
PHYSICAL REVIEW RESEARCH 5, 013098 (2023)

Probing Rashba spin-orbit coupling by subcycle lightwave control of valley polarization
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We perform nonperturbative calculations of light-field driven valley-polarization process in monolayer MoS2

which has additional Rashba spin-orbit couplings (SOCs). The ultrafast electron dynamics is simulated within
the independent particle picture by solving density-matrix equations in the basis of linear combination of atomic
orbitals, where tight-binding (TB) models including both intrinsic atomic and Rashba SOCs are used to calculate
relevant matrix elements. We demonstrate that the Rashba-type SOCs can be manifested by suboptical-cycle
control of valley selectivity excitations, in particular necessary via using few-cycle linearly polarized pulse with
controlled carrier-envelope phase (CEP). This procedure will lead to a CEP-dependent valley Hall conductivity
(VHC), which exhibits an important phase shift among different Rashba coupling strengths. The additional
analysis shows that this phase shift is mainly determined by the d2

z -orbital TB Rashba parameter from Mo atom
and originates from contribution of conduction bands to VHC, where the Berry curvature modified by Rashba
SOC plays a crucial role. Moreover, we also provide a qualitative interpretation on the Rashba-dependent VHC
in terms of suboptical-cycle Landau-Zener-Stückelberg interference. Our results suggest a feasible approach
for probing Rashba SOCs in hexagonal two-dimensional materials, and might pave the way of achieving more
controls in the future valleytronics application.
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I. INTRODUCTION

The strong-field excitation of solids with ultrashort laser
pulse is able to yield a great deal of complex ultrafast pro-
cesses [1–3]; in particular, using the carrier wave of laser
pulse to manipulate and steer multiple degrees of freedom
of electrons in solids on the suboptical-cycle timescale forms
the core of lightwave electronics [4,5]. It is aimed at both the
fundamental investigation of rich solid-state ultrafast phenom-
ena and the promising realization of application in high-speed
signal processing at the optical frequency [6–8].

One of the important controls over electron transport is
related with its valley pseudospin degree of freedom which
widely exists in hexagonal two-dimensional (2D) materi-
als with broken-inversion symmetry [9], such as monolayer
transition-metal dichalcogenides (TMDs) of intensive concern
by many theoretical and experimental studies [10–15]. In the
2D hexagonal lattices, valleys as the local extreme are located
at K and K ′ points of the Brillouin zone. Recently, great efforts
have been performed towards the ultrafast manipulation of
valley selectivity excitation on the timescale faster than valley
depolarization, crucial for valleytronic application [16]. This
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has been successfully demonstrated by a series of methods
based on the coherent optical control using hybrid laser pulses
[17,18] or single linearly polarized few-cycle [19–21] pulses.
The induced valley asymmetry in such 2D materials can be
subsequently captured by measuring nonzero valley Hall con-
ductivity (VHC) as a result of the opposite Berry curvatures at
two inequivalent K valleys, intrinsically originating from the
lattice in-plane broken-inversion symmetry [22].

When the inversion symmetry further breaks in the direc-
tion perpendicular to the 2D plane, generally achieved by
placing the 2D material in an external electric field or on a po-
lar substrate, the additional Rashba-type spin-orbit couplings
(SOCs) naturally occur [23–25]. The most important charac-
teristics of Rashba SOCs refer to the odd dependence on the
electron momentum, which can drive a wide variety of fas-
cinating phenomena. Signatures of Rashba SOCs are usually
extracted by the analysis of Shubnikov–de Haas oscillations
[26] and angle-resolved photoemission spectroscopy [27–29].
For the doping gate or polar TMDs, it is also predicted that
Rashba SOCs can be detected by Kerr effect experiments
[30]. In the strong-field interaction regime, Rashba SOCs still
play an important role in some nonlinear process, such as
high-order harmonic generation [31]. Despite this, the effect
of Rashba SOCs on the other strong-field ultrafast optical
response of 2D systems has not yet been well explored.

In this work, we bring Rashba effect into the well-
established concept of lightwave-driven subcycle dynamics
of valley polarization in TMDs. Specifically, taking mono-
layer MoS2 as an example, we demonstrate a scheme for
observing signature of Rashba SOCs that is introduced by the
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FIG. 1. (a) Top view of monolayer MoS2 lattice, with each sub-
lattice occupied by a Mo (blue) and two S (yellow) atoms. (b) First
Brillouin zone in the reciprocal lattice. G1 and G2 are two reciprocal
lattice primitive vectors.

external input. The method relies on valley-selective excita-
tions of all-optical preparation realized by linearly polarized
few-cycle pulse with stabilized carrier-envelope phase (CEP).
It is expected that the resulting VHC accessible in experi-
ments can encode the information on Rashba effects, since
the additional Rashba SOCs affect the whole electronic band
structures and especially modify Berry curvature around val-
leys. To obtain the nonlinear ultrafast electronic dynamics in
such Rashba system, we solve the length-gauge Liouville–
von Neumann equation in the linear combination of atomic
orbitals representation. Compared with the standard time-
dependent Schrödinger equation, the Liouville–von Neumann
equation can both automatically take into account Pauli block-
ing of interband transitions and phenomenologically include
the relaxation process. The implementation of its parametriza-
tion is based on simplified six-band tight-binding (TB) models
in which intrinsic spin-orbit splitting and external Rashba
SOCs are simultaneously included. Here, in contrast to the
usual low-energy treatment of expanding Hamiltonian around
some high-symmetry points, the complete MoS2 electronic
structures are employed to properly take into account that the
movement of electrons under strong fields will extend to a
larger region of Brillouin zone (BZ). We discuss the behavior
of induced VHC upon observing its dependence on several
laser and material parameters, with the particular emphasis
on influence of Rashba coupling strengths. It is shown that
the CEP-dependent VHC exhibits an important phase shift,
whose value is determined by the magnitude of phenomeno-
logical Rashba parameter, thus suggesting a feasible approach
to characterize Rashba effect. The underlying physical origin
of this kind of Rashba-related phase shift is also success-
fully revealed. Moreover, we offer a qualitative interpretation
in terms of the suboptical-cycle Landau-Zener-Stückelberg
(LZS) interference picture.

II. THEORETICAL MODLES

The atoms in monolayer MoS2 lattice are arranged in
trigonal prismatic fashion (P−6m2 space group) where the
unit cell consists of three atoms, i.e., Mo atom sandwiched
between two S atoms [32]. The in-plane atomic structure is
formed by alternating arrangement of Mo and S atom in a
hexagonal honeycomb way similar to graphene, as shown in
Fig. 1(a). Figure 1(b) shows the corresponding hexagonal BZ,

together with its parallelogram equivalent spanned by two
reciprocal-lattice primitive vectors G1 and G2. The latter is
more convenient for sampling k points and defining valley
asymmetry of K and K ′.

In the calculation, the electronic band structure of MoS2 is
described by the TB model in which SOCs are only consid-
ered from the on-site contribution of heavy Mo atoms. Using
the minimal set of Mo-|dz2 ,↑〉, |dxy,↑〉, |dx2−y2 ,↑〉, |dz2 ,↓〉,
|dxy,↓〉, |dx2−y2 ,↓〉 orbitals as basis, the full TB Hamiltonian
that covers the external Rashba effect is given by [30,33–35]

HT B(k) = HTNN(k) ⊗ I2 + 1
2λLz ⊗ σz

+ Hc(k) ⊗ σz + HR(k), (1)

where I2 is the 2 × 2 identity matrix, HTNN(k) is the spinless
3 × 3 Hamiltonian matrix constructed under the D3h sym-
metry and the third-nearest-neighbor Mo-Mo hoppings, the
middle two terms represent intrinsic SOCs, and the last term
refers to Rashba SOCs probably emerging from polar or gated
MoS2. By the first-order perturbation analysis of Eq. (1), the
second term can lead to spin-orbit splitting of �v

SOC = 2λ at
the K (K ′) valley for valence band (VB) and keep the con-
duction band (CB) still degenerate. In contrast, the CB spin
splitting is dominated by the third term of Eq. (1), known as
Ising SOCs [36,37]. Here, the Rashba SOCs take the form of
[30]

HR(k) =

⎛
⎜⎝

2α0 0 0

0 2α2 0

0 0 2α2

⎞
⎟⎠ ⊗ ( fx(k)σy − fy(k)σx ), (2)

with TB parameters α0 and α2 corresponding to dz2 and {dxy,
dx2−y2 } orbitals, respectively. On the other hand, Rashba ef-
fect is always phenomenologically written in a simple model
Hamiltonian [38] for 2D electrons confined to the xy plane
and subjected to an electric field along the z direction as
HR(k) = αR(σ × k) · ẑ, where αR denotes the Rashba cou-
pling strength. Note that α0 and α2 shown in Eq. (2) are
different from αR. By expanding the functions fx/y(k) in
Eq. (2) around K or K ′ valleys, it is easily seen that the Rashba
coupling strength αc for CB and αv for VB can be related to
α0 and α2 by αc = 2α0a/3 and αv = 2α2a/3, where a is the
lattice constant. In the following text, we use αc and αv to
describe the magnitude of Rashba effect instead of the TB
parameters α0 and α2. Other detailed matrix elements and
formulas required for the complete 6 × 6 Hamiltonian matrix
HT B(k) can be found in Appendix A.

The strong-field interaction of MoS2 with an ultrashort
pulse can be modeled within independent particle approxi-
mation, which allows one to describe the system using one
electron density operator. In the length gauge (LG) and within
the dipole approximation, the temporal evolution of density
operator ρ(t ) is given by Liouville–von Neumann equation
[39,40]

i
d

dt
ρ(t ) = [H0 + E(t ) · r, ρ(t )], (3)

where H0 is the field-free Hamiltonian and E(t ) is the time-
dependent electric field. Unless otherwise indicated, atomic
units (a.u.) are used throughout: e = h̄ = me = 1, where e and
me are the electron charge and mass, respectively. The LG
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suggests us to solve Eq. (3) within a frame of crystal momen-
tum moving with the vector potential A(t ) = − ∫ t

−∞ E(τ )dτ ,
since it is able to decouple the different k and particularly
convenient for numerical implementation. In this case, the
reduced density operator for an initial crystal momentum k0

can be expressed as

ρk0 (t ) =
∑
i, j

ρ
k0
i j (t )|Bi,k(t )〉〈Bj,k(t )|, (4)

where Bi,k(t ) is the comoving basis function with the time-
dependent momentum k(t ) = k0 + A(t ), constructed by the
Bloch sum of atomic orbital i. Here, we introduce a compound
index i = {n, α}, in which n labels a given atom in the unit
cell and α represents the orbital shape on this atom. If the
field-free electronic structure is described by the TB Hamilto-
nian HT B(k), the resulting equation of motion for coefficients
ρ

k0
i j (t ) can be written in a matrix form of

i
d

dt
ρk0 (t ) = [HT B(k), ρk0 (t )], (5)

where ρk0 (t ) is the density matrix comprising the element
ρ

k0
i j (t ). Hence, the temporal evolution of ρk0 (t ) is simply gov-

erned by a complete set of ordinary differential equations. The
detailed derivation and some approximate conditions used for
obtaining Eq. (5) are presented in Appendix B.

We point out that ρk0 (t ) denotes the density matrix in
the presentation of atomic orbitals. For a clearer analysis of
physical processes, it is helpful to express density operator in
the valence- and conduction-band representation as

ρk0 (t ) =
∑
i, j

ρ̃
k0
i j (t )|i, k(t )〉〈 j, k(t )|, (6)

where |i, k(t )〉 represents the ith Bloch basis function that
is the eigenstate of HT B(k). The coefficient ρ̃

k0
i j (t ) therefore

forms a density-matrix ρ̃k0 (t ) in the band representation. It is
easily seen that density matrix in two different representations
is related by a unitary transformation:

ρ̃k0 (t ) = U†
k(t )ρ

k0 (t )Uk(t ), (7)

and

ρk0 (t ) = Uk(t )ρ̃
k0 (t )U†

k(t ), (8)

where Uk(t ) is a unitary matrix constructed by arranging
the eigenvectors of HT B(k) in columns. Thus, the diago-
nal element ρ̃

k0
ii (t ) of ρ̃k0 (t ) directly provides information

on time-dependent population of electrons occupying the ith
band at a fixed k0.

We take 160 × 160 k0 points from the parallelogram region
shown in Fig. 1(b), and numerically solve Eq. (5) for each
independent k0 by the classical fourth-order Runge-Kutta
method. For the ultrafast nonlinear process, decoherence aris-
ing from electron-electron scattering beyond the mean-field
approximation needs proper consideration, which is typically
on a few of femtoseconds timescale. This is usually treated
by phenomenologically introducing a constant dephasing time
T2 into the dynamical equation. We choose T2 = 5 fs, com-
parable to the value usually employed in the strong-field

FIG. 2. Total CB population distribution in the reciprocal space
after the interaction with driving pulses with CEP (a) φCEP = 0,
(b) φCEP = π/2, and (c) φCEP = 3π/2. For φCEP = π/2 and φCEP =
3π/2, the population distribution is plotted by the difference com-
pared with panel (a).The driving light has a Gaussian envelope with
the central wavelength λ = 8 μm, duration 27 fs, and the peak inten-
sity I0 = 0.3 TW/cm2. The dashed hexagon represents the first BZ,
and the vertical dashed line guides the eyes to observe the population
asymmetry between K and K ′ valleys.

process such as high-harmonic generation [41]. However, the
relaxation term cannot be directly added to Eq. (5), due to
the fact that the dephasing process describes the exponential
decay of interband polarization between bands and thus must
impact on off-diagonal elements of ρ̃k0 (t ) rather than ρk0 (t ).
Instead, we consider dephasing mechanism as follows: At
each evolution step of solving Eq. (5) with the time interval
�t , ρk0 (t ) is transformed to ρ̃k0 (t ) via Eq. (7), followed by
multiplying the off-diagonal element ρ̃

k0
i j (t ) by exp(−�t/T2),

and finally transformed back to ρk0 (t ) via Eq. (8). Repeat the
above procedure until the end of dynamics evolution.

III. RESULTS AND DISCUSSION

A. Phase shift of CEP-dependent VHC due to Rashba SOCs

In the strong-field regime, electron dynamics in MoS2

driven by few-cycle laser pulses exhibits an important depen-
dence on the exact shape of optical carrier field [5,42–44], so
that it is possible to control the electron population between
valleys on a subcycle timescale by varying the CEP of driving
pulse. In order to reveal the essentials of valley polarization
and highlight its influence on capturing the Rashba effect,
a single-cycle pulse with the linear polarization along the

−K direction is employed to achieve optical preparation of
selective valley excitation.

We first observe the result for a 27-fs-long wavelength λ =
8 μm Gaussian pulse with a moderate peak intensity of I0 =
0.3 TW/cm2, below the damage threshold [14]. At the end of
the pulse t = t f , the residual k-resolved distribution of total
CB population can be extracted by summing electron popu-
lation in all of the CBs, defined as ρ̃c(k0) = ∑

i∈CBs ρ̃
k0
ii (t f ).

Figure 2 shows the calculation result of ρ̃c(k0) for three differ-
ent CEP values: (a) φCEP = 0, (b) φCEP = π/2, and (c) φCEP =
3π/2. One can see that for φCEP = 0 the driving pulse couples
equally to both valleys, leading to the population distribution
of mirror symmetry about 
−M direction, while for φCEP =
π/2 and φCEP = 3π/2 the asymmetry in the CB population
of K and K ′ valleys is presented. Note that for φCEP = π/2
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FIG. 3. Comparison of Hall conductivity calculated as a function
of CEP for four different Hamiltonian systems: the intrinsic SOC
Hamiltonian (green dashed), spinless Hamiltonian (black-dashed-
dotted), and full Hamiltonian with αv = 0.5 eV Å and αc = 0 (blue
dotted), together with αv = 0 and αc = 0.5 eV Å (red-solid). The
laser parameters are the same as Fig. 2.

and φCEP = 3π/2, the population distribution has been plotted
by the difference compared with the φCEP = 0 case in order
to highlight the discrepancy in the valley population. The
comparison in Figs. 2(a)–2(c) clearly verifies the feasibility
of selection valley polarization controlled by CEP, which can
be simply attributed to the fact that for few-cycle driving
pulse the vector potential value at the peak position of electric
field varies with CEP [19]. Our calculations also show that
different Rashba coupling strength αc and αv has less affected
the CEP-dependent population distribution ρ̃c(k0). Thus, it is
insufficient to manifest the Rashba SOCs imposed to MoS2 by
only observing k-resolved population information.

On the other hand, the CEP-induced unequal valley pop-
ulation can lead to an observable valley Hall effect when an
in-plane electric field is applied to MoS2, due to the opposite
Berry curvatures at the K and K ′ valleys [45,46]. Once the
valley population distribution forms, the measurement of gen-
erated current orthogonal to the applied electric field can give
a CEP-dependent VHC as [47]

σxy(φCEP) = − 1

(2π )2

∑
n

∫
BZ

dk0ρ̃
k0
nn (t f )�n(k0), (9)

where ρ̃k0
nn and �n(k0) are residual k-resolved population and

field-free Berry curvature of the nth band, respectively, and
the sum runs over all VBs and CBs.

Figure 3 shows σxy as a function of CEP, calculated for four
different cases, i.e., considering the intrinsic SOC Hamilto-
nian (green-dashed line) described by the first three terms of
Eq. (1): spinless Hamiltonian HTNN(k) (black-dashed-dotted
line) without any SOC, full Hamiltonian HT B(k) with αv =
0.5 eV Å and αc = 0 (blue-dotted line), and full Hamiltonian
HT B(k) with αv = 0 and αc = 0.5 eV Å (red solid line). In
Fig. 3, the CEP-dependent σxy for the four cases all exhibit
sine oscillations, with the phase determined by the specific
Hamiltonian, where the Rashba SOCs through the parameter
αc can generate a significant phase shift compared with the
other three cases. In other words, d2

z -orbital TB Rashba
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FIG. 4. (a) Maximum conductivity σmax vs the laser intensity at
a fixed αc = 0.5 eV Å. (b) Phase shift δ(αc ) as a function of αc,
calculated from driving pulses with peak intensity I0 = 0.1 TW/cm2

(black squares), I0 = 0.3 TW/cm2 (red circles), I0 = 0.5 TW/cm2

(blue-up triangle), and I0 = 2.0 TW/cm2 (green-down triangle).
Four symbols on the curve of panel (a) denote the selected intensity
position corresponding to panel (b). The other laser parameters are
the same as Fig. 2.

parameter from Mo atom dominates the phase shift. This is
an evident observable for extracting the Rashba effect in the
experiment. Therefore, we mainly focus on the αc influence
on the CEP-dependent VHC in the following text.

In order to quantitatively estimate the phase shift induced
by Rashba SOCs, we perform the curve fitting of the simulated
σxy with the function form x1 sin[φCEP + x2(αc)], where the
fitting parameter x2(αc) gives the phase for a given Rashba
coupling strength αc. The phase shift due to the Rashba
effect can be defined as δ(αc) = x2(αc) − x2(αc = 0). We
plot δ(αc) with changing αc in the case of four different
driving-peak intensities: I0 = 0.1 TW/cm2 (black squares),
I0 = 0.3 TW/cm2 (red circles), I0 = 0.5 TW/cm2 (blue up-
triangle), and I0 = 2.0 TW/cm2 (green down-triangle), as
shown in Fig. 4(b). One can see that for moderate intensity
(0.1 ∼ 0.5 TW/cm2) the phase shift increases monotonically
with αc ranging from 0 to 1.0 eV Å, during which the curve
varies smoothly at both sides and rises rapidly in the mid-
dle region. Particularly at the relatively low intensity, phase
shifts become more sensitive to αc, beneficial for observation
of Rashba effect. On the contrary, when the pulse intensity
reaches as high as I0 = 2.0 TW/cm2, the phase shift is hardly
affected by Rashba SOCs, thus preventing the possible appli-
cation to Rashba detection. The laser intensity can also change
the maximum magnitude of VHC, which nontrivially depends
on CEP and might determine the accuracy of experimental
measurement. At a fixed αc = 0.5 eV Å, we extract the max-
imum conductivity σmax from the CEP-dependent σxy curve
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FIG. 5. (a) Comparison of different CEP-dependent Hall conductivity, obtained from VB contribution at αc = 0 (blue dashed), from CB
contribution at αc = 0 (blue solid), from VB contribution at αc = 0.5 eV Å, and from CB contribution at αc = 0.5 eV Å. (b) CEP-dependent
Hall conductivity calculated at αc = 0.0 eV Å (blue solid), αc = 0.5 eV Å (red-dashed), and αc = 1.0 eV Å (green dot). For the three cases,
Berry curvature is always chosen as the unmodified one corresponding to αc = 0.0 eV Å. The laser parameters are the same as Fig. 2.

and observe its dependence on the intensity I0. The result is
reported in Fig. 4(a). We find that when the intensity is weak
(I0 < 1010W/cm2), a typical power-law σmax ∝ I1.5

0 is exhib-
ited. This characteristic reflects the perturbative light-matter
interaction. As the intensity increases, the power-law depen-
dence of σmax on I0 breaks down, representing that electron
dynamics gradually enter into the nonperturbative strong-field
regime. For clarity, positions of maximum Hall conductivity
corresponding to four intensities used in Fig. 4(b) have been
marked in Fig. 4(a) with the same symbol. In the practical
implement, the proper choice of laser intensity to observe
Rashba effects should carefully take into account the balance
of the αc sensitivity and the sufficiently strong Hall current
signal.

B. Origin of phase shift

Decomposition of VHC is helpful to identify the origin
of this kind of phase shift. The summation in Eq. (9) can
be divided into two parts according to whether n belong to
VBs or CBs, naturally resulting in σxy = σVB + σCB, where
σVB and σCB describe the VHC contribution from VBs and
CBs, respectively. For the separated σVB and σCB, we compare
their CEP-dependent behavior in the case of with Rashab
SOCs (αc = 0.5 eV Å) and without Rashba SOCs (αc = 0),
as given in Fig. 5(a). One can see that the Rashba SOCs
cannot generate any phase shift for σVB, while an obvious
phase shift occurs for σCB under different Rashba coupling
strengths. Consequently, we can conclude that the phase shift
of VHC induced by Rashba effects mainly originates from the
CB contribution.

We now turn to the simple discussion of the effect of Berry
curvature on phase shift. The Berry curvature that contributes
to VHC through Eq. (9) can be efficiently controlled by the
external Rashba SOCs. This relationship can be intuitively
seen by analyzing an effective Hamiltonian near the CB
K valleys, which is constructed under the basis formed by

Mo-{|dz2 ,↑〉, |dz2 ,↓〉} orbitals and given by [37]

Hc
spin(k + εK) =

( |k|2
2m∗

c

− μ

)
σ0 + αc(σ × k) · ẑ + εβcσz,

(10)

where μ is the chemical potential, m∗
c is the effective mass of

the CB electron, k is the crystal momentum measured relative
to K valleys described by the index ε = ±1, and the last βc

term refers to the Ising SOC. From Eq. (10), the corresponding
Berry curvature in the lower-spin bands can be expressed as

�spin(k + εK) = α2
c εβc

2
[
(αck)2 + β2

c

]3/2 . (11)

Although Eq. (11) is a simple and approximate formula
only valid around valleys, it clearly implies that Rashba
SOCs can significantly change k-resolved Berry curvature
throughout the whole BZ. The importance of modified Berry
curvature in generating the phase shift can be revealed by
Fig. 5(b), where we have calculated the CEP-dependent VHC
with Eq. (9) for three different Rashba coupling strengths:
αc = 0.0 eV Å (blue solid), αc = 0.5 eV Å (red dashed), and
αc = 1.0 eV Å (green dot), under the condition that �n(k0)
are always kept unchanged and set to the one of αc =
0.0 eV Å. In this case, the phase shift is absent, representing
the crucial role of Rashba-controlled Berry curvatures.

Another factor that affects VHC is related with the resid-
ual population in the k space as described by Eq. (9). The
final electron distribution is strongly dependent on the light-
induced excitation process. When the carrier frequency of
pulses is well below the band gap of MoS2, electron dy-
namics can be described by Landau-Zener (LZ) transitions.
In this regime, the electron injection into the conduction
band mainly occurs when it passes near the valleys. For our
used linearly polarized pulse, the oscillatory electric field can
drive electrons to pass near the band-gap minimum repeatedly
within one optical cycle. This may form different excita-
tion quantum pathways per cycle, leading to the so-called
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FIG. 6. (a), (b) The k-resolved difference �ρc(k0) between the residual CBs population resulting from excitation with a pair of CEP φ1

and φ2, calculated at two different Rashba coupling strength (a) αc = 0.3 eV Å and (b) αc = 0.7 eV Å. (c) Extracted �ρc(k0) along ky = 0
changing with αc. The red-dashed rectangle represents the transition region across which the sign of �ρc(k0) reverses. The laser parameters
are the same as Fig. 2.

intracycle LZS interference [48], which plays an important
role in the strong-field process [5,49].The phase relationship
among these pathways determines the final momentum-
dependent CB population. It is well known that this phase
depends on not only light waveform but also electronic band
structures. Especially, the latter can be further affected by the
Rashba SOCs, which results in Rashba-controlled population
distribution and in turn is responsible for the phase shift in-
volved in the CEP-dependent VHC.

In order to clearly track how Rashba SOCs change the
k-resolved CB distribution, we introduce �ρc(k0), obtained
by the difference between residual CB population after using
excitation pulses with two different CEPs, φ1 and φ2. The
φ1 and φ2 differ by π and correspond, respectively, to the
minimum and maximum position in the CEP-dependent VHC.
At αc = 0.3 eV Å, we plot �ρc(k0) in Fig. 6(a), where the red
and blue spot regions show a clear CEP difference, antisym-
metrically in the kx direction. For comparison, we increase the
Rashba strength to αc = 0.7 eV Å, which yields �ρc(k0) in
Fig. 6(b). In this case, the sign of all spot areas have reversed,
thus giving direct evidence for the control of the k-resolved
CB distribution by Rashba SOCs.

It is worth pointing out that the strongest signal (difference)
in Fig. 6(a) and Fig. 6(b) is not at K (K ′) points, which can be
qualitatively interpreted as follows: For the driving pulse with

the photon energy smaller than the band gap, the electron is
mainly launched at K or K ′ points via Landau-Zener transition
mechanism. In this case, the CB population at K (K ′) points
is mainly determined by the wavelength and the intensity of
driving light, rather than the exact pulse waveform controlled
by CEP. However, for the population at position far from
CB minimum, the electron needs to undergo transport from
valley position, which is now strongly dependent on the pulse
waveform controlled by CEP. Hence, the strongest signal (due
to CEP difference) is not at K (K ′) points. On the other hand,
we have examined that the strongest specific position exhibits
a dependence on the driving pulse wavelength. Indeed, an ad-
ditional simulation for using 4-um driving pulse demonstrates
that the strongest signal is still not at K (K ′) points and a shift
takes place.

We next extract �ρc(k0) along a fixed line ky = 0 and ob-
serve its variation with αc. The result is reported in Fig. 6(c),
in which the two dashed horizontal lines at about αc =
0.5 eV Å and αc = 0.7 eV Å represent the position where
�ρc(k0) changes abruptly. Along the vertical axis, a signif-
icant change in the sign of �ρc(k0) occurs when going across
the transition area formed between the two dashed lines. It
is worth pointing out that the transition area matches well
with the region of rapid increase of phase shift δ(αc) [see
Fig. 4(b)].
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C. Interpretation in terms of LZS interference

The qualitative insight into the time evolution of CB pop-
ulation governed by LZS interference can be additionally
obtained by writing the relevant phase analytically. There are
two phases related with LZS interference. One is the transition
phase of single LZ process, known as Stokes phase, and the
other is the propagation phase. We only focus on the latter,
since it mainly determines the residual CB distribution, and is
given by [48,50]

ϕCV =
∫ t2

t1

[EC (k(τ )) − EV(k(τ ))]dτ , (12)

where t1 and t2 refer to two LZ transition events in the
same optical cycle. Here, the energy spectra EC (k) for the
lower-spin subbands near the CB minimum is obtained from
eigenvalues of the Hamiltonian Eq. (10), and simultaneously
VB dispersion EV(k) near K valleys is approximated as the
parabolic form. As a result, we can express ϕCV as

ϕCV =
∫ t2

t1

{
Eg + [k0 + A(τ ) − εK]2

2μ

−
√

α2
c [k0 + A(τ ) − εK]2 + (εβc)2

}
dτ , (13)

where Eg is the band gap and μ is the reduced electron-hole
effective mass. We simply assume the initial wave vector
k0 fixed at K valleys, and the vector potential has the form
A(τ ) = √

I0ω
−1
0 g(τ ) sin(ω0τ + φCEP), where g(τ ) is pulse en-

velope. Considering rather small βc, one can rewrite Eq. (13)
in the form of

ϕCV ≈ C0 + I0C1 + αc
√

I0C2, (14)

where C0, C1, and C2 are some constants. The ϕCV shows
that the Rashba strength αc can control the propagation phase,
thus affecting the CB population and eventually leading to the
phase shift of CEP-dependent VHC. We also note that for the
high-intensity I0 the second term in Eq. (14) will contribute
more to ϕCV than the last term, so that the phase shift δ(αc)
becomes insensitive to αc. This interpretation is consistent
with the simulation results [see green-down triangle line in
Fig. 4(b)].

The physical picture that intracycle LZS interference en-
ables to generate the αc-dependent phase shift can be further
supported by comparing simulation results using other driving
light waveform. In contrast to few-cycle light-driven one-
dimensional electron trajectory, we explore the 2D electron
motion steered by counter-rotating bicircular (CRB) light
field, consisting of a fundamental circularly polarized pulse
(8000 nm, 0.12 TW/cm2) and its counter-rotating second
harmonics (4000 nm, 0.03 TW/cm2). The pulse duration of
CRB field is set as 27 fs. It has been demonstrated that the
CRB light field can manipulate the subcycle valley trans-
port dynamics by controlling the relative phase �ϕ between
two colors [17]. For describing valley selection excitation,
we define the valley population asymmetry as A = 2(ρ̃K

c −
ρ̃K′

c )/(ρ̃K
c + ρ̃K′

c ), where ρ̃K
c and ρ̃K′

c are obtained by inte-
grating the residual CB population over the colored-triangle
region centered at K (K ′) in Fig. 1(b).

As expected, our calculations show that the �ϕ can control
valley population asymmetry in the same behavior for two dif-
ferent Rashba strengths, αc = 0 (red solid) and αc = 0.5 eV Å
(blue dashed), as plotted in Fig. 7(b). For both cases, Fig. 7(c)
shows the corresponding VHC as a function of �ϕ. Although
they exhibit sine oscillations similar to Fig. 3, the phase shift
between them is absent. The difference can be understood by
electron trajectories resulting from CRB field, as illustrated in
Fig. 7(a). For this kind of trajectory, only one LZ transition per
optical cycle is most likely to occur, since the electron passes
near K valleys only once per cycle, which contributes to the
maximal transition probability. Therefore, the intraoptical-
cycle LZS interference condition does not meet, so that the
phase shift of VHC due to Rashba SOCs disappears.

Besides, we also consider the superposition of a near-
infrared resonant pulse (5 fs/800 nm), which predominately
populates both valleys of MoS2, and a long-wavelength con-
trol pulse (27 fs/8000 nm), which determines the electron
transport property between K and K ′ valleys. Both pulses
with the same intensity I0 = 0.1 TW/cm2 are linearly polar-
ized along the 
−K direction, and their temporal delay is
fixed at td = 0. We have demonstrated that changing CEP
of the control pulse can achieve the selective valley exci-
tation. The result is reported in Fig. 7(d), which shows the
valley population asymmetry as a function of CEP, calculated
for two different Rashba strength, αc = 0 (red solid) and
αc = 0.5 eV Å (blue dashed). Since the electron excitation is
mainly determined by the resonant pulse, whose photon en-
ergy matches with the band gap and duration is much shorter
than the optical cycle of control pulse, the resulting single-
photon transition can be considered as instantaneous process.
Evidently, there is only one transition event in the case of
two-color combined field, thus preventing LZS interference.
It is expected that the phase shift of VHC cannot occur. In-
deed, our simulation confirms the prediction when the VHC
is calculated as a function of CEP of control pulses, given in
Fig. 7(e). One can see that the oscillation still appears, while
the phase shift between the two curves is absent. Therefore,
the above simulations demonstrate that the intraoptical-cycle
LZS interference plays an important role in the αc-dependent
phase shift.

D. Prospect of possible experimental devices in the future

In order to illustrate the scheme of probing Rashba effect
discussed in this work, we propose a schematics for the pos-
sible implementation in the future nanodevice, as shown in
Fig. 8. Monolayer MoS2 sample of a few micrometers in size
is used as active medium and transferred onto a substrate. An
additional vertical gating electric field is applied to control
the Rashba coupling strength of the MoS2 regime. The gating
field can be achieved by preparing an electrode placed on
the monolayer surface using the material such as graphene or
doped Si, which could provide an excellent optical transmit-
tance for the excitation pulse at a wide range of midinfrared
wavelength (e.g., 2–8 μm). The Hall effect is then probed
by two pairs of electrodes placed at both sides of sample,
as denoted by A and B in Fig. 8. The in-plane probe electric
field can be provided by the electrode pair A, which drives
an orthogonal current, followed by measuring the transverse
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FIG.7. (a) Two-dimensional electron trajectories in k space for CRB driving field. The electron starts from the initial k0, and the transition
probability reaches the maximum (green-shaded circles) when electron passes near the K valley. The electron undergoes excitation with large
transition probabilities only once per optical cycle. (b), (d) Valley population asymmetry as a function of (b) two-color relative phase �ϕ for
the CRB field, and (d) CEP of control pulse for the two linearly polarized superposition fields, calculated at αc = 0.0 eV Å (red solid) and
αc = 0.5 eV Å (blue dashed). (c), (e) VHC σxy as a function of (c) two-color relative phase �ϕ for the CRB field, and (e) CEP of control pulse
for the two linearly polarized superposition fields, calculated at αc = 0.0 eV Å (red solid) and αc = 0.5 eV Å (blue dashed).

Hall voltage with the electrode pair B to estimate the Hall
conductivity.

As for driving laser parameters, they do not sensitively
affect the conclusion in this work. We have examined a series
of driving wavelengths ranging from 4 to 8 μm. It is found that
the phase shift in the CEP-dependent Hall conductivity always
exists among different Rashba SOCs strengths, except that the
quantitative phase shift slightly depends on the wavelength. It
is preferable to use the few-cycle-long wavelength pulse as
the excitation light, since this kind of laser parameters enables
to drive efficiently the electron transport between K and K ′
valleys in such a manner that the selection valley excitation

FIG. 8. Schematics of the device for probing Rashba effect.

can take place. Hence, the valley Hall conductivity can be
obtained for probing Rashba effect.

For the Hamiltonian model Eq. (1), the Rashba coupling
strength is described by the coefficient αv and αc. They are
difficult to be directly related with the gating field. In order to
explicitly give how the gating field controls the Rashba effect
and subsequently affects the phase shift in the CEP-dependent
Hall conductivity, we consider a different tight-binding model
where the vertical gating field is included. The detailed de-
scription and result can be found in Appendix C.

IV. CONCLUSIONS

In summary, we have theoretically investigated the nonlin-
ear optical response of monolayer MoS2 having an additional
Rashba SOCs to the intense few-cycle linearly polarized
pulse. The strong-field electron dynamics is simulated by
single-particle density-matrix equation, which is constructed
by the linear combination of atomic orbitals within the tight-
binding approximation framework.

We demonstrate that the lightwave-induced ultrafast dy-
namics of valley electron transport leads to an observable
valley Hall effect, which enables to manifest the Rashba SOCs
through leaving a distinct fingerprint into the VHC when scan-
ning CEP. It is found that the phase shift of CEP-dependent
VHC encodes the information on Rashba coupling strength,
thus suggesting an approach to probe Rashba effects.

We successfully identify that the phase shift originates
from the CB contribution and is mainly related to the d2

z -

013098-8



PROBING RASHBA SPIN-ORBIT COUPLING BY … PHYSICAL REVIEW RESEARCH 5, 013098 (2023)

orbital TB Rashba parameter from Mo atom. The joint
effect of both Berry curvature and CB population distribution
modified by Rashba SOCs is responsible for forming the
phase shift. In particular, the k-resolved residual CBs pop-
ulation is analyzed, which reveals an important signature of
Rashba-controlled CB distribution. Accordingly, we provide
an interpretation for the phase shift in terms of LZS interfer-
ence. The physical picture is further supported by comparing
with other optical preparation schemes of valley polarization
in which the intracycle LZS interference hardly take place.
Our work reveals optical and electric properties controlled by
Rashba SOCs in the hexagonal 2D materials, which might be
used in future valleytronics.
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APPENDIX A: TIGHT-BINDING HAMILTONIAN

In this appendix we provide the explicit expression for
calculating the full TB Hamiltonian HT B(k). In Eq. (1), the
three-band TNN Hamiltonian is written as [33]

HTNN(k) =

⎛
⎜⎜⎝

V0 V1 V2

V ∗
1 V11 V12

V ∗
2 V ∗

12 V22

⎞
⎟⎟⎠, (A1)

where

V0 = ε1 + 2t0(2 cos α cos β + cos 2α)

+ 2r0(2 cos 3α cos β + cos 2β )

+ 2μ0(2 cos 2α cos 2β + cos 4α), (A2)

Re[V1] = − 2
√

3t2 sin α sin β + 2(r1 + r2) sin 3α sin β

− 2
√

3μ2 sin 2α sin 2β, (A3)

Im[V1] =2t1 sin α(2 cos α + cos β ) + 2(r1 − r2)

× sin 3α cos β + 2μ1 sin 2α(2 cos 2α + cos 2β ),
(A4)

Re[V2] = 2t2(cos 2α − cos α cos β )

− 2√
3

(r1 + r2)(cos 3α cos β − cos 2β )

+ 2μ2(cos 4α − cos 2α cos 2β ), (A5)

Im[V2] = 2
√

3t1 cos α sin β + 2√
3

sin β(r1 − r2)

× (cos 3α + 2 cos β )

+ 2
√

3μ1 cos 2α sin 2β, (A6)

V11 = ε2 + (t11 + 3t22) cos α cos β + 2t11

× cos α + 4r11 cos 3α cos β

+ 2(r11 +
√

3r12) cos 2β + (u11 + 3u22)

× cos 2α cos 2β + 2u11 cos 4α, (A7)

Re[V12] =
√

3(t22 − t11) sin α sin β + 4r12 sin 3α sin β

+
√

3(μ22 − μ11) sin 2α sin 2β, (A8)

Im[V12] = 4t12 sin α(cos α − cos β )

+ 4μ12 sin 2α(cos 2α − cos 2β ), (A9)

and

V22 = ε2 + (3t11 + t22) cos α cos β + 2t22 cos 2α

+ 2r11(2 cos 3α cos β + cos 2β )

+ 2√
3

r12(4 cos 3α cos β − cos 2β )

+ (3μ11 + μ22) cos 2α cos 2β + 2μ22 cos 4α. (A10)

Here, (α, β ) = ( 1
2 kxa,

√
3

2 kya) with a lattice constant a. By
fitting the first-principle band structure in the local-density
approximation, these TB parameters (in units of eV) for
monolayer MoS2 are chosen as ε1 = 0.820, ε2 = 1.931, t0 =
−0.176, t1 = −0.101, t2 = 0.531, t11 = 0.084, t12 = 0.169,
t22 = 0.070, r0 = 0.070, r1 = −0.252, r2 = 0.084, r11 =
0.019, r12 = 0.093, u0 = −0.043, u1 = 0.047, u2 = 0.005,
u11 = 0.304, u12 = −0.192, u22 = −0.162, and a = 3.129 Å.

The second term in Eq. (1) refers to the SOC Hamiltonian
with splitting strength set as λ = 0.073 eV. The matrix form
of Lz, which is z component of orbital angular momentum in
bases of {dz2 , dxy, dx2−y2 }, is given by

Lz =

⎛
⎜⎝

0 0 0

0 0 2i

0 −2i 0

⎞
⎟⎠. (A11)

The third term in Eq. (1) refers to the Ising SOC in the CBs
and is expressed as [30]

Hc(k) =

⎛
⎜⎝

γ (k) 0 0

0 0 0

0 0 0

⎞
⎟⎠, (A12)

where

γ (k) = − 2βc

3
√

3
[sin 2α − 2 sin α cos β] (A13)

with the energy splitting 2βc = −3 meV for MoS2.
In the Rashba SOC Hamiltonian, the functions fx(k) and

fy(k) are given by

fx(k) = sin 2α + sin α cos β (A14)

and

fy(k) =
√

3 sin β cos α. (A15)
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APPENDIX B: DENSITY-MATRIX EQUATION
IN ATOMIC ORBITAL BASIS

In this appendix we provide more details about the deriva-
tion of density-matrix equations in the representation of linear
combination of atomic orbitals. The correct choice of a crystal
basis function needs to take the Bloch sum form of atomic
orbitals φαn, given by

|Bα,n,k〉 = 1√
N

∑
R

eik·(R+τn )|φαn(r − R − τn)〉, (B1)

where n represents one atom with a location τn relative to the
primitive unit cell, and α specifies the orbital shape (s, p, etc.)
on this atom n. Here, there are N unit cells in the crystal and
the sum runs over all lattice vectors R. Note that Eq. (B1) can
be applied to a general lattice structure for which the home
unit cell may include several atoms and each atom may have
several orbitals.

Considering the length-gauge Hamiltonian in the density-
matrix equation, we should adopt the basis function Eq. (B1)
under the acceleration theorem where the lattice momentum
is shifted by the vector potential of laser pulse. In this case,
the reduced density operator for an initial crystal momentum
k0 is written as

ρk0 (t ) =
∑

βm,αn

ρ
k0
βm,αn(t )|Bβm,k(t )〉〈Bαn,k(t )|, (B2)

with the time-dependent momentum k(t ) = k0 + A(t ).
It is helpful to firstly calculate

i
d

dt
|Bα,n,k(t )〉 = i

1√
N

d

dt

∑
R

eik(t )·(R+τn )|φαn(r − R − τn)〉

= −E(t ) · |Aα,n,k(t )〉 + E(t ) · r|Bα,n,k(t )〉,
(B3)

where we have defined

|Aα,n,k(t )〉

= 1√
N

∑
R

(r − R − τn)eik(t )·(R+τn )|φαn(r − R − τn)〉.

(B4)

Their conjugate expressions have the form

i
d

dt
〈Bα,n,k(t )| = E(t ) · 〈Aα,n,k(t )| − E(t ) · 〈Bα,n,k(t )|r, (B5)

and

〈Aα,n,k(t )|

= 1√
N

∑
R

〈φαn(r − R − τn)|(r − R − τn)e−ik(t )·(R+τn ).

(B6)

Differentiating both sides of Eq. (B2) with respect to t and
making use of Eqs. (B3)–(B6), we can get

i
d

dt
ρk0 (t )

=
∑

βm,αn

i
dρ

k0
βm,αn(t )

dt
|Bβm,k(t )〉〈Bαn,k(t )|

− E(t ) ·
⎡
⎣ ∑

βm,αn

ρ
k0
βm,αn(t )|Aβm,k(t )〉〈Bαn,k(t )|

− |Bβm,k(t )〉〈Aαn,k(t )|
⎤
⎦ + E(t ) · [r, ρk0 (t )]. (B7)

By comparing Eq. (3) and Eq. (B7), we arrive at

∑
βm,αn

i
dρ

k0
βm,αn(t )

dt
|Bβm,k(t )〉〈Bαn,k(t )|

= [H0, ρ
k0 (t )] + E(t ) ·

⎡
⎣ ∑

βm,αn

ρ
k0
βm,αn(t )

× |Aβm,k(t )〉〈Bαn,k(t )| − |Bβm,k(t )〉〈Aαn,k(t )|
⎤
⎦. (B8)

After performing the inner product 〈Bβ ′m′,k(t )| · |Bα′n′,k(t )〉
at both sides of Eq. (B8), we can obtain the equation of motion
for density matrix ρ

k0
βm,αn(t ) as

i
∑

βm,αn

Sβ ′m′,βm

dρ
k0
βm,αn(t )

dt
Sαn,α′n′

=
∑

βm,αn

[
Hβ ′m′,βmρ

k0
βm,αn(t )Sαn,α′n′

− Sβ ′m′,βmρ
k0
βm,αn(t )Hαn,α′n′

] + E(t )

·
⎡
⎣ ∑

βm,αn

dβ ′m′,βm(k)ρk0
βm,αn(t )Sαn,α′n′

− Sβ ′m′,βmρ
k0
βm,αn(t )dαn,α′n′ (k)

⎤
⎦, (B9)

where the relevant matrix elements are explicitly given by

Sβ ′m′,βm(k) = 〈Bβ ′,m′,k|Bβ,m,k〉

=
∑

R

eik·Rm′m〈φβ ′m′ (r)|φβm(r − Rm′m)〉, (B10)

Hβ ′m′,βm(k) = 〈Bβ ′,m′,k|H0|Bβ,m,k〉

=
∑

R

eik·Rm′m〈φβ ′m′ (r)|H0|φβm(r − Rm′m)〉,

(B11)
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dβ ′m′,βm(k) = 〈Bβ ′m′,k|Aβm,k〉
=

∑
R

eik·Rm′m〈φβ ′m′ (r + Rm′m)|r|φβm(r)〉,

(B12)

with the definition Rm′m = R + τm − τm′ .
We can rewrite Eq. (B9) in a compact matrix form without

displaying the indices,

i
dρk0 (t )

dt
= S−1(k)H̄(k)ρk0 (t ) − ρk0 (t )H̄(k)S−1(k), (B13)

where the interaction Hamiltonian matrix reads

H̄(k) = H(k) + E(t ) · d(k). (B14)

In the above two equations, S(k) is called the overlap ma-
trix, H(k) is the tight-binding Hamiltonian matrix, and d(k)
is the dipole transition matrix. These matrix elements, given
by Eqs. (B10)–(B12), automatically have continuous phase
when electrons move along a certain path in k space. Thus,
Eq. (B13) provides the advantage of avoiding the random
phase problem which usually arises from the LG density-
matrix equation formulated in the Bloch eigenstate basis
[51–54]. In addition, it has also good numerical stability even
if in the presence of degenerate bands and band crossings.
It should be noted that our approach is consistent with the
one implemented in the basis of maximally localized Wannier
functions [55].

In order to further simply Eq. (B13), we can make some as-
sumptions based on tight-binding approximation that atomic
orbitals are normalized and their overlapping between dif-
ferent atomic sites is ignored. Under this condition, S(k)
becomes identity matrix and we have [56]

〈φβ ′m′ (r + Rm′m)|r|φβm(r)〉
= δR,0δm′m

(−Rm′mδβ ′β + d̃m
β ′β

)
, (B15)

where d̃m
β ′β = 〈φβ ′m|r|φβm(r)〉 represents the intra-atomic

dipole matrix element at atom m. It follows that d(k) becomes
zero if substituting Eq. (B15) into Eq. (B12) and when selec-
tion rule forbids the intra-atomic dipole transition. As a result,
Eq. (B13) finally reduces to Eq. (5), as given in the main text.

APPENDIX C: 22-BAND TIGHT-BINDING MODEL
FOR CALCULATING RASHBA EFFECT

In this appendix we employ a relatively complicated tight-
binding model for calculating the Rashba effect in monolayer
MoS2. The purpose is to obtain an explicit dependence of
Rashba SOCs on the perpendicular control electric field, and
simultaneously the results provided by the two different tight-
binding models can be cross-checked to make our conclusion
more convincing.

We start from a spinless case in which all five d orbitals of
Mo atom, and three p orbitals for each of two S atoms in the
top (t) and bottom (b) sublayer are taken into account to con-
struct the 11-band tight-binding Hamiltonian [57]. Here, the
interaction term contains six Mo-S and one S (top)-S (bottom)
nearest-neighbor hopping in the same unit cell, and six Mo-
Mo and six S-S next-to-nearest-neighbor hopping between the
unit cell and the adjacent cells. All hopping amplitudes are
expressed in terms of Slater-Koster (SK) mechanism, which
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FIG. 9. Comparison of CEP-dependent Hall conductivity, cal-
culated for four different external electric fields perpendicular to
monolayer surface: Ez = 0 V/nm (blue dot), Ez = 10 V/nm (green
dashed), Ez = 25 V/nm (red solid) and Ez = 50 V/nm (black-
dashed-dotted). The driving light has the central wavelength λ =
8 μm, pulse duration 27 fs, and the peak intensity I0 = 0.1 TW/cm2.

are finally attributed to some bond parameters. In our calcula-
tion, all SK parameters are taken from the second column of
Table 6 in Ref. [57].

The Rashba-type SOCs can naturally occur when apply-
ing an electric field perpendicular to the monolayer surface,
which induces the asymmetry of the side potentials. The basic
idea for incorporating the effect of external electric field in
the tight-binding model relies on modification of the on-site
energies of atoms in three MoS2 sublayers [58]. We introduce
an additional on-site potential for the top (bottom) S-atom lay-
ers as Vt,b = ±Ezd/2, where d = 0.32 nm is the monolayer
thickness and Ez is the perpendicular electric field. It is then
straightforward to insert the SOC term by adding intra-atomic
LS coupling contribution as HSO = ∑

a λaLa · Sa, where λa

represents the intrinsic SOC strength for Mo atom λMo =
0.086 eV and for S atom λS = 0.052 eV. Thus, this kind
of treatment can double orbital numbers by assigning each
orbital a spin component, and extend the spinless system to
full 22 × 22 tight-binding Hamiltonian with Ez serving as
a controllable parameter that describes the Rashba coupling
strength. Finally, we incorporate the full 22 × 22 Hamilto-
nian into the Liouville–von Neumann Eq. (5) for simulating
subcycle valley polarization dynamics and calculating the
CEP-dependent valley Hall conductivity, as the same proce-
dure implemented for six-band model discussed in the main
text.

Figure 9 shows calculated Hall conductivity σxy as a func-
tion of CEP, under four different perpendicular electric fields:
Ez = 0 V/nm(blue dot), Ez = 10 V/nm (green dashed),
Ez = 25 V/nm (red solid) and Ez = 50 V/nm (black-dashed-
dotted). One can see that the CEP-dependent σxy for the
four cases all exhibit near-sine oscillations, with the phase
determined by the amplitude of perpendicular electric field.
The simulation result is similar to the one reported in Fig. 3.
In other words, different Rashba coupling strengths due to
applying different perpendicular electric fields can indeed
result in an important phase shift, which yields the consis-
tent conclusion with those results obtained from the six-band
Hamiltonian Eq. (1).
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