + α2

x + α2
y + α2

z )I + αIαxX +
αIαyY + αIαzZ . Thus we end up with

D = −ε(1 − ε)
(
α2

I + α2
x + α2

y + α2
z − 2αIαx

)
= −ε(1 − ε)

[
(αI + αx )2 + α2

y + α2
z

]
� 0. (D37)

Thus the variance of QHP is less than that of GQT in the case that k = 2. It is manifestly clear from Eq. (D34) that increasing k
for a given O and |φ〉, decreases D and hence D is negative for all k for the case of single qubit states.
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FIG. 14. Comparing sampling error for powers of states via QHP
and GQT. Here we plot the standard deviation of the estimator√

Var(Ô) (solid), the actual measurement outcome E(Ô) (dotted)
and the relative error

√
Var(Ô)/E(Ô) (dashed) for the state |ψ〉 ∝∑

j ψ j | j〉, with the functions ψ j indicated in the legend, as a function
of power k. The GQT (QHP) algorithm is used in the left (right)
column. In all cases we consider an n = 6 qubit circuit, we measure
the all zero projector O = |0〉〈0| and suppose 1000 shots are used.

From these two examples, the case of a single-qubit system
and/or Pauli operators O, we suggest that in most cases the
QHP converges quicker than the GQT. This is supported by
the numerical results shown in Fig. 14. However, of course,
we are not quite comparing like for like here since GQT can
be used to implement the transpose operation.

8. Concatenation can be inefficient

Consider the task of preparing the weighted state τ =
ρ (0) � ρ (1)T from the input state ρ (0) ⊗ ρ (1). This can be
achieved in two ways: (1) use the generalized quantum trans-
pose circuit, but now treating the ancilla register as part of the
input or (2) first apply the quantum transpose on ρ (1) (by using
the GQT circuit with input σ = |+〉〈+| and measurement op-
erator d×SWAP) followed by the quantum Hadamard product
with ρ (0). Thus we have two different quantum instruments
that implement the same transformation on the inputs: (1)
achieves the task directly and (2) concatenates two primitives.
It is informative to study the sampling complexity of both
approaches. We want to estimate the expectation value of
some operator O in the weighted state τ given by Tr(τO).

The variance of the estimator for method (1) is already
calculated in Eq. (33) and is given by Tr[D(ρ (0) )O2] −
|Tr(τO)|2. The variance of the estimator for method (2) can be
expressed in terms of Eq. (29) if we treat the two concatenated
instrument as a single instrument with measurement oper-
ator d (|0〉〈0| ⊗ SWAP) and is given by d2Tr[D(ρ (0) )O2] −
|Tr(τO)|2. The additional factor of d2 drastically favors the
first method. This demonstrates that concatenation of prim-

itives can be very costly and it might be advantageous to
design instruments that implement a desired transformation
directly.

A similar observation can be made with regard to the LCS
algorithm. Given a concatenation scheme to prepare the su-
perposition of L > 2 states, one can in general find a more
efficient way of implementing the same task directly using a
single instrument that takes all states as input as described in
Sec. B 1.

APPENDIX E: QUANTUM STATE POLYNOMIALS
REALIZABLE WITHOUT RANDOMIZATION

OF INSTRUMENTS

In Sec. A 4 we have described how quantum instruments
with nonnormal measurement operators can thereby be em-
ulated by physical quantum instruments that have normal
measurement operators and can be realized in a quantum com-
puter. This is done by randomizing over quantum instruments.
This additional step, however, can increase the sampling com-
plexity, as it adds yet another component to the variance of
the estimator. However, in practice there might be other con-
siderations than minimizing the sampling cost. For instance if
M can be expressed as the sum of Pauli operators, the circuits
for measuring each term can be much shorter than the one
for measuring M directly. In such cases the randomized in-
strument may be preferred in a noisy implementation. Below
we classify the class of all transformations we can implement
with the QSP algorithm using a single instrument shown in
Fig. 6 (i.e., without the additional ancilla as in Fig. 10).

Suppose α ∈ C2×2 contains the coefficients for which that
we wish to realize a weighted state. α can be written as
α = H + iS where H = α+α†

2 and S = α−α†

2i are both Hermi-
tian matrices. Since the Pauli matrices, P = {I, X,Y, Z}, span
the set of Hermitian matrices, we can write H =∑P∈P hPP
and S =∑P∈P sPP. Note that the coefficients, hP, sP, can be
found easily from the entries of α.

Let us assume for now that the input states are normalized.
We would like to find a density operator σ and normal matrix
M such that α = σ � MT . Since σ is a density operator it
can be written as σ = I/2 + (r/2)u · σ, where σ ≡ (X,Y, Z ),
‖u‖ = ‖(ux, uy, uz )‖ = 1, and r ∈ [0, 1]. Similarly, by nor-
mality of M we can write M = (aI + v · σ ) + i(bI + cv · σ)
where a, b, c ∈ R and v ∈ R3. Without loss of generality we
let uy = 0, so that u = (sin θ, 0, cos θ ).

Comparing this choice of coefficients with the requirement
α = σ � MT , we find

H = hI I + hX X + hY Y + hZ Z

= (a + r cos θvz )I + (r sin θvx )X

− (r sin θvy)Y + (ar cos θ + vz )Z, (E1)

S = sI I + sX X + sY Y + sZZ

= (b + cr cos θvz )I + (cr sin θvx )X

− (cr sin θvy)Y + (br cos θ + cvz )Z. (E2)

It can easily be shown that choosing σ to be pure is
more general than choosing a mixed state, so we will as-
sume r = 1. We also consider only the case where α is
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FIG. 15. Hardware implementation. On the left we plot 〈ψ (p0, φ)k | σz |ψ (p0, φ)k〉 where |ψ (p0, φ)〉 := √
p0 |0〉 + exp(−iφ)

√
1 − p2

0 |1〉
and ψ k is computed using QHP on a simulator (dashed line) and on IBMQ-Bogota (dotted line). The solid line indicates the exact
expectation value computed classically. In the center (right) plot we plot 〈�α (p0, φ)| σz |�α (p0, φ)〉 where the linear combination of states
|�α (p0, φ)〉 := α |0〉 + (1 − α) |ψ (p0, φ)〉 is computed using the weighted states method (postprocessing method). In both the hardware and
noiseless simulations s = 8000 shots are used.

not diagonal, since this can be dealt with easily. Note that
this condition will necessarily require sin θ and cos θ to be
nonzero.

Equations (E1) and (E2) represent eight equations in seven
variables, a, b, c, vx, vy, vz, and θ . By comparing the equa-
tions for hX , hY , sX , and sY , we immediately see that sx = chx

and sy = chy. These imply that c = sx/hx = sy/hy, which is
easily shown to be equivalent to |α01| = |α10|. We can satisfy
these four equations by setting

vx = 2hx

sin θ
, vy = −2hy

sin θ
. (E3)

We now consider two cases.
Case 1: α = eiφĤ for some Hermitian Ĥ . By Euler’s for-

mula, we know that α = cos φĤ + i sin φĤ = H + iS. Thus,
for every i ∈ {I, X,Y, Z} it is implied that si = tan φhi (in fact,
the assumption is equivalent to the existence of a scalar, k,
such that si = khi for every i). By setting b = a tan φ and
c = tan φ we can satisfy the sI and sZ equations. By simple
substitutions in the hI and hZ equations, we find that

a = 2h0 − cos θvz, vz = 2hz − 2h0 cos θ

1 − cos2 θ
. (E4)

We have solutions for a, b, c, vx, vy, and vz, and all equa-
tions are satisfied, but θ is still a free parameter. Thus
in the case α = eiφĤ for some Hermitian Ĥ , we have an
infinite choice of ancilla states by setting θ to be any
nonmultiple of π .

Note: The assumption in this case is a generalization of
both Hermitian and skew-Hermitian matrices. Suppose A ∈
C2×2 satisfies A = eiφĤ . This occurs if and only if A† =
e−iφĤ = e−2iφeiφĤ = e−2iφA. Note that if φ = 0 then A is
Hermitian, and if φ = π/2 then A is skew Hermitian.

Case 2: α �= eiφ · Ĥ for any Hermitian Ĥ . By solving the
equations for hI and sI for a and b and substituting these values
into the equations for hZ and sZ , we find that

cos θ = R(α) ≡ sz − chz

s0 − ch0
, (E5)

which is well defined since c = s0/h0 would imply a satis-
fying assignment such that c = sz/hz, which contradicts the

assumption. Since cos θ must be strictly between −1 and 1
(α is not diagonal), if R(α) /∈ (−1, 1) then we will not be
able to satisfy (E5), implying that no ancilla states exist for
α = σ � MT . However, in the case R(α) ∈ (−1, 1) we can
set θ = ± arccos[R(α)], fixing θ and satisfying (E5).

Since θ is now fixed, the equations for hI , sI , hz, and sZ

represent a linear system of four equations in three variables
a, b, and vz, which can be written as⎡⎢⎢⎣

1 0 cos θ

0 1 c cos θ

cos θ 0 1
0 cos θ c

⎤⎥⎥⎦ ·
⎡⎣ a

b
vz

⎤⎦ =

⎡⎢⎢⎣
h0

s0

hz

sz

⎤⎥⎥⎦, (E6)

which we will abbreviate as Ax = y. Note that given y this
equation will have a unique solution if and only if A is nonsin-
gular, i.e., det (AT A) �= 0. By direct calculation det (AT A) =
(1 + c2)(1 − cos2 θ )4 �= 0, thus we will be able to deter-
mine satisfying assignments for a, b, and vz by Gaussian
elimination.

For this case we see that exactly two pure ancilla
states exist for α = σ � MT whenever |α01| = |α10| and
R(α) ∈ (−1, 1), and no ancilla state (pure or mixed) exists
otherwise.

APPENDIX F: HARDWARE IMPLEMENTATION

We implemented our algorithms for performing nonlin-
ear operations on IBMQ-Bogota. In Fig. 15 we plot the
results of the hardware implementation (dotted) as com-
pared to the ideal output of the algorithm in the absence
of hardware noise (dashed) and the ideal output computed
classically (solid). The powers of state algorithm (via QHP)
works reasonably well for squaring a state, i.e., k = 2, but
performs more poorly for higher powers. We suggest that
this is because qubit resets are currently rather noisy. We
find that on current hardware the postprocessing method for
implementing a linear combination of states substantially
outperforms the weighted state method. This is perhaps un-
surprising given that a controlled swap operation, requiring
18 CNOT gates, is required for the weighted states algorithm
and the CNOT error on IBMQ-Bogota is of the order 10−2.
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More generally, while the hardware results broadly reproduce
the expected trends, moderate errors are observed. Thus we

expect these algorithms to prove more useful as we approach
the fault-tolerant era.
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