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Dynamical demographic phases explain how population growth and mutation control
the evolutionary impact of bottlenecks
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Population bottlenecks involve steep declines in population size as well as changes to composition; they are
an important aspect of contemporary evolution, and have been implicated across a wide range of taxa. However,
the precise mechanisms by which such bottlenecks translate into altered evolutionary outcomes remain poorly
understood. Here, we demonstrate how the fixation probabilities associated with such outcomes can depend
nontrivially on the rates of post-bottleneck growth and mutation as a population recovers. Notably, increased
population growth can invert naive expectations, driving fixation to attractors that are different to those from
within whose basin the bottleneck constrained the population, initially, despite more rapidly suppressing the
intrinsic fluctuations that are ostensibly required to switch between basins of attraction. Such behavior moreover
only occurs beneath a critical threshold of mutation, which is itself a function of the rate of population growth.
We explain our results in terms of statistically distinct regimes of demographic behavior, drawing parallels
with the notion of nonequilibrium phase transitions. These regimes are delimited by sharp transitions in time,
as a population grows, and ultimately result from a time-dependent antagonism between mutation and the
stochastically induced effects of frequency-dependent birth. Recast in this context, the rates of population
growth and mutation are seen to control long-term fixation probabilities by altering the duration and character of
post-bottleneck dynamical demographic regimes.
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I. INTRODUCTION

Population bottlenecks are widely accepted as an important
facet in the modern understanding of evolution. They involve
a steep decline in a population’s size as well as a change in its
composition, and typically arise due to exogenous events, in-
cluding disease, changes to the climate, or population fracture
(often referred to as a founder event) [1,2]. However, despite
having been implicated in the reduction of both genetic and
phenotypic variation in organisms across a range of scales,
such as viruses [3,4], song sparrows [5,6], tropical surgeonfish
[7], elephant seals [8], and humans [9], the question of pre-
cisely how a bottleneck influences evolution, and in particular,
the impact of post-bottleneck growth as a population recovers,
remain largely open.

The traditional understanding of how growth impacts evo-
lutionary dynamics is based on the observation that, for
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populations that are well mixed, the standard deviation of
intrinsic fluctuations decreases in time with the inverse square
root of the population size N . This is then naively un-
derstood to give rise to three ostensibly monotonic effects:
faster rates of recovery will more rapidly suppress fluc-
tuations, increasing the likelihood that a given population
will fixate to the attractor within whose basin it started its
recovery; a larger population at the start of recovery will
similarly result in an increased likelihood of such fixation,
and the nearer a population is, at the start of recovery, to
an attractor, the greater the likelihood of fixation to that
attractor.

However, aspects of this picture have now been challenged
by several pioneering works [10–13]. In particular, [14] re-
cently showed that the success of invasion, in the absence
of mutation, can depend nonmonotonically on the rate of
population growth. This begs the question as to whether such
nontrivial effects also play out in mutation-driven evolution-
ary dynamics and, if so, how post-bottleneck rates of growth
and mutation influence the evolutionary impact of a given
bottleneck.

Using a growing variant of an evolutionary game whose
deterministic fixed points are known to depend on the rate
of mutation, the iterated prisoner’s dilemma (IPD) under
replicator-mutator dynamics [15,16], we now show that the
“traditional” monotonicity of fixation only occurs while mu-
tation rates are greater than a specified function of the
population’s growth rate. When mutation rates are below this

2643-1564/2023/5(1)/013093(24) 013093-1 Published by the American Physical Society

https://orcid.org/0000-0002-7629-774X
https://orcid.org/0000-0003-2110-8611
https://orcid.org/0000-0002-4728-937X
https://orcid.org/0000-0002-8544-7658
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.013093&domain=pdf&date_stamp=2023-02-09
https://doi.org/10.1103/PhysRevResearch.5.013093
https://creativecommons.org/licenses/by/4.0/


EMANUELE CROSATO et al. PHYSICAL REVIEW RESEARCH 5, 013093 (2023)

threshold, decreasing intrinsic fluctuations leads to a variety
of novel nonmonotonic behaviors that challenge all three of
the aspects of the conventional picture, including those that
reverse the naive understanding of how a bottleneck might
impact evolutionary outcomes. For example, increasing the
rate of growth can drive fixation to an attractor that is different
to that from whose basin it started.

Ultimately, we explain our findings via an otherwise over-
looked antagonistic relationship between two generic aspects
of biological populations: birth rates that are frequency de-
pendent (i.e., they depend on relative fitness and abundance)
and mutation. The former leads to intrinsic fluctuations that
are state dependent, generically resulting in stochastically
induced “forces” that drive the population towards homogene-
ity, similar to the behavior reported in [13] in the context
of steady-state populations with different carrying capacities.
The latter, by contrast, drives a population towards hetero-
geneity. In this sense, despite being typically seen as a source
of stochasticity, mutation can act to suppress the effects of
another source of stochasticity: intrinsic fluctuations due to
replication.

Importantly, the relative magnitude of these effects changes
in time in our model since stochastically induced effects re-
duce as a population grows, while the effects of mutation
do not. We show that this results in three sequential, statis-
tically distinct regimes of demographic behavior. These can
be recast in terms of effective nonequilibrium phases of fixed-
N systems, which are reminiscent of the classical study of
nonequilibrium phase transitions [17,18], previously impli-
cated across a number of areas, including directed percolation
[19], self-organization of particle suspensions [20], surface
growth [21], epidemiology [22], and even hard-sphere pack-
ing [23]. Such dynamical demographic phases are shown to be
delimited by abrupt transitions at critical values of a control
parameter ∼log N , implying sharp transitions in time when
populations grow exponentially. In this context, the rates of
population growth and mutation are shown to alter the char-
acter and duration of such regimes, and therefore ultimately
control the fixation probabilities that characterize long-term
evolutionary outcomes.

II. RESULTS

Our results are organized as follows. In Sec. II A we
introduce a model for understanding recovery from bottle-
necks; a growing variant of the well-studied iterated prisoner’s
dilemma (IPD) under replicator-mutator dynamics [15,16].
We demonstrate that there are only three possible outcomes
in the long-time limit: fixation on one of the two attractors
or extinction. In Sec. II B we compute the likelihood of such
fixation as a function of bottleneck (initial conditions), and
the rates of growth and mutation. This shows that growth and
mutation can critically dictate the impact of a given bottleneck
on evolutionary outcomes (long-term fixation probabilities),
and illustrates both monotonic fixation and nonmonotonic
regimes. To understand this nonmonotonicity, Sec. II C out-
lines how dynamical behavior can be characterized by one
of three effective nonequilibrium phases, dependent on the
population size. These are as follows:
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FIG. 1. The growing frequency-dependent IPD: a toy model for
bottleneck recovery via population growth. By de-coupling the rates
of birth and death in the frequency-dependent IPD [15], we adopt a
model that combines the notions of frequency dependence and mu-
tation with those of population growth (see main text for definitions
of rates). We ask the following: What is the long-term effect of a
population bottleneck? Specifically, how does it influence evolution-
ary outcomes, and how does this change with the rate at which the
recovering population grows?

(1) a stochastically induced phase, at small population
sizes, where state-dependent fluctuations due to frequency-
dependent births dominate, driving the system, temporarily,
towards homogeneity;

(2) an asymmetric phase at intermediate population sizes,
where crossings between the two basins of attraction are over-
whelmingly likely to be in one direction only;

(3) a locked-in phase, at large population sizes, where
escape from either basin of attraction is extremely unlikely.

Section II D then shows how a growing population exhibits
these phases sequentially, in a manner controlled by the rates
of growth and mutation. Finally, Sec. II E validates this con-
jecture by satisfactorily reconstructing the outcome statistics
of Sec. II B using a decomposition of conditional probabilities
motivated by the observed dynamical phases.

A. Growing frequency-dependent IPD

The frequency-dependent IPD is a well-established evo-
lutionary game involving three strategies. It abstracts the
key facets of biological evolution and population dynamics
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FIG. 2. Barring extinction, recovering populations fixate on one of two deterministic attractors. Projecting the dynamics of the growing
IPD (a) onto the unit simplex [(a), inset] demonstrates O(1/

√
N ) intrinsic fluctuations that decrease as the population grows in time. Since

overall population growth is exponential (with rate b − d) the system converges on canonical deterministic dynamics as t → ∞ [(b), colors
represent the direction of deterministic flows]. This results in only three different evolutionary outcomes. Either the population goes extinct
[(a) in black, (c)], or the system fixates on one of the two deterministic attractors: the mixed-strategy limit cycle [(a) in blue, (d)] or the AllD
fixed point [(a) in red, (e)]. The statistics of these two latter outcomes are dictated not only by the founding population, but by fluctuations.
These determine the likelihood of crossing the separatrix that marks the boundary between the two basins of the stable attractors [dashed line,
(b)]. Lower-case font represents population fractions, e.g., nAllD = NAllD/N .

(e.g., birth, death, and mutation) into a tractable framework
whereby the fitness of individuals is determined by their rela-
tive successes and/or failures when playing each other in the
repeated game, the IPD.

In the classical formulation, each player of the repeated
IPD assumes one of three strategies: “always cooperate”
(AllC), who cooperate in every round; “always defect” (AllD),
who defect in every round; or “tit-for-tat” (TFT), who de-
fault to cooperation for the first round and then, at a small
complexity cost, copy their opponents’ moves thereafter. In
a single repeated game, players accumulate payoff over the
rounds according to the standard prisoner’s dilemma rules: if
both players cooperate, they receive a larger payoff than if
they both defect, but if one player cooperates and the other
defects, then the defector receives the highest possible payoff
while the cooperator gets the lowest payoff. The accumulated
payoffs for an m-round repeated game are encoded by the
matrix [15]

⎛
⎝

AllC AllD TFT
AllC Rm Sm Rm
AllD T m Pm T + P(m − 1)
TFT Rm − c S + P(m − 1) − c Rm − c

⎞
⎠

where T > R > P > S and R > (T + S)/2. We use T = 5,
R = 3, P = 1, S = 0.1, and c = 0.2.

This game is then set against a backdrop of birth, death,
and mutation (Fig. 1). With a rate b, the fraction of players
born into a given strategy is proportional to the fraction of the
total payoff accumulated by that strategy when all players play

each other. This is given by fiNi/ϕ, where

fi =
∑3

j=1 ai jN j − aii

N − 1
(1)

is the average fitness of a given strategy when played against
the whole population (including individuals of the same strat-
egy). Here, latin indices denote the three different strategies,
i.e., AllC → 1, AllD → 2, and TFT → 3, such that the ai j are
the components of the above payoff matrix and Ni is the
number of individuals playing each strategy. In our analysis,
but not in simulations, we use the simplification that

fi =
∑3

j=1 ai jN j

N
, (2)

which, although including self-interactions, still retains all the
relevant features associated with the IPD [16]. In either case,
the mean fitness is ϕ = ∑3

i=1 fi Ni/N . As a result, the higher
the relative fitness associated with a strategy, the more likely
that individuals are born with that strategy. A small fraction μ

of births further undergo mutation and are assigned a different
strategy. Death also occurs at random, with a rate d .

Choosing a population birth rate b that is greater than
the death rate d gives rise to unbounded exponential (i.e.,
Malthusian) population growth [Fig. 2(a)]. This rapidly sup-
presses O(1/

√
N ) fluctuations and converges to well-studied

deterministic behavior [represented on the unit simplex in
Fig. 2(a), inset]. In particular, for values of mutation rate
μ in the interval 10−7.5 �μ� 10−2.5, there are two stable
deterministic attractors [15]: a stable AllD fixed point, where
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FIG. 3. Rates of growth and mutation critically alter how a given bottleneck translates into fixation probabilities. For a range of initial
conditions, growth, and mutation rates, we use repeated Gillespie-Itô simulations to compute pAllD, the probability that a growing population
will fixate on the AllD fixed point. Choosing the initial demographic mix as the mixed-strategy fixed point, we see that pAllD depends on both
the rate of population growth and the rate of mutation [(a)]. Conversely, fixing the rates of growth and mutation, pAllD also depends on both the
initial demographic mix n0 [(b), (c), (e), (f)] and the initial population size N0 [(d), (g)]. Behavior can be qualitatively classified into two regions
separated by the red dashed line [(a)]. In the upper region, behavior agrees with expectations: higher rates of growth more rapidly suppress
O(1/

√
N ) intrinsic fluctuations and therefore increase the likelihood of fixation within the basin of attraction that the system started [(a)].

Increasing the initial population size reduces the likelihood of large fluctuations at early times, therefore exacerbating this effect [(b)–(d)].
In the lower region, behavior is more complex: there are high likelihoods of an AllD outcome at both low (b− d � 0.01) and intermediate
(0.03� b− d � 0.07) rates of growth [(a)]. This results in a nonmonotonic dependence of pAllD on b − d , which implies that population
growth can actually increase the likelihood of crossing the separatrix between the two basins of attraction, despite more rapidly suppressing
O(1/

√
N ) fluctuations. There is a similarly nontrivial structure to the effects of initial demographic mix on pAllD where, for certain n0, an

increase in N0 actually causes pAllD to increase rather than decrease [representative initial states s′′ and s′, respectively, (e)–(g)].

a small fraction of TFT players (who mutually cooperate) are
exploited by a large population of AllD defectors, and a stable
limit cycle around an unstable “mixed-strategy” fixed point
[Fig. 2(b) and Appendix B]. The latter is characterized by a
three-phase cycle whose handedness is anticlockwise in the
traditional presentation of the state-space simplex; players of
TFT can outcompete those playing AllD due to their capacity
for mutual cooperation, however, they are then susceptible
to invasion by players of AllC due to the complexity cost,
whereby AllC players can be exploited by those playing AllD,
completing the cycle.

As a consequence, only three outcomes are possible as
t → ∞. Either (i) the population goes extinct in the early
stages due to finite-size fluctuations [Figs. 2(a) (black) and
2(c)] or its demographic mix converges on (ii) the mixed-
strategy limit cycle [Figs. 2(a) (blue) and 2(d)] or (iii) the AllD
fixed point [Figs. 2(a) (red) and 2(e)]. This justifies our choice
of the growing IPD as representative model: it exhibits both a
fixed point and a limit cycle, two of the most common features
of any model of population dynamics, and an asymmetric
simplex, which is arguably a feature of any real-world setting.

B. Statistics of evolutionary outcomes

Like most models of population dynamics, the grow-
ing IPD is both nonlinear and time inhomogeneous, and
thus resists most standard approaches to probabilistic analy-
sis. Computing the statistics of the aforementioned t → ∞

outcomes, i.e., the fixation probabilities, therefore involves
using a high-performance computing facility [24] to perform
stochastic simulations.

Specifically, we employ a hybrid Gillespie-Itô approach
(see Appendix A) to approximate the following fixation prob-
ability:

pAllD = lim
t→∞ Pr{nt = AllD-fp | N0, Nt ′ > 0 ∀ t ′ � t}, (3)

where nt Nt = Nt = {NAllC
t , NAllD

t , NTFT
t }. This is the limiting

probability, after long times, that the system converges to the
AllD fixed point, given specified post-bottleneck initial con-
ditions, and conditioned on populations that do not become
extinct.

The results demonstrate several interesting features. For
instance, choosing n0 to be the unstable mixed-strategy fixed
point, we see that pAllD depends on both the rate of population
growth and the rate of mutation [Fig. 3(a)]. Similarly, fixing
the rates of population growth and mutation reveals sensitiv-
ity to initial conditions, where pAllD depends on both initial
demographic mix n0 and initial population size N0 [Figs. 3(b)–
3(g)]. The parameter space of mutation and growth rates can
moreover be divided into two qualitative regions [Fig. 3(a),
red dashed line].

In the upper region, behavior agrees with the monotonic
expectation that faster growth rates reduce O(1/

√
N ) intrinsic

fluctuations more rapidly and therefore increase the likelihood
of fixation within the same basin of attraction that the system
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started [Fig. 3(a)]. Similarly, as the initial population size N0

increases, the system experiences fewer large fluctuations at
early times and hence this also increases the likelihood of fix-
ation within the starting basin of attraction [Figs. 3(b)–3(d)].

In the lower region, however, behavior is more complex.
There are high likelihoods of an AllD outcome at both low
(b− d � 0.01) and intermediate (0.03� b− d � 0.07) rates
of growth [Fig. 3(a)]. This results in a nonmonotonic de-
pendence of pAllD on population growth. That is, despite
more rapidly reducing the fluctuations that are ostensibly
required to cross the separatrix between mixed-strategy and
AllD basins, growth can actually increase the likelihood of
fixating on the AllD fixed point. Similarly, rather than de-
creasing the likelihood of crossing the separatrix and fixating
there, increasing N0 can actually increase this likelihood for
certain initial states, confounding expectations regarding the
role of fluctuations at early times when populations remain
small [Figs. 3(e)–3(g)].

In the context of population bottlenecks, this demonstrates
that the long-term ramifications of reducing a population to a
particular size and demographic mix can depend, critically, on
the rates of post-bottleneck growth and mutation.

C. Effective nonequilibrium phases

To understand the nontrivial behavior in Fig. 3, we re-
peatedly simulate the fixed population size IPD (Appendixes
A and G), computing a so-called empirical distribution [25].
Specifically, we calculate the mean fraction of time spent in
the AllD basin,

F =
〈

1

T

∫ T

0
1nt ∈AllD-b dt

〉
N

, (4)

where 1 is the indicator function, N denotes the size of the
ensemble over which the average is taken, and the integration
is understood in the Itô sense. The time T > (log Nmax)/(b −
d ) exceeds the entire duration of our growing simulations
(which we stop at Nmax = 1010) and represents an effective
cutoff, so that the statistics of fixed-size simulations are not
skewed by events that are highly unlikely to occur in the
growing simulations (i.e., with characteristic rates 	1/T ).
Such a large but finite T therefore aims to capture the average
transient behavior of a growing population at a particular
N in the sense of a quasistatic approximation. Our results
[Fig. 4(a)] are suggestive of a large deviation principle, such
that p(F |N ) 
 exp [−N Iμ(FN )], where Iμ is a convex rate
function. Although determining the precise functional form of
Iμ is considered out of scope for this paper, our data suggest
that it has only three zeros, despite varying N over 10 orders
of magnitude:

arg min Iμ(F ) ≈

⎧⎪⎪⎨
⎪⎪⎩

0.5, ∀ N � 102.7

0, ∀ 102.7 < N < 1/μ

1, ∀ N > 1/μ.

(5)

This means that, depending on the population size, there are
three statistically distinct types of characteristic demographic
behavior. Due to the finite size of T , we call these effective
nonequilibrium phases. The three effective phases are charac-
terized as follows:

(1) Stochastically induced phase. Demographic trajecto-
ries at small population sizes are characterized by large
intrinsic fluctuations and an intermediate value of F [Fig. 4(a)
in magenta, Figs. 4(b) and 4(c)]. Fluctuations are both cor-
related and state dependent, features that are captured by
the symmetric 3 × 3 correlation matrix, B†

i j , that can be ob-
tained by performing a Van Kampen system-size expansion
[26] and projecting the results onto the unit simplex using
Itô’s lemma [Figs. 4(b) and 4(c), orange crosses, and Ap-
pendix E]. The frequency-dependent nature of births means
that fluctuations at the center of the simplex are large and
isotropic, while the components normal to the boundaries
decrease rapidly as the edges and corners are approached.
This gives rise to stochastically induced effects [27,28], where
fluctuation gradients bias stochastic trajectories, driving them
towards the simplex edges and corners, on average [Figs. 4(b)
and 4(c) and Appendixes C–E]. Despite such overall be-
havior, B†

i j is not symmetric under the interchange of nAllC,
nAllD, and nTFT, and stochastic trajectories retain character-
istics encoded by the payoff matrix, including a bias for
anticlockwise motion, and a comparatively low likelihood
of reaching the AllC corner (when compared to AllD and
TFT corners). These behaviors are crucial to understand-
ing the precise μ-dependent mechanisms that underpin the
value F ≈ 0.5.

(2) Asymmetric phase. Increasing N , the magnitude of
fluctuations decreases, and the relative geometry of the under-
lying attractors becomes increasingly important. In particular,
the system enters an asymmetric regime at populations above
N ≈ 102.7, for which F ≈ 1 [Fig. 4(a), yellow]. Here, state-
dependent fluctuations permit the system to cross from the
mixed-strategy limit cycle to the AllD basin, but not from the
AllD fixed point to the basin of the limit cycle [Fig. 4(d)]. In
other words, once the separatrix has been crossed, trajectories
are extremely unlikely to come back within the time T .

(3) Locked-in phase. Once N is sufficiently large, fluctu-
ations are small and demographic trajectories are effectively
locked into the mixed-strategy basin for times < T , implying
F ≈ 0 [Fig. 4(e), dark gray].

The aforementioned effective phases moreover couple to
mutation, which alters both the character of the stochastically
induced phase [Figs. 4(b) and 4(c)], and the population size
at which the system transitions from asymmetric to locked-in
phases [Fig. 4(a), white dashed line].

The origin of the former is that the standard devia-
tion of fluctuations normal to the boundaries is O(

√
μ/N )

(Appendix F). Evolutionary trajectories therefore become
increasingly confined to the boundaries as μ decreases
[Figs. 4(b) and 4(c)]. This not only exacerbates stochastically
induced effects, but also increases the mean residence times
associated with the corners. In particular, at comparatively
high levels of mutation, residence times are less than T , which
results in a stochastic cycling between TFT and AllD corners
(recall that there is a lower likelihood of finding the AllC
corner) [Fig. 4(b)]. Since these two corners have compara-
ble mean rates of escape to the opposite basin of attraction
(Appendix H), F takes a value of approximately 0.5. By
contrast, lower rates of mutation imply dwell times greater
than T [Fig. 4(c)]. On average, therefore, the system will find
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FIG. 4. Effective nonequilibrium phases. When characterized by the fraction F (of a large but finite time) that trajectories spend in the
basin of the AllD fixed point, repeated simulations of the IPD at fixed population sizes demonstrate three distinct regimes of demographic
behavior [(a)]. When population sizes are small, fluctuations are dominant, and the separatrix can be crossed in both directions [circles, (b) and
(c)]. Eigenvalues of the projected correlation matrix B†

i j indicate that the magnitude and bias of the fluctuations depend on demographic mix
[orange crosses, (b) and (c)]. Generally, this gives rise to fluctuation gradients that drive the system towards the simplex edges and corners.
Although, due to the structure of the payoff matrix there is also an anticlockwise bias and a lower probability of finding the AllC corner.
At the simplex boundaries, normal fluctuations are proportional to

√
μ [(b) and (c), magnified inset]. Characteristic trajectories (beige) are

therefore increasingly confined to the boundaries and corners as μ decreases. Since the residence times associated with the corners are O(1/μ),
trajectories spend a disproportionate fraction of their time in the AllD and TFT corners [bars, (b) and (c)]. Beyond this regime, behavior
becomes increasingly deterministic [green half-arrows, (e) and (d)]. For intermediate population sizes, behavior is asymmetric: demographic
trajectories can cross the separatrix from the mixed-strategy limit cycle, but not from the AllD fixed point [(d)]. The upper critical population
size of this regime scales as ∼1/μ [white, (a)]. For large enough N , behavior becomes increasingly deterministic, and trajectories remain
locked in to the mixed-strategy limit cycle [beige, (e)]. At low μ, the separatrix is typically crossed where it intersects either the TFT or AllD
edges, which is where the magnitude of stochastic effects, ‖B†‖F , are largest relative to deterministic flows, |Ai|, with ‖ · ‖F and | · | denoting
Frobenius and �2 norms, respectively [(c), (d), (f)]. Representative trajectories and population fractions (bars) only show a fraction of the total
time simulated (see bar legend) in order to aid visualization. Crossing statistics (circles) are taken from single simulations lasting 106 s.

either the AllD or TFT corner and then remain there. Here, the
value of ≈0.5 results from the position of the mixed-strategy
fixed point, and the correspondingly equal probability that
trajectories are expelled to either the AllD or TFT corners
[typically, via the AllC-TFT edge, see Fig. 4(f)].

For the latter, the ∼1/μ dependence of the asymmetric to
locked-in transition can be understood in terms of the stochas-
tic “footprint” of evolutionary trajectories in the locked-in
regime, i.e., those that repeatedly (and stochastically) navigate
the limit cycle (Fig. 5). In particular, due to the finite nature of
T , the convex hull of this footprint is well defined, reflecting
the shape of the limit cycle at a different value of μ [Figs. 5(a)–
5(d)]. The result is a family of scaling relations, where the
footprint of small populations with high levels of mutation
[i.e., high noise, small limit cycle, Fig. 5(c)] is approximately
equivalent to that of large populations with low levels of

mutation [i.e., low noise, large limit cycle, Fig. 5(d)]. The
critical scaling that defines the onset of the regime occurs
when the stochastic footprint fills the mixed-strategy basin
[Figs. 5(a) and 5(e)], therefore facilitating the crossing of the
separatrix. Here, O(

√
μ/N ) fluctuations must be equivalent to

the O(μ) deterministic repulsion in the direction normal to
the AllC-TFT edge (Appendix F), implying N ∼ 1/μ, which
agrees with both ensemble statistics and convex hull analysis
[cf. Figs. 4(a) and 5(e)].

This behavior can be recast as a size-dependent antagonis-
tic relationship between mutation and intrinsic noise, where
the former favors population heterogeneity (attracting towards
the center of the simplex) and the latter homogeneity (ex-
pelling towards the simplex boundaries). This is particularly
important in growing populations since the balance between
the two factors changes over time.
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(c)

(d)

(a)
(b)

(e)

FIG. 5. Understanding the mutation-dependent transition between asymmetric and locked-in phases. At finite population sizes (and for
times t < T ) demographic trajectories in the locked-in regime repeatedly circumnavigate the limit cycle, leading to a well-defined “footprint”
of visited points due to the state dependence of the noise correlations. We compare such footprints via the convex hull, Hull (nt<T ), of all
points sampled by a trajectory nt<T within a specified (large) time T [(a)]. The area of this convex hull is written as a fraction of the area A of
the mixed-strategy basin of attraction H = Area [Hull(nt<T )]/A. For a given μ, the fraction H converges exponentially to the value associated
with the deterministic limit cycle, as N increases [(a), (b)]. As a result, there are approximate equivalences between the footprint of trajectories
with a large μ and small N and those with a correspondingly smaller μ and larger N [(a), (c), (d)]. This leads to a family of scaling relations in
the locked-in regime (a). The critical scaling, at which the footprint occupies the entire mixed-strategy basin, is N ∼ 1/μ, which agrees with
ensemble statistics (e). Since this corresponds to onset of the locked-in phase, the corollary is that the asymmetric phase has a duration that is
μ dependent (cf. Fig. 4).

D. Dynamical regimes in growing populations

Since the control parameter of the effective nonequilib-
rium phases is log N , an exponentially growing population
exhibits the three phases in sequence, with transitions occur-
ring abruptly in time (Fig. 6).

Seen through this lens, it is clear that changing the rate of
growth changes the duration of the stochastically induced and
asymmetric phases by an overall factor (the locked-in phase
is, in principle, open ended). By contrast, the rate of mutation
changes only the duration of the asymmetric phase (by virtue
of the μ-dependent transition to the locked-in phase).

The asymmetric phase is especially important for deter-
mining fixation probabilities. If the separatrix is crossed from
the mixed-strategy basin during this phase, then the system re-
mains in the basin of the AllD fixed point until the onset of the
locked-in phase, where it remains for all until the population
reaches Nmax = 1010. Therefore, the longer the duration of the
asymmetric phase, the greater the likelihood of crossing the
separatrix.

However, despite the appeal of this heuristic, we must also
account for the fact that this likelihood is also conditioned on
the state at which the system enters the asymmetric regime.
This is determined by the duration of the preceding stochas-
tically induced regime, which is set by the rate of growth. It
is also determined by the stochastic character of that regime,
which is set by mutation (see previous section). Here, we
remark on an important difference between the fixed-N en-
semble and growing systems. In the fixed-N ensemble, the

value F in the stochastically induced regime arises from de-
generate mechanisms: stochastic cycling between corners at
high μ, versus finding a corner and staying there for low μ.
In a growing system, by contrast, this is not the case. The
reason is that, for all but pathologically slow growth rates, or
extremely large μ, the duration of the stochastically induced
regime is sufficiently short in comparison to corner dwell
times that the latter mechanism is dominant (i.e., there is little
to no cycling between corners, and the separatrix is only likely
to be crossed either once or not at all during the regime).
In turn, this puts greater emphasis on the population’s initial
composition, and its role determining the relative likelihood
of crossing the separatrix versus finding the TFT corner.

To test our understanding of this complex interplay, we
construct an approximation to the full outcome statistics. This
is based on a decomposition in terms of conditional prob-
abilities associated with each phase, and four “equivalence
classes” of states at the start of the asymmetric phase.

E. Equivalence classes

Consider the conditional probability pasy
AllD(s) = Pr{ntlock ∈

AllD-b | ntasy = s}, where avoidance of extinction is now as-
sumed implicitly. That is, the likelihood of being in the
AllD basin at the onset of the locked-in phase tlock, given
that the system was in a state s at the onset of the asym-
metric phase tasy. Computing this probability via stochastic
simulation demonstrates the existence of three approximate
equivalence classes Si, such that pasy

AllD(si ) is agnostic to the
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FIG. 6. Growth and mutation control the relative duration of
dynamical regimes. The three effective nonequilibrium phases in
fixed-size systems are associated with a control parameter log N
(Fig. 4). In an exponentially growing system, this is directly pro-
portional to time. As such, a growing population exhibits three
distinct dynamical regimes in sequence. Changing the overall rate of
growth therefore rescales the duration of the stochastically induced
and asymmetric phases. Changing the rate of mutation, by contrast,
alters only the duration of the asymmetric phase. However, this
duration is especially important to overall fixation probabilities since
a longer asymmetric regime implies a higher likelihood of crossing
the separatrix, from which there is no return. We test these ideas
quantitatively by decomposing fixation probabilities according to
equivalence classes of states.

demographic mix si ∈ Si, at the onset of the asymmetric phase
[Fig. 7(a) and Appendix I, Fig. 11]. These are as follows:
those states in the AllD basin S1; those along the AllD-TFT
edge that stretch from the separatrix to the TFT corner S2; and
those along the TFT-AllC edge (excluding the TFT corner) on
the mixed-strategy side of the separatrix S3. The remaining
states of the mixed-strategy basin are labeled S4. While these
do not form an equivalence class, we assume (and later show)
that they only minimally contribute to overall fixation
probabilities.

The existence of equivalence classes prompts the following
simplification (Appendix I):

pAllD ≈
4∑

i=1

pasy
AllD(si ) pstoc

Si
, (6)

where pstoc
Si

= Pr{ntasy ∈ Si | N0} (again, with avoidance of
extinction assumed implicitly), and states si can be chosen
arbitrarily from Si. This approximation allows us to verify our
heuristic understanding of how the rates of growth and muta-
tion impact fixation probabilities by controlling the duration
and stochastic character of dynamical phases and therefore
the likelihood of (stochastic) behaviors, such as crossing the
separatrix, that are crucial in dictating long-term outcomes.
It also dramatically reduces the computational time needed
to calculate pAllD for a range of different initial conditions
since we only need to recalculate the four likelihoods that the

stochastically induced regime finishes in each of the equiva-
lence classes, respectively. The conditional probability pasy

AllD,
by contrast, does not depend on the specific initial conditions
(but rather in which equivalence class the system is at time
tasy).

1. Growth and mutation

Choosing the mixed-strategy fixed point as the initial
demographic mix, we can use Eq. (6) to deconstruct the de-
pendence of pAllD on the rates of growth and mutation (Fig. 7).

In the stochastically induced regime, fluctuation gradients
“drive” trajectories from the center of the mixed-strategy
basin towards the simplex edges and then the corners. As a
result, the growth-dependent (average) duration of the regime,
t asy = log (102.7/N0)/(b − d ), dictates in which class the tra-
jectories are likely to start the asymmetric phase: rapid growth
rates are required to confine trajectories that end in the mixed-
strategy basin to the S4 region, while intermediate and slow
growth rates suffice for the S3 and S2 regions, respectively
[Figs. 7(c)–7(e)]. Although the average time spent in the two
basins by such trajectories during the stochastically induced
regime is independent of μ [Fig. 4(a)], the likelihood that the
system is in S1 at time tasy actually increases with decreasing
μ [Fig. 7(b)]. The reason is that decreasing μ changes the
shape of the separatrix, therefore reducing the the size of the
S3 region (Appendix J).

The asymmetric regime, by contrast, has a duration
that is both growth and μ dependent: τμ = tlock − tasy =
− log (μ 102.7)/(b − d ). Here, the probability of crossing the
separatrix hinges, principally, on the likelihood of avoiding
the TFT corner and its associated large confinement times
[Figs. 7(g)–7(i)]. For example, τ

asy
μ must be extremely long in

order to permit crossings from the S2 region since populations
starting the asymmetric regime from this region encounter
the TFT corner with almost certainty. Crossings from the
S4 region, however, occur at more modest τ

asy
μ , achieved by

either low growth and high μ, or modest growth and low μ,
reflecting the possibility that trajectories might avoid the TFT
corner. Those from the S3 region can happen at the smallest
τ

asy
μ since there is a high likelihood that trajectories will avoid

the TFT corner (recall the anticlockwise dynamics) and the
ratio of the magnitude of stochastic effects to the magnitude
of the deterministic flow is large in S3 [see Fig. 4(f)].

Combining these conditional probabilities using Eq. (6)
satisfactorily reproduces the overall statistics of demographic
outcomes [cf. Figs. 7(n) and 3(a)]: the difference between our
approximation and the full simulations have a mean value of
0.027, when averaged over growth and mutation rates, and a
maximum value of 0.099 [Fig. 7(o)]. This also confirms our
assertion that the trajectories that start the asymmetric phase
from the S4 region do not impact long-term outcomes. The
reason is that this only happens with significant likelihood
when growth rates are high, which simultaneously ensures
that such trajectories never cross the separatrix [Figs. 7(e),
7(i), and 7(m)]. The same decomposition is shown for initial
demographic mixes other than the mixed-strategy fixed point
in Appendix K.
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(b) (c) (d) (e)
(a)

(o)(f) (g) (h) (i)

(n)(m)(l)(k)(j)

FIG. 7. The dependence of fixation probabilities on rates of growth and mutation is reproduced by a decomposition based on effective
phases and equivalence classes. Fixation probabilities can be decomposed in terms of conditional probabilities that are based on equivalence
classes of the asymmetric phase [(a)]. Within each class Si, i = 1, . . . , 3, the outcome of the asymmetric phase does not rely on the specific
demographic mix at the onset of the phase. Moreover, the remaining states S4 contribute very little to the overall fixation probabilities [(e),
(i), (m), and main text]. This permits the approximation in Eq. (6), graphically represented by (b)–(n), which show the probability px

y(z)
of the system being in an area y of the simplex at the end of a phase x, given that it was in state z when that phase started. The resulting
reconstruction is in good agreement with the full stochastic simulations [(n) and Fig. 3(a)], with the error ε, i.e., the absolute value of the
difference between pAllD obtained via full simulation and pAllD obtained via the reconstruction, being shown in (o). The same decomposition
is shown in Appendix K, for additional initial conditions. The initial population size is N0 = 128, while the times tasy and tlock are derived from
the critical population sizes identified in Fig. 4.

2. Initial conditions

The approximation in Eq. (6) further provides insight into
the founderlike dependence of fixation probabilities on initial
conditions (Fig. 8 and Appendix L, Figs. 16–18). At high
values of μ, the asymmetric phase has negligible duration and
behavior is trivial [Figs. 3(b) and 3(c), 16, and 17]. At low val-
ues of μ, however, the asymmetric regime cannot be ignored
and has a significant bearing on fixation probabilities.

In this case, if the initial population size is small [Figs. 3(e)
and 18], then the stochastically induced phase is sufficiently
long as to expel trajectories to the AllD or TFT corners from
the AllD or mixed-strategy basins, respectively. Only the for-
mer trajectories impact fixation probabilities, however, since
for all but the slowest growth rates, trajectories stuck in the
TFT corner have a residence time longer than the duration of
the asymmetric regime.

By contrast, if the initial population size is large [Figs. 3(f)
and 8], then the duration of the stochastically induced phase
is not long enough to expel trajectories to the boundaries
and/or corners, resulting in a nonzero likelihood of starting
the asymmetric regime from either the S3 or S4 regions. For
the former, there is a high probability of crossing to the AllD
basin during the asymmetric regime since the deterministic
flows direct demographic trajectories towards the separatrix.
For the latter, this probability is much lower since trajectories
are more likely to be entrained to the limit cycle. Nevertheless,
the small contribution that results from the S4 region breaks
one of the assumptions on which Eq. (6) is based, which also
explains why the error in our decomposition increases with N0

for certain values of μ and b − d [the mean value of the error
in Fig. 8(j) is 0.079, while the maximum value is 0.285]. Of
note, the values shown in Fig. 8 are the worst case of those we
have simulated (Appendix L).
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(a) (c)(b) (j)

(f) (h)(e) (g) (i)

(d)

FIG. 8. The sensitivity to initial conditions can be reproduced by a decomposition based on effective phases and equivalence classes. For
certain rates, i.e., those below the red line, Fig. 3(a), fixation probabilities can rely critically on initial conditions. That is, initial demographic
mixes that are “close” (and not necessarily near the separatrix) can give rise to dramatically different long-term fixation probabilities. This is
particularly striking at low levels of mutation (log10 μ = −6.5) and comparatively high initial population size (N0 = 250) [cf. Fig. 3(f)]. The
reason for this is twofold. First, larger initial populations reduce the effect of the stochastically induced phase, which is to expel populations
to the simplex boundaries and the AllD and TFT corners [(c), (d)]. Second, the duration of the asymmetric phase is significant and cannot be
neglected (middle row). This implies that trajectories finishing the stochastically induced phase in classes S3 or S4 can still cross the separatrix
and fixate on the AllD fixed point [(g), (h)]. While this provides a heuristic understanding, the contribution to pAllD from the S4 region violates
one of the assumptions of (6), and therefore the error increases with N0 for the stated values of log10 μ = −6.5 and b − d = 0.05 [(j) and
Appendix L, Figs. 19 and 20].

III. DISCUSSION

Using a growing variant of an iconic model of evolutionary
game theory, we have demonstrated the existence of nontrivial
fluctuation-mediated effects in growing populations, whereby
the rates of growth and mutation critically determine how
fixation probabilities are conditioned on initial population
size and demographic mix. In particular, we show that, for
low mutation rates and intermediate growth rates, behavior
defies traditional monotonic expectations on the likelihood
of fixations. This has ramifications for the understanding of
population bottlenecks and their long-term impact. The impli-
cation being that the population growth commonly associated
with post-bottleneck recovery can, in fact, be as important as,
if not more than, the effects of the bottleneck on population
size and demographic mix.

Our findings apply to populations that are well mixed,
and as such pertain to systems that combine short-range in-
teractions with a mechanism for mixing that is fast on the
timescales of the population dynamics, or those that other-
wise have effectively long-range interactions, either explicitly
or via the mutual interaction with public resource (although
some of these assumptions have recently been brought into
question [29]).

In this context, we follow several pioneering works that
have characterized various effects of growth in well-mixed

populations [10–14]. Although they do not explicitly exam-
ine the role of initial conditions, nor mutation, the behaviors
appearing in two of these works [13,14] are related to the
those reported here. As are several studies concerning growing
systems of binary “spins” [30–32].

The shared mechanism in all these cases is the presence
of O(1

√
N ) intrinsic fluctuations that decrease in time as the

system grows. This has two ramifications: first, ergodicity is
broken, implying that a population fixates to its deterministic
attractors in long times, and, second, there is a decreasing
scale by which fluctuations can couple dynamically to the
underlying geometry of those attractors (and their basins). At
a high level, it is the combination of these effects that gives
rise to our headline behavior: fixation probabilities that de-
pend nontrivially on initial conditions (or otherwise stochastic
events at early times), even as t → ∞.

Such fluctuation-mediated effects are further character-
ized by a dependence on the rates of growth and mutation,
which we explain by putting forward the notion of effective
nonequilibrium phase transitions, and showing that these de-
limit distinct demographic regimes in our model. The rate
of growth controls the overall rate at which intrinsic fluc-
tuations decrease and therefore also the relative duration of
such demographic regimes. Mutation, by contrast, has two
related effects. First, it changes the nature of the underlying

013093-10



DYNAMICAL DEMOGRAPHIC PHASES EXPLAIN HOW … PHYSICAL REVIEW RESEARCH 5, 013093 (2023)

deterministic attractors (the size of the mixed-strategy limit
cycle) and hence the structure to which decreasing fluctua-
tions couple. Second, it also changes the state dependence of
the fluctuations. While the former impacts the character of the
initial stochastically induced phase, it is the combination of
both of these effects that sets the ∼1/μ dependence of the
critical transition between the intermediate asymmetric and
the final locked-in phases.

The latter behavior is an example of a potentially inter-
esting and unexpected antagonistic relationship between two
sources of stochasticity: mutation and the intrinsic effects of
finite-sized populations. In our model and other studies, mu-
tation promotes heterogeneity, while the intrinsic fluctuations
that arise from frequency-dependent birth drive the system
towards homogeneity. This is particularly important in the
context of population growth since the effects of mutation
do not depend on the population size, whereas the stochas-
tically induced forcing due to intrinsic noise decreases with
increasing population size. As a result, we speculate the other
growing systems may also exhibit mutation-dependent criti-
cal transitions, where the effects of intrinsic fluctuations are
balanced by those of mutation.

More generally, for growing well-mixed populations with
all but the simplest of deterministic attractors, i.e., fixed
points, limit cycles, and stable manifolds, etc., the implication
is that growth may be synonymous with effective nonequilib-
rium phase transitions. Understanding whether and how these
fit into the existing literature is an open question. Of potential
interest is the ongoing challenge to classify nonequilibrium
phase transitions by their universality classes [18]. Work has
been undertaken to describe single absorbing state transitions
(of the directed-percolation type) [17,33,34] and also sym-
metric absorbing state transitions [35], but there appears to be
very little literature on asymmetric absorbing state transitions.

Theoretical considerations aside, we put forward that our
ideas may be examined within the context of directed evo-
lution [36,37]. Here, another, albeit direct, interplay between
growth and mutation has already been demonstrated: muta-
tions occurring at the genetic loci associated with growth
control promote so-called genetic instabilities [38]. Our
results also appear relevant to state-of-the-art in silico rep-
resentations of directed evolution, where the role of intrinsic
fluctuations during growth has so far been overlooked [39].

A further setting that may prove relevant is that of viruses,
which need to survive many population bottlenecks involved
in host-to-host, as well as intrahost (e.g., plaque-to-plaque),
transmission [3,4,40]. Due to their high mutation rate, these
viruses typically consist of a whole spectra of nucleotide
sequences, a so-called quasispecies [40]. After each transmis-
sion, a small number of viral particles need to be capable of
restoring either the original mutant spectra, or a different one
that is adapted to a new host or environment. The success of
viruses in overcoming this challenge is hypothesized to be
related to their high mutation rate, which is estimated to be
very close for some viruses to the theoretical error threshold
above which viral identity cannot be maintained [40]. We
speculate that a previously unappreciated basis for such high
mutation rates could be the stochastic effects demonstrated
in this study, which drive small replicating populations to-
wards homogeneity. In particular, during the initial stages of

post-bottleneck recovery, a viral population will become in-
creasingly dominated by a single sequence chosen mostly by
chance. In this context, high mutation rates are seen more as
a “correction” for the action of finite-size effects, rather than
for the compositional restriction due to the bottleneck itself.
Answering this question and more is left for future work.

Nevertheless, bridging the gap between the abstract set-
ting of this work and the aforementioned applications will
undoubtedly involve significant work. The extent to which this
will be possible remains an open question, and may hinge on
features that are not included in our model, such as spatial
structure and/or other physical constraints [41–44]. So-called
“patch” models of interacting locally well-mixed subpopula-
tions is one avenue that may prove promising. Exploring how
the ideas set out here translate across a wider class of systems
is therefore an important avenue of future research, and we
welcome further work in the area.
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APPENDIX A: GILLESPIE-ITÔ SIMULATIONS

The Gillespie algorithm [45,46] allows the exact simula-
tion of the stochastic dynamics of the growing IPD when N
is small, i.e., when such dynamics cannot be approximated
by simply integrating the Stochastic Differential Equations
(SDEs) (see Appendices C and D). The downside of this
algorithm is that its computational time scales linearly with N ,
becoming impractical as the population grows. We therefore
adopt a hybrid approach: when N is smaller than a cho-
sen threshold the system’s dynamics are simulated with the
Gillespie algorithm, and when the threshold is exceeded they
are simulated by numerically integrating the SDEs (Euler-
Maruyama). Since the latter method results in values of Ni

along the real line, rounding is required if stochastic fluctua-
tions trigger a switch back to the Gillespie algorithm.

Our choice for the algorithm switch threshold is N = μ−1.
This is motivated by the existence of the locked-in phase,
which begins when N ≈ μ−1 (see Fig. 4). During this phase,
the risk that the SDE approximation would lead to an “ac-
cidental” crossing of the separatrix is extremely small. A
minimum threshold of N = 10000 is used for simulations
with large μ.

All results were obtained using the High Performance
Computing facility Katana [24]. The results in Fig. 3(a) [and
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(a) (b) (c) (d)
log10μ=-6.9 log10μ=-5.1 log10μ=-3.9 log10μ=-2.7

(e) (f) (g) (h)
log10μ=-6.9 log10μ=-5.1 log10μ=-3.9 log10μ=-2.7

FIG. 9. Population dynamics in the deterministic limit of the growing IPD at different values of μ. The top row (a)–(d) shows the direction
of the determinist flow, while the bottom row (e)–(h) shows the magnitude (speed). For all panels, the growth rate is b − d = 0.05.

Figs. 13–15, panel (p)], were obtained with 10000 repetitions
of the hybrid Gillespie-Itô simulations for each combination
of b and μ (fixing d = 1). Each repetition was carried out
until N > 1010. The results in Figs. 3(b)–3(g) were similarly
obtained with 1000 repetitions for each initial condition. The
results in Figs. 7(b)–7(i) [and Figs. 13–15, panels (b)–(i)]
were obtained with 1000 repetitions for each combination of
μ and b. 1000 repetitions were also used to obtain the results
in Figs. 8(a)–8(d) and analogous figures in Appendix L.

The fixed-size dynamics were also simulated using the
hybrid Gillespie-Itô approach. The Gillespie algorithm was
modified by setting d = 0 and “killing” a randomly se-
lected player at every birth. The Itô part of the algorithm
involved replacing the noise correlation matrix (see details in
Appendix G). The results in Fig. 4 were obtained by running
the fixed-size Gillespie-Itô algorithm 1000 times for 20000 s
for each combination of μ and N .

APPENDIX B: DETERMINISTIC LIMIT

In the N → ∞ limit, the behavior of the growing iterated
prisoner dilemma described in this study is equivalent to that
of the following continuous, deterministic system:

dni

dt
= bμ

ϕ

∑
j =i

( f jn
j − fin

i ) +
(

b fi

ϕ
− d

)
ni, (B1)

where ni = Ni/N . These equations can be easily derived from
Fig. 1.

As shown in Fig. 9 below (see also [15]), the mutation
rate has a clear effect on the dynamics of the continuous
system. For 10−7.5 �μ� 10−2.5, the system exhibits two sta-
ble attractors: a fixed point characterized by a population
of almost entirely AllD players and a stable mixed-strategy
limit cycle. The most notable effect of varying μ within

this range is the resizing of the limit cycle: the smaller
the mutation rate, the larger the limit cycle [Figs. 9(a)–
9(c) and 9(e)–9(g)]. For large values of μ (approximately
10−3.1 � μ � 10−2.5), the limit cycle collapses into a point,
although the separatrix still exists [Figs. 9(d) and 9(h)].
Varying μ also slightly changes the shape of the separatrix,
especially in the proximity of the AllC-TFT edge of the
simplex.

APPENDIX C: SYSTEM-SIZE EXPANSION

Following [26,47], we derive a set of coupled SDEs that
approximate the dynamics of the underlying protocol when
N � 1. In terms of step operators, the master equation has
the form

dP( �N ; t )

dt
=

∑
i

(
E−1

Ni − 1
)b fiNi

ϕ
P( �N ; t )

+
∑

i

(
E+1

Ni − 1
)
d NiP( �N ; t )

+
∑

i

∑
j =i

(
E+1

Ni E
−1
N j − 1

)bμ fiNi

ϕ
P( �N ; t ).

(C1)

Expanding the step operators in the usual fashion, and retain-
ing only the leading- and next-to-leading-order terms, gives

Er
Ni = 1 + r

∂

∂Ni
+ r2

2

∂2

∂ (Ni )2
+ O(1), (C2)
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where r = ±1. Substituting Eq. (C2) into (C1) results in an
equation of the Fokker-Planck type [47]:

∂P( �N ; t )

∂t
= −

∑
i

∂

∂Ni
[Ai( �N ) P( �N ; t )]

+ 1

2

∑
i

∑
j

∂2

∂Ni∂N j
[Bi j ( �N ) P( �N ; t )]. (C3)

After some manipulation, it can be shown that

Ai = b(1 − 2μ) fiNi

ϕ
+

∑
j =i

bμ f jN j

ϕ
− d Ni (C4)

and

Bi j =
{

b(1+2μ) fiNi

ϕ
+ ∑

k =i
bμ fk Nk

ϕ
+ d Ni if i = j,

− bμ
ϕ

( fiNi + f jN j ) if i = j.
(C5)

Equation (C3) implies an SDE for the variables Ni:

dNi

dt
= Ai + ξi. (C6)

The deterministic part of Eq. (C6) is equivalent to Eq. (B1).
The noise sources that appear in Eq. (C6) have zero mean (i.e.,
〈ξi〉 = 0) and are correlated according to

〈ξi(t )ξ j (t
′)〉 = Bi jδ(t − t ′). (C7)

Summing over index i in Eq. (C6), we have

dN

dt
= (b − d )N +

√
(b + d )Nξ, (C8)

where ξ is a single source of zero-mean Gaussian white noise.

APPENDIX D: MULTIPLICATIVE DELTA-CORRELATED
NOISE

Equation (C6) can be rewritten in terms of delta-correlated
noise and multiplicative prefactors. To do this we must choose
a matrix b that satisfies B = bT · b. For b to be square, this
requires a Cholesky decompostion, and ensures no more inde-
pendent noise sources than there are variables in the system.
However, a more natural approach is to decompose B ac-
cording to the rules set out in Gillespie’s Chemical Langevin
Equation (CLE) approach [46]. This results in SDEs of the
following form:

dNi

dt
= Ai +

∑
α

bαiηα, (D1)

where the index α runs from 1 . . . 12 and corresponds to
the reactions in Fig. 1. The 12 independent noise sources
each have mean zero, and are delta correlated, i.e., 〈ηα〉 =
0 and 〈ηα (t )ηβ (t ′)〉 = δαβδ(t − t ′). The matrix bT is given

by

bαi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
b f1N1

ϕ
0 0

0
√

b f2N2

ϕ
0

0 0
√

b f3N3

ϕ

−
√

d N1 0 0

0 −
√

d N2 0

0 0 −
√

d N3

−
√

bμ f1N1

ϕ

√
bμ f1N1

ϕ
0√

bμ f2N2

ϕ
−

√
bμ f2N2

ϕ
0

0 −
√

bμ f2N2

ϕ

√
bμ f2N2

ϕ

0
√

bμ f3N3

ϕ
−

√
bμ f3N3

ϕ

−
√

bμ f1N1

ϕ
0

√
bμ f1N1

ϕ√
bμ f3N3

ϕ
0 −

√
bμ f3N3

ϕ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D2)

APPENDIX E: PROJECTED DYNAMICS

We wish to project the dynamics onto the unit simplex, i.e.,
in terms of variables ni = Ni/

∑
i Ni. For this, we require the

multivariate form of Itô’s lemma [47]. For finite N , we have

dni

dt
=

∑
k

Ak ∂kni + 1

2

∑
k, j

Bk j∂k∂ jn
i +

∑
j

∑
α

b jα (∂ jn
i )ηα,

(E1)
where the shorthand ∂i = ∂/∂Ni has been used. First, we deal
with the deterministic parts. Using

∂ni

∂N j
=

{
1−ni

N if i = j,

− ni

N if i = j
(E2)

alongside (C4), it can be shown that

∑
k

Ak∂kni = bμ

ϕ

⎛
⎝∑

j =i

f jn
j − 2 fin

i

⎞
⎠ + b

(
fi

ϕ
− 1

)
ni.

(E3)
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Similarly, using

∂2ni

∂N j∂Nk
=

⎧⎪⎪⎨
⎪⎪⎩

2(ni−1)
N2 if i = j = k,

2ni−1
N2 if j = i = k or k = i = j,

2ni

N2 if j = i and k = i

(E4)

gives

1

2

∑
k, j

Bk j∂k∂ jn
i = −b

(
fi

ϕ
− 1

)
ni

N
. (E5)

Notice that, when summed over i, both (E3) and (E5) are zero by virtue of the fact that
∑

i fini/ϕ = 1. Also, trivially, (E5) goes
to zero in the deterministic N → ∞ limit. For the stochastic part of (E1), define a new matrix b†

αi = ∑
j bα j (∂ jni ) such that (E1)

can be recast in terms of correlated noise sources, i.e.,

dni

dt
= bμ

ϕ

⎛
⎝∑

j =i

f jn
j − 2 fin

i

⎞
⎠ + b

(
fi

ϕ
− 1

)
ni

(
1 − 1

N

)
+ ζi, (E6)

with 〈ζi〉 = 0 and 〈ζi(t )ζ j (t ′)〉 = B†
i jδ(t − t ′), where

B†
i j =

∑
α

b†
αib

†
α j =

⎧⎪⎨
⎪⎩

b ni

N

[
ni + fi

ϕ
(1 − 2ni )

]
+ bμ

N

(
1 + fini

ϕ

)
+ d ni

N (1 − ni ) if i = j,

− b ni n j

N

(
fi

ϕ
+ f j

ϕ
− 1

)
− bμ

N ϕ
( fini + f jn j ) − d ni n j

N if i = j.
(E7)

To understand the impact of these correlations, (E7) can be
computationally decomposed into an eigenbasis for different
values of ni. This always results in one zero-eigenvalue eigen-
vector pointing perpendicular to the simplex. The remaining
in-simplex eigenvalues reveal that populations towards the
center of the simplex experience large uncorrelated fluctu-
ations while, closer to the simplex boundary, correlations
suppress fluctuations in the direction normal to the boundary
[Figs. 4(b) and 4(c), orange crosses]. Moreover, the magni-
tude of along-boundary fluctuations decreases as a corner is
approached.

APPENDIX F: BOUNDARY EFFECTS

Equation (E6) can be evaluated at the simplex edges, where
we are particularly interested in the both deterministic drift
and fluctuations in the direction of the bulk, which is captured
by the dynamics of the strategy whose concentration is zero
along a given edge.

(i) AllD-AllC edge: Setting n3 = 0 and n2 = 1 − n1 gives
dn3/dt = bμ + ζ3, where

〈ζ3ζ j〉 =

⎛
⎜⎜⎝

− bμ n1[n1(R−S)+S]
N{P(n1−1)2+n1[n1(R−S−T )+S+T ]}

− bμ(n1−1)[(n1−1)P−n1T )]
N{P(n1−1)2+n1[n1(R−S−T )+S+T ]}

bμ

N

⎞
⎟⎟⎠. (F1)

(ii) AllC-TFT edge: Setting n2 = 0 and n1 = 1 − n3 gives
dn2/dt = bμ + ζ2, where

〈ζ2ζ j〉 =

⎛
⎜⎜⎝

bμ m(n3−1)R
N (mR−c n3 )

bμ

N
bμ n3(mR−c)
N (c n3−mR)

⎞
⎟⎟⎠. (F2)

(iii) TFT-AllD edge: Setting n1 = 0 and n3 = 1 − n2 gives
dn1/dt = bμ + ζ1, where

〈ζ1ζ j〉

=

⎛
⎜⎜⎝

bμ

N

− bμ n2[P(m+n2−1)+T (n2−1)]
N{c(n2−1)−(n2 )2[(m−2)P−mR+S+T ]+n2[2(m−1)P−2mR+S+T ]+mR}

bμ(n2−1){−c+n2[(m−1)P−mR+S]+mR}
N{c(n2−1)−(n2 )2[(m−2)P−mR+S+T ]+n2[2(m−1)P−2mR+S+T ]+mR}

⎞
⎟⎟⎠.

(F3)

In all three of the above cases, the deterministic repulsion
from the edge is O(μ). The fluctuations (positive and nega-
tive) in the same direction are O(

√
μ/N ). The implication, in

the context of the convex hull analysis of Sec. II C, is that,
very close to the AllD-TFT edge, fluctuations can overcome
the deterministic forces only if N ∼ 1/μ.

APPENDIX G: LANGEVIN EQUATION FOR THE
FIXED-SIZE MODEL

The dynamics of the system was simulated using the hybrid
Gillespie-Itô approach (see Appendix A). A fixed-size version
of the system was also used in our analysis (see Figs. 4 and 5):
The Gillespie algorithm was modified by setting d = 0 and
“killing” a randomly selected player at every birth, while the
Itô part of the algorithm involved replacing the matrix bT in
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(a) (b)

(c) (d)

FIG. 10. Statistics of separatrix crossing time in the stochastically induced regime. The figure shows the statistics of the time taken by the
system to cross the separatrix for the first time using the fixed-size model with n0 = s1, i.e., the AllD corner [(a) for log10 μ = −3.5 and (c) for
log10 μ = −6.5] and with with n0 = s2, i.e., the TFT corner [(b) for log10 μ = −3.5 and (d) for log10 μ = −6.5]. The statistics, for each of the
four cases, are obtained from 10000 repetitions. On each box, the central red mark indicates the median, and the bottom and top edges indicate
the 25th and 75th percentiles, respectively, the whiskers extend to the most extreme data points not considered outliers, and the red dots are the
outliers [a data value is considered an outlier if it is greater than Q3 + 1.5(Q3–Q1) or less than Q1–1.5(Q3–Q1), where Q1 and Q3 are the 25th
and 75th percentiles, respectively]. For an easier visualization of the statistics, all data values exceeding a maximum threshold are collapsed
into the horizontal dashed lines on the top part of each plot. The blue lines represent the average crossing time over all repetitions.

Eq. (D2) with

bαi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 − n1)
√

b f1N1

ϕ
−n1

√
b f2N2

ϕ
−n1

√
b f3N3

ϕ

−n2
√

b f1N1

ϕ
(1 − n2)

√
b f2N2

ϕ
−n2

√
b f3N3

ϕ

−n3
√

b f1N1

ϕ
−n3

√
b f2N2

ϕ
(1 − n3)

√
b f3N3

ϕ

0 0 0
0 0 0
0 0 0

−
√

bμ f1N1

ϕ

√
bμ f1N1

ϕ
0√

bμ f2N2

ϕ
−

√
bμ f2N2

ϕ
0

0 −
√

bμ f2N2

ϕ

√
bμ f2N2

ϕ

0
√

bμ f3N3

ϕ
−

√
bμ f3N3

ϕ

−
√

bμ f1N1

ϕ
0

√
bμ f1N1

ϕ√
bμ f3N3

ϕ
0 −

√
bμ f3N3

ϕ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(G1)

APPENDIX H: ESCAPE TIME FROM CORNERS IN THE
STOCHASTICALLY INDUCED REGIME

Here we show the statistics of the time t† that is needed by
the fixed-size system to cross the separatrix for the first time
(Fig. 10). We compare the cases of the systems starting from
the AllD corner [Figs. 10(a) and 10(c)] and the TFT corner
[Figs. 10(b) and 10(d)]. In both cases, t† is proportional to
μ: in the order of thousands of seconds when log10 μ = −3.5
[Figs. 10(a) and 10(b)] and in the order of millions of seconds
when log10 μ = −6.5 [Figs. 10(c) and 10(d)]. However, the
influence of N0 on t† is different in the two cases. On the one
hand, t† starting from the AllD corner increases very rapidly
when N0 approaches the onset of the asymmetric regime at
around N0 = 102.7 [Figs. 10(a) and 10(c)], indeed showing
that crossing the separatrix from the AllD basin to the mixed-
strategy basin becomes extremely unlikely in the asymmetric
regime. On the other hand, t† starting from the TFT corner
decreases with N0.
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FIG. 11. Equivalence classes of the asymmetric regime. pasy
AllD =

Pr{ntlock ∈ AllD-b | ntasy = s} was numerically estimated via Gillespi-
Itô simulations for a subset of all points s [(a)]. The results motivate
the decomposition of the simplex into four equivalence classes Si, as
well as the choice of their representative point si [(b)]. The parame-
ters used for this illustration are b − d = 0.05 and log10 μ = −6.5.

APPENDIX I: EQUIVALENCE CLASSES
DECOMPOSITION

Consider a trajectory of the growing IPD that starts from
an arbitrary state in the stochastically induced phase (i.e.,
N0 < 102.7) at time t = 0, enters the asymmetric phase at time
t = tasy and the locked-in phase at time t = tlock. Due to the
nature of the locked-in phase, the evolutionary outcome at
t → ∞ is already known at time tlock, and thus Eq. (3) can be
simplified:

pAllD = Pr{ntlock ∈ AllD-b | N0}, (I1)

where avoidance of extinction is implicitly assumed and
AllD-b indicates the AllD basin of the simplex.

Moreover, since the growing IPD is a Markovian process,
pAllD can be decomposed as follows:

pAllD =
∑
s∈U

Pr
{
ntlock ∈ AllD-b | ntasy = s

}
Pr

{
ntasy = s | N0

}
,

(I2)
where U is the set of all possible states of the system at time
tasy. Equation (I2) is impractical since it requires the numerical
estimation of the probabilities Pr{ntlock ∈ AllD-b | ntasy = s}
and Pr{ntasy = s | N0} for all s in the very large set U .
However, the approximation given in Eq. (6) can be made by
inspecting Pr{ntlock ∈ AllD-b | ntasy = s} in Fig. 11(a), which
was numerically estimated for a subset of all points s (for
illustration purposes we only show the case of b − d = 0.05
and log10 μ = −6.5).

A first area of the simplex S1 (outlined in red), correspond-
ing to the AllD basin, can be immediately identified as it
is characterized by a homogeneous probability of AllD out-
comes of approximately 1. If the system is anywhere within
S1 at time tasy, then it is expected never to move to the
mixed-strategy basin since the crossing of the separatrix in
this direction is extremely unlikely. Any point s1 would be a
good candidate for representing the entire area S1, however,
we chose the AllD corner [red dot in Fig. 11(b)] as the system
is in the proximity of such point for the vast majority of the
time spent in S1.

A second area can similarly be identified: S2 (orange),
corresponding to the mixed-strategy part of the AllD-TFT
edge (including the TFT corner) and characterized by a ho-
mogeneous probability of AllD outcomes of approximately 0.

If the system is in this area at time tasy, then it is very unlikely
to cross the separatrix because of the long time (inversely
proportional to μ) spent in the TFT corner while growing (i.e.,
as the fluctuations become smaller and smaller). Again, any
point s2 can represent the area S2, but we chose the TFT corner
[orange dot in Fig. 11(b)].

A third area, S3 (yellow), corresponding to the mixed-
strategy part of the AllC-TFT edge with exclusion of the
TFT corner, also stands out: here we see the probability of
AllD outcomes quickly increases with the fraction of AllC
players. Due to the anticlockwise dynamics, in S3 the system
directed towards the point where the separatrix meets the
AllC-TFT edge, which is where a move from the mixed-
strategy basin to the AllD basin is most likely [see Fig. 4(f)].
Since the probability of AllD outcomes is less homogeneous,
an approximation must be made for s3. The dynamics along
the AllC-TFT edges are slow, and they get even slower
close to the corners. We observe that a good proxy for the
average position of the system over time during a climb
of the AllC-TFT edge from the TFT corner to the separa-
trix is around nAllC = 0.25 and nTFT = 0.75 [yellow dot in
Fig. 11(b)].

Within the remainder of the simplex S4 (blue), Pr{ntlock ∈
AllD-b | ntasy = s} can be very heterogeneous, however, as
already discussed, this contributes very little to the outcome
statistics for small values of N0. We chose s4 = MS-fp to
represent this area [blue dot in Fig. 11(b)]. Figure 11(a)
was obtained with b − d = 0.05 and log10 μ = −6.5. Dif-
ferent values of these parameters produce different values
of Pr{ntlock ∈ AllD-b | ntasy = s}, however, the four areas can
always be identified. This decomposition is validated by
the successful reconstruction (see Figs. 7 and 8 as well as
Figs. 13–20) of all statistics of the evolutionary outcomes
obtained via full simulations (Fig. 3). The conditional prob-
ability decomposition is always very accurate except for the
case of low mutation rate (e.g., log10 μ < −6), growth rates
around b − d ≈ 0.05, and large initial populations (e.g., N0 >

200), for which it begins to produce less accurate results
[Fig. 8(j)].

APPENDIX J: STATISTICS OF THE STOCHASTICALLY
INDUCED REGIME IN DETAIL

In this Appendix we describe the effect of the mutation rate
on the statistics of the stochastically induced regime outcomes
more in detail. Figure 12(a) shows the same probabilities pstoc

Si

shown in Figs. 7(b)–7(e), but for a single value of b − d =
0.026 (we remind that n0 = MS-fp and N0 = 128). We can
see that all probabilities depend on μ for high mutation rates
(i.e., log10 μ > −4), but only pstoc

S1
and pstoc

S3
depend on μ for

lower mutation rates.
For a more detailed analysis, we decompose pstoc

S1
into

pstoc
SAllD-c

1
, the probability of ntasy being the AllD corner, pstoc

SAllC-c
1

,

the probability of ntasy being the AllC corner, pstoc
SAllC-TFT

1
, the

probability of ntasy being in the AllD basin side of the AllC-
TFT edge excluding the AllC corner and pstoc

Sother
1

, the probability

of ntasy being anywhere else within the AllD basin. We can
now see that pstoc

SAllC-TFT
1

decreases with μ, in contrast with pstoc
S3

,
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(a) (b)

(c) (d)

MS-b to AllD-b r
r=rmin+√#occurrencies

FIG. 12. Statistics of the stochastically induced regime pstoc
Si

in detail. (a) Shows the probabilities pstoc
Si

over μ with b − d = 0.026, n0 =
MS-fp, and N0 = 128. (b) Decomposes pstoc

S1
into cases of the AllD corner, the AllC corner, the AllD basin side of the AllC-TFT edge (excluding

the AllC corner), and the rest of the AllD basin. (c), (d) Show the location of ntasy within the simplex for the same 1000 stochastic trajectories
used for estimating the probabilities in (a) and (b), for the cases of log10 μ = −6.5 and log10 μ = −3.5, respectively. The size of the circles is
proportional to the occurrences of ntasy in the location and the colors reflect the different equivalence classes Si [see (a)].

which instead increases with μ. This is explained by the
shape of the separatrix changing with μ: the point where the
separatrix meets the AllC-TFT edge moves towards the TFT
corner as μ decreases [see Figs. 12(c) and 12(d)].

At the same time, we also see that the probability of the
system being in one of the two corners at time tasy, pSAllD-c

1
,

and pSAllC-c
1

are independent on the mutation rate for log10 μ <

−5. However, for higher mutation rates it becomes more and
more likely for the system to be in the AllD corner rather than
in the AllC corner [see also Figs. 12(c) and 12(d)]. Finally,
for mutation rates log10 μ > −5 the probability of the system
being away from the boundaries of the simplex pstoc

Sother
1

becomes

higher (the same of course can be observed for pstoc
S3

).

APPENDIX K: OUTCOME STATISTICS OVER
GROWTH/MUTATION RATES: MORE INITIAL MIXES

Here we show that our decomposition of the outcome
statistics based on equivalence classes holds not only for
n0 = MS-fp, but in general. We consider three other cases that
are very different: n0 = center, i.e., nAllC = nAllD = nTFT =
1
3 (Fig. 13); n0 = TFT-c, i.e., nAllC = nAllD = 0, nTFT = 1
(Fig. 14); and n0 = AllD-c, i,e., nAllC = nTFT = 0, nAllD = 1
(Fig. 15). In all figures, comparing the results obtained via

decomposition [panels (n)] against those obtained via full
simulation [panels (p)] yields a low error [panels (o)], demon-
strates the validity of our method. The average error over
all the considered values of growth and mutation is approx-
imately 0.029 for the n0 = center, 0.003 for n0 = TFT-c, and
0.001 for n0 = AllD-c.

APPENDIX L: OUTCOME STATISTICS OVER INITIAL
POPULATION’S SIZE AND MIX

In this Appendix we illustrate how the outcome statistics
in Figs. 3(b)–3(e), can be reconstructed using our probabil-
ity decomposition method. At high mutation rate [Figs. 3(b)
and 3(c)], the asymmetric phase is very short. This is re-
flected in the probability decomposition in Figs. 16 and 17,
where the probabilities in panels (f)–(h) are all zeros, i.e.,
the statistics of the outcome are given exclusively by the
fixation of the system into one of the two basins during the
stochastically induced phase [panels (a)]. The accuracy of the
probability decomposition is very high for both small (Fig. 16)
and large (Fig. 17) initial populations, as illustrated in
panels (j).

At low mutation rate the asymmetric regime is very long,
however, such regime has little effect on the outcome statistics
for small initial populations. This is explained by the proba-
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(a)

(o)(f)

(b) (c) (d) (e)

(i)(h)(g)

(j) (k) (l) (m) (n)

(p)

FIG. 13. Decomposition of outcome statistics based on equivalence classes (n0 = center). The statistics of evolutionary outcomes can be
decomposed in terms of conditional probabilities that are based on four equivalence classes of states [(a)–(i)]. The landscape of pAllD(center)
for different rates of growth (b − d) and mutation (μ) can be reconstructed with good agreement [(j)–(n), (o)]. The initial population size is
N0 = 128. tasy and tlock are derived from the critical population sizes identified in Fig. 4.

bility decomposition in Fig. 18. For some starting points N0

the system can be in the equivalence class S2 at the end of
the stochastically induced regime [Fig. 18(b)], however, from
this area of the simplex it is extremely unlikely for the system
to cross the separatrix towards the AllD basin, even if the

asymmetric regime is long [Fig. 18(f)]. Moreover, it is very
unlikely for the system to be in S4 at the of the stochas-
tically induced regime since with a small initial population
such regime is longer and fluctuations are likely to drive the
systems towards the edges and corners [Fig. 18(d)]. Thus,
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(a)

(o)(f)

(b) (c) (d) (e)

(i)(h)(g)

(j) (k) (l) (m) (n)

(p)

FIG. 14. Decomposition of outcome statistics based on equivalence classes (n0 = TFT-c). The statistics of evolutionary outcomes can be
decomposed in terms of conditional probabilities that are based on four equivalence classes of states [(a)–(i)]. The landscape of pAllD(TFT)
for different rates of growth (b − d) and mutation (μ) can be reconstructed with good agreement [(j)–(n), (o)]. The initial population size is
N0 = 128. tasy and tlock are derived from the critical population sizes identified in Fig. 4.

even if the system can cross the separatrix from S4 during the
asymmetric regime, the combined probability in Fig. 18(h) is
approximately zero for every initial condition. Finally, we can
see that for some initial state s the system has a small chance
of being in S3 at the end of the stochastically induced regime

[Fig. 18(c)]. From this area the system is very likely to cross
the separatrix during the asymmetric regime, leading to the
small outcome probability contribution in Fig. 18(g).

Since the probabilities in Fig. 18(h) are very low, the accu-
racy of the probability decomposition is very high [Fig. 18(j)]
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(a)

(o)(f)

(b) (c) (d) (e)

(i)(h)(g)

(j) (k) (l) (m) (n)

(p)

FIG. 15. Decomposition of outcome statistics based on equivalence classes (n0 = AllD-c). The statistics of evolutionary outcomes can be
decomposed in terms of conditional probabilities that are based on four equivalence classes of states [(a)–(i)]. The landscape of pAllD(AllD-c)
for different rates of growth (b − d) and mutation (μ) can be reconstructed with good agreement [(j)–(n), (o)]. The initial population size is
N0 = 128. tasy and tlock are derived from the critical population sizes identified in Fig. 4.

also in this case. The accuracy gets worse only for middle val-
ues of growth rate (around b − d = 0.05), very small mutation
rates (e.g., log10 μ < −6), and large initial populations (e.g.,
N0 > 200). This case is reported in Fig. 8, which shows that

the probability of AllD outcomes is underestimated for some
initial starts around the mixed-strategy unstable fixed point.

Figures 3(d) and 3(g) can be reconstructed in a similar way,
as shown in Figs. 19 and 20.
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FIG. 16. Outcome statistics decomposition over n0: log10μ = −3.5, N0 = 50, and b − d = 0.05. (a)–(d) Show the probability of the system
being in the four equivalence classes Si at the end of the stochastically induced regime. The probabilities of AllD outcomes given that the system
is in the representative points si at time beginning of the asymmetric regime are reported in the second row. (e)–(i) Show how the probabilities
are combined to approximate the outcome probability and (j) shows accuracy of such approximation [cf. Fig. 3(b)].
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FIG. 17. Outcome statistics decomposition over n0: log10μ = −3.5, N0 = 250, and b − d = 0.05. (a)–(d) Show the probability of the
system being in the four equivalence classes Si at the end of the stochastically induced regime. The probabilities of AllD outcomes given that
the system is in the representative points si at time beginning of the asymmetric regime are reported in the second row. (e)–(i) Show how the
probabilities are combined to approximate the outcome probability and (j) shows accuracy of such approximation [cf. Fig. 3c].
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FIG. 18. Outcome statistics decomposition over n0: log10μ = −6.5, N0 = 50, and b − d = 0.05. (a)–(d) Show the probability of the system
being in the four equivalence classes Si at the end of the stochastically induced regime. The probabilities of AllD outcomes given that the system
is in the representative points si at time beginning of the asymmetric regime are reported in the second row. (e)–(i) Show how the probabilities
are combined to approximate the outcome probability and (j) shows accuracy of such approximation [cf. Fig. 3(e)].
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FIG. 19. Outcome statistics decomposition over N0: log10μ = −3.5 and b − d = 0.05. The results are shown for the two initial states s′

and s′′ in Fig. 3. (a)–(d) Show the probability of the system being in the four equivalence classes Si at the end of the stochastically induced
regime. The probabilities of AllD outcomes given that the system is in the representative points si at time beginning of the asymmetric regime
are reported in the second row. (e)–(i) Show how the probabilities are combined to approximate the outcome probability and (j) shows accuracy
of such approximation [cf. Fig. 3(d)].
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FIG. 20. Outcome statistics decomposition over N0: log10μ = −6.5 and b − d = 0.05. The results are shown for the two initial states s′

and s′′ in Fig. 3. (a)–(d) Show the probability of the system being in the four equivalence classes Si at the end of the stochastically induced
regime. The probabilities of AllD outcomes given that the system is in the representative points si at time beginning of the asymmetric regime
are reported in the second row. (e)–(i) Show how the probabilities are combined to approximate the outcome probability and (j) shows accuracy
of such approximation [cf. Fig. 3(g)].
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