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Fractons, symmetric gauge fields and geometry
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Gapless fracton phases are characterized by the conservation of certain charges and their higher moments.
These charges generically couple to higher rank gauge fields. In this paper we study systems conserving charge
and dipole moment, and construct the corresponding gauge fields propagating in arbitrary curved backgrounds.
The relation between the symmetries of these class of systems and spacetime transformations is discussed. In
fact, we argue that higher rank symmetric gauge theories are closer to gravitational fields than to a standard
gauge theory.
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In modern physics, symmetries are a fundamental
paradigm to organise degrees of freedom of a given system.
Typically, the symmetries can be divided in terms of internal,
and spacetime symmetries. For instance, electric charge and
isospin conservation are consequence of the former, whereas
conservation of momentum and angular momentum of the
latter. Understanding the distinction between the two classes
of transformations is vital in order two characterize the force
fields associated to interacting charged matter. At the fun-
damental level, matter charged under internal symmetries
interact via gauge fields, whereas gravitational fields carry the
“force” between fields charged with respect to spacetime sym-
metries, e.g., energy (mass), and/or momentum. Although
physicist have made several attempts to describe gravity as
a gauge theory, and a successful algorithm to gauge (relativis-
tic or not) spacetime symmetries has been developed [1–4],
strictly speaking gravitational fields are not gauge fields.

On the other hand, in recent years, a new class of matter
excitations has been proposed named as fractons [5,6]. The
main feature a quasiparticle needs to show to be called frac-
tonic is the property of reduced mobility [7]. In fact, fracton
matter can be classified in terms of gapless [9–14] and gapped
[15–19] phases. In particular, gapless fracton phases are de-
scribed by the conservation of certain charges and their higher
moments. This peculiar behavior has as consequence a non-
standard continuity equation; see Eq. (2) for the case of charge
and dipole conservation and [12,20] for more general exam-
ples. This class of symmetries naturally arise in the context
of spin liquids [12–14], quantum Hall and elasticity [21–24],
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topological defects [23,25,26], and beyond the condensed
matter realm in systems with Galileons [27].

For simplicity, we shall focus on the case of systems pre-
serving a scalar charge and its corresponding dipole moment.
This symmetry has the form of some generalised U (1) sym-
metry. Actually, is not hard to conclude that the interaction
among such type of charges should be carried by general-
ized “electromagnetic gauge fields” with the spatial vector
potential substituted by a symmetric tensor field [11,12].
However, if we try to follow the standard minimal coupling
rule to couple charged matter to these gauge fields we run
into problems, and the only way out proposed so far is with
a non-Gaussian theory [20,28], making analytic computations
really hard. Nonetheless, certain progress has been made in
the hydrodynamic description for such systems in absence of
gauge fields [28–32].

Furthermore, notice that similarly to angular momentum,
the value of a dipole moment depends on the location of the
origin of the coordinates system, making it hard to link its
conservation to an internal symmetry group, indicating that
charge and dipole conservation, should be related to a space-
time symmetry group, rather than to a purely internal one.
This observation was one of the main motivations for the study
presented here. Also notice that the fractonic “force” field
is a symmetric tensor in similarity with the metric, which is
the responsible for gravitational forces. Actually, in [22,33] a
connection between fractons dynamics and linearized gravity
has been discussed. In this paper, we propose a geometric
theory where the symmetric gauge fields play the role of
vielbeins in a vertical space to the physical spacetime. This
construction pave the road to a systematic understanding of
more generic multipole preserving gauge theories, and opens
up a path for the construction of low energy, and possibly
microscopic, fractonic matter actions.

Our first result relies on the interpretation of the Nambu-
Goldstone mode in a spontaneously broken phase, as the
embedding coordinate of the physical spacetime in a higher
dimensional Heisenberg spacetime [34,35]. In fact, the
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fracton transformations belong to the isometry group of such
spacetime. Given this interpretation, a minimal (nonlinear)
theory for the Nambu-Goldstone field has the form of a
Born-Infeld action [see Eq. (14)]. The second and main result
Eq. (26) is a fully diffeomorphism and gauge invariant higher
rank gauge theory. Actually, the construction suggests that
symmetric gauge fields will generically become massive on
a curved background, and to preserve the gauge invariance we
need to introduce a Stueckelberg field. In particular, our theory
reduces to the models proposed in [12] once the spacetime is
assumed to be flat.

The paper is organized as follows: In Sec. I we describe
the conservation laws and symmetry algebra of a system con-
serving energy, momentum, angular momentum, and a scalar
charge with its corresponding dipole moment. Next, in Sec. II
we discuss the relation of the symmetries of the system with
the so-called Heisenberg group, and study the spontaneous
symmetry breaking of fracton charges. In Sec. III, we gauge
the full symmetry group obtaining a generalization of the
fracton electrodynamic gauge theories on curved spacetimes.
Then, in Sec. IV we discuss the outputs of our proposal,
possible implications, and outlooks.

I. CHARGE-DIPOLE CONSERVATION

Gapless fracton phases are characterized by the conserva-
tion of certain charges and their higher moments. The simplest
case, corresponds with the conservation of a charge Q and its
dipole Qa, which in n space dimensions, at the macroscopic
level, can be formulated in terms of the charge density ρ as

d

dt

∫
dnx(λ + β · x) ρ = 0, (1)

with λ,β arbitrary parameters. In a system with such conser-
vation law, charges are immobile, whereas dipoles can freely
move. In fact, similarly to what happens with momentum and
angular momentum [36], both charges are conserved once the
single (generalized) continuity equation

∂tρ + ∂a∂bJab = 0, a, b = 1, 2, . . . , n, (2)

is satisfied. The distinguishing feature in this class of systems
is that charge is relaxed via a tensorial current. An immediate
consequence of such conservation law is that a gauged ver-
sion of the symmetry would require the presence of gauge
fields A0, Aab with the transformation rule A0 → A0 − ∂tλ,
and Aab → Aab + ∂a∂bλ, and the “gauge fields” coupling to
the fractonic matter as follows:

S = S0[A0, Aab] +
∫

dn+1x(ρA0 + JabAab). (3)

Such type of theories have been proposed as a generalization
to electrodynamics [12]. However, due to the unusual trans-
formation law of the fields, it is not clear in what sense they
are actual gauge theories. In addition, from this perspective,
it is not obvious whether it is possible to put the theory on a
curved manifold without spoiling the gauge symmetry [37].

In order to understand the tension between the spacetime
transformations and the gauge symmetry introduced above,
it is useful to notice that the dipole charge Qa is charged
under spatial translations. The main reason is that its value

will change once the origin of the space is shifted, contrary
to what happens to the charge Q, which is insensitive to the
location of the origin. This is an unusual property for internal
symmetries. In fact, a careful analysis of the action of time and
space translations, rotations, and the transformations gener-
ated by the fracton charges with generators H, Pa, Lab, Qa, Q
respectively, imply that the whole set of transformations form
a continuous Lie group G with its corresponding Lie algebra
satisfying the nonvanishing Lie brackets [30]

[Pa, Qb] = δb
aQ,

[Pa, Lbc] = δacPb − δabPc,

[Qa, Lbc] = δa
c Qb − δa

bQc,

[Lab, Lbc] = δacLbd − δad Lbc − δbcLad + δbd Lac. (4)

This algebra makes evident that conservation of charge and
dipole are consequence of a spacetime symmetry group; con-
trary to the usual case of U (1) charges. A similar example is
the case of mass conservation in Galilean invariant theories
[4]. Actually, Eqs. (4) show similarities with the Bargmann
algebra once the generator of Galilean boosts is identified with
the dipole generator Qa, and mass with charge Q. See also
[38,39] for the similarities with Carroll theories.

II. GROUP MANIFOLD AND SPONTANEOUS SYMMETRY
BREAKING

In this section we shall give a geometric interpretation
to the group G in terms of Heisenberg spaces [34,35]. In
particular, the Heisenberg algebra has 2n + 1 dimensions, and
nonvanishing brackets

[Pa, Qb] = δb
aQ. (5)

Therefore, it is a subalgebra of the entire fractonic algebra in-
troduced above [see Eq. (4)]. In order to get some intuition on
the relation of the Heisenberg group with an actual spacetime,
we recall that the n− dimensional real space with additive
composition is the coset space of the Euclidean and rotations
groups, i.e., Rn = En/SO(n). In full analogy, we define the
(fractonic) Heisenberg space H2n+1,1 = G/SO(n).

To construct such space, we parametrize elements of the
coset with coordinates (y0, ya, za, φ) via the exponential map

� = ey0H+yaPa ezaQa
eφQ, (6)

where y0 and ya are internal coordinates showing certain
resemblance with the comoving time and “fluid” elements
respectively used in fluid dynamics [40]. On the other hand,
za and φ are the Nambu-Goldstone fields parametrizing the
spontaneous breaking of the generators Q, Qa.

Using the left action of the group on itself, we define
the transformed element of the coset as �̃ = g�e−βabLab ,
with g = eζ 0H+ζ aPa eβaQa+λQeβabLab . The infinitesimal transfor-
mations read

δy0 = ζ 0, δya = ybβa
b + ζ a,

δza = zbβ
b
a + βa δφ = λ − βaya. (7)

The Maurer-Cartan form A = �−1d� reads

A = τH + eaPa + ωaQa + vQ, (8)
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with τ = dy0, ea = dya, ωa = dza, v = dφ + zadya. The
Maurer-Cartan equations imply dv = ωa ∧ ea. In addition,
the (invariant) inverse vector fields are

t = ∂

∂y0
, Ea = ∂

∂ya
− za

∂

∂φ
, Ēa = ∂

∂za
, V = ∂

∂φ
.

(9)
Notice that they define a basis where Ea, Ēb do not commute.
In particular, their Lie bracket is [Ea, Ēb] = δb

aV , which corre-
sponds with the Heisenberg Lie algebra Eq. (5), if we identify
Ea → Pa, Ēa → Qa, and V → Q. From now on, we will call
this space the Heisenberg spacetime H2n+1,1.

In addition, we introduce the physical spacetime Mn+1 as
the base space of a fibre bundle with total space being H2n+1,1.
The projection from H2n+1,1 to Mn+1 can be fixed as y0 =
x0, ya = δa

μxμ, this gauge fixing identifies the base manifold
coordinate transformations with parameters ξμ to the internal
translations and rotations such that

ξμ = ζμ + δμ
a βa

b xb. (10)

In particular, the scalar field φ now transforms as

δφ = λ − βaxa + ζμ∂μφ − 1
2βab(xa∂b − xb∂a)φ, (11)

also notice that this identification removes the distinction be-
tween internal and base spacetime indices. A last necessary
gauge fixing corresponds with so-called inverse Higgs con-
straint [41–43]. One of the indications we should introduce
it in our system is the fact that −∂aφ and za have the same
transformation property, suggesting that these fields are not
independent. Therefore, we remove redundant modes by set-
ting za = −∂aφ. Finally, after the gauge fixing we obtain the
covariant derivatives of the Nambu-Goldstone field are

v0 = ∂0φ, ω0a = −∂a∂0φ, ωab = −∂a∂bφ. (12)

Moreover, we can introduce on H2n+1,1 the metric Ḡ2n+2 =
pτ 2 + (ea)2 + (ωa)2 + v2, with p a sign that we will fix below.
In fact, a possible interpretation is that the spontaneously
broken phase is captured by the localization of a n + 1−
dimensional “membrane” at the points (xμ,−∂aφ(x), φ(x)).
With this embedding, the induced volume reads voln+1 =√

|Ḡn+1|dn+1x.
Having constructed the proper invariants of the system, we

can write the most general low-energy effective action for the
spontaneously broken phase as

SSSB =
∫

dn+1x
√

|Ḡn+1|L(v0, (ω0a)2, (ωab)2). (13)

In general, the form of the effective Lagrangian will depend
on the precise microscopic system we consider. However, it
is interesting to notice that the minimal theory with L = −α

have an action of the Dirac-Born-Infeld form

SSSB = −α

∫
dn+1x

√∣∣det
(
pδ0

μδ0
ν + δa

μδa
ν + Bμν

)∣∣. (14)

with

Bμν (x) = vμ(x)vν (x) + ωμa(x)ωνa(x). (15)

Actually, if we assume gradients are small, and introduce the
derivative expansion ∂0 ∼ ∇2 the action reads

SSSB ≈ −α

∫ (
1 + p

2
(∂0φ)2 + 1

2
(∂a∂bφ)2 + . . .

)
, (16)

notice that setting p = −1, will guarantee a positive definite
energy for the linearized theory. In next section, we will see
that such condition will also give the right signs in the action
for the symmetric gauge fields.

It is important to emphasize that, although Eq. (14) has a
nice geometric interpretation, because its equation of motion
will extremize the volume of the orbits of the internal coor-
dinates, in general the precise form of the action should be
model dependent. From now on, we will call Gμν = −τμτν +
ea
μea

ν the spacetime metric and Bμν the fracton metric.

III. THE GAUGE THEORY

Previous formulation naturally allows us to gauge the frac-
tonic symmetry in full analogy with gravitational theories
[44]. This procedure should provide a consistent field theory
for fractonic gauge fields in curved backgrounds. In order
to do so, we will follow the method described in [1]. Using
this technique the spacetime coordinates are interpreted as
the Stueckelberg fields associated to breaking of local trans-
lations. Nonetheless, in our system we have embedded the
spacetime in a larger space, therefore, in full analogy we
could expect that local fracton translations might be broken
with Stueckelberg fields (za(x), φ(x)). In such regime the
connection must be defined as A = �−1(d + Ã)�, with �

defined in Eq. (6), and Ã being the corresponding gauge field.
Since the components of Ã along the algebra directions are
independent, we find convenient to parametrize them as

Ã = τ̃H + ẽaPa + ω̃aQa + (ṽ + yaω̃a)Q + 1
2ωabLab. (17)

By construction, A will be invariant with respect to the broken
generators. On the other hand, it will transform as a gauge
field with respect to the unbroken generators, and reads

A = τH + eaPa + ωaQa + vQ + 1
2ωabLab, (18)

with τ = dy0 + τ̃ , ea = Dya + ẽa, ωa = Dza + ω̃a, v = dφ +
zaea + ṽ, and the covariant exterior derivative Dpa = d pa −
ωa

b ∧ pb. In particular, we shall interpret (τ, ea) as a local basis
with inverse vielbeins (tμ, Eμ

a ) respectively, and ωab as the
spin connection of the spacetime. With them we define the
spacetime metric Gμν = ea

μea
ν − τμτν , and the fracton met-

ric Bμν = vμvν + ωμaωνa. Fields with internal space indices
a, b, c transform as vectors (tensors) with respect to local
SO(n) transformations, whereas the spin connection as a non-
Abelian gauge field (see Appendix A).

Under an infinitesimal internal translation g(x) = 1 +
βa(x)Qa + (λ(x) + yaβa(x))Q, the Stueckelberg and gauge
fields transform as

δφ = λ, δza = βa, δωab = 0, (19)

δω̃a = −Dβa, δṽ = −dλ − eaβa. (20)

As in the previous section we identify the internal and physical
coordinates as (y0 = x0, ya = δa

μxμ) and fix the Stueckelberg
to be za = −Eμ

a ∂μφ, this condition requires βa = −Eμ
a ∂μλ.
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After doing so, we notice that Eμ
a ṽμ will not transform under

fracton gauge transformations. Therefore, we set them to zero
(ṽ = A0τ ) because those components will not couple to the
fractons current.

The curvature two-form of the theory is then defined as
R = dA + A ∧ A, which can be expanded as

R = dτH + DeaPa + 1
2 RabLab

+ (
Fa + zbRb

a

)
Qa + ( f + zaDea)Q, (21)

where Rab = Dωab is the curvature associated to the spin
connection, and the fractons field strengths

Fa = Dω̃a, f = d ṽ + ea ∧ ω̃a. (22)

Fa and f are not invariant under internal translations if the cur-
vature Rab and the spatial torsion Dea are not vanishing (see
Appendix A), which justify the presence of the Stueckelberg
fields. From this perspective, the breaking of dipole conser-
vation has the same origin as the breaking of translational
invariance in curved spacetime [1,2]. In odd spacetime di-
mensions local translations can be preserved, and gravitational
theories can be related to Chern-Simons models with Poincaré
as gauge group [46]. Nonetheless, studying the generalization
to our problem goes beyond the scope of this paper, and shall
be left for future studies.

For simplicity, we assume the spacetime to be torsionless
(dτ = Dea = 0). Such constraints, fix τ to be a closed form,
and allow us to express the spin connection in terms of the
vielbeins. In the Appendix B the spin connection in terms
of the vielbeins is shown. When the torsion vanishes f be-
comes gauge invariant, and for convenience we parametrize
the dipole gauge field as

ω̃a = (
θa − Eμ

a ∂μA0
)
τ + Cbaeb + Aabeb, (23)

with Aab = Aba, and Cab = −Cba. Using that parametrization
the monopole field strength reads

f = θaea ∧ τ − Cabea ∧ eb, (24)

which implies that under fracton gauge transformations δθa =
δCab = 0. Generically, even in flat space those fields will be
massive. Therefore, requiring f = 0 we set them to zero.
Finally, we end up we the set of gauge fields (A0, Aab), and
using Eqs. (20) we conclude their transformation rule is

δAab = Eμ
a E ν

b ∇μ∇νλ, δA0 = −tμ∂μλ, (25)

with ∇μζν = ∂μζν − �α
μνζα , and the connection �α

μν =
tα∂μτν + Eα

a Dμea
ν .

The last necessary ingredient is an invariant volume form,
that we defined as voln+1 ≡ �1 = √|G|dn+1x. With all this, a
quadratic diffeomorphism and gauge invariant action for the
theory can be expressed as [47]

S = −1

2

∫
�
(
Fa + zbRb

a

) ∧ (
Fa + zcRc

a

) + SSSB[Bμν]. (26)

In fact, notice that if we take the flat space limit (ea = dxa,
τ = dx0) the action become independent of za, which allows
for massless fracton gauge fields, and we can safely write an
invariant theory under the full fractonic gauge group

S = −1

2

∫
�Fa ∧ Fa =

∫ [
F0abF0ab − 1

2
FabcFabc

]
, (27)

which has the form of a generalized electrodynamics theory,
with the electric and magnetic fields being

F0ab = ∂0Aab + ∂a∂bA0, (28)

Fabc = ∂aAbc − ∂bAac, (29)

in full agreement with previous results [12].

IV. DISCUSSION

We have given a geometric interpretation to the sym-
metry group associated to the conservation of charge and
dipole charge. In this picture the group is associated with
a 2n + 2 dimensional space with the actual physical space-
time of dimension n + 1 contained in the larger space. The
Nambu-Goldstone mode φ(x) appearing in the system can be
understood as the breathing mode of the physical space inside
the larger one. The advantage of that picture is that it allows
us to construct consistently a gauge theory associated to the
symmetry under discussion, in either flat or curved spacetime.
Our results explain the incompatibility of the fractonic sym-
metry with spatial curvature, since a fully invariant theory
requires a Stueckelberg field. Therefore, we conclude that a
fractonic system on a curved manifold will generically suf-
fer spontaneous symmetry breaking due to curvature effects.
This analysis pave the road for a more systematic analysis
of theories preserving charges and their corresponding higher
moments. In addition, it may help with the construction of
low-energy effective fracton theories, because it provides a
recipe to construct diffeomorphism and “gauge” invariant
actions. Invariance will allow to derive covariant Ward iden-
tities for fracton charge, energy and momentum conservation.
For instance, understanding how to couple the class of frac-
tonic theories considered here to curved backgrounds, and
the knowledge of the corresponding Ward identities could
be fundamental to systematically construct fracton partition
functions and in general hydrodynamics theories [48–51].

In the context of elasticity, this construction may help
going beyond the current fractons/elasticity duality [14]. In
fact, it would be interesting to explore within our geometric
context the recently proposed generalization of such duality
to the case of quasicrystals [52].

On the other hand, in quantum Hall systems, volume pre-
serving diffeomorphisms have been related to the fractonic
symmetry group discussed here [24]. In fact, since the entire
symmetry group preserve the two-form dv, it seems possi-
ble to connect our approach with volume preserving diffeos.
However, an important difference between the two approaches
is that the symmetric gauge field in [24] are directly inter-
preted as a metric field, whereas, our fracton metric Bμν

depends quadratically on Aab. Another interesting direction
would be the construction of Chern-Simons actions. We leave
the study of all these aspects for future investigations.
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APPENDIX A: GAUGE TRANSFORMATIONS

The gauge field associated to the fractonic symmetry group
G discussed in the main text can be expanded as

Ã = τ̃H + ẽaPa + ω̃aQa + sQ + 1
2ωabLab, (A1)

and its corresponding curvature R̃ = dÃ + Ã ∧ Ã reads

R̃ = d τ̃H + DẽaPa + FaQa + (ds + ẽa ∧ ω̃a)Q + 1
2 RabLab,

(A2)
notice that the differential operator D acts as a covariant ex-
terior derivative, and is defined as Dpa = d pa − ωa

b ∧ pb. In
addition, the fractonic and rotational field strengths are

Rab = Dωab, Fa = Dω̃a. (A3)

Since we are working with a non-Abelian symmetry group,
under infinitesimal gauge transformations the gauge field
and field strength transform as δÃ = −dÃ − [Ã,�], δR̃ =
−[R̃,�] respectively, with the gauge parameter

� = ζ 0(x)H + ζ a(x)Pa + βa(x)Qa + α(x)Q + 1
2βab(x)Lab.

(A4)
After some tedious but straightforward computation it is

possible to derive the following set of transformation rules:

δτ̃ = −dζ 0, (A5)

δẽa = −Dζ a + ẽbβa
b , (A6)

δω̃a = −Dβa + ω̃bβ
b
a , (A7)

δs = −dα − ẽaβa + ω̃aζ
a, (A8)

δω̃ab = −Dβab, (A9)

whereas the curvature fields transform as

δ(Dẽa) = Ra
bζ

b + Dẽbβa
b , (A10)

δRab = Dωab (A11)

δFa = Rb
aβb + Fbβ

b
a , (A12)

δ(ds + ẽa ∧ ω̃a) = −Dẽaβa + Faζ
a. (A13)

Notice that the transformation properties of the the frac-
tonic gauge fields do not allow for a local gauge invariant
action. Therefore, following [41] we introduce Stueckelberg
fields to compensate such noninvariance. To do so, we intro-
duce the Maurer-Cartan form, and its corresponding curvature

A = �−1(d + Ã)� = τH + eaPa + (ω̃a + Dza)Qa

+ (ṽ + zaea + dφ)Q + 1
2ωabLab, (A14)

R = dτH + DeaPa + (Fa + zbRb
a)Qa + ( f + zaDea)Q

+ 1
2 RabLab. (A15)

where the new fields τ, ea, ṽ, f are defied as

τ = dx0 + τ̃ , (A16)

ea = Dxa + ẽa, (A17)

s = ṽ + yaω̃a, (A18)

f = d ṽ + ea ∧ ω̃a. (A19)

It is convenient to redefine the monopole gauge parameter
as α = λ + yaβa, such that gauge transformations act on the
new fields as

δφ = λ, (A20)

δza = βa + zbβ
b
a , (A21)

δωab = −Dβab, (A22)

δea = ebβa
b , (A23)

δω̃a = −Dβa + ω̃bβ
b
a , (A24)

δFa = −βaRb
a + Fbβ

b
a , (A25)

δṽ = −dλ − eaβa, (A26)

δ f = −βaDea. (A27)

APPENDIX B: CONSTRAINTS

For simplicity we set the timelike and spatial torsions to
zero

dτ = 0 ⇒ τ = d (scalar function), (B1)

Dea = 0 ⇒ ωab
μ = 1

2 E ν[a∂μeb]
ν + 1

2 EρaE νb∂[νec
ρ] eμc.

(B2)

On the other hand the inverse Higgs constraint [42,43]
together with the fixing Eμ

a ṽμ = 0 imply

za = −Eμ
a ∂μφ, (B3)

ṽμ = A0τμ, (B4)

After such gauge fixing, the remaining gauge freedom is βa =
−Eμ

a ∂μλ.
The last constraint introduced is f = 0, which fixes the

dipole gauge field in terms of the monopole field ṽ modulo
a symmetric tensor

ω̃a = 2tμE ν
a ∂[μṽν]τ + (

Eμ

b E ν
a ∂[μṽν] + Aab

)
eb, (B5)

with Aab = Aba. Consistency of the gauge transformations of
the dipole and monopole gauge fields demands

[
tμ∂μ, E ν

a ∂ν

]
λ = 0

[
Eμ

a ∂μ, E ν
b ∂ν

]
λ = 0, (B6)

which is automatically satisfied due to the torsionless con-
dition. Therefore, the symmetric field has the transformation
rule

δAab = E ν
a Dν

(
Eμ

b ∂μλ
) = Eμ

a E ν
b ∇μ∇νλ, (B7)

with the diffeomorphism covariant derivative ∇μζν = ∂μζν −
�α

μνζα , and the connection �α
μν = tα∂μτν + Eα

a Dμea
ν . This co-

variant derivative satisfies

∇μτν = 0, ∇μtν = 0, (B8)

∇μE ν
a + E ν

b ωb
μa = 0, (B9)

∇μea
ν − ωa

μbeb
ν = 0, (B10)

and the metric is covariantly constant ∇αGμν = 0.
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