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Quantum-fluctuation-driven dynamics of droplet splashing, recoiling, and deposition
in ultracold binary Bose gases
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Droplet impact on a surface is practically relevant to a variety of fields in nature and industry, while a complete
control of its outcomes remains challenging due to various unmanageable factors. In this work, we propose the
quantum simulation of droplet impact outcomes in the platform of ultracold atoms. Specifically, we study the
quantum-fluctuation-driven dynamics (QFDD) of two-dimensional Bose-Bose mixtures from an initial Townes
soliton towards the formation of a quantum droplet. By tuning the fluctuation energy of the initial Townes state
through its size and number, the subsequent QFDD can produce various outcomes including splashing, recoiling,
and deposition, similar to those in droplet impact dynamics. We have utilized the Weber number to identify the
thresholds of splashing and recoiling, and further established a universal scaling law between the maximum
spreading factor and the Weber number in the recoiling regime. In addition, we show that the residual QFDD
in the deposition regime can be used to probe the collective breathing modes of a quantum droplet. Our results
reveal a mechanism for the droplet impact outcomes, which can be directly tested in cold-atom experiments and
can pave the way for exploring intriguing droplet dynamics in a clean and fully controlled quantum setting.
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I. INTRODUCTION

Given the wide practical relevance to both nature and
industry [1–7], droplet impact dynamics on a surface has
attracted much attention ever since the first study by Wash-
ington [8,9]. Various impact outcomes—including splashing,
receding/recoiling, rebound, and deposition—have been ob-
served successfully in experiments [10–25]. In general, these
dynamics were characterized by two physical observables,
namely the maximum spreading factor (β) [12,16,23] and
the splashing threshold (K) [11,13–15,17–22,25], which were
shown not only to depend on the properties of the droplet it-
self (size, density, surface tension, viscosity, impact velocity),
but also to be strongly influenced by the surface condition
(roughness, wettability) and surrounding gas (pressure, com-
position). Because of the complexities associated with various
unmanageable factors, it is extremely challenging to deter-
ministically parametrize β,K and fully control the impact
outcomes. In this situation, a common practice is to assume an
ideal droplet impact (on a smooth solid surface at atmospheric
condition) and then to quantify the actual dynamics by the
Weber and Reynolds numbers, which, respectively, describe
the relative strength of droplet inertia with respect to capil-
lary and viscous forces [26,27]. Various scaling laws between
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β,K and these numbers have been proposed in the literature
[26,27], based on different models or empirical fitting from
experimental data.

In the past few decades, ultracold atoms have emerged
as an ideal platform for quantum simulation, given their ex-
tremely clean environment and the high controllability on the
species, number, dimension, interaction strength, etc. [28,29].
In particular, a recent important achievement in this field
was the realization of a quantum droplet in both dipolar gas
[30–36] and alkali bosonic mixtures [37–42], with extremely
dilute densities (∼1014–1015 cm−3) that can be eight orders
of magnitude lower than water. In forming these gaseous
droplets, quantum fluctuations play an essential role in pro-
viding the repulsive force for their stabilization, for which
they are called quantum droplets [43]. To date, the idea of
a quantum droplet has been successfully extended to vari-
ous atomic systems, including low-dimensional ones [44–49],
Bose-Fermi mixtures [50–55], and multicomponent dipolar or
alkali atomic mixtures [56–58]. The nonequilibrium proper-
ties of quantum droplets have also been investigated in terms
of their dynamical formations [59–61] and collisions [62,63].
These developments offer an unprecedented opportunity for
simulating droplet impact dynamics in ultracold atoms, par-
ticularly at the microscopic quantum level and in a highly
controllable manner.

In this work, we demonstrate the capability of using ultra-
cold Bose gases to simulate the droplet impact outcomes in a
fully controlled quantum setting. Contrary to the conventional
droplet impact setup, here there is no impact surface for the
droplet, and the driving force of its dynamics is purely from
its intrinsic energy due to quantum fluctuations. Specifically,
we study the dynamical property of a two-dimensional (2D)
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Bose-Bose mixture with repulsive intraspecies and attrac-
tive interspecies couplings, whose ground state is a quantum
droplet. To highlight the quantum effect in the dynamics,
we have chosen the initial state as the Townes soliton gen-
eralized from the single-species case [64], which features
a zero mean-field energy with continuous scale invariance
as recently confirmed in experiments [65–68]. In this way,
the dynamics here is purely driven by quantum fluctuations
and thus can be called quantum-fluctuation-driven dynamics
(QFDD). It is found that by tuning the fluctuation energy of
the initial Townes state through its size (σ0) and number (N),
the subsequent QFDD can produce various outcomes, includ-
ing splashing, recoiling, and deposition, similar to those in
droplet impact dynamics. We have mapped out the dynamical
phase diagram in the (σ0, N) plane and employed the Weber
number to characterize different phases. The splashing and
recoiling thresholds are identified, and a universal scaling law
is established between the maximum spreading factor and the
Weber number for the recoiling dynamics, which is applicable
for a considerably large parameter regime. Finally, we show
that the long-time QFDD in the deposition regime can be used
to extract the collective breathing modes of quantum droplet.
These results can be directly tested in the current cold atoms
experiments. In the Appendixes, we provide more details on
the derivation of the generalized Townes soliton with unequal
masses, as well as on the numerical simulations.

II. MODEL

We start from the energy functional of two-species bosons
in 2D (h̄ = 1 for brevity):

E (ρ) = −
∑
i=1,2

φ∗
i (ρ)

∇2
ρ

2m
φi(ρ) +

∑
i j

gi j

2
ni(ρ)n j (ρ)

+ ELHY(ni(ρ)); (1)

here ρ = (x, y) is the 2D coordinate; φi is the wave func-
tion of the ith species and ni = |φi|2 is its density; gi j is
the bare coupling between i- and j-species, which can be
expressed as gi j = 4πai j/(mlz ) in quasi-2D geometry, with
ai j the s-wave scattering length and lz the characteristic length
along the confined (z) direction; and ELHY is the Lee-Huang-
Yang (LHY) correction from quantum fluctuations, and for
quasi-2D bosons near the mean-field instability point (δa ≡
a12 + √

a11a22 ∼ 0) it reads [44,47]

ELHY = η2 ln(η
√

e)

8πml4
z

with η = 4π lz(a11n1 + a22n2). (2)

It has been shown that this LHY term can balance with the
mean-field force and result in a self-bound droplet as the
ground state [44]. Given the n2 ln(n) dependence of LHY en-
ergy, the 2D droplet can exist at both mean-field collapse and
stable regimes [44] and with any infinitesimal atom number
[49]. At a sufficiently large number, the 2D droplet develops
a flat-top structure in its density profile, similar to the 3D
case [43].

Given Eq. (1), the dynamics of {φi} is governed by the
time-dependent Gross-Pitaevskii (GP) equations:

i∂tφi =
⎛
⎝−∇2

ρ

2m
+

∑
j

gi jn j + ∂ELHY

∂ni

⎞
⎠φi. (3)

In this work, we will focus on the solution with zero angular
momentum, since the ground state and the Townes soliton
both stay within this sector, and different angular momentum
sectors are decoupled from each other. In this sector, we can
replace the coordinate ρ simply by its magnitude ρ = |ρ|.
More details of solving Eq. (3) in the discretized coordinate
and time space have been given in the Appendixes.

Throughout the paper, we specifically consider the two hy-
perfine states of 39K atoms, |1〉 ≡ |F = 1, mF = −1〉, |2〉 ≡
|F = 1, mF = 0〉, as has been well studied in the droplet ex-
periments [37–39]. In this case, a11 = 33.5aB, a12 = −53aB

(aB is the Bohr radius), and a22 is highly tunable by magnetic
field. The confinement length is chosen as lz = 0.08 μm.

III. GENERALIZED TOWNES SOLITON

For spinless bosons in two dimensions, it is known that the
kinetic term and mean-field attraction can support a special
stationary solution called the Townes soliton [64]. This state
features zero energy and continuous scale invariance, and it
can only exist when the boson number and coupling strength
satisfy N |g| = 5.85/m. Such a special solution has been suc-
cessfully observed in both nonlinear optics [65] and ultracold
atoms [66–68]. In these experiments, the LHY correction
takes little effect as it is much smaller than the mean-field
part. In the following, we will show that the Townes soliton
can be generalized to two-species bosons if equally neglecting
the LHY correction.

By omitting the LHY term in (3), we can see that the two
GP equations for {φ1, φ2} can support a single-mode solution
φi = √

Niφ exp(−iμit ) as long as

N1

N2
= g22 − g12

g11 − g12
, (4)

where μ1 = μ2 ≡ μ, and the single mode φ satisfies(
−∇2

ρ

2m
+ Ngeff |φ|2

)
φ = μφ. (5)

Here N = N1 + N2 is the total number, and the effective inter-
action geff is given by

geff = g11g22 − g2
12

g11 + g22 − 2g12
. (6)

Apparently we have geff < 0 in the mean-field collapse regime
(g12 < −√

g11g22). It is then straightforward to check that
under the condition

Nm|geff | = 5.85, (7)

there exists a sequence of zero-energy eigenstates with
continuous scale invariance, i.e., the eigenstate nature and
zero-energy property will not change under an arbitrary scal-
ing transformation φ(ρ) → λφ(λρ) (accordingly E → λ2E ).
These stationary solutions are the generalized Townes soliton
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FIG. 1. Test of a generalized Townes soliton for two-species
bosons (neglecting the LHY correction). (a) A stationary Townes
profile when the total number N and number ratio N1/N2 satisfy
(7) and (4) simultaneously. (b) Density profile at different times
when the total number is changed to 0.8N , while the number ratio
is the same as in (a). (c) Density profile at different times when
the total number is 1.2N , with the same number ratio as in (a).
(d) Density profile at different times with the same total number N
as in (a) while keeping N1/N2 = 1. Here we take two-species 39K
atoms with a11 = 33.5aB, a12 = −53aB, and a22 = 83.1aB, which
gives N = 6500 for a stationary Townes state according to Eqs. (6)
and (7); the initial size of the Townes profile is taken as 7 μm.

for two-species bosons. Note that a similar generalization also
works for the case of unequal masses, with slight modifica-
tions in Eqs. (4) and (6) as shown in the Appendixes.

In Fig. 1(a), we confirm the stationary Townes soliton for
two-species bosons once the total number N satisfies (7) and
the number ratio N1/N2 satisfies (4). In comparison, if we
change N to be smaller or larger, the original profile will
shrink [Fig. 1(b)] or expand [Fig. 1(c)] with time. The profile
is also unstable if N1/N2 deviates from (4); see Fig. 1(d). In a
word, both conditions (7) and (4) are required in supporting a
stationary two-species Townes solution.

IV. QUANTUM-FLUCTUATION-DRIVEN DYNAMICS

A crucial difference between the single- and two-species
bosons is that quantum fluctuations play an important role in
the latter, which can lead to droplet formation as a ground
state. It then follows that starting from the generalized Townes
soliton, which is the mean-field stationary solution for two-
species bosons, the quantum fluctuation can destabilize it
strongly and drive its time evolution towards the droplet for-
mation. Such dynamics can be called the quantum-fluctuation
driven dynamics (QFDD), also in light of the fact that the total
energy of the Townes soliton is purely given by the LHY part,
E (t = 0) = ELHY.

In Fig. 2(a), we show that the total energy (= ELHY) of a
two-species Townes soliton can be conveniently tuned by its
size σ , taking a typical combination of {N, gi j} that satisfies
(4) and (7). In particular, ELHY varies nonmonotonically with
σ and shows a minimum at certain finite σ . To understand this

behavior, we employ a Gaussian ansatz to approximate the
single mode φ(ρ) = exp[−ρ2/(2σ 2)]/(

√
πσ ), which leads to

the total energy E = ∫
2πρdρE (ρ) as

E = N

2mσ 2
+ N2geff

4πσ 2
+ N2ā2

ml2
z σ 2

ln
4Nālz
σ 2

, (8)

with ā ≡ √
a11a22. We can see that the first two terms can

support zero-energy states with arbitrary σ under the condi-
tion Nm|geff | = 2π , which are just the simplified Gaussian
version of the Townes soliton. However, when including the
third LHY term, the total energy(= ELHY) will deviate from
zero, and the Townes profile is no longer stationary. Given
the expression ELHY ∼ − ln(σ 2)/σ 2, we can easily arrive at
a nonmonotonic ELHY ∼ σ dependence with energy mini-
mum Emin = −Nā/(4l3

z e) at σmin = √
4Nālze. As shown in

Fig. 2(a), ELHY from a Gaussian ansatz provides a qualita-
tively good prediction to the E ∼ σ line shape of real Townes
solutions.

Given the easily tunable fluctuation energy of the initial
Townes state, the subsequent QFDD can exhibit rich dynam-
ical outcomes. In Figs. 2(b1), 2(b2), and 2(b3), we show the
time evolution of density profiles for three typical QFDDs:

(i) Deposition. When the initial size σ0 is close to σmin and
ELHY is small, the QFDD shows a typical deposition behavior
[Fig. 2(b1)]. Specifically, as time passes the system repels a
small proportion of atoms outside, and the rest automatically
follows the profile of a ground-state droplet with additional
periodic oscillations. As discussed later, such residual oscilla-
tion can be used to probe the collective breathing modes of a
quantum droplet.

(ii) Recoiling. As σ0 deviates more from σmin and ELHY

gets larger, the system enters the recoiling regime. As shown
in Fig. 2(b2), at early times a considerable portion of atoms
are repelled outside, while at some point they stop to spread
and flow back to merge with the central part. Such back-flow
(or recoiling) can be attributed to the competition between the
surface tension and the kinetic energy of the cloud during the
dynamics.

(iii) Splashing. When σ0 deviates significantly from σmin

and ELHY is large enough, the system shows a rapid splashing
dynamics; see Fig. 2(b3). In this case, the large ELHY causes a
drastic change of the initial Townes profile in a short time, i.e.,
the cloud quickly splits into two pieces. In this process, ELHY

converts to the large kinetic energy of the outgoing part, such
that it completely separates from the central part and flows
away forever.

The above dynamics can be well distinguished by monitor-
ing the mean size of the dynamical system, σ (t ) =

√
〈ρ2〉t . As

shown in Fig. 2(c), at longer times σ (t ) is almost static in the
deposition regime, while it shows a nonmonotonic behavior in
the recoiling regime and a continuous increase in the splashing
regime.

To this end, we have shown that the QFDD starting from
the Townes states can produce rich dynamical phases, includ-
ing the deposition, recoiling, and splashing, which perfectly
mimic the droplet impact outcomes as studied in the literature
[10–25]. However, different from these existing studies of
droplet impact on a surface, in our case the driving force of the
dynamics is purely from the intrinsic energy contributed by
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FIG. 2. Quantum-fluctuation driven dynamics (QFDD) of deposition (b1), recoiling (b2), and splashing (b3) starting from initial Townes
solitons with different sizes. The parameters of {ai j} and initial N are the same as in Fig. 1. (a) Total energy per particle (E/N = ELHY/N)
for the initial Townes state as functions of its size (σ ). The color on the curve denotes the corresponding Weber number. The dashed line
shows the energy from a Gaussian ansatz, and the lower dotted line shows the energy of a ground-state droplet. The energy unit is 1/(ml2

0 )
with l0 = 1 μm. (b1)–(b3) Three typical QFDDs starting from different initial Townes states, which simulate the droplet impact outcomes of
deposition (b1), recoiling (b2), and splashing (b3), respectively. The initial sizes of Townes solitons are respectively σ0 (μm) = 4.75 (b1),
2.5 (b2), and 2 (b3), respectively, as denoted by circles in (a). (c) Time evolution of the cloud size, σ (t ), for the dynamics in (b1)–(b3).

quantum fluctuations. This introduces a mechanism for these
fluid dynamics. Meanwhile, in QFDD there are no complex-
ities caused by the impact surface or environment, and the
dynamical outcome can be fully controlled by adjusting the
size (σ0) and the number (N ) of the initial state. Therefore,
the ultracold atoms provide an extremely clean and convenient
platform to simulate droplet dynamics, where the quantum
effect can be well manipulated and the fluid mechanics can
be understood in a more deterministic way.

V. WEBER NUMBER AND DYNAMICAL PHASE DIAGRAM

We now quantify various dynamical phases in QFDD by
the Weber number. Note that the Reynolds number is irrele-
vant here because of the zero viscosity of Bose condensates.
In conventional droplet impact dynamics [26,27], the Weber
number is defined as W = ρd Dv2/γ , where ρd , D, v, and
γ denote the droplet density, diameter, impact velocity, and
surface tension, respectively. It measures the relative strength
of droplet inertia with respect to capillary force. Here, we gen-
eralize the definition of W to describe the quantum dynamics
in general:

W = �E

Dγ
, (9)

where �E is the energy difference between the initial state
(here the Townes soliton) and the true ground state given the

same initial parameters (N, gi j); D and γ are the same as
before, i.e., the droplet diameter and surface tension. Specifi-
cally, we have γ = ∫

dρ[E (ρ) − μ1|φ1|2 − μ2|φ2|2], with μi

the chemical potential for the ith species.
As shown in the color plot in Fig. 2(a), W defined in (9)

can well characterize different dynamical phases in QFDD.
Namely, a low W corresponds to the deposition dynamics,
where the small �E can be well absorbed by the surface
change of the droplet; as W increases, the system enters
the recoiling regime and finally end up at splashing, where
the large �E overwhelms the capacity of the droplet surface
and causes it to change drastically. Hereafter, we refer to the
critical W at the recoiling-splashing boundary as the splashing
threshold (Ks), and that at the deposition-recoiling boundary
as the recoiling threshold (Kr).

In Fig. 3(a), we map out the dynamical phase diagram in
the (σ0, N) parameter plane. Distinct dynamical outcomes of
QFDD, including deposition (D), recoiling (R), and splashing
(S), are identified by monitoring the mean size σ (t ) of the
cloud during expansion [see Fig. 2(c)]. In addition, we show
the contour plot of W in the (σ0, N) plane, and one can see
clearly that the D, R, and S phases correspond, respectively,
to the small, intermediate, and large W regions. Due to the
nonmonotonic dependence of W on σ0 [as shown in Fig. 2(a)],
there are two recoiling regions in the diagram, as marked by
R1 and R2. In Fig. 3(b), we extract the two recoiling thresholds
(Kr1,Kr2) and the splashing threshold (Ks) along the phase
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(b)

FIG. 3. Characterization of different dynamical phases and their
boundaries in-between. (a) Contour plot of the Weber number in the
parameter plane of initial Townes size (σ0) and number (N). The
splashing, recoiling, and deposition phases are marked, respectively,
by S, R1,2, and D in the diagram. The white squares with white dashed
lines mark their boundaries. The gray dashed line shows the location
of the energy minimum for the initial Townes state. (b) Splashing
threshold (Ks) and two recoiling thresholds (Kr1,Kr2) as functions
of N along the phase boundaries in (a). Note that when changing N ,
the coupling constant a22 of 39K atoms also changes according to the
constraint (6) and (7) for initial Townes states. The other couplings
{a11, a12} are the same as in Fig. 1.

boundaries as varying N . One can see that Kr1 ≈ Kr2 are
given by a constant ∼0.12, while Ks is a much larger value
and continuously increases with N .

VI. MAXIMUM SPREADING FACTOR

Another important physical quantity to characterize the
droplet impact dynamics is the maximum spreading factor
β = σmax/σ0, as defined by the ratio between the maximum
spreading radius (σmax) and the initial one (σ0). Clearly one

has β ∼ 1 for the deposition dynamics and β → ∞ for
splashing. An interesting behavior of β shows up in the
recoiling regime, where β is finite and varies sensitively
with W .

In Fig. 4, we extract β as a function of W along the hori-
zontal lines in Fig. 3(a), i.e., by varying σ0 at several fixed N
in the recoiling regime. Apart from the region near the phase
boundaries (β → 1 or large enough), the data of β for any
given N well follow the scaling relation

β − 1 ∝ W α with α = 1.59. (10)

As shown in Fig. 4, such scaling works well for a wide
parameter regime with N/104 ∈ (0.5, 2), β ∈ (1.5, 10), and
W ∈ (0.2, 1). Therefore, we expect the scaling law in (10) to
reflect a very robust intrinsic property of the ultracold fluid
during the recoiling QFDD.

VII. BREATHING MODES

Finally, we demonstrate that the deposition regime of
QFDD can be used to probe the breathing modes of a quantum
droplet. The breathing mode can be theoretically obtained as
follows. Assuming a small fluctuation mode δφi for the ith
species boson, and only keeping the lowest-order fluctuations
in the GP equations (3), we obtain the following equations for
{δφi}:

0.2 0.4 0.6 0.8 1
0.1

1

10

N(104)=
0.65
1.10
1.62
1.95

β−
1

W

5

0.5

0.1

FIG. 4. Universal scaling between the maximum spreading fac-
tor (β) and the Weber number (W ) in the recoiling regime. Here
we take four given atom numbers of the initial Townes state with
tunable sizes, as following the trajectory along the horizontal lines
in Fig. 3(a). The discrete points are from numerical calculations, and
the lines are fitting functions according to Eq. (10).

i∂tδφ1 =
(

−∇2
ρ

2m
+ g11n1 + g12n2 + ∂ELHY

∂n1

)
δφ1 + g11n1(δφ1 + δφ∗

1 ) + g12φ1φ2(δφ2 + δφ∗
2 )

+ ∂2ELHY

∂n2
1

n1(δφ1 + δφ∗
1 ) + ∂2ELHY

∂n1∂n2
φ1φ2(δφ2 + δφ∗

2 ), (11)
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FIG. 5. Extracting collective breathing modes from QFDD in the deposition regime. Here we take a22 = 83.8aB, and the other parameters
are the same as in Fig. 1; the initial atom number is N (104) = 7.3. Parts (a) and (b) show the boson densities at different locations ρ = 0
(center), 16.4 μm in the time and frequency domains (related by Fourier transformation), starting from an initial Townes state with size
σ0 = 18 μm. The two red arrows in (a) mark the time interval for Fourier transformation. (c) Collective excitation spectrum as a function of
droplet number Nd . The lines are theoretical results based on Bogoliubov analysis, and the discrete data with error bars are extracted from the
real density oscillations in the deposition dynamics. In the latter case, the residual number Nd can be effectively tuned by setting different sizes
of the initial Townes state, and here we take two sizes σ0 (μm) = 16, 18, which lead to Nd (104) = 6.5, 6.2, respectively. The energy unit is
1/(ml2

0 ) with l0 = 1 μm.

i∂tδφ2 =
(

−∇2
ρ

2m
+ g12n1 + g22n2 + ∂ELHY

∂n2

)
δφ2 + g22n2(δφ2 + δφ∗

2 ) + g12φ1φ2(δφ1 + δφ∗
1 )

+ ∂2ELHY

∂n1∂n2
φ1φ2(δφ1 + δφ∗

1 ) + ∂2ELHY

∂n2
2

n2(δφ2 + δφ∗
2 ). (12)

According to the standard Bogoliubov analysis, we search for solutions of the form

δφi = exp(−iμit )
∑

j

(ui j (ρ) exp(−iω jt ) + v∗
i j (ρ) exp(iω jt )). (13)

Here ω j is the jth collective (eigen)mode of the system. These modes can be extracted from the following coupled equations for
ui j (ρ) and vi j (ρ): ⎛

⎜⎜⎝
L1 + M1 M12 M1 M12

M12 L2 + M2 M12 M2

−M1 −M12 −(L1 + M1) −M12

−M12 −M2 −M12 −(L2 + M2)

⎞
⎟⎟⎠

⎛
⎜⎜⎝

u1 j

u2 j

v1 j

v2 j

⎞
⎟⎟⎠ = ω j

⎛
⎜⎜⎝

u1 j

u2 j

v1 j

v2 j

⎞
⎟⎟⎠, (14)

where

Li = −∇2
ρ

2m
+

∑
j

gi j |φ j |2 + ∂ELHY

∂ni
− μi,

Mi = gii|φi|2 + ∂2ELHY

∂n2
i

ni,

M12 = g12φ1φ2 + ∂2ELHY

∂n1∂n2
φ1φ2.

(15)

In Fig. 5, we show the lowest two breathing modes (ω1, ω2)
below the atom emission threshold (−μ1,−μ2); see the solid
lines. In our numerics, we have obtained ω j by discretizing the
coordinate space and exactly diagonalizing the resulted large
matrix on the left-hand side of (14). Note that the breathing
modes, by definition, stay in the same zero angular momentum

sector as the Townes state and the ground-state droplet. More
details on the numerics are given in the Appendixes.

In Fig. 5, we show how to extract collective breathing
modes from the QFDD in the deposition regime for a given
set of coupling strengths {ai j} and initial atom number N .
Figure 5(a) shows the typical density oscillations with time
at different locations. One can see that such oscillations are
synchronic for both species and at different locations, and
therefore their Fourier transformations give the same peak
frequencies; see Fig. 5(b). In Fig. 5(c), we plot out two sets
of extracted peak frequencies (ω1, ω2) with different residual
droplet numbers Nd . Here Nd can be tuned effectively by
setting different sizes of the initial Townes state. For all the
extracted data we have collected 30 samples by varying the
real-space locations or the time intervals in Fourier transfor-
mation, from which we obtain both the mean value and the
variance. One can see that the extracted results match very

013100-6



QUANTUM-FLUCTUATION-DRIVEN DYNAMICS OF … PHYSICAL REVIEW RESEARCH 5, 013100 (2023)

well with theoretical predictions of collective breathing modes
from Eq. (14) (solid lines).

We note that a previous study has extracted one branch of
a collective mode from the formation dynamics of a quantum
droplet [59], while the dynamics there is not QFDD. Here, we
have shown in Fig. 5 that two branches of collective modes
can be simultaneously extracted from the residual oscillations
in QFDD. Moreover, we have checked that by taking differ-
ent {ai j} and initial N , one can also get access to the other
regime with only a single breathing mode. In comparison to
the single-mode case, here the main complexity brought by
the presence of two modes is the appearance of additional fre-
quency peaks at ω2 ± ω1 due to their interference. To correctly
identify the breathing modes {ω j} from the multiple frequency
peaks, it is important to note that these modes are associated
with the most pronounced peaks among all others. This can be
understood by analyzing the spin densities ni = |φi + δφi|2,
with δφi given in Eq. (13). Obviously, one can see that the
Fourier transform of ni results in multiple peaks at {ω j}, {2ω j},
and {ωi ± ω j}, while the ones at {ω j} have the largest magni-
tudes, which depend linearly on the strength of the fluctuation
mode (the others all have a quadratic dependence). Based on
this principle, one can easily identify the correct breathing
modes (ω1, ω2) as marked in Fig. 5(b).

VIII. EXPERIMENTAL RELEVANCE

Our results can be readily tested in the current cold-atom
experiments. The initial Townes profile with a given ampli-
tude and size can be imprinted by properly designing the
optical potential applied to the atoms, as successfully im-
plemented in previous experiments on two-component Bose
gases [68,69]. The subsequent dynamics of the system can
then be measured through the in situ image, and various dy-
namical outcomes can be distinguished typically within tends
of milliseconds, as shown in Fig. 2. Within this timescale,
severe atom loss in the 39K droplet can be effectively avoided
[37]. On the other hand, for long-time dynamics, the atom loss
will play an essential role and may even impede the breathing
mode detection, which requires a typical timescale of hun-
dreds of milliseconds, as shown in Figs. 5(a1) and 5(a2). For
that, one can resort to the heteronuclear mixtures of 41K and
87Rb, whose lifetime has been shown to be much longer (∼1 s)
due to the low droplet density therein to suppress atom loss
[40,41]. Since the Townes soliton can be well extended to
boson mixtures with unequal masses (see the Appendixes),
and the controllability of LHY energy by the size and number
generally applies to these systems, we expect that various
dynamical outcomes and the breathing mode extraction can
be tested equally in heteronuclear Bose gases.

IX. SUMMARY AND DISCUSSION

In summary, we have demonstrated the quantum simula-
tion of droplet impact outcomes in ultracold boson mixtures.
Various dynamical phases, including splashing, recoiling, and
deposition, have been revealed. A remarkable difference here
is that these dynamics are purely driven by quantum fluc-
tuations, instead of the mechanical impact force in previous
studies. Given the easy manipulation of initial states with

tunable fluctuation energies, the current cold-atom platform
provides complete control of these dynamics in the micro-
scopic quantum level. To characterize different dynamics,
we have introduced the Weber number and examined two
important physical quantities, namely the splashing/recoiling
threshold and the maximum spreading factor. We have also
proposed to extract the collective breathing modes from the
residual dynamics in the deposition regime. These results are
directly relevant to ongoing cold-atom experiments.

Furthermore, we remark that our work is in distinct contrast
to the previous studies of QFDD in ultracold atoms, where a
visible dynamics can only be achieved for small condensates
[70–73]. This is because usually the energy difference per
particle between the mean-field and the true quantum ground
states decays rapidly as the number N increases [74–77], and
thus for large N the quantum fluctuation energy is negligibly
small as compared to the mean-field one. However, this is not
the case for a quantum droplet. For a static droplet, quantum
fluctuations have been shown to provide an indispensable
repulsive force for its stabilization, without which the whole
system will collapse [43]. In parallel, our current work reveals
the equally significant role that quantum fluctuations played in
the nonequilibrium dynamics of a quantum droplet, regardless
of whether the droplet is small or large.

Finally, we anticipate that the dynamical outcomes of
splashing, recoiling, and deposition revealed in this work may
be equivalent with other initial conditions when the dynamics
is not purely driven by quantum fluctuations. In fact, the
generalized Weber number as defined in Eq. (9) can be applied
to any initial state, and the key issue is whether the additional
energy of such a state (as compared to the true ground state)
can be absorbed by the surface tension of a droplet during
dynamics. In this sense, Eq. (9) may serve as a unified quantity
to understand the different dynamics of quantum droplets with
various initial conditions.
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APPENDIX A: TOWNES SOLITON FOR TWO-SPECIES
BOSONS WITH UNEQUAL MASSES

Neglecting the LHY correction, we write down the Gross-
Pitaevskii (GP) equation for two-species bosons with unequal
mass (m1, m2):

i∂tφ1 =
(

− ∇2
ρ

2m1
+ g11|φ1|2 + g12|φ2|2

)
φ1, (A1)

i∂tφ2 =
(

− ∇2
ρ

2m2
+ g12|φ1|2 + g22|φ2|2

)
φ2. (A2)

When m1 �= m2, we define the mass-imbalance parameter
as w = m2/m1. By comparing the two GP equations, we
can see that they can support a single-mode solution φi =
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√
Niφ exp(−iμit ) as long as

N1

N2
= wg22 − g12

g11 − wg12
, (A3)

where μ1 = wμ2, and the single mode φ satisfies(
− ∇2

ρ

2m1
+ Ngeff |φ|2

)
φ = μ1φ. (A4)

Here N = N1 + N2 is the total number, and the effective inter-
action geff is given by

geff = w
(
g11g22 − g2

12

)
g11 + wg22 − (w + 1)g12

. (A5)

Again we have geff < 0 in the mean-field collapse regime
(g12 < −√

g11g22), and the Townes solution occurs when

Nm1|geff | = 5.85. (A6)

For the equal mass case (w = 1), these equations automati-
cally reduce to Eqs. (4)–(7) in the main text.

APPENDIX B: NUMERICAL METHOD

In our numerical simulations, we have considered the so-
lution with zero angular momentum. This choice is because
the angular momentum is preserved by the Hamiltonian, and
both the ground state and the Townes soliton stay exactly in
the zero angular momentum sector. Moreover, the breathing
mode, by definition, also stays in the zero angular momen-
tum sector. Given this constraint, in the following we simply
replace the coordinate ρ by its magnitude ρ = |ρ|.

In solving the GP equation of the form i∂tφ(ρ, t ) =
Hφ(ρ, t ), we have discretized the coordinate and time as
ρ j = jδ, tn = nτ , where j, n are integers, and we have taken
small intervals δ = 0.005 μm, τ = 2.74 × 10−3 ms. Then
starting from a given state φn at time tn, we obtained the new
wave function φn+1 at the next time tn+1 as follows.

First, we split H into local and nonlocal parts: H = H1 +
H2, where the derivatives of ρ are all contained in H2. In
this case, we simply have H2 as the kinetic energy H2 =
− 1

2m [ ∂2

∂ρ2 + 1
ρ

∂
∂ρ

], and H1 is the remaining part that depends
solely on the local densities.

As the first step of the update, the local H1 produces an
intermediate state φ′ from φn:

φ′ = exp(−iH1τ )φn. (B1)

Then, we perform the time evolution generated by H2 with the
Crank-Nicholson scheme:

φn+1 − φ′

−iτ
= H2

2
(φn+1 + φ′), (B2)

which gives

φn+1 = 1 − iτH2/2

1 + iτH2/2
φ′. (B3)

Specifically, in the discretized coordinate space we have

H2φ j = − 1

2m

(
φ j+1 + φ j−1 − 2φ j

δ2
+ 1

jδ

φ j+1 − φ j−1

2δ

)
.

(B4)
Here we have simplified φ(ρ j ) as φ j . To this end, (B3) gives
the updated wave function φn+1 at time tn+1.

In the above, we have shown the details on the numerical
simulation of GP equations. By transforming τ → −iτ , i.e.,
the imaginary-time evolution, one can also obtain the ground
state of the system (droplet solution). To make sure that the
wave function is reduced to zero well before touching the
boundary of the system, we have chosen a sufficiently large
size in the simulation with the maximum radius ranging from
50 to 200 μm. In this way, one can avoid the boundary effect
on the dynamical and static properties of the system.

In solving the breathing modes from Eq. (14) in the main
text, we have again discretized the coordinate space and trans-
formed it to a large matrix equation. The breathing modes are
then obtained by exactly diagonalizing the matrix.
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