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Neural networks with recurrent asymmetric couplings are important to understand how episodic memories are
encoded in the brain. Here, we integrate the experimental observation of wide synaptic integration window into
our model of sequence retrieval in the continuous time dynamics. The model with non-normal neuron interactions
is theoretically studied by deriving a random matrix theory of the Jacobian matrix in neural dynamics. The
spectra bears several distinct features, such as breaking rotational symmetry about the origin, and the emergence
of nested voids within the spectrum boundary. The spectral density is thus highly nonuniformly distributed in
the complex plane. The random matrix theory also predicts a transition to chaos. In particular, the edge of chaos
provides computational benefits for the sequential retrieval of memories. Our paper provides a systematic study
of time-lagged correlations with arbitrary time delays, and thus can inspire future studies of a broad class of
memory models, and even big data analysis of biological time series.
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I. INTRODUCTION

Neural sequence specifies a temporally structured dynam-
ics of neuronal population activity, which is ubiquitous in
functions of many brain regions, such as hippocampal replay
[1-3] and choice-selective neural dynamics [4]. Generation
of neural sequence requires general circuit-level mechanisms,
which can be simulated by artificial neural networks com-
posed of recurrent units [5]. In essence, the synaptic coupling
between each pair of neurons can be constructed by a tem-
porally asymmetric Hebbian (TAH) rule, which has been
extensively studied in the physics community [6—8] and re-
cently the computational neuroscience community [9,10].
This rule reflects the asymmetric connectivity ubiquitous in
many brain regions [11], bringing the network activity out of
equilibrium and the patterns in each sequence can be reacti-
vated according to their intrinsic temporal order. Therefore,
the TAH rule plays an important role in understanding how
neural sequences are stored and retrieved, even episodic mem-
ory (memory traces of past experiences) [12].

As a limitation, the standard TAH rule incorporates only
nearest-neighbor pairs of patterns in a sequence of uncorre-
lated patterns, whereas, the synaptic integration leading to
the plasticity could occur in a wide range of temporal win-
dows (e.g., synaptic modification in neocortex) [13,14]. This
observation motivates the inclusion of an arbitrary Hebbian
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interaction range in the TAH rule, which is the main focus
of this paper. We remark that a symmetric version of synaptic
integration considering the long range Hebbian interaction has
been recently studied, which revealed a significantly differ-
ent phase diagram of the network collective behavior from
the learning rule considering only the nearest-neighbor pair
[15,16]. In contrast, the extended TAH rule brings the network
out of equilibrium, yielding rich modes of network dynamics.
In this paper, we characterize thoroughly the spectral density
of the non-normal synaptic coupling matrix and the associated
Jacobian matrix of linearized dynamics, which can reveal
different collective modes supporting the network function.
Moreover, transition to chaos and sequence memory are also
explored and discussed.

The spectral density of this new type of non-normal
matrix adds an important category of asymptotic spectrum
into the non-Hermitian random matrix theory, displaying an
anisotropic distribution of eigenvalues in the complex plane.
In this sense, our paper could open a new avenue to study the
neural sequence generation and processing in more biological
plausible setting with the random matrix theory. In addition,
the synaptic integration can be decomposed into contributions
of time-lagged correlations among neural patterns, which
shares the common features observed in complex systems
like price fluctuations in financial markets and physiological
time series in biology [17,18]. Therefore, our analysis may
also provide insights toward understanding a broad range of
collective phenomena.

II. MODEL

We study a recurrent neural network composed of N in-
teracting neurons. The neural dynamics obeys the following
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rule:

dr; al

rd—; =—r+ ;Jijcp(rj), (1
where r; is the synaptic current reflecting the neural activity
of the neuron i, T indicates the time constant of the dynamics
(r = 0.01 s here, the time is in seconds in this paper), and ®
is the nonlinear activation function transferring the synaptic
current into the firing activity (& = tanh here). For simula-
tions, one can add an external input /(¢) (e.g., an instantaneous
stimulus in our simulations) to the right-hand side of the
dynamics equation. The synaptic coupling between any two
neurons (say i and j) is given by

1 P d
Ji=~5 2 <CS,~"§}‘ +y Zsf‘s_;‘”), ©)
r=1

pn=1

which contains the concurrent Hebbian term and pattern-
separated (with a most distant separation of d patterns)
Hebbian term. The strength of the concurrent Hebbian term is
specified by ¢, and the strength of the pattern-separated term
is specified by y. As d takes an arbitrary number and thus
represents the depth of Hebbian interaction, we call this model
deep-Hebbian network.

In this model, we have P patterns, and each pattern follows
the Rademacher distribution P(§/") = 18(€/' — 1) + 18(&/ +
1), in which the superscript u denotes the index of pattern and
the subscript i denotes the index of neuron. We are interested
in the situation of large P and N, with fixed memory load
o= %. When the pattern entries follow a standard Gaussian
distribution, the statistics, e.g., the first and second moments,
does not change (see the following rotated patterns as well),
and thus does not affect the asymptotic spectrum. Note that
these patterns form a cyclic sequence with periodic boundary,
corresponding to an ordered stimulus sequence in animal ex-
periments [19].

The synaptic coupling in our model is clearly asymmetric
and there thus exists an out-of-equilibrium collective behav-
ior. The coupling asymmetry is ubiquitous in neocortex [11],
e.g., the mechanism of spike-timing-dependent plasticity and
other higher-order variants support this asymmetry [13,14].
The presence of the asymmetry in the connectivity can gen-
erate a steady flow of neural activity, related to the sequence
storage and retrieval [6,7,10]. As the synaptic integration can
occur in a broad range of temporal windows, we incorpo-
rate an arbitrary window size (indicated by d), yet violating
the coupling symmetry. Setting (c, y) = (1, 0), we recovers
the standard Hopfield model [20,21] where the coupling is
symmetric and an equilibrium distribution of neural activ-
ity is guaranteed (or a Lyapunov function exists). Setting
(c,y,d)=(0,1,1), we recovers the standard TAH model
[6]. Therefore, our model setting is more general than any
previous models of associative memory, in either equilibrium
or nonequilibrium context.

The coupling matrix in Eq. (2) can be recast in a compact
form as

_ L
J=&Xe 3)

where & is the P x N pattern matrix, and X is a P x P circu-
lant matrix with entries

d
X,uv = Cg/w +vy 25;1_,[(1)+r) mod P]- “

r=1

The circulant property is due to our cyclic-sequence setting,
ie., &' = &' For example, if P = 5, d = 2, X reads

c 0 0 vy vy
y ¢ 0 0 vy
y v ¢ 0 0], &)
0O v v ¢ O
0O 0 v v ¢

where the number of y in each row of the matrix is conserved,
equal to d. We emphasize that our method in the following
analysis does not rely on the explicit form of X. Therefore,
despite our interest in deep-Hebbian network, other models of
collective phenomena expressed through correlation matrices
can also be analogously treated by the same approach.

The function of the network is to store and retrieve P
N-dimensional patterns {& Lo, ’;‘P }. When the network is
stimulated by a state correlated with one of the stored patterns,
the hint will trigger the retrieval, which is marked by a signif-
icant overlap between neuron activations and stored patterns.
The overlap between the uth pattern and the neuron activity
at time ¢ is defined as

1
mu(t) = < Y & P05(0). 6)
J

The retrieval behavior differs in different parameter
regimes. In this paper, the memory overlap is averaged over
thirty realizations of the pattern distribution (unless stated
otherwise). The behavior falls within two types—static and
dynamical recall. In a static recall, the network activity gets
stuck in a stable fixed point correlated with some pattern (but
not others), and thus m, () becomes stationary over time.
But in a dynamical recall, the activity leads to sequential
memories of stored patterns (Fig. 1). We remark that due
to the nature of our model (see also previous papers in the
equilibrium counterpart [15] or the out-of-equilibrium case
[10]), the peak overlap magnitude can not achieve one (but a
nonzero value), which we call sequence memory (see also the
theoretical paper [8], which used the condition of vanishing
overlap to determine the storage capacity in a simpler sce-
nario). In Fig. 1, we also observe that the key model parameter
d tunes the sequence-replay period, which is very interesting
for future neurophysiology experiment tests. We also study
how robust the recall behavior is when the network state
initialization varies, which is shown in Fig. 2. We conclude
that as long as the memory load is small, the recall behavior
is quite robust from different noisy initializations, and the
large deep-Hebbian strength is able to maintain a relatively
high magnitude of peak overlap (see also Fig. 5 for detailed
analysis). We will analyze the relationship between network
structure and function in the remaining sections.

Compared to other architectures (e.g., feed-forward or
symmetric networks), our rate model of recurrent networks
shows richer properties of network dynamics only via simple
deep-Hebbian construction (see next sections), thereby being
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FIG. 1. Different retrieval profiles. The overlaps are plotted against time ¢, and overlaps with different patterns are distinguished by their
colors (see the color bar). In the simulation, we set N = 4000 and « = 0.01, and therefore there are in total forty patterns stored in the network.
To trigger a retrieval (either one pattern or pattern sequence), we set the external input current as I(t) = 8(¢)&'. The overlap with the first pattern
my (¢) is highlighted in red. The retrieval is static (bottom left panel) when ¢ dominates, and dynamical (top left panel and right panel) when y
dominates. A mixture of these two types can be found in the intermediate parameter regime (middle panel).

able to show sequence replay characteristics of cortical and
hippocampus circuits, and moreover, the introduced Hebbian
depth d can tune the replay period, which was not reported
before, and in mathematics, higher values of d (e.g., d > 1)
lead to an anisotropic spectrum of the connectivity matrix,
which can be captured by our theory. In addition, due to the
pattern-separated Hebbian term, the network activity during
replay can smoothly evolve in time and becomes transiently
correlated in order with each of the patterns in the sequence.
This is a nice property in our recurrent rate network that helps
the network activity to explore a broad dynamics regime. The
theoretical study in this paper would thus hopefully inspire
future algorithmic designs in temporal sequence processing
with our proposed recurrent rate networks, which we will
demonstrate in forthcoming future works. We next analyze
the relationship between the recall dynamics and intrinsic
property of the network structure.

III. LINEARIZED RECURRENT DYNAMICS

In this section, we first study the Jacobian spectrum of fixed
points and transient states of low speed. The spectrum is then
connected to the spectrum of the original non-normal coupling
matrix ensemble.

To explore the stability of an arbitrary point in the phase
space, including fixed points or transient states, we linearize
the dynamics equation [Eq. (1)] as follows:

N
d(S}",‘

where §r; = r; — r} denotes the displacement from the op-
erating point r* = (r{, - -+, ry), and D;; = —§;; +J,-]-<I>’(r;‘)
specifies the Jacobian matrix, in which CD’(r;’f) denotes the
d(jfl“) |a:r7. Considering that the operating point is

(N

derivative

a fixed point or a low-speed point, the linearized dynamics
[Eq. (7)] can be solved as follows:

dr(r) = exp(Dr/7)ér(0) = Rexp(At/t)LT(Sr(O), ®)

where we use the spectral decomposition D = RALT, where t
denotes the conjugate transpose operation. The instantaneous
Jacobian matrix captures the behavior of the linearized dy-
namics around the operating point. The real-part eigenvalues
of the matrix determines the timescales of growth or decay
of perturbation, and thus determines the local stability of
the dynamics, while the imaginary parts control the oscil-
lation frequency of the neural dynamics. Through studying
the spectrum of this matrix, we can identify the key network
parameters underlying the macroscopic behavior of the deep-
Hebbian neural networks.

A. Spectrum of Jacobian matrix

We first consider the shifted Jacobian D; i =Dij+ 65 =
Jij <I>/(r;'f), for which the shifted Jacobian shares the same
eigenvectors with the original Jacobian, but the spectrum has
a translation along the real axis. By inserting Eq. (3) into
the shifted Jacobian and performing the diagonalization X =
U'AU, where  means the Hermitian conjugate operation
(the circulant matrix X can be diagonalized through a unitary
transformation), we arrive at a simplified formula

_ Lot a,
= E ke, ©
where @' = diag[®'(r]), -, ®'(ry)] and é = Ué denotes
the rotated pattern. It is easy to check the first two moments
in statistics of the rotated patterns are respectively (éi" )y =0,

(gé}’) = 6;j0,v, which can be fully described by a standard
complex Gaussian distribution in the large N limit. Here ~
denotes the complex conjugate operation, and (-) denotes the
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FIG. 2. The sequence replay behavior with noisy initialization.
We show ten instances of the overlap profile initialized with the first
pattern in different noise realizations in each subfigure (solid-color
lines). Each dashed-black line shows the peak overlap amplitude.
The overlap is calculated with the first pattern. The behavior of
the overlap with other patterns is similar. The connectivity is fixed
(N = 6000). All mirrored overlap profiles caused by the Z, symme-
try of the dynamics are flipped to their positive counterparts. After
a transient relaxation, a stable dynamics profile is observed. (a) The
initialization is I(0) = 0.4&' + 0.6z, where z is i.i.d. standard Gaus-
sian noise. The dynamics will fall into the same limit cycle. (b) The
initialization is I(0) = 0.15l + 0.9z. Different noisy initializations
lead to different limit cycles yet with the same peak overlap mag-
nitude. (c) The initialization is I(0) = z. This completely random
initialization will also lead to the cyclic behavior, but displaying
diverse peak overlap magnitudes with slightly small variance. (d) The
initialization is I(0) = 0.2&"' + 0.2 + 0.6z. In this case, the phase
of the dynamics displays two types of cyclic behavior.

disorder average over random instances of i.i.d. patterns, or
random instances of the shifted matrix D (given the operating
point).

The spectral density is defined as the probability density
p(w) of finding an eigenvalue, which coincides with a point w
on the complex plane. In the large N limit, we assume that the
self-averaging property holds for the density, i.e., the density
of any single instance matches the asymptotic density after the
matrix ensemble average is performed. The spectral density is
intuitively defined as follows:

. 1/ 3
p(w) = ﬁ<; 8@ (w — xi>>, (10)

where %; denotes the ith eigenvalue of D, and §(-) defines
the two dimensional Dirac delta function. In fact, the coupling
matrix J or the shifted Jacobian is a non-Hermitian matrix,
and thus the associated eigenvalues are distributed on the
complex plane (i.e., 2D space with two axes, one for real
part and the other for imaginary part). The spectral density
of the Jacobian is recovered by the horizontal translation in
the complex plane as p(w) = p(w + 1). The standard proce-
dure to calculate the density requires the computation of the
eigenvalue potential ¢ as follows:

1

~ N v 2
p==—-V¢ an

which is exactly the Poisson equation in a two-dimensional
electrostatic problem [22]. Therefore, the spectral density is
equivalent to a two-dimensional charge distribution, and ¢
becomes an electrostatic potential, which is also called the
eigenvalue potential in the random matrix theory. A brief
introduction of this mapping is given in Appendix A.

The real-valued potential can be written in a free-energy
form as [22]

1.
¢(w) = —ﬁelinég (InZ(w, €)), 12)

where the partition function Z(w,€) = det[|wl — D|*> +
l€|?1] in which 1 is an N x N identity matrix. The additional
infinitesimal variable € ensures the matrix inside the determi-
nant to be positive definite even when w hits an eigenvalue
of D. The regularization for avoiding the singularity can also
be understood from the mathematical definition of the Dirac
delta function 78® (w — ;) = limy2_o m In the
electrostatic mapping, it is also convenient to introduce the
electric field that is the very Green’s function,

G =22 = LTt - b)), (13)

ow N

which is also called the resolvent in the random matrix theory.
Therefore, the density can be estimated from G as follows (see
Appendix A):

p= 196 (14)
oW’
where the complex-valued G is a function of w and w.

A standard route to treat the disorder average in Eq. (12) is
the replica method, i.e., (InZ) = lim,_,¢ % where n copies
of the original system are introduced, and finally an analyt-
ical continuation n — 0 is performed. However, the replica
analysis for the current setting becomes complicated. Instead,
we adopt an annealed approximation, i.e., we assume that
(InZ~'(w, €)) = In(Z~"(w, €)), which nevertheless leads to
accurate results confirmed by an alternative Feynman diagram
method (see Appendix H) and numerical simulations. A rig-
orous proof would be very interesting in future studies.

Next, we compute In(Z~!(w, €)). By using a multivariate
complex Gaussian integral representation of the determinant
and the Hubbard-Stratonovich transformation, we can write

1 .
¢ = = (IndetlZly = Iy — D+ le[*1])

le]—>0

1 .
x N In |: lim /dZdemy exp(—|e|’z'z —y'y — iwz'y
—iwy'z)(exp(iz' D'y + iy*f)z»}, (15)

where o« means up to an irrelevant factor that does not con-
tribute to the leading order of ¢ in the large N limit. To
carry out the disorder average in Eq. (15), the local chaos
hypothesis is used [23], which states that large random neural
networks is able to reach a steady state where the network
state is independent of the random coupling matrices. In fact,
the operating point is fixed in the current context, and thus
the disorder average can be even done without the local chaos
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hypothesis, unless the steady-state distribution of network ac-
tivity are taken into account. To proceed, we have to introduce
the following order parameters together with their hatted con-
jugate parameters, introduced through applying the Fourier
representation of the delta function:

1
—z'z, U
N
1 . .
—y'z,
Ny
1 T t_/
—=z'y,
N y
1

—yly, 16
N (16)

in which u, v, u’ are real positive parameters, and ¢, are
complex parameters. These order parameters have their own
physics interpretations, e.g., it is exactly the Green’s func-
tion, while uv gives the eigenvector overlap function (see
Appendix D).

After a lengthy calculation (see Appendix C), the potential
can be recast into the following concise form:

]

u

(®'2)"(9'2),

/

¥ (®'2),

N
1

(®'2)'y,

Il
z|~ =l

v

1
¢ Nln [EIEIEO/D[-“]eXP [N(¢1 + ¢ +¢3)]], (17)

where [ D[---] denotes the integration over all relevant or-
der parameters and their hatted conjugated variables, and the
sum of ¢;, ¢, and ¢; is called the action in physics. More
precisely,

¢1=— |e|Pu — v +idu+idv +ift +iff +id'u +if't + i’

Ay

1 _
=— — N In[ff — b+ (P2 @FT — D +d>’tt+tt
¢ N;“[ b + (P2 (P — D) + @y( ),

¢3=—aln(v—1t't) —iwf — iwt
o P
-5 > In(k — kAt — kAT + KAL), (18)
n=1

where k = [u'v — /t']7'. By applying the Laplace method in
the large NV limit, ¢ is just the sum of the above three terms. All
relevant order parameters obey saddle-point equations whose
solutions maximizing the action. Technical details for deriving
the saddle point equations are given in Appendix D.

The non-normal matrix D can be decomposed by using
its right and left eigenvectors The eigenvector overlap func-
tion captured by = determines the spectrum boundary (see
Appendix D), i.e., "uv = 0 outside the spectrum, and uv > 0
within the spectrum. Therefore, the value of uv is related to
whether the Green’s function is analytic (the Cauchy-Riemann
condition is satisfied) or not.

Taking the limit |¢| — O, the spectral density can be esti-
mated by solving the following closed-form equations:

@ o 1A
Cc— ® =1, 19
PZ|AMT—1|2+|AM|2L¢’U (192)
pn=1
o P Ay,
c= —Bw,  (19b)
P& AT — 12+ |A,Pu'v
u=1

where T = it’ and A, is the eigenvalues of X, which relies on
the model parameters as follows:

d
Ay =c+y ) exp(=2mirp/P). (20)

r=1

Details of the derivation are given in Appendix D. The neural-
state dependent auxiliary quantities are specified as follows:

N
A 1 1
Aw, 7, D) = — _ .l
(w7, &9) = = ; oF v ar — @ ey
N
N 1 D]
B 1, av)=— , 21b
(w, ', 2'D) N§|¢w+w|2_(¢/>w (21b)
N
o 1 (®).)?
C 0 = i , (21
200 =32 @ wr — @y

where @/ is determined by the choice of activation func-
tion and the operating point. Although A does not appear in
Eq. (19), it is useful for transforming one physics variable to
another one for the sake of the following analysis. Note that
the order parameters T and #'v can be expressed by w, 7, #'D
via the saddle-point condition,

T = Bw + Cf,
— _CZA/A

(22a)
(22b)

Considering Eq. (22) and Eq. (21), one can immediately find
the Eq. (19) is actually a closed-form equation of w, 7', and
i'D. We then determine the boundary of the spectrum. By set-
ting uv — 0, we have the following boundary equations (see
details in Appendix D):

o« AL

= =1, (23a)
P £ A, (B +CP) — 1P

o P

ot — Buw. 23b
PZ|A (Bw+Ct)—1|2 v (23b)

n=1

After solving Eq. (19) in terms of /', &' and 9, one can recover
the Green’s function G and uv through the saddle-point con-
dition, i.e.,
G = Aw + Bf,
uv = —ACQ'd.

(24a)
(24b)

We conclude that G leads to the density by using Eq. (14),
and uv reports the eigenvector overlap function by O(w, w) =
uv/m (see the derivation in Appendix D).

B. Spectrum of synaptic coupling matrix

The Jacobian spectrum can be greatly simplified by assum-
ing ®’ is an identity matrix. In this case, the spectrum of the
Jacobian reduces to the spectrum of the synaptic coupling
matrix. In this simplification, we have A = B = C. Hence,
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FIG. 3. The spectrum of the connectivity matrix. [(a)—(d)] Spectrum of the connectivity with different model parameters. Colored dots
denote eigenvalues of the connectivity generated by the numerical diagonalization (N = 4000), and colored lines are the spectrum boundary
predicted by our theory [see Eq. (26)]. The perpendicular dashed lines in (a), (c), and (d) mark the origin and the unit length in real and
imaginary axes of the spectra. (e) The right edge of the spectrum, i.e., the maximum real part of the eigenvalues, plotted against y.

Eq. (19) reduces to

P
o |ALG? + | A, Puv
d —1, 25
P;m G— 12+ A, Puv (252)
o P
¢ = w. 25b
P;M G—1|2+|A Pav (25b)

This result coincides with that derived by a diagrammatic
method (see Appendix H), which confirms our annealed com-
putation in turn. The spectrum boundary obeys the following
equations:

P
o IA,GJ?
el =1 26
PZ|A G_12 (262)
n=1
P
I B (26b)
P |AG—1]2 ‘
n=1

We remark that only the case of ¢ = 0,d =1 can have an
analytic closed-form expression of the spectrum. The spectra
of both the connectivity and Jacobian matrices bear disk-like
or annulus-like shapes [24,25]. Technical details to obtain
the closed form results for the connectivity are given in
Appendix E. Our paper extends this single ring law to the
Jacobian matrix (see details in Appendix E), as the outer
boundary of the spectrum is given by

P')2 27)

r

Rou = 7/ (@), + (

where (@), = LS @) and ((9')?), = %Zf/:](d);i)z de-
note the emplrlcal moments of the diagonal elements of ®’.
The subscript r means that the moments can be computed by
using the distribution of synaptic currents.

IV. SPECTRUM, PHASE DIAGRAM, CHAOS,
AND SEQUENCE RETRIEVAL

In this section, we investigate the effects of model param-
eters (i.e., «, ¢, d, and y) on the spectrum of the connectivity
matrix, and moreover the Jacobian matrix, which determines
the stability and time scales of the linearized dynamics.

The loading rate o constrains the rank of the connectivity
matrix, i.e., rank(J) = min(V, «/N), whose derivation uses el-
ementary (e.g., Sylvester) rank inequality. Therefore, if ¢ < 1,
there appear exactly (1 — o)N eigenvalues localized at the
origin [Fig. 3(a)]. In addition, the spectrum is affected in the
other two manners. (i) When o < 1, there emerge voids within
the spectrum. The number of the voids depends on the model
parameters, especially the Hebbian length d. As « decreases,
the voids are enlarged, and all nonzero eigenvalues finally
collapse onto the outer spectrum-boundary as « gets close (but
not equal) to zero. (ii) The spectrum becomes significantly
extended in both horizontal and longitudinal directions when
a gets larger, roughly grows as /a when « is large.

We then study the effects of the Hebbian length d. The
number of the voids coincides with the value of d. For d =2
[Fig. 3(c)], a small-sized void is embedded in a larger void,
and the small one is much smaller in area compared to the
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FIG. 4. Spectrum of the connectivity matrix determines the linear stability and time scales of network dynamics around the null fixed point.
Simulations are carried out on networks of size N = 4000. [(a), (b)] Right edge of the spectrum determining the linear stability. Solid circles in
each plot denote the spectrum boundary predicted by Eq. (26), while the black dots are numerical eigenvalues, and the red-dashed lines indicates
the critical line Re(X) = 1. The histograms show the distribution of the right edge across 100 random realizations of the connectivity. The
bottom subfigure shows the dynamics of network initialized with the first stored pattern. Ten representative activity trajectories are shown, and
the overlap m,, (¢) with stored patterns in sequence are distinguished by colors from light blue to dark blue. (c) The phase boundary shown by the
lines delimits the linear stable phase (under each line) and unstable phase (above each line) under different model parameters. The stability here
only describes the null (zero-activity) fixed point. (d) When the system is stable at the null fixed point, the inverse overlap-decay-time-scale
is proportional to the distance between the right edge and the critical line, i.e., 1 — max[Re(Xy)]. The time scale of the overlap decay is
numerically calculated as argmin, () u () < 0.1 >, ,(0)). Other model parameters are ¢ = 0 and d = 1.

large one. As d > 2, extra voids emerge in the spectrum, but
their areas would become much smaller.

In contrast to Fig. 3(a), the isotropic property is broken in
Fig. 3(b), due to the nonzero values of c. The role played by ¢
is to stretch the spectrum to the positive horizontal direction,
shaping an anisotropic spectrum. When ¢ > y, the overall
spectrum will collapse to the horizontal axis. If we multiply
the same factor to ¢ and y at the same time, the spectrum is
just scaled with that factor. Therefore it is the ratio of ¢ and
y that determines the shape of the spectrum, instead of their
respective specific values. The role played by y competes with
the role of ¢, suppressing the horizontal stretch. As a result,
the spectrum shows a distinct shape in Fig. 3(d). Figure 3(e)
shows how the right edge of the spectrum, the maximum real
part of the eigenvalues, is modulated by the model parameters.
An approximately linear increase of the right edge with y
when y is large, and the slope is related to the value of d.

In essence, there exist two kinds of symmetry/symmetry-
breaking in the spectrum. When d = 1 and ¢ = 0, the whole
spectrum 1is rotationally symmetric [Fig. 3(a)], and both in-
ner and outer boundaries form an annulus. For this special

case, the radius of the inner annulus is given by y (1 — a)*/?,
while the radius of the outer annulus is given by y (1 + a)!/?
(see Appendix E). However, changing ¢ or d will break this
rotational symmetry. On the other hand, the gauge symme-
try is kept when d = 1, i.e., the spectrum is invariant under
y — —y. Because A, = c + y exp(—2mipn/P), it is easy to
see any function involving the summation of all A ,, especially
Eq. (26), is invariant under the transformation. Nevertheless,
once d > 1, this symmetry would be broken [Fig. 3(d)], which
reshapes the memory retrieval profile as well (Fig. 1).

Taking a step further, we ask what structural properties
of the spectrum determine the dynamical behavior. The right
edge of the boundary determines the linear stability and time
scales of the dynamics around the null fixed point (all neu-
rons are silent), i.e., if max Re(Ay) < 1, the null point is a
stable fixed point of the dynamics, and all trajectories in its
neighborhood (covering the entire state space) will converge
to the fixed point, where the time scale of the relaxation is
determined by the distance from the right edge to the critical
line [Re(1y) = 1, see also Fig. 4(d)]. Notice that the activ-
ities for some neurons may exhibit a transient amplification
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FIG. 5. Effects of the connectivity spectrum on the sequence retrieval behavior. Simulations are carried out on networks of size N = 4000.
(a) The margin thickness of the spectrum (indicated by the blue-double arrow) plotted against «. (b) Evolution of the Euclidean distance
between two initially-nearby trajectories. All trajectories are initialized near the null fixed point. Different lines with the same color indicate
different initializations. [(c), (d)] The number of eigenvalues (real part) exceeding one vs « and y, respectively. The right subfigures show the
sequence retrieval behavior. The overlaps with patterns in sequence are distinguished by colors from light blue to dark blue. The red-dashed

line in (d) shows the upper bound 0.5« x 100% (see the main text).

before the following decay [Fig. 4(a)], which is an intrinsic
collective property of the non-normal random connectivity
matrix we consider here. The transient amplification bears im-
portant computational benefits, which attracts recent interests
of studying recurrent neural networks [26-28]. Because of
this transient amplification, memory retrieval in sequence is
possible, as shown by the transient overlap profile in Fig. 4(a).
Therefore, we conjecture that the null phase also has the
computational function, as the length of retrieval sequences
can be freely adjusted by the distance from the right edge of
the connectivity spectrum to the critical line. Note that the
time scale of the overlap decay is inversely proportional to the
distance from the critical line [Fig. 4(d)]. When the right edge
of the spectrum slightly cross the critical line, the sequential
retrieval of the entire ordered set of patterns becomes possible
[Fig. 4(b)], provided that « is small enough. By considering
the linear stability, we draw the phase diagram of the recurrent
dynamics in Fig. 4(c). The nonzero values of ¢ would suppress
the null phase, playing a similar role to the increasing Hebbian
length.

We next explore the linear unstable region [the part above
the lines in Fig. 4(c)]. First, we define the margin thickness
as the interval between the right edge of the outer boundary
and the right edge of the inner boundary. With increasing
value of «, the margin thickness also increases [Fig. 5(a)].
A larger o implies more unstable directions in the network
dynamics around the null fixed point, which is supported
by the numerical simulations of trajectory-distance behavior
[Fig. 5(b)]. For a small «, the whole spectrum nearly con-
denses onto its boundary. By utilizing the rotational symmetry
of the spectrum, we get the ratio of the number of eigenvalues
[Re(A)] exceeding one to the total number of all eigenvalues

as follows:

arccos (—#
9 ~ aﬂ <X (28)
T 2

where «/2 serves as an upper bound shown in Fig. 5(d). Note
that the memory patterns can be retrieved in sequence even
in the long-time limit, which is intimately related to the thin
spectrum margin. As the margin becomes dense, the persis-
tence of the retrieval behavior fades away, instead replaced by
a short-lived retrieval [Fig. 5(c), where the network structure
is posited above the linear stability line, and the network
dynamics after this short-lived retrieval would enter a chaotic
state.

To further study the network dynamics in the long-time
limit, we calculate the full spectrum of the Lyapunov expo-
nents (LEs) [29,30]. LEs are a set of exponents organized in
descending order, describing the growth rates of the perturba-
tions along different directions. They are defined as the loga-
rithms of the eigenvalues of the Oseledets matrix, which is de-
fined by lim,_.oo[(exp(L 3 D(t")dt")  exp(L [i D(t")dt")]>.
More details are given in the Appendix G. First of all, the
positive largest Lyapunov exponent implies chaos [Fig. 6(a)].
Through a rough numerical estimate, this transition-to-chaos
seems to occur after the proliferation of critical points. How-
ever, we remark that this may be due to the finite-size system
effects of the simulations. As N increases, the transition to
chaos may coincide with the instability of the null fixed point,
like that in the previous paper [31]. We shall come to this
issue in the conclusion part. Consistent with this picture, our
simulations of autocorrelation show that the autocorrelation
may display oscillatory behavior (related to the sequence
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FIG. 6. Lyapunov spectra of network dynamics and associated autocorrelations. Other parameters are N = 3000,c =0, and d = 1.
(a) Numerical Lyapunov spectra of the dynamics. Chaotic behavior emerges once the largest Lyapunov exponent exceeds zero. As « increases,
more exponents exceed zero. The inset shows individual estimates (five instances) of the largest LE, where the retrieval behavior disappears
before the chaos sets in. In between, there emerge nontrivial fixed points or limit cycles. (b) Autocorrelation of the firing rate, which is defined
as % Zi (@(ri(t))p(ri(t +1,)))y, where ¢, is the time lag. In a steady state, the autocorrelation is independent of z. (c) The overlap dynamics
before the chaos sets in. The displayed overlap is associated to patterns taken from the sequence with a fixed interval, due to the fact that the
number of stored patterns is quite large when « gets large. The overlaps with patterns in sequence are distinguished by colors from light blue

to dark blue.

replay) or long-term residual correlation, which suggests that
the network dynamics becomes much slower than that in
the deep chaotic regime (large o) where the autocorrelation
rapidly decays to zero. The rough numerical estimate in the
inset of Fig. 6(a) also shows that the retrieval phase is limited
to the small-« regime (see thin spectrum margin in Fig. 5). We
thus conclude that approaching the edge of chaos from below
has rich types of dynamics, showing computational benefits
of our model.

We next turn to the spectrum of the Jacobian matrix, which
depends on the specific neural state. We already show that
the Jacobian matrix at r = 0 (the null fixed point) reduces
to the connectivity matrix. We focus on the spectrum of the
shifted-Jacobian matrix and its function implication on the
network dynamics. Note that, when N — oo, the synaptic
current can be assumed to follow some probability distribu-
tion, and then the distribution of the structured matrix @’
is determined by the probability distribution transformation
illustrated in Fig. 7(a). In other words, the corresponding
spectrum depends uniquely on this distribution of @’ rather
than single realizations of the neural activity.

According to the local chaos hypothesis [23,32], when the
network is sufficiently large, the network activity is decoupled
from the specific connectivity matrix, and thus the synaptic
current of each neuron can be independently modeled by a
Gaussian distribution with zero mean and orz variance, i.e.,
ri ~ N(O, orz). A numerical verification is shown in Fig. 7(b).
However, this hypothesis seems to break in the case of ¢ # 0
and « > 1. Note that the right edge of the shifted-Jacobian

is always less than that of the connectivity matrix [Fig. 7(d)],
because the derivative of the activation function ®'(r) = 1 —
tanhz(r) is bounded in [0,1]. In addition, as the variance in-
creases, the right peak of P(®’) becomes lower [Fig. 7(a)].

We draw some representative examples of the shifted-
Jacobian spectrum with different variances in Fig. 7(c). The
shape preserves the same features in the connectivity spec-
trum, e.g., the gauge invariance is broken for d > 1. We
also study how the variance influences the right edge of the
spectrum in Fig. 7(d), and find that the spectrum becomes
more contract as the variance grows. Setting the variance
zero recovers the connectivity spectrum. As a result, for
the model whose right edge of the connectivity spectrum
is much larger than one, nontrivial stable fixed points can
only be found in the neural state space with extremely high
synaptic-current variances, which can shift the right edge of
the Jacobian spectrum to the left-hand side of the critical line
(along the real axis). However, finding a nontrivial fixed point
requires one to solve r* = J®(r*), which can be numerically
accessible, but counting the number of (stable in all direc-
tions, or partially stable in some directions) fixed points is a
challenging problem.

Interestingly, the spectral density of the shifted-Jacobian
remains unchanged with increasing variances [Fig. 7(e)], es-
pecially at the region far from the origin. There appears a
slight difference close to the origin for the spectral density.
To study how the Jacobian spectrum determines the dynamics
behavior, we simulate networks of 4000 neurons [Figs. 8(a)
and 8(d)]. The dynamics starts from different random initial-
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FIG. 7. Spectrum of the shifted Jacobian matrix with the Gaussian synaptic-current assumption. Simulations are carried out on networks of
size N = 4000. (a) The transformation from the distribution of the synaptic currents r. We assume that the synaptic current follows a zero-mean
Gaussian, shown in the blue line. The histogram is the numerical samples. The distribution of ®'(r) is shown in red. The black curve in the inset
shows the derivative of the activation function, given by 1 — tanhz(r). (b) The synaptic current is initialized as a Gaussian distributed random
variable at the time step equal to 0.0 second, and the current after 0.25 seconds is still Gaussian distributed. The histograms are obtained from
real simulations, and the solid lines are Gaussian distributions parameterized by the variance of the synaptic currents. [(c1)—(c4)] Spectrum of
shifted Jacobian with the Gaussian distributed synaptic currents of different variances. Solid lines are predictions of Eq. (23), and the dots are
numerical eigenvalues. (d) The right edge of the spectrum plotted against the variance of synaptic currents. (e) The density of the spectrum
with different variances along the real axis. The density difference for three values of variance close to the origin point is shown in the inset.

izations with different variances of synaptic current, and soon
reaches a steady state, where the variance becomes nearly
unchanged over time, suggesting a relatively stable shape of
the Jacobian spectrum.

We show the right edge of the shifted-Jacobian spectrum
versus the current variance in Figs. 8(b) and 8(e), from which
we can see how increasing « impairs the network function
of sequence retrieval. As « increases, the right edge moves
from the left-hand side to the right-hand side of the critical
boundary, and meanwhile the spectrum margin thickness also
grows, thereby destabilizing the sustained overlap profile like
that in Fig. 5(c). However, as y increases, the right edge of
the Jacobian spectrum would also cross the critical bound-
ary, but the thin margin of the spectrum (o« = 0.01) greatly
limits the emergence of unstable directions that would de-
stroy the memory traces, thereby protecting the memory to
some extent.

We finally study the phase diagram of network dynamics
in the synaptic current space when ¢ = 0 and d = 1, charac-
terized by the first two moments of ®'(r) [Figs. 8(c) and 8(f)].
Each line in Figs. 8(c) and 8(f) is determined by setting the

left-hand side of Eq. (27) equal to one as follows:

1=y Jal@ ), + (@2, (29)
which demonstrates that the region under each line is linearly
stable. Technical details to derive Eq. (29) are given in the
Appendix E 2.

V. CONCLUSIONS

In this paper, we develop a random matrix theory of asym-
metric associative memory networks of arbitrary Hebbian
length. The network function such as sequence retrieval is
related to the spectral properties of the connectivity matrix
and the Jacobian matrix. First, we calculate the spectrum of
the Jacobian D = &” X&®’, which consists of the structured
matrix X and an arbitrary diagonal (activity-dependent) ma-
trix ®’. By this analysis, we extend the well-known single ring
theorem [24,33]. We recover the spectrum of the connectivity
matrix by setting ®’ = 1, which reveals several novel types
of spectrum in non-Hermitian random matrix ensembles. In
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FIG. 8. Right edge of the shifted-Jacobian spectrum in the steady state. Simulations are carried out on networks of size N = 4000.
(a) Evolution of the synaptic-current variance over time. Colors indicate different model parameters, and different lines with the same color
show the trajectories with different initializations. After a short relaxation, the variance becomes steady. (b) The current variance tunes the right
edge of the spectrum [the dashed lines obtained via Eq. (27)]. The color scheme is the same with (a). The solid lines indicate the trajectory-
averaged variance of synaptic currents in the steady state, and the dashed line shows the linear stability. The dotted line shows the boundary
of linear stability. (c) The phase diagram of the network dynamics in the space spanned by the first two moments of ®'(r). On the left-hand
side of each lines (except for the red line), the right edge of the spectrum is below one. The red line shows the phase region where the synaptic
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o2 is the current variance. The arrow indicates the direction of increasing variances. (d)—(f) are similar to (a)—(c), focusing on the change of y
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2
exp(— 2;—3 ), where

particular, some types of spectra break the rotational symme- our model requires developing dynamical mean-field theory
try about the origin, being of nested d-hole shapes as well based on the functional path integral, such as recent theoreti-
(e < 1), or break the gauge invariance (d > 1). We then study cal works of random recurrent neural networks [34,35]. This
how the model parameters affect the geometric shape of the theory may fully characterize the time scales of the network
connectivity spectrum and analyze the linear stability of the =~ dynamics beyond the linear stability line, and furthermore
null fixed point, which is determined by the right edge of  clarify whether chaotic attractors emerge continuously. In
the spectrum. Approaching the critical boundary from the particular, the topological complexity, counting the number
left-hand side, the network operates with a transient memory, of fixed points, is thus an important physics quantity to be
and the time scales are related to the distance towards the explored in future works, e.g., via the Kac-Rice formula [36].
right edge of the spectrum, while the chaos state emerges Taking a step further, considering both the sequence length
after the critical line is crossed. Even if the null fixed point and the number of sequences is also very interesting, and
becomes unstable, a small-o regime limits the number of  the theoretical capacity of the sequence storage may be also
unstable directions, allowing for sequence replay as well. We  calculated, such as in the previous papers [8,10] in simpler
thus conclude that in a finite-size system approaching the edge settings. Second, the neural circuits in a biological brain are
of chaos from below has also the computational benefits for always not fully connected. It is thus interesting to combine
sequence memory. the network sparseness in the connectivity with the sequence

Our theoretical analysis not only applies to a broad class retrieval function of the network. Lastly, the spectrum of our
of associative memory models of sequence retrieval, but also non-Hermitian matrix ensemble belongs to an intriguing cat-
applies to mathematical modeling of time-lagged correlations egory with isotropic or anisotropic properties depending on
(of arbitrary time delays) in financial or biological time series the specific model parameters. Moreover, the density within
data [17,18]. Our study also inspires several promising direc- the spectrum is highly nonuniform with the nested d-hole
tions. First, a complete understanding of the edge of chaos in structure. The non-normal property also causes the transient
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amplification, especially when the network setting falls within
the critical regime. Thus, it is also very interesting in future
works to show how these characteristics are modified when
more biological constrains are considered, such as cell types,
sparseness, and excitation-inhibition balance.

All codes to reproduce the results of the paper are available
on the GitHub [37].
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APPENDIX A: INTRODUCTION OF SPECTRAL DENSITY
FOR NON-HERMITIAN RANDOM MATRICES

1. Spectral density and the Green’s function

The spectral density of an N x N non-Hermitian matrix J
at z on the complex plane is defined as

N
1
— @, _ 5.
p@ZNESQ ), (A1)
where ); are the eigenvalue of J. To proceed, we introduce
the Green’s function G or the so-called resolvent in random
matrix theory as follows:

1 1
G(Z) = N(TI' ]lNZ — J),

where 1y is an N x N identity matrix. Transforming the
summation over eigenvalues to the integral with the spectral
density, we have

_ 1 VY_ 1[0 p0)
G(Z)_N<Xi:z—)»,-)_N/dAz—k’

where the integral is done over the complex plane. Eigenval-
ues are not real-valued any more for a non-Hermitian matrix.
Then, we carry out a contour integral of G(z) along an arbi-
trary closed path dC, assuming that no eigenvalues of J lie on
the path, and we get

2 _1/ 2 L
facdzc(z)_N ach(X[:Z_)w)

1
=2 Y= Zni/ d’zp(2),

reC ¢

(A2)

(A3)

(A4)

where we have used the residue theorem, and C denotes the
region bounded by dC. We then apply the complex version of
Gauss’s law as follows:

G 0G 0G

f d’z G(z) = i/ dzz(— +i—) = Zi/dzz —,

ac c ox ay c 9z
(A5)

where x and y is respectively the real part and imaginary
part of w, and the Wirtinger derivatives are defined as

follows:

] 1/90 .0 (A6a)
— == ——1—, a
dz 2\ 0x ay

d 1 8+,8
—=——+4+i—|.
0z 2\ 0x ay

Hereafter, z denotes the complex conjugate of the complex
number z. Because C is arbitrarily chosen, by comparing
Eq. (A4) and Eq. (AS), we have

190G 1 (0G . 0G
— = —\ +1_ 5
27 \ dx ay

which indicates that if G(w) is an analytic function of w, the
density vanishes and vice versa. Equation (A7) thus estab-
lishes the relationship between the spectral density o and the
resolvent G.

Next, we give a concrete example to show how to use
Eq. (A7) to calculate the spectral density from the Green’s
function. In the classic circular law for the fully asymmetric
random matrix [22], where J;; and J;; follows independently
a Gaussian distribution, the spectral density is bounded by
x> +y? = 1 on the complex plane, and the Green’s function
is given by

(A6b)

(A7)

G(z) = {%, z outside the circle

Z,  zinside the circle (A8)

where the Green’s function can be derived by using the
following replica method (see Appendix C) or Feynman di-
agrammatic techniques (see Appendix H). We immediately
have

10G(z, 2 i i
_ 13632 _ {0, z outside the circle (A9)

p2) = T 0z 1/m. zinside the circle

2. Poisson equation and eigenvalue potential

From the Gauss’s law, one can define an electrostatic
potential to turn the eigenvalue spectrum problem into a
two-dimension classical electrostatic problem. The eigenvalue
potential is constructed via the following way:

9 _

=—-G. (A10)
0z
Using the Wirtinger derivatives, we arrive at
82
420 _ 2= —anpeo), (A1)
0z0%

which suggests that p is the two-dimensional charge distribu-
tion, and the spectral density is now related to the computation
of the potential. Moreover, the Green’s function G plays a role
like that of an electric field in two dimensional space. The
explicit expression of the potential consistent with the Green’s
function reads as follows [22,38]:

¢ = _zlv Trin(zly —J) — ]lvTr InGzly —J).  (A12)
After using the mathematical identities Trln A = Indet A,
det AT = det A, and det(AB) = det A det B, one can rewrite
Eq. (A12) into a compact form as follows:

¢(z) = —Ilv(ln det[zLy — I (ly — D). (A13)
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Finally, the procedure to compute the spectral density can be
summarized below:
(1) Calculate the potential ¢(z, z);

(2) Get the Green’s function through G(z,z) = —g—‘f;
13G
7oz

(3) Calculate the spectral density via p(z) =

APPENDIX B: USEFUL FORMULAS OF COMPLEX
GAUSSIAN INTEGRAL

In this section, we introduce three types of complex Gaus-
sian integral useful for our calculation of the spectral density
of non-Hermitian random matrices.

1. Standard form
The first type is given below:

/dZNz exp(—z'Bz), (B1)

where z is a complex vector of length N, and [ d*"z denotes
the integral over the whole complex plane. B is a positive
definite Hermitian matrix. By a unitary diagonalization of B,
we get

U'BU = diag (by, - - - , by). (B2)

Hence, we can introduce the new integral variable 7’ = U'z.
We then rewrite Eq. (B1) as

/dZNzexp(—zTBz) = /dZNz/eXp (-Zbik”z)
-T1 m_ 7"
- L b; " detB’

Equation (B3) suggests that one can turn a determinant to a
complex Gaussian integral, i.e.,

(B3)

-1 1 2N t
detB™" = - d~"zexp(—z'Bz). (B4)
b
2. With Hermitian linear term

Now we consider a bit more complex case, where an Her-
mitian linear term is added to the exponential term in Eq. (B1),

/ d*zexp(—z'Bz + j'z +7'j). (B5)

The linear term is Hermitian because (j'z +z7j)" = jiz +

7' j. We first rewrite the exponential term in Eq. (B5) as

~z—-B ')y Be—-B'j)+j B}
(B6)

7Bz +jiz+z77j=

Then, with the change of the integral variable z < z — B™'j,
Eq. (BS) can be transformed into the form of Eq. (B1), leading
to the integral result given below:
N fp—1
B ),
Jorg SXPU BT

which implies the complex Hubbard-Stratonovich transforma-
tion as follows:

(B7)

. detB
exp(G'B7lj) = R—N/dZNzexp(—zTBz +j'z+2)).
(B8)

3. With non-Hermitian linear term
‘We next consider the added term is a non-Hermitian term
as follows:
/ d®zexp(—Z'Bz + jiz +27j). (B9)
In this case, we can treat z and z' as independent integral
variables and shift them separately as

= +j sz (B10)
Then the linear term becomes Hermitian, and we can repeat
the manipulation in Eq. (B6). Finally, the integral is worked

out as follows:

N
. 4
/dZNz exp(—z' Bz +jiz+7'j) = exp(j'B'j).
detB
(B11)
APPENDIX C: DETAILS OF THE
ANNEALED CALCULATION
In the annealed approximation, we have
No(w) = — lizm (InZ(w, €))
le|>—0
= lim (InZ Y(w, €))
le|2—0
~ lim In(Z"Y(w, €)), (C1)
le|2—0

where Z(w, €) is defined in the main text. Alternatively, we
have

exp(V$) = lim (Z™(w, €)). (€2

With the help of Eq. (B4), we can transform Z~! into the
complex Gaussian integral by introducing N new complex
variables {z;}%_,. More precisely,

1
Z’l(w, €)= W/dZNZ
w

x exp(—z' (wl — D) (wl — D)z — |€|*z72).
(C3)

Using Eq. (B8), we introduce a new complex vector y to
linearize the quadratic term as follows:

- 1
Z (w,€) = —

— d*Nzd*"y exp(—|el’z'z — y'y

—izf(wl = D)y — iy’ (wl = D)z). (C4
Inserting the explicit form of D into Eq. (C4), we get
exp(N¢) ‘el‘ierO/dZdeZNy exp(—|e|’z'z —y'y
—izfwy — iy wz)
< (oxp (i G0 ATy + iy Ade e ).
(C5)
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where ox means an irrelevant prefactor is omitted, and this prefactor does not affect the final result of saddle point equations and
the spectrum properties.

1. Calculating the disorder average

We first introduce the following P-dimensional order parameters
7= 1(x;-<1>’) Y = 1§y (Co)
DA Vi
By inserting the following Fourier expression of § function §®(w) = [ ";i—?ei(w'i’erﬁ’),
P77 expZ2 (NZ — B@')z) + i(NZ' — 21 (E0))Z2)aPY a2 ¥ expif ' (NY — By) +iVY T — y (®)DP) (C7)
into Eq. (C5), we immediately arrive at
exp(N¢) « lim / D[---lexp(—|e|*z'z —y'y — iz’ wy — iy'wz + INYTAZ +INZTATY)
le|2—0

x expGNZ'Z +iNT'Y +iINZ'Z +iNY TP ) (exp(—iZ G@')z — i¥ "By — iz'B0))'Z — p'E' 7)),  (C8)

where D[ - - ] indicates all relevant integral measures (overz,y, Z,Y, 7 , )4 ), and (. . .) means the disorder average over the rotated
patterns. The average term can be calculated as an integral with the standard complex Gaussian measure as follows:

AT A, S PO
(exp(—iZ (@")z —i¥ &y — iz (€9')'Z — iy'E V),
= 1_[ / dzéui CXP(—éméui - ié]lé,ui¢;izi - iY;v,ué;u‘yi - iq);iziéuizu - iyiéuiYM)
Wi

= 1_[ exp(_(zﬂcb:‘izi + ?u)’z)(@;,Z,ZM + )_J,YM))
Wi

= exp(—2'2(®'7)'(¥'7) — P Py'y — 2Py (@'2) — ¥ 2(972)y), (€9)
where Eq. (BYS) is used to get the final equality. Plugging the average term into Eq. (C8), we have

exp(N¢) o« lim /D[- ~Jexp(—lel’z'z —y'y — izl wy — iytwz +iINYTAZ +iNZTATY)
|e|2—0

x exp(iNZ'Z +iNT'Y +iNZ'Z + iNY D) exp(—Z ' 2(@'2)" (@'2) — ¥ ' Tyly — 2" 0y (@'2) — 7' 2(@'2)'y).

(C10)
2. Introducing order parameters
To proceed, we introduce the following order parameters:
_ 1
U= Nz z, (Cl1a)
v = iny, (C11b)
N
f= Lyt (Cl1c)
N
f= iz*y, (C11d)
N
/o 1 r Nt ’
u = ]T[(‘I’ 2)'(®'z), (Clle)
= Lyi(@), (11
N
7= L@y, (Cllg)
N
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By inserting the Fourier representations of Dirac delta functions defining these order parameters into Eq. (C10),

dudii exp (it(Nu —z'7)), (C12a)
dvd? exp (iv(Nv —yTy)), (C12b)
d*td’f exp (if(Nt — y'z) + i(NT — z'y)P), (C12¢)
du'di exp (it (Nu' — (®'2)(®'2))), (C12d)
d*'d*F exp (i’ (Nt' — y'(®'2)) + i(NT — (®'2) y)P"), (C12e)

we then have
/ D[---] lim exp(—|e|*Nu — Nv — iN@i — iNwt + iNdu + iNdv + iN7t + iNif + iN2'u' + iNPt + iNT'F)
le]>—0
x exp(iNYTAZ +iNZ'ATY ) expGNZ'Z + iND'Y +iNZ'Z + iNY T )exp(—Nu'Z'Z — No¥ ' —N'Z'Y — N0 '2)

X f d*Nzd™y exp(—idz'z — ivy'y — ify'z — ifz'y) exp(—itt (®'z) (®'z) — i’y (®'2) — i (®'2)Ty). (C13)

3. Simplification by the integral over auxiliary complex domains

First, we notice that the integral in the last line of Eq. (C13) can be rewritten as

/ N2y exp <_[z’r yT][ii?\% :?g i1 :Z ]ilf/<1>’] [;D ©14)
Using Eq. (B9), one work out the above integral [Eq. (C14)] as follows:
= : ”iN _ o exp (- Z In (77 — b + (®,)* (@7 — 2'D) + (7 + ff’))). (C15)
det ["* +i%ﬂ?£ e ian] i

Equation (C13) becomes then
/D[. ] ‘ElliZTOexp(—|e|2Nu — Nv — iNwf — iNwt + iNau + iNDv + iNTt + INFE + iN#'u' + iN7't' + iNTT)
x expGNYTAZ +iNZ'ATY ) expGNZ'Z + iNP'Y +iNZ'Z + iNY ) exp(—Nu'Z'Z — No? ¥
—NEZ'P =Ny Z)exp (— > In(fF — b + (9} (FF — /D) + D}(PT + ff/))). (C16)

We find that the last two lines of Eq. (C16) is a Gaussian integral over Z and ¥, which can be rewritten as

P25 2D st oty Nwl Ni'1[Z S 17/ N, | /
/d Zd Yexp( z' v ][Nt,]l Not || 1) &P (Zz' Y'|yy | +HONZ" iNY'] 7
. .o [Nu'l  Ni'In—1riNZ + Nkvl —Nkt'17Z
_ a?exp (vz vy ] [w]) 727 ep (=120 Y[ e llv))
- Nul NPl - 2P (1)1 _ 1147\P ’
det [NI’IL NtvIL] N (u'v —1't)
ocexp (—aN In@'v -7y — 1z vt ] [F]): C17)

where k = l/det[?,, ZU/] =
matrix product, we have

ﬁ Substituting Eq. (C17) into Eq. (C16), and rewriting the quadratic terms into the form of

w'v—

/ DI - - 1exp(—|€|>Nu — Nv — iNwf — iNwt + iNdu + iN9v + iNTt + iNFf + iNi'u' + iN7't' + iNTT)

X exp <_ Zln (ff — ad + (@}’ @7 — ') + ©,(7'7 + ff’))) exp(—aN In(u'v — 1't"))

Nkvl —Nki'l —iA[Z
2Pz 12P 17 t
x /d Zd Yexp( VAR ¢ ][_th,]l_mT Vil MYD (C18)
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The last integral in Eq. (C18) is worked out by

—1
77 ; -1 2P
Nkvl —Nkt'l —iA i ’ R e
- ”Zp{det [—th’ll —iAf Nku'l “ = N [y — (k" + im0k +iA,)]
wn

ocexp [ =Y In(k — ikA ' — kALt + A, A) | (C19)
7
Finally we have

exp (N¢) o lim /D[~ --Jexp(—|€|*Nu — Nv + iNfu + iNDv + iN7t + iNi7 + iNd'u' + iNF't' +iN7'7)
le]>*—0

X exp (- > " In(fF — b + (9} @7 — i/'D) + D}(PT + ff’))) exp(—aN In(u'v — 1)) exp(—iN w7 — iNwr)

X exp —Zln (k —ikA,t —ikA ' + A A,) | = /D[--~]exp(N1ﬂ), (C20)
"

where we denote an action y as follows:

~ A

~ “—A . A .= A 1 AA A AA
= — |e|Pu — v + ifw + iDv + ift + iff +id/u +if't’ +if'f — v > In(@i — ab + (9P — #'D) + B(PF + i)

— aln(u'v — 7'1') — i®7 — iwt — % 3 Ink — kAt — kAL + LA, (C21)
i
(
APPENDIX D: SADDLE POINT EQUATIONS where the neural-state dependent coefficients are given by
The Laplace method to estimate the integral f DI[---] re- A 1 1 (D3a)
: = — —, a
quires that N — g,
oy /
=0 (D1) Ly @
e ’ B=— -, D3b
T v Z o (D3b)
i.e., the partial derivatives with respect to all order parameters Y
vanish, yielding the so-called saddle point equations. lim ¢z, C= l Z (®;) (D3¢)
is carried out after the saddle point equations are derived. N~ g '
where

1. Derivatives with respect to hatted variables

The derivatives with respect to hatted variables lead to the g =it — 0 + ((D;i)z P — D)+ o, Fr+77). (D4
following results:
81{ — it AD =0, (D2a) 2. Derivatives with respect to non-hatted variables
on The derivatives with respect to non-hatted variables pro-
3_1{ = iv +Aﬁ + Cﬁ/ — O, (D2b) ceed as follows:
D
oy
a = el +ih =
ai”' — i +C =0, (D2c) oy =l +ia=0, (D5a)
i
3 - x = oy _ .,
1{ =ift—Af—Bf" =0, (D2d) —, =il —akvI =0, (D5b)
ot ou
oy . s o 3
— =it — At — Bf' =0, (D2e) W =—1+4id —aku/ZT =0, (D5c¢)
ot av
o - = = Y _
oy =i’ — Bl —C"'=0, (D2f) 5, = "iw+if =0, (D5d)
310 o/ ~ ~
L —if —Bf — = 0 R
. it' — Bf — Cf' =0. (D2g) 8_1? — iwm4if—o, (D5e)

013090-16



SPECTRUM OF NON-HERMITIAN DEEP-HEBBIAN NEURAL ...

PHYSICAL REVIEW RESEARCH §, 013090 (2023)

9 - -
a—f — if’ + akTi + iakT =0, (D5f)
81!’ <A / . T
W =it' + akZt’ +iakZl = 0, (D5g)
where
1 ALA
T=— pee D6a
> Zl 5, (D6a)
—
P
1 A
T == oy D6b
P2, (D6b)
Q, =k —ikA ' —ikA, ' + A, A, (Dé6c)

3. Interpretation of order parameters

According to the electrostatic mapping in Appendix A 2,
we have
_9 _ 9
dw  dw

=it, G=——=——=1if.
D7)

where ¥ is the value of i at the maximum. Hence, the
physical meaning of it is exactly the Green’s function.
Equations (D2d) and (D2e) suggests that if = ir. Note that ¢
and 7 are no longer complex conjugates with each other when
evaluated at the saddle point, because the integral is deformed
to be over contours in the complex plane [39]. Equations (D2f)
and (D2g) imply that ¢’ is not a complex conjugate of ¢’, and
it =it
By considering Egs. (D2a), (D2c), and (D5c), we have

A =u(l — Cakl). (D8)
Similarly, considering Egs. (D2b), (D5a), and (D5b), we have
Ale)? = v(l — Cakl). (DY)
It is immediately found that
v 2
- = lel”. (D10)
u

If we assume that L and R are the left and right eigen-
vectors of the non-Hermitian matrix J, respectively, we
then have the spectral decomposition J = RAL', which
has the biorthogonal property L'R = 1. Note that L'L # 1
and RTR # 1. We then define the eigenvector overlap ma-
trix Oyp = (LYL), 8 (R'R) sa» Which describes the correlation
between left and right eigenvectors. Then, the one-point cor-
relation function of eigenvectors is defined as [40]

1 N
O(w, ) = <N Z Oue8®(w — xa)>.
a=1

The correlator is related to the eigenvalue potential through
the relationship O(w, ®) = + limy.o g—f‘;—f [33]. Then we
can calculate the eigenvector overlap function as follows:

1 d¢ 9¢ 1 99 Yo r ., 1
= - = — —_— = |€|M:

—uv,
4
(D12)

where € — 07 is implied. Hence, the product uv is exactly the
eigenvector overlap function.

(D11)

O(w, w)

7 de 9w dpe 0OE T

Considering Eq. (D5d) and Eq. (D5e), we also have

f=w, f=w. (D13)
4. Equations determining the spectral boundary and density
within boundary

The condition for vanishing eigenvector overlap function
determines the boundary of the spectrum [41]. One can also
verify that once uv = 0 holds, % = 0. Therefore,

. { =0 outside the boundary,

> 0 inside the boundary. (D14)

Equation (D9) suggests that when |¢|> — 0,

(i v=0,

(1) CakZ = 1.

Therefore, the boundary curve is determined by the above
two constraints.

a. Spectral density inside the boundary

Now we consider the simplified saddle equations inside the
boundary. Following the above analysis, we have

aCkL = 1. (D15)
Based on Eq. (D2f) and Eq. (D5f), we remove 7 and get
(CakZ — 1)’ +iCakZ’ —iBf =0, (D16)
and taking into account CakZ = 1, we have
aCkI' = Bi. (D17)

Equation (D5a) suggests that # = 0. Then we find from
Eq. (D2g),

it' = Bf + Ctf'. (D18)
By multiplying Eq. (D2b) with Eq. (D2c), we get
W'v = —AChd — C*i'd = —C*i'd. (D19)

Finally, we summarize the closed-form equations for deter-
mining the order parameters inside the boundary as follows:

CakZ =1, (D20a)
CakT = Bw, (D20b)
G = Bw +Ct’, (D20c)
Wv = —C*i'p, (D20d)

where we define G’ = it’ in parallel with G = ir, and have
used Eq. (D13). The other notations in Eq. (D20) are specified
as follows:

1 A 2
=52 2 . (D21a)
P~ |AG — 1 +u'v|A,]?
I
! A
=3 - . (D21b
PZ |AMG’_1|2+M/U|A#|2 ( )
m
1 @,
P=wN e , (D2l
N Z @7 T DE —(@pra o
! (@)
=N EE . (D21d
P> @7 +PP — @ pas  POHY

i
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Equation (D20) can be separated into six real-valued
equations, which involve in six real-valued variables
(G, ', u'v, &'} (a complex variable is equivalent to two real
variables). Since w is a location on the complex plane, it can
be arbitrary chosen as long as it falls within the boundary.
Once we find a solution {G', ', u'v, &'} from Eq. (D20), we
can get the Green’s function [via Eq. (D2e) and G = if] and
also gets uv = —ACi'd by using Eq. (D2a) and Eq. (D2b).
Numerical methods for solving Eq. (D20) can be found in the
Appendix F.

b. Boundary curve

Adding the constraint v = 0 to Eq. (D20) leading to the
boundary condition for the spectrum in the complex plane,

CakZ =1, (D22a)
CakZ = Bw, (D22b)
G = Bw + Cf, (D22¢)
where
1 |A,l?
KZ=—-) ——~ D23a
P Z |A/LG/ _ 1|2 ( )
"
1 A
K==y ——* D23b
PZ|AMG’—1|2 ( )
= — , D23c
Z |(<I>’t +t)|2 (b230)
1 (@)
C=—Y — 2 D23d
N Z (L7 + 1) ( )

We conclude that the set of w satisfying Eq. (D22) forms the
boundary of the spectrum, i.e., the boundary curve.

c. Special example: Spectrum of the coupling matrix

Setting @}, = 1, the Jacobian matrix reduces to the cou-
pling matrix. From Eq. (D3), we find

, (D24)

where

(D25)
|

P

By using Egs. (D2c¢), (D2b), (D2f), and (D2g), one obtain the
following compact equation:

W'v — 't = C + (B> — AC)it. (D26)
Using Eq. (D24) and recalling the definition k = (/v —

t't')"!, we have
qg=k. (D27)
Using Eq. (D27), we simplify Eq. (D20) to
P
o |A, G* + |A, [Zuv
— =1, D28a
P;M G— 1>+ |A,Puv ( )
P
o Ay,
ht =w. D28b
PX::AG—1|2+|A o~ W (DY)

Moreover, the boundary equations must include the condition
uv = 0, yielding
P

o |A,G|?

FZ A G-I 1, (D29a)
p=1 K

o P

TDZ AG_]|2=w, (D29b)

which coincides with the results independently obtained by
using the Feynman diagrammatic method, which we will in-
troduce in Appendix H.

APPENDIX E: CLOSED-FORM SOLUTIONS
OF SPECTRUM

In general, Eq. (D22) can only be solved numerically, but
closed-form solutions can be found when the spectrum is
rotationally symmetric. One simplest case is ¢ =0,d =1,
where the eigenvalues of X form a circle on the complex plane
as

y cos(Qmru/P) — iy sin(2m u/P),
(ED)

A, =yexp(—2mip/P) =

which results in the rotational symmetry of the spectrum, as
we shall show later.

1. Single ring law

We first consider the spectrum of the connectivity.
Equation (D29) can be further calculated as follows:

L A, A, GG
P = AAGG— A,G— A, G+ 1
P
_oy v?IGP
P = y2|G|? — 2ay cos(2m /P) — 2by sinQRmu/P) + 1’

v?IGI?

o
P Z y2|G|? — 2y|G| sin 2m /P + arctan(b/a)) + 1

pu=1

o 2

b

y?IGI?

—— | a
2 )y Y6 -

2y|G]| sin (x + arctan(b/a)) + 1’
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a 2w V2|G|2
= — dx N >
27 o y2|G|?2 — 2y|G|sinx + 1
21312
y~IGl
=0T, (E2)
ly2I1GI> — 1]
where we have decomposed G = a + bi into its real and imaginary parts. The reasonable values of |G|? are given by
1
G2 = 1 7TE % i (E3)
Sar 2> L

Then by substituting z(8) = e, the eigenvalues of X can be re-parameterized as A(6) = yz(6), and for any function F, we
have limp_, « % Zi: | F(A) = % 0277 d6 F(A(0)). Thus the second equation of Eq. (D29) can be further simplified by

a [ Yz o 1 Yz

2 Jo V2G> —yGz —yGz+1 27 Jyymr z2y?G2—yGz—yG/z+1

w

a Yz

= — dz —
271 Jiy=1  (Y2IGP + 1)z —yG22 — yG

1 a 1
=z ser—ie Y6l > 1,
= G = e (E4)
271 Ji=1 —(z = 1/(yG))(z - yG) —rere Y6l <L

In the above Eq. (E4), we have used z = % and carried out the contour integral to obtain the last equality. Therefore the inner and
outer boundaries of the spectrum are given below.
(i) When o < 1, the radii of the outer and inner boundaries are respectively given below:

o o 3
Rm:%zy«/_pra, Ro=—11—— =y(VT—a)" (ES)
+o - Vta WT—a) V-«
(ii)) When o > 1, the inner boundary vanishes and the radius of the outer boundary is given by
yo
Row = ————— =y/T+a. (E6)
V4o — Tite
We next derive the analytic spectral density. The first equation of Eq. (D28) is simplified as
| = o XP: A_MAMEG—I-A_MAMMU
P = R0, GG — AuG — K, G + 1+ A, Ay
_ XP: y2IGI* + y*uv
P y2|G|? — 2ay cosRQm u/P) — 2by sinQu u/P) + 1 + y2uv

u=1
P

_ 3 VG + y2uv
P 4~ y2|G|2 = 2y|G|sin 2w /P + arctan(b/a)) + 1 + y2uv

n=1
o 27Td )/2|G|2+)/2MU
= — X
27 Jo ¥2|G|? — 2y|G]| sin (x + arctan(b/a)) + 1 + y2uv
_ i 2 . ]/2|G|2 + yzuv
27 Jo y2|G|? — 2y|G|sinx + 1 + y2uv
21612 2
—a y7IGI" + y uv . (E7)
V2IGP + 1+ y2uv) — 4y2|GP
The second equation of Eq. (D28) is then simplified as
2 1
w=— [ a6 L =2 | ar e
2 Jo VG2 —yGz—yGZ+1+uv 27w J=1 2y G2 —yGz—yGl/z+1+uv
& rz (E8)

=— dz —.
27 Jig=1 (PGP + 14 uv)z — yG22 — yG
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We then denote z+ as the roots of (¥2|G|? + 1 + uv)z — yGz> — yG. We can obtain

YAGE +1+uv £ \/(V2|G|2 + 14w —4y2GR |G + 1 + wv + ay2(|G]? + wv)
2yG - 2yG
y2(1 £ a)(|G]? 4+ uv) + 1
2yG ’

i+

(E9)
. . . _ o vz
which leads immediately to w = 2m.flz‘=1 dz——yG(z—.z,)(z—m' . .
In order to complete the contour integral over z in Eq. (E8), three cases should be considered (one of z. is in the contour or
both of z4 are in the contour), and thus the corresponding integral results are listed as follows:

o Z+ aflta n 1
w = == — s
FT 0T -2 TG\ 2a " 2y%(GP + uv)

o
w0=w++w,=—5, (E10)
where the third result is trivial and can be discarded. Then by introducing fi = w1 G, we rewrite Eq. (E10) as
y*(IG)* + uv) = :F—l : (E11)
Qfs+axl)
A reorganization of Eq. (E7) gives rise to
?IGP + 1+ y )’ — 4y°|GP = &> (¥*|GI* + y?uv)’. (E12)
By using Eq. (E11), we have
1 : 12 1 :
— 1) P = T, El13
(:FZfi+aj:1+ ) e “(:sziJrail) E13)
which is a cubic equation of fy, i.e.,
WA DR+ e D)’ — [wh)fe — lwle =0. (E14)

The only physical solution is given by f_. On one hand, |w,| > 1 is excluded from the contour integral. On the other hand, f
should always be positive, because f is actually the radial cuamulative density, which can be seen from

_lE:LﬂzLMW(IwI)le(a +ii>\/maf(|w|)— L afduwh) (E15)

T wdw  wmdw  ww dw 9w w2\ 9x | dy dw|  2mw| 9|w|

Therefore, to calculated the density, we need to solve the cubic equation first, and then calculate the density by using Eq. (E15).

2. Generalized single ring law
In this section, we analyze the Jacobian spectrum when ¢ = 0 and d = 1. For convenience, we recast Eq. (D22) as follows:
L 2 P
o A o A
C— _' "'A =1, C— — > = Buw. (E16)
P,L=1 A, (Bw+Ct') — 1] PM=1 A, (Bw+Ct') — 1]

By inserting Eq. (E1) into the first equation of Eq. (E16), we have

s 2

o ¢ v o Y
P ; |AT — 1] P XM: y2|T |2 — 2ReTy cos(Rmu/P) — 2ImTy sin(Qm p/P) + 1

21 2 2

c

:Cif 40 v __ Y , (E17)
21 Jo YAUT1? —=2y|T|sin6 +1  [y2|T|> — 1|

where T = Bw + Cf’, and the coefficient C is defined in Eq. (D3). Therefore

1—ay?C
vIT| <1,
TP =1 .0 (E18)
EL yIT > 1,
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and
yATP-1
- vITI <1,
= y2|aT}12—1 (E]9)
o y|T| > 1.

Then, the second equation of Eq. (E16) is calculated below:

P

Ca Ay
w=—— —_—

BP Z= |A,T — 1]

_Ca (¥ vz

"~ B2m J, V2AT)?2 —yTz —yTz + 1
C «a 1 vz

=—— z— —
B2mi Jiy= 2y TP —yTz—yT/z+1
C « 12

= —-— dz —
B2mi Jiymr  (Y3TPP+ 1)z —yTZ2—yT

_ C «a %Z

= —— dz —
B2ni Jiy=1  —(@—=1/(yT)(z—yT)

_{“C YT yIT| <1,

aC 1 1

B 1=2[TP
Fyme=r YITI> 1

vIT| <1,

E20
yIT| > 1, (E20
where we have used Eq. (E19) to derive the last line. It is easy
to see that 7 and w are collinear, i.e., they have the same angle
on the complex plane. Note that 7’ is also collinear with w,
because 7/ = % - gw. By taking the modulus on both sides

of Eq. (E20), we arrive at

5 |l yIT| <1,
= 1 (E21)
v YITT> 1L
In addition,
~ |0 yIT| <1,
r= {% YIT| > 1. (E22)

Note that y|T| < 1 corresponds to the outer boundary. Then,
we rewrite Eq. (D3) by assuming the synaptic current r is
drawn from some distribution, e.g., Gaussian distribution in
the main text, as follows:

()
B = A—2 .
<<d>/<r>|r/|+|w|> >
_ < (@'(r)) >
(@ (NI +w) [,

where (-), denotes the average over the distribution of r. Then
we get a surprisingly simple result for the outer boundary as

(E23)

wl? = ay?(@), + y*(@)], (E24)
which results in the radius of the outer boundary
Rowe = /o (®)2), + (@)2. (E25)

Unfortunately, the radius of the inner boundary does not have
a closed-form result, but can be solved numerically by an
iteration of Eq. (E23).

APPENDIX F: NUMERICAL METHODS FOR SOLVING
SADDLE POINT EQUATIONS

1. Calculating the boundary curve

We first give a detailed introduction of how to calculate the
boundary curve from Eq. (D22). One can simplify Eq. (D22)
by inserting the third equation of Eq. (D22) into the first
two equations, and then write the remaining two equations as
follows:

Fix)=0, Fx) =0, Kx)=0, (F1)

where F is the first equation of Eq. (D22) and F, (resp.
F3) is the real (resp. imaginary) part of the second equa-
tion in Eq. (D22). The notation x € R* corresponds to
{Re(w), Im(w), Re(7"), Im(7)}.

Now we have three real equations and four real vari-
ables to be determined, and thus finding the solution amounts
to finding the intersection curve of three surfaces in four-
dimensional space. We use the marching method [42—44] to
carry out this numerical analysis. This method makes use of
local gradient information, consisting of two steps—Newton
and tangent steps.

a. Newton step

Given an initial point in the vicinity of the intersection
curve, the newton step bring the starting point closer to the
intersection curve. The update rule is given by

X1 =X + Ax, (F2)

where the Newton increment is set to be the linear combina-
tion of all gradients

3
Ax = Z DIVE,(x,). (F3)
a=1
The linear coefficient can be found from the following con-
straint:

Ax - VE,(x;) = —F,(x;), (F4)
which finds the direction, which approaches three surfaces at
the same time. By writing Eq. (F4) into the component form,

Y DUVE)(VE(x,); = —Fa(x)),
b,i

(F5)

we find it is convenient to define the following gradient ma-
trix:

oF OR OR OR
3){] 3)(2 3)(3 3X4
_|m m m R

g = x| Xy x3 x4 (F6)
oR 3K R 3R
0x; 0x; 0x3 x4

Defining F; = {F,(x;)}, we can then rewrite Eq. (F5) into a
compact form as

ge' D, =—F,. (F7)
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Algorithm 1. Calculation of the boundary curve from Eq. (D22).

Input: Give an initial state x
1: Initializer = 0

2: repeat

3: repeat

4: update x by the Newton step

5: until converge

6: X, =X

7 t<—t+1

8: update x by the tangent step x < x + H%HT

9: until the solutions xy, X1, x,, - - - form a closed curve

output: the solutions xg, Xy, X, - - -.

Hence the linear coefficient is solved as
F,

D, =—- .
' gg'

(F8)

b. Tangent step

Given an initial point on the intersection curve, the tangent
step will make the point move along the direction of the local
tangent of the intersection curve. The tangent direction should
be orthogonal to all three gradients, specified by

(3] (%) es (7}

T = 811 812 813 814 (F9)
821 822 823 8§24
831 832 833 834

where e1, e,, e3, and e, are standard bases in R*. It is easy to
check T is indeed orthogonal to the three gradients. Therefore
the tangent step is given by
+ : T
X1 =x+—T,
t+1 t | | T | |
where [ is the step length. The pseudocode is given in the
Algorithm 1.

(F10)

2. Calculation of the spectral density and overlap function
inside the boundary

Here, we introduce how to solve Eq. (D20). We first reduce
Eq. (D20) by inserting the last two equations into the first two
equations, and then write the remaining equations as follows:

Fx)=0, FKx)=0, Fx) =0, (F11)

where Fj is the first equation of Eq. (D20) and F
(resp. F3) is the real (resp. imaginary) part of the sec-
ond equation of Eq. (D20). In addition, x € R? corresponds
to {Re(#),Im(7'), &’'D}. We use the marching method to
solve these equations, with the pseudocode given in the
Algorithm 2.

APPENDIX G: NUMERICAL METHOD FOR
CALCULATING LYAPUNOV EXPONENTS

The evolution of the perturbation dr is given by

aBr b iysr (G1)
T— = ,
dt

Algorithm 2. Calculation of the density and overlap function
from Eq. (D20).

Input: Given a location w inside the boundary and an initial point x
1: Initialize w = [w, w + 5, w — 8, w + i, w — i8], 8 is a small
number for numerical differentiation

2: Initialize i = 0

3: Initialize pointxy = x
4: fori <5do

5: w <« wli]

6: X < Xp

7 repeat

8: update x by the Newton step
9: until converge

10: if i == 0 then
11: Xg < X

12: end if

13: compute G; = A + Bf’
14: compute O; = —%ACﬁ/f)

15: endif

. 06 _ Gi=G, 3G _ Gi-Gy
16: Calcu}ate OReyy — "3, 0 BImw ~ 3
17: p= ERe(aRew +181mw

Output: return the density p and the overlap function O,

where D(¢) is the Jacobian of the system at time 7. Hence the
long time perturbation can be expressed into the exponential
form as

T
Sr(T) = 8r(0) exp < / D(t)/rdt). (G2)
0

The perturbation will grow exponentially along the directions
with positive exponents, and shrink along the directions with
negative exponents. Lyapunov exponents (LEs) are a set of
exponents {1, - - - , £y in the descending order. The collection
of LEs is called the Lyapunov spectrum. They describe the
growth rate of the volume of the perturbation spanning the
tangent space.

The maximum Lyapunov exponent (MLE) ¢; is commonly
used as the criterion for determining whether a system is
chaotic or not. The dynamics is chaotic if £; > 0, indicating
that nearby trajectories diverge exponentially fast. The MLE
can be calculated as follows:

[18r (D)

gl = lm )
|16 (0)]]

im — G3
TLooT\I5r(O)\|—>O G3)

where the two limits can not be exchanged. The full Lya-
punov spectrum provides additional insights into the long
time behavior of the dynamics. The LEs are the logarithms of
the eigenvalues of the following Oseledets matrix [29,30,45]
lim,_mo[(exp(% fot D(t')dt'))T exp(%fot D(t)dt')]> . By this
definition, inserting Eq. (G2) into Eq. (G3), one can find the
maximal value of LEs is the very MLE. However, the long-
term Jacobian would become ill-conditioned, i.e., the ratio
between the largest and smallest singular values diverges with
time.

In practice, we directly estimate the shrinkage or expan-
sion of the volume of the tangent space. More precisely, we
first initialize a matrix Q by an identity, and then rur; the

r

discretized dynamics of the original continuous one t4; =
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Algorithm 3. Estimation of the Lyapunov spectrum £.

Input: Model parameters
1: Run the dynamics Eq. (G4) for a sufficiently long time, and
record the final state as r
Initialize a = 1
Initialize Q = 1
Initialize £ = 0
fora <=T do
r < F(r)
Q <« D,(r)Q
Q, R < QR decomposition of Q
9: Z,« <~ Ei +In Rii
10: a<a+1
11: end for
12: €« ¢)T
13: Sort £ in descending order
Output: return £

—r+Jo(r) as

rgr1 = F(I‘a), (G4)

where a = 1,2, ..., T indicates the discrete time step with
a fixed small step size €, F(-) defines the discrete mapping,
and the associated Jacobian D, = 1 + £D(ae). The Jacobian
at the state r, can then be used to update the Q matrix. After
performing the QR decomposition of the matrix Q, we can
relate the ith diagonal element of R in the QR decomposition
to the ith Lyapunov exponent by a time average as follows
[29,30]:

T
b= % > InR;(a), (G5)
a=1

where R;; describes the expansion or contraction of Q. An
initial relaxation of the original dynamics is required before
the calculation of the Lyapunov spectrum, as the dynamics
has to converge to an attractor state. The pseudocode for the
estimation of LEs is given in Algorithm 3.

APPENDIX H: FEYNMAN DIAGRAMMATIC
TECHNIQUES FOR CALCULATING THE
EIGENSPECTRUM OF NON-HERMITIAN

SYNAPTIC COUPLING MATRICES

The eigenvalue spectrum of non-Hermitian coupling ma-
trix can also be derived by adopting Feynman diagrammatic
techniques. We show the technical details to reproduce the
results obtained by applying the annealed approximation, as
a cross checking of the spectrum formula.

The synaptic coupling between any two neurons i and j in
our model is given by

1 P d
Ji=~5 2 [ E'E 4y Zsﬁs_ﬁ*’} (H1)

n=1 r=1

which contains the concurrent Hebbian term and pattern-
separated Hebbian term. The strength of the concurrent
Hebbian term is specified by ¢, and the strength of the pattern-
separated term is specified by y.

In this model, we have P patterns, and each pattern fol-
lows an independent Rademacher distribution, i.e., p(éi“) =
%8(&" -+ %5 (¢! + 1), in which the superscript i denotes
the index of pattern and the subscript i denotes the index of
neuron. The pattern entries can be Gaussian i.i.d. random vari-
ables, which does not change the distribution of the following
rotated patterns. We are interested in the situation of large P
and N, with the fixed memory load
(H2)

a=—.
N
Note that these patterns form a cyclic sequence with periodic
boundary, corresponding to an ordered stimulus sequence in
animal experiments [19].
The asymmetric couplings in Eq. (H1) can be recast into
the matrix form,

_ Ll
J= NE X§, (H3)

in which the matrix X is a P x P circulant matrix defined by

d
X;w = C(Sp_v + Y Z 8u,[(v+r) mod P]- (H4)

r=1

For a circulant matrix, the mth eigenvalue of X is given by
[46]

d
Ap=c+vy Z cos(27r %) (H5)
r=1

Note that the non-Hermitian matrix X can be diagonalized
using a unitary matrix U as X = U"AU. Hence, we introduce
a rotated memory pattern & (V) defined as

&§=U¢.
Considering the case of P — oo, and using the central limit
theorem, we have

(Ho)

P
<§[M) = <Z qugiv> =0, (H7)
v=1
and
. P P P 5
Erer) - <z DS Uupéf> =S W)
v=1 p=1 v=1
=1, (H8)

where the average is done over the distribution of the origi-
nal pattern. We conclude that the distribution of the rotated
memory patterns is an i.i.d. standard complex Gaussian dis-
tribution, which greatly helps our analytical computation. The
coupling matrix can thus be rewritten as
J=LEA
=5 .

In the following derivation, we denote an N x P matrix

(H9)

2 = éT. Then the coupling matrix is recast as

v (H10)
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and the only nonvanishing second-order moments are given as
follows:

o]
69]]

( i iu) =1
The density of eigenvalues for the random matrix J is
defined as follows:

(H11)

N
1
_ [ _ @, _

p(2) = <N Y 3% xk)> : (H12)

k=1 J

The density is related to the Green’s function [38],
N

1 1 1 1
G(z,2)=(— ={(=Tr ,  (HI3
(z,2) <N;z—kk>J <N Z]1N—J>J (H13)

and we can get the density from the Green’s function via

N

19/1 1 10
) = ——\= :__G 7_a
p(-x )’) T aZ<NZZ_)\'k>J 7 0z (Z Z)

k=1

(H14)

which actually expresses the Gauss law in two dimension.
The spectral density is clearly related to the nonholomorphic
behavior of the Green’s function [38].

In order to calculate the density of eigenvalues of this non-
Hermitian coupling matrix, we first define an auxiliary matrix

J as
0
J = <'(]) JT)’ (H15)

J

C D

(A B)l (A +A'B(D—cA'B) ca™!
a —(D—cA"'B)"'ca™!

we obtain the explicit form of G(Q) as follows:

G(Q) — ILV<Tr ZILND_f _Iil_w(Tr$> , (HZ])
W) A

where D = (zly — @Iy —J) + |w[*1y. G(Q) can be
simplified as

g 1iv
GO=|(. _) (H22)
iv g
1 [zly =)' 7} 1
P et I et (H23)
N D N \D
where we find that the Green’s function is given by
G(z,2) = IliImO g (H24)
The eigenvector correlator is given by [47]
1
0(z,z) = — lim |v|*. (H25)
7T w0

This shows that the eigenvector correlation is actually the
product of the off-diagonal elements of the quaternionic
Green’s function. O(z, Z) = 0 provides the condition that de-
termines the boundary in the two-dimension complex space

and the quaternionic Green’s function (resolvent) can be de-
fined as

g(Q) = < (H16)

1
01y —-J >’
where ® denotes the Kronecker product, 1, denotes an N x
N identity matrix, and

H17)

is a quaternion in the 2 x 2 matrix form. For an i x j matrix A
and an m x n matrix B, their Kronecker product ® is defined
as

AB  AppB Ay;B
A®B: A21B AQQB Asz ’ (H18)
AjB ApB A;jB

which forms a new matrix with dimension (im) x (jn).
Using this quaternionic Green’s function, we can define a
Green’s function of 2 x 2 matrix form,
1
G(Q) = Nbezg(Q), (H19)
where bTr, denotes a block trace operation taking the trace

separately for four N x N block matrices in a 2N x 2N ma-
trix, yielding a 2 x 2 matrix. Using the block inverse formula

—A"'B(D - CA13)1> (H20)

(D—cA'B)"!

(

separating holomorphic and nonholomorphic solutions of the
spectral problem [40,47].

Provided that [|[JQ7'|| < |[1oy|l, we can expand the
quaternionic Green’s function into a geometric series

G=0'+(@'goh+(Q@'gQ'\go " + ...,
(H26)
where Q7 '=07! ® 1. According to the definition of 7 in
Eq. (H15), we can decompose J as follows:

1 E 0 A O
N i . —
j_NXEX, X_<0 E)’ E_(O AT>'
H27)
As a result, we can precisely separate the random parts and

the deterministic parts in the series in Eq. (H26) as follows:
-1 SN
G=Q ' +{Q v Ta'Q

NI Y P
+<Q ST ZATQT ) o (H28)

Using the diagrammatic method, we can rewrite the
geometric series [Eq. (H28)] into a graph representation (so-
called Feynman diagram), which is shown in Fig. 9. When
the number of neurons N — oo, the expanded terms in the
series contributing to the quaternion Green’s function have
the rainbow-like structure shown in the third part of Fig. 9,

013090-24



SPECTRUM OF NON-HERMITIAN DEEP-HEBBIAN NEURAL ...

PHYSICAL REVIEW RESEARCH §, 013090 (2023)

large N limit +
—_—

FIG. 9. The diagrammatic representation of the Green’s function G. In the large N limit, only planar diagrams contribute to the final results.

which is called planar diagrams since there are noncrossing
structures in the diagrams. Nonplanar diagrams give rise to
vanishing contribution to the expansion in the thermodynamic
limit [48].

To proceed, we need to introduce the concept of one-
line-irreducible (1LI) diagrams for which the diagram terms
can not be separated by cutting any horizontal line. For ex-
ample, in the diagrammatic representation shown in Fig. 9,
the 1LI diagrams are the rainbow-like graphs. Naturally, we
define the self-energy ¥ of the quaternionic Green’s func-
tion as the sum of all 1LI diagrams. Hence, the quaternionic
Green’s function G can be expressed in terms of the self-
energy X, in the form of the Dyson-Schwinger equation as
follows [18]:

(i, — =25)G5%y = 6% bup.

(H29)

Note that the subscript Greek indices run from 1 to 2 re-
flecting the quaternion nature, while the Latin indices in the
superscript go over all elements (the index takes a value from
1 to N) in the matrix within each block. A diagrammatic
representation of Eq. (H29) is shown in Fig. 10.

Finally, the problem of computing the quarternion Green’s
function G is reduced to the problem of computing the self-
energy X. In order to compute the self-energy, we need to
introduce an auxiliary Green’s function G defined as [49]

L
J = N . H30
g <1—XTQ—1®]1NX§> (H30)

The introduction of this auxiliary Green’s function leads to
the same result if the definition § = (—1—) where J =

oRIy—T
1le fXL is used for the dual problem [18]. G is the cor-

F Y Y'Y B V V R

FIG. 10. Definition of self-energy X and the quaternionic Green’s function G expressed in terms of the self-energy X.
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large N limit
—_—

FIG. 11. The diagrammatic representation of auxiliary Green’s function G. Similarly, in the large N limit, only planar diagrams contribute

to the final results.

responding Green’s function. Through introducing the dual
Green’s function, one can then relate G and C; with self-
energies, resulting in a closed-form equation.

Similarly, we expand this Green’s function as

N S
g_N+<NXQ XN>
Lo i Lo L
+<NXQ XNXQ XN>+.... (H31)

Then we apply the diagrammatic methods again to express
the precise form of the auxiliary Green’s function as shown in
Fig. 11.

In an analogous way, we define the self-energy 3 for the
auxiliary Green’s function G and then express the auxiliary
Green’s function by self-energy ¥, which is shown in Fig. 12.

The associated Dyson-Schwinger equation reads as follows:

N 1. A 1
ad ac pcd db __ ab
<3a85 - ﬁzayﬁys>gsﬁ = Lo (H32)

where the Latin index in § takes a value from 1 to P.

Given the self-energy and Green’s function shown in
Figs. 9-12, one finds other diagrammatic relations between
the Green’s function and self-energy apart from Eq. (H29) and
Eq. (H32),

24 = TrGaps®, (H33)
and
5405 = TrG,pd” (H34)

FIG. 12. Definition of the self-energy ¥ and the auxiliary Green’s function G expressed in terms of the self-energy 3.
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These two additional equations can be proved using the Feyn-
man diagrams, by adding a double arc joining the external
points [49].

From Eq. (H32) and Eq. (H34), we get

1 5
¥ L = (5(15 ad _ NEZCV sl )g (H35a)

A 1 A 5
= (5“5“‘1 - NTrgaya“C.c;i>ggg (H35b)

= (84e8“! — Gy 8 L2) G (H35¢)
Consequently, we have
Sad Qac pcd ab
6 = (B — G b L) £, (H36)

and then take the block trace, namely, the trace over the index
of Latin indices, leading to the following formula:

TrGep = I%Tr[(éasﬂp — Gy 1pLye)  Lopl. (H37)
With Eq. (H29) and Eq. (H33), we find that

88,5 = (Qu, — 280 )G (H38a)

= (Q%, — TrGa,6°)G (H38b)

= (Quy 8" — TrGay 8°“)G (H38¢)

= (Quy — TrGay )8 G5}, (H38d)

1
= (Qay - ]VTr[(asa]lP - Ga{]lPE{a)_lﬁsy])aacg]c,%

1
= (Qw - TG lp — Gggllpﬁw)—'ﬁay]>g;’;

(H38f)
Finally, taking the block trace of Eq. (H38), we find that

1
Sap = (Qw =y TlGeallp = GeglpLea)” lcgy]) —TrGoh

(H39a)

1
= <Qw — y TrlGeallp — Gg;np,c;a)—lcgy])c;

(H39b)

Therefore, based on Eqgs. (H29), (H32), (H33), and (H34),
together with the definition of the Green’s function G shown
in Eq. (H19), we obtain finally

1
[Q - NbTrz(ﬁ[ﬂzp -(G® IUJ)/J]_I)}G =1,, (H40)

which is the self-consistent equation the Green’s function
obeys.

In our model setting, £ is an invertible matrix. We thus
rewrite the above self-consistent equation in a compact form

[Q + aG,-1(G)]G = 15, (H41)
where o = 1% is the memory load, and G,-1(Q) follows the
same definition of the matrix Green’s function as above

1
OO =g, T

Now we can express the explicit form of the matrix Green’s

1
—bT H42
p0Tr2 (H42)

(H38e) function using the block inverse formula [Eq. (H20)] as
J
Zp—(AT)! —iwlp
(zLp—A"")(ZLp—(AT) ")+ wTp (z1p—A"N)(ELp— (AT 1)+ wl*1p

GA*I(Q)

—iwlp

A (H43)

1
= —bTr
poin

(Zp—A)(ELp =) )+HwP L (2lp—

Then we change the argument Q of the matrix Green’s
function to G defined in Eq. (H22) and obtain that

F —iwE
G,-1(G) = <_in 2 > (H44)
where
P
1 1
EG w) = P Z d . 1,2 ’
i = (e y X e 5) [ P
(H45)
P - R N
1 Z—(c+ pmp € TF
F(z,w)z—z (c+y X )

N :
=z = (c+y i, @) |+ wl?
(H46)

AT (ELp— (AT )+ wl*1p

(

From the self-consistent equation [Eq. (H40)], we can fi-
nally find that

z4+aF(g,v) iw—ievE(g v)\ (g iv
iw — icvE (g, v) z+aF (g v) iv g

1 0
= (0 1>, (H47)
which can be reduced into two independent equations
28 — Wv + agF (g, v) + av[’E(g, v) = 1, (H48)
70+ wg + avF (g, v) —agvE(g,v) =0 (H49)

From Eq. (H24), we need to set |{w| — O to obtain the
Green’s function for J. Simple algebraic manipulations lead
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us to the final results,

==

>

1=

iR

The spectrum boundary can be obtained by setting |v| — 0, i.e.,

1

P ot d_—idnyr)”!
. ( y%’_l — _? . (H50)
gty 2 e )
24 2
8] ‘|U|m — ‘ (H51)
m=t g = (c+y XL, ) | + ol
o F d -1 d -1
Z:FZ<C+yZei2n’}’,’r> g— (C_i_yzeﬂngr) i (H52)
m= r=1 r=1
)
(H53)

P d -1
o DTy
= glel g—(c+y§ eﬂ”")
m=1 r=1
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