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Interaction-enhanced quantum heat engine
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We study a minimal quantum Otto heat engine, where the working medium consists of an interacting few-body
system in a harmonic trap. This allows us to consider the interaction strength as an additional tunable parameter
during the work strokes. We calculate the figures of merit of this engine as a function of the temperature and show
clearly in which parameter regimes the interactions assist in engine performance. We also study the finite-time
dynamics and the subsequent tradeoff between the efficiency and the power, comparing the interaction-enhanced
cycle with the case where the system remains scale-invariant.
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I. INTRODUCTION

The study of quantum heat engines (QHESs) is a central part
of the field of quantum thermodynamics [1-4]. They can be
used to understand the role that quantum effects play when
comparing to classical settings, while at the same time they
have implications for the development of quantum technolo-
gies. Usually a QHE will consist of a quantum system as the
working medium (WM) to which a conventional thermody-
namic cycle (Carnot, Otto, etc.) is applied to extract work
from the heat exchanged with a cold and a hot bath. His-
torically, most works have addressed single-particle systems
[3,5-14]; however, more recently QHE that use interacting
systems have attracted more attention [15-18]. In particular,
it is interesting to understand the effect of the interaction on
the performance, and to identify parameter regimes in which
cooperative effects due to these interactions allow to outper-
form single-particle QHEs [19-24]. However, care must be
taken as interactions have also been shown to reduce engine
performance [25], and the dynamical control of these systems
can be more complex leading to the creation of irreversible
excitations [19,26-32].

In this work we show that a suitable tuning of the interac-
tions can be used to improve the performance of QHEs when
compared to systems with noninteracting working media. For
this, we consider interacting bosons confined in a harmonic
trapping potential and realize the adiabatic compression and
expansion strokes of the Otto cycle through increasing and
decreasing the trap frequency. However, we also drive the
interactions between two distinct values during these strokes
and show that optimal interaction strengths exist that increase
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the work output and the efficiency when compared to a non-
interacting engine.

We also show that the effect of the interaction strongly
depends on if one considers distinguishable or indistinguish-
able particles, and we calculate the efficiency at maximum
work output (EMW) showing that the interaction significantly
improves this quantity in the low temperature regime. Finally,
we explore the finite-time dynamics of the cycle, finding the
optimal operation times of the QHE with interacting working
media.

The manuscript is organized as follows: in Sec. II we
present the model that describes the WM and the ther-
modynamic cycle of our QHE. In Sec. III, we study the
performance in the adiabatic limit by first looking at the case
of noninteracting particles and comparing the performance
of distinguishable particles and indistinguishable bosons in
Sec. Il A. We then consider the case of two interacting par-
ticles in Sec. III B, and discuss the performance of an engine
with two indistinguishable bosons in Sec. III C and with two
distinguishable particles in Sec. III D. We extend our results to
the case of three interacting particles in Sec. III E. In Sec. IV
we study the engine performance with two particles for cycles
run in finite time, and finally we conclude in Sec. V.

II. QUANTUM OTTO HEAT ENGINE
WITH DRIVEN INTERACTION

We consider a QHE cycle where the WM is an interacting
quantum gas confined to one dimension and trapped in a
harmonic potential. The Hamiltonian is given by
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where m is the mass of the particles and w is the trap fre-
quency. Since we only consider low temperatures, we can
approximate the interaction by a pointlike potential where g is
the 1D interaction strength between the particles. For N = 2
this Hamiltonian can be analytically solved [33]; however, for
N > 3 numerical methods are required to find the eigenstates

n=I n<p
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FIG. 1. Schematic of the heat engine cycle. The y axis represents
the entropy of the WM and the x axis represent the trap frequency
and the interaction.

[34,35]. The engine cycle we explore is similar to a standard
Otto cycle except that the adiabatic strokes occur by chang-
ing two parameters: the trap frequency w and the interaction
strength g. A schematic is shown in Fig. 1 and the individual
strokes are given by

Adiabatic compression (1 — 2): The WM is initially
trapped in a harmonic potential with frequency w; and at
equilibrium with inverse cold temperature 8.. The interaction
strength is given by g;. From there a compression stroke is
carried out that performs work on the system by increasing the
trap frequency to w; and changing the interaction strength to
gr- The work is given by W, = (H(wy, gr))2 — (H(w;, gi))1.

Hot isochore (2 — 3): The next stroke increases the
temperature of the WM by coupling it to an external hot bath
at the inverse temperature B, with the control parameters g
and oy fixed. In equilibrium the heat exchanged during this
stroke is given by Oy = (H(wy, g7))3 — (H(wy, &5))2-

Adiabatic expansion (3 — 4): The system is then de-
coupled from the hot bath and work is extracted from the
WM by adiabatically driving the trap frequency and inter-
action strength back to w; and g;. The work is given by
W, = (H(w;, g))a — (H(wy, g7))3.

Cold isochore (4 — 1): In the last stroke the WM is
cooled down by exchanging heat with a cold bath at the in-
verse temperature .. It returns to the initial state and the heat
exchanged during this stroke is given by Q. = (H(w;, gi))1 —
(H (i, gi))a-

It is worth noting the difference between adiabatic strokes
in the quantum and in the classical regime. While carrying out
an adiabatic stroke in a classical setting means that no heat
exchange occurs during the process, for quantum systems it
refers to the condition that the occupation populations of the
eigenstates remain constant. This difference in the definition
implies a difference in the timescale of the strokes. In classical
heat engines, the WM will be driven quickly to prevent the
system from relaxing and therefore exchanging heat with the
environment, while for QHEs one needs to drive it quasistati-
cally based on the adiabatic theorem. The performance of the
engine is characterized by the work output W = W, + W, and
the efficiency n = ‘g—ll =1+ % By convention, we chose the

variation of energy to be negative when the WM loses en-
ergy, which means that the engine produces extractable work
when W < 0. Like in a conventional quantum heat engine, we
choose the trap frequency at the end of the compression to be
larger than the initial frequency, w; > w;; however, g can be
larger or smaller than g;.

III. ENGINE PERFORMANCE IN THE ADIABATIC LIMIT

A. Noninteracting limit and statistical influence
on the performance

Before examining the effects of the interactions in the
working medium, let us first consider the noninteracting
limit (g; = gr = 0) to outline the influence of the statistical
properties on the engine performance. Below we consider
distinguishable particles and indistinguishable bosons, where
their respective statistics leads to a difference in the degener-
acy of the energy levels given by

dE) =D D 8 (s msd): @)

where 6,5 is the Kronecker symbol. We illustrate this in
Figs. 2(a) and 2(b) for two and three particles systems and un-
surprisingly the number of states for a given energy is higher
for distinguishable particles. In fact, the gap between these
two distributions increases exponentially with the number of
particles. The probability for N indistinguishable bosons to be
at the same energy is therefore higher than for N distinguish-
able particles and this increases with the number of particles.
In particular, indistinguishable bosons will most likely stay in
the ground state and the probability for a boson to transition
to an excited state will be small for low temperatures. As a
consequence, the performance of an engine realized with non-
interacting bosons will be limited in terms of work output in
the temperature regimes of our interest (which corresponds, as
we will see later, to the temperature regime where interactions
lead to interesting behaviors). The respective work output of
the Otto-cycle of noninteracting bosons and distinguishable
particles as a function of the number of particles is shown
in Fig. 2(c). As expected, the work output for distinguishable
particles increases linearly and from physical arguments one
can expect the work output for bosons to be sub-linear. How-
ever, in Fig. 2(c), one can see that the behavior is more than
sub-linear and it, in fact, reaches a plateau for N > 3. This
means that the mean occupations of the energies for bosons at
the hot and cold temperatures become so similar that adding
particles only contributes negligibly to the work output. Given
this drastically different behavior in the noninteracting limit,
let us next study distinguishable particles and indistinguish-
able bosons in the presence of interactions.

B. Two-particle working medium

We now take account of the interaction by considering

first the two-particle case (N = 2). The Hamiltonian can be

solved by introducing the center of mass coordinate X = ’&[;’

X1 —X2

and the relative coordinate x = = which allows one to
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FIG. 2. Degeneracy of the energy levels for a system of (a) two distinguishable particles (green dots) and two indistinguishable bosons
(brown dots) and (b) three distinguishable particles (green dots) and three indistinguishable bosons (brown dots). (c) Work output of the
Otto cycle of noninteracting distinguishable particles (green dots) and noninteracting indistinguishable bosons (brown dots) as a function of

the number of particles. The compression ratio is k = ZT' =

_ 1
Br = 7

split the Hamiltonian (1) into two decoupled single-particle
Hamiltonians H (w, g) = Hem(w) + Hy(w, g) with

Hom(o) = — i 82+1 X2, 3)
M) =T axz T2
2 2
Hy(, g) = + lmw2x2+ L5, @)
r ’ 2 a 2 ﬁ .

The eigenstates are thus given by the two-particle states |, v),
where |n) is the eigenstate of the center of mass, and |v)
the eigenstate of the relative coordinate. Since the center
of mass is not affected by the interaction, the eigenstates
of Hcy are simply the standard harmonic oscillator eigen—

2”l'( )4e ZazH( ), Wherea_1/

and H, are the Hermite polynomlals and the elgenenergles
are given by Ey; = fiw(n + 1). For the relative coordinate,
only the even states are affected by the interaction and are

given by (x||2v) = Np,e” ZuZU( 2fuu’ 2, az) where N,, is
a normalization factor, E*” is the eigenenergy, and U is the
Kummer function [33]. The eigenenergies are determined by
the solutions of the transcendental equation

EZ\/ 3
F( e T Z)
E? 1\’
r (_ 2w T Z)
o . .
. T 'anfi I'x) is Fhe F. function. The odd
eigenstates are again just harmonic oscillator states with the
eigenenergies E' ! = hw(2v + 3).
To understand how the interaction affects the efficiency,

one can note that the eigenenergies of the relative coordinate
can be effectively written as

functions (X||n) =

—g=2 S

where g =

E} = holv +1/2+ €, )], ©)

where €(v, g) is an extra energy term due to the interaction,
which depends on the quantum number v and the rescaled
interaction g. Since the interaction only affects the even states,
we have €e2v 4+ 1,2) =0 V v. In the limit of repulsive in-
finite interactions, fermionization occurs [36] and the even
eigenenergies asymptotically approach the next higher lying
odd eigenenergies, which leads to €(2v, +00) =1 V v. It is
also worth noting that the contact interaction has the strongest
effect on the ground-state energy €(0, ) > €(2v,8) V (v, 8).

%, the cold inverse temperature is S, =

ﬁw and the hot inverse temperature is

C. Two indistinguishable bosons

Let us focus on the situation where the minimal QHE has a
working medium consisting of two indistinguishable bosons,
in which case only the states that preserve even parity can be
occupied in the relative coordinate. To calculate the efficiency
of the engine, we first express the heat exchanged during the
hot and cold isochores as

Z wa
-y

n,v

- p;,ZU)’ 0

n,2v pn 2v p.rftl,2v)’ (8)
where E), = (n,2v|H(ws, g)In, 2v) = hagn +2v + 1 +

€(2v, g5)] (w1th s € {z f}) and the occupation populations

exp[—B.H (wi,gi)]
are given by [ 5,;12(‘} = )(]n, W= gy Im.2v)  and
exp[—BrH (wy,
p;:.lu = (n, 2V| pz(w;.,gf,ﬂfhff |, 2\}) (Where Z(w, 8, /3) =

Tr{exp[—BH (w, g)]} is the partition function). From this, the
efficiency can be expressed as

n= 1+4==1- Z”s‘) )"n’szV{ZV (p:L,Zv - pfl,Zv)

Zn,v Er{,Zv (p£,2v - pil,Zv)

where we have introduced 1,,, as the ratio between the
eigenenergies before and after the compression [25]

El

n,2v

€))

_ n+2v+14+€v,g)

=K s
E;fzv n+2v+1+€Qv,gr)

)\n,ZV - (10)

with k = u")’—/ being the compression ratio. From Eq. (9) one
can see that the efficiency is influenced by the interaction
through the ratio A,»,, and the change of population oc-
cupation pf;z]) - P;,zu- Let us recall that the eigenstates of
the harmonic oscillator for two different frequencies w; and

wy are related by the scaling transformation (x||n(wy)) =

1
Kk~ 4 {xx " 2||n(w;)). Also the contact interaction described by
a delta function obeys the scaling law gé(ix) = §8(x). As
a consequence, if one chooses the final interaction to be

gr = gik 2 (and so gy = g;), then the system will remain
scale-invariant, i.e., it is self-similar in space and all the
eigenenergies change by the same ratio given by «, i.e.,

n2v _KE n,2v V(l’l V)

L
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FIG. 3. (a) Efficiency and (b) work output normalised to their
respective Otto-cycle values for an engine with a WM made of two
interacting bosons as a function of €(0, g;) and €(0, g). The black
dash line shows the situation where the interaction is fixed (g; = gy).
Note that the efficiency converges to 17y in the limit of strong in-
teractions due to the fermionization in the system. In both plots the
compression ratio is k = % (no = %), the cold inverse temperature is
B. = hIT()), and the hot inverse temperature is f, = hi@

In that case the efficiency is given by the Otto efficiency
no = 1 — «x, which also corresponds to the efficiency of the
Otto cycle of noninteracting particles. This is illustrated in
Fig. 3(a), where the ratio between 1 and 5o is plotted as a
function of €(0, g;) and €(0, g,) and the diagonal corresponds
to the case where the WM is scale-invariant. To obtain an
efficiency that differs from 7., one therefore needs to consider
systems where the eigenenergies do not change uniformly
during the adiabatic strokes [37]. To do that, we tune the initial
1

and final interactions such that g¢ # g;x~ 2, which allows one
to distinguish two possible cases.

The first case is when the interaction weakens during the
compression stroke (g; > gr), which leads to €(2v, g5) <
€(2v, &) and A, 2, > k [the region above the diagonal in
Fig. 3(a)]. One then needs to be careful with the sign of
the change of the occupation population pfsz — P;,zu- For
the excited states, the sign will be positive since at higher
temperatures, the occupation population in the excited states
increases. However, the change of population for the ground
state will be negative since it decreases for higher temper-
atures. Thus, depending on which terms have the largest
contribution, the efficiency can be higher or lower than 7.
When the interactions affect the ground state more than the
excited states, the change of the occupation population of
the ground state is thus more important and we get n > 1o
[red area above the diagonal in Fig. 3(a)]. However, when
the interactions are such that the extra energy €(2v, g) affects
significantly the excited states, the change of the occupation
population for the excited states can be large enough that
n < no [blue area above the diagonal in Fig. 3(a)]. We also
indicate the situation where the interaction is fixed g; = gr
[black dashed line in Fig. 3(a)], which is similar to the situa-
tion studied in Ref. [25]. In their case the WM is an interacting
gas trapped in a box and the efficiency only decreases in the
presence of the interaction. For the harmonic oscillator, how-
ever, we observe that the interaction can enhance or hinder the
performance of the engine.

The second case is when the interaction strength in-
creases during the compression stroke (g5 > g;). This implies
that e(2v, §7) > €(2v, ;) and 1,5, < k. By doing the same

analysis as above, we reach the opposite conclusion to the
first case: if the interactions affect the ground state more we
get n < 1o [blue area below the diagonal in Fig. 3(a)], and
if the interactions affect the excited states sufficiently we find
n > no [red area below the diagonal in Fig. 3(a)]. We also
highlight the area near the antidiagonal in Fig. 3(a), where the
efficiency is equal to 1. This area is not exactly the antidiag-
onal and corresponds to a crossover between the regime where
n > ne and n < 1o in which the contribution from the ground
state and the excited states are such that they compensate each
over and one recovers the Otto efficiency.

The maximum efficiency shown in Fig. 3(a) is n & 1.0031,
and achieved for g; = 1.6 and g = 50 (¢(0, §;) ~ 0.52 and
€(0, gr) ~ 0.98). One can see from the work output shown
in Fig. 3(b) that the engine outperforms the Otto cycle of
two noninteracting bosons when the final interaction takes
intermediate values, while the initial interaction does not seem
to influence the work output significantly. This plot also shows
that the work output always exceeds Wy and becomes equal to
it when the initial and final interaction are zero or go to infin-
ity [the four corners in Fig. 3(b)]. In the infinite interaction
regime this is due to the system behaving like two noninter-
acting fermions. The maximum work output is W =~ 1.039W,
for g; = gy = 1.6.

D. Two distinguishable particles

While driving the interaction during the cycle can clearly
modify the performance of the engine, the changes observed
above for a working medium made from two identical bosons
are not very significant and the performance of the engine
stays relatively close to its noninteracting counterpart. Let
us therefore next consider the situation where the working
medium consists of two distinguishable particles, for which
two major differences come into play: first, as shown above,
the degeneracy of the states is different in the noninteracting
limit, and, second, for such a system the odd states of the
energy spectrum of the relative coordinate need to be taken
into account.

The efficiency and work output for this engine are shown
as a function of the interaction energies in Figs. 4(a) and 4(b).
Like in case for indistinguishable particles, the diagonal rep-
resents the scale-invariant cycle and therefore retains the Otto
efficiency, while this can be exceeded for €(0, g;) > €(0, g/).
Indeed, we note that interactions can noticeably improve the
performance of the distinguishable cycle (note the differ-
ence in the color scale) with the maximum efficiency n ~
1.124n0 ~ 0.75 for g§; = 3 and g5 = 0.8 (¢(0, g;) ~ 0.69 and
€(0, g7) ~ 0.34), and maximum work W =~ 1.43W,, for §; =
1.95 and g5 = 1.4 [€(0,&;) ~ 0.58 and €(0, g7) ~ 0.48]. In
contrast to indistinguishable bosons the efficiency is always
reduced when the final interaction is larger than the initial one,
8r > &;. Furthermore, the work output can be significantly
lower than for a cycle with a noninteracting particles, and we
note that the WM can act as a dissipator (W > 0) for combina-
tions of strong and weak interactions, (g; ~ 0, g — 00) and
(8 — 00, gr ~ 0), indicated by the grey regions in Figs. 4(a)
and 4(b). We have also calculated the efficiency for higher
temperatures and have observed the same general behavior;
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FIG. 4. (a) Efficiency and (b) work output normalised to their respective Otto-cycle values for an engine with a WM made of two interacting
distinguishable particles as a function of €(0, g;) and €(0, g). The gray areas correspond to interaction regimes where the system does not
work as a heat engine but rather like a dissipator with W > 0. The black dashed line shows the case where the interaction is fixed (g; = g).
(c) Efficiency normalized to the Otto efficiency and heat exchanged with the (d) hot bath and (e) cold bath as a function of the initial interaction
i, with the final interaction given by g, = g; (black line), §; = % (green line), and g, = 3g; (orange line). The compression ratio for all plots

ISk = % (o = %), the cold inverse temperature is 8. =

however, the variations of the efficiency and the work output
become less pronounced.

To illustrate and better understand the behavior of the QHE
with distinguishable particles, we calculate the efficiency as
a function of the initial interaction g; while tuning the fi-
nal interaction such that g = «g;, with « fixed. Figure 4(c)
shows the efficiency for three different values of o (@ =1,
3, and %) and one can clearly see that the changes in the
efficiency are more significant and also very different from the
setting using indistinguishable particles. The efficiency can
be enhanced when g, < g;, while it is significantly reduced
when g, > g;. To understand this one can consider the amount
of heat exchanged with the hot and cold baths as shown in
Figs. 4(d) and 4(e). In Fig. 4(d) we see that the presence of
the interaction increases the amount of heat received by the
hot bath in all three cases, for weak and intermediate values
of g;. However, it decreases for large g; and reaches a limit
that is approximately half that of the noninteracting working
medium. In this limit the even eigenstates in the relative coor-
dinate approach the next higher-lying odd eigenstates and thus
the spectrum becomes doubly degenerated for distinguishable
particles which implies less heat is required for the WM to
thermalize.

We observe similar behavior for Q. in the large g; limit
[Fig. 4(e)]; however, for weak and intermediate values of g;
the amount of heat dissipated in the cold bath is significantly
larger when gy = 3g;, which is the reason for the decreasing
efficiency. For the same initial interaction g; the best strategy
to reduce energy loss in the cold bath is therefore to choose
a weaker final interaction g,. This allows the statistics at the

10 . .
T and the hot inverse temperature is £, =

1
hw; *

inverse temperature S to be closer to the initial statistics of
the WM and thus the change of the occupation population
pﬁw — pﬁ,v becomes smaller in magnitude such that less heat
is released during the cold isochore. The changes in the per-
formance of the QHE are more extreme when the baths are at
low temperatures because the WM is more affected by finite
interactions.

It is also insightful to look at the efficiency at maximum
work output (EMW) which allows to quantify the engine
performance for different temperature scales and helps under-
standing finite-time dynamics. We compare the EMW to the
Curzon-Ahlborn bound [38,39]

UCA=1—\/§,

which originally corresponded to the efficiency at maximum
power of the endoreversible Carnot cycle. However, it has
been shown that it also holds for the quantum Otto cycle at
high temperature and in the adiabatic limit [40]. We calcu-
late the efficiency by maximizing the work output over «, g;
and g7 for two fixed cold bath temperatures B.fiw; = 1 and
Bchw; = 10 (see Fig. 5). We also compare the EMW of both
engines, with distinguishable and indistinguishable interact-
ing working media, with their noninteracting counterparts in
the low temperature regime S.fiw; = 10 in Fig. 5(a). One can
see that for the noninteracting engines, this quantity is far
below the CA bound, which is due to the fact that at low
temperature the WM dissipates a large amount of energy into
the cold bath to close the cycle. At the same time the efficiency
for noninteracting bosons is the lowest as its statistics makes

12)

013088-5



BOUBAKOUR, FOGARTY, AND BUSCH

PHYSICAL REVIEW RESEARCH §, 013088 (2023)

1 1
n n
0.8 0.8
0.6} 0.6
0.4 0 ‘0.2 04 06 08 0.4

BulBe
0.2 0.2
(a) (b)
0 02 04 06 08 1 02 04 06 08 1
Bn/Be Bn/Bc

FIG. 5. Efficiency at maximum work output (EMW) for the en-
gine using two interacting bosons (brown dots) and two interacting
distinguishable particles (green dots) for two different temperature
regimes. Panel (a) shows the efficiency calculated in the low tem-
perature regime with B./iw; = 10 and panel (b) in the intermediate
temperature regime with B./iw; = 1. In both panels the back line
corresponds to the Curzon-Ahlborn bound 7nc4. The inset in panel
(a) shows the corresponding extra energies € (0, g;) (orange dots) and
€(0, g¢) (green dots) for the case of two distinguishable particles.
The values of €(0, g;) we obtained for B,/8, 2 0.8 become less
accurate because the work output starts to vanish in this regime. We
also show the efficiency at maximum work output of two noninter-
acting distinguishable particles (green line) and two noninteracting
bosons (brown line) at the low temperature regime (a). Note the
EMW for two interacting bosons is extremely close to that of the
two noninteracting bosons.

low energy states more favorable than in the distinguishable
case. The EMW of the interacting bosons is extremely close to
that of noninteracting bosons, which is not surprising since the
influence of the interaction on the engine performance is very
small (as seen in Fig. 3). However, for the two distinguishable
particles, it is vastly improved by the presence of the interac-
tion and even coincides with the CA bound for 8,/8. = 0.5.
One can see that the gap between the efficiency of bosons and
distinguishable particles decreases when the temperature of
the hot bath is large, 8,/B. — 0, as their statistics become
identical and are given by the classical Maxwell-Boltzmann
distribution. Also the energy scales of the hot bath dwarf
that of the cold bath and therefore the influence of the initial
interaction g; becomes negligible.

This is highlighted in the inset of Fig. 5(a) where we show
the corresponding extra energy €(0, g;) and €(0, g,) for the
case of two distinguishable particles. As expected from our
previous analysis, the final interaction g, has to be smaller
than g; to improve the performance of the engine. The op-
timal final interaction g, decreases when the temperature of
the hot bath increases and becomes zero for 8,/8. < 0.08.
As we have already mentioned, the work output in the high
temperature limit is mostly dictated by the energy of the
WM at the inverse temperature §;,. Therefore the influence of
the interaction becomes negligible since the particles behave
like noninteracting classical particles with an energy approxi-
mately given by B, ! Moreover, from the preceding analysis,
we know that the work output is significantly improved for
nonzero and finite interaction strengths [Fig. 4(b)] and we
can thus conclude that the interactions start to influence the
performance of the engine for 8,/8. 2 0.08. We can also

~

1.004
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1.0,

5 0.5 15 2.5
€3p(0. )

0.5 1.5 2.
€5p(0,97)

FIG. 6. Efficiency and work output normalised to their respective
Otto values as a function of €3p(0, g;) and €3p(0, g7) for a WM
consisting of (a, b) three indistinguishable bosons and (c, d) three
distinguishable particles.

observe this in the efficiencies of the different cycles which
start to deviate from each other at around this temperature [see
Fig. 5(a)].

When B;,/B. — 1 both g; and g, tend to the same limit
in which the cycle is scale invariant. We note the slight ir-
regularities can be seen for the behavior of €(0, gs) in the
inset of Fig. 5(a) when 8,/8. 2 0.8. This is due to numerical
issues, as the optimization algorithm has difficulties in finding
the maximum work output when the temperatures of both
baths are close, and therefore the work output starts to vanish.
Regardless, in this regime the efficiencies of each cycle con-
verge to the Curzon-Ahlborn bound as expected. Finally, we
show that for a larger temperature of the cold bath B /iw; = 1,
the EMW for both working media are exactly equal to nca
[see Fig. 5(b)]. In this temperature regime, the effect of the
short-range interaction becomes negligible and the particles
behave like a noninteracting ideal and classical gas.

E. Three particles working medium

To show how the influence of the interaction on the engine
performance scales with the number of particles, we next
extend the analysis to a three particle system. In that case
the Hamiltonian can no longer be analytically solved and a
numerical method such as exact diagonalization is required
to calculate the quantities of interest. To compare with the
two-particle engines we consider equivalent temperatures and
compression ratios, and also define the interaction energy
€3p(n, g) in a similar way. With n being the quantum index that
characterizes the nth three particle eigenstate, the ground-state
interaction energy term is given by

(OlH (@, 9)10) 3

&r(0,8) = ———— — 7. 13)

This excess energy is such that €3p(0,0)=0 and
€3p(0,+00) =3 and again allows us to quantify the
interaction strength in the system. In Fig. 6 we show
the efficiency and work output for both indistinguishable
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FIG. 7. Efficiency at maximum work output for three interacting
bosons (brown dots) and three distinguishable particles (green dots)
in the low temperature regime B .fiw; = 10. The black line corre-
sponds to the Curzon-Ahlborn bound 74 and the purple dashed line
shows the two distinguishable interacting particles case.

and distinguishable particles. We note that the optimal
interactions needed for maximizing performance does
not significantly change compared to the two-particle
case; however, the degree of enhancement is marginally
increased, with a gain of 0.1% for the maximum efficiency
[n =~ 1.004n0 ~ 0.668 for €3p(0, g,) ~ 1.64 and €3p(0, gf) ~
2.96] and 1.1% for the work output [W =~ 1.05W, for
€3p(0, 8)) = €3p(0, g7) ~ 1.64]. However, the engine using
a WM of distinguishable particles shows a more significant
enhancement of the performance as the number of states
that are not affected by the interaction is much larger than
in the two-particle case [see Figs. 2(a) and 2(b)], allowing
for a more efficient work extraction process. The resulting
maximum efficiency and work output, n ~ 1.21no ~ 0.807
for €3p(0,8)~248 and e€3p(0,8; =0.8)~ 149 and
W ~ 1.59W, for e3p(0, g;) ~ 1.73 and €3p(0, g5) ~ 1.49,
allowing for gains of 8.6% and 16% respectively over the
distinguishable two-particle engine. This highlights the
important role the density of states plays in the performance
and how this can be modified by the statistics.

Finally, we show in Fig. 7 the EMW and compare the cases
for two and three distinguishable particles. While the EMWs
for the engines with indistinguishable particles are very simi-
lar, one can note a slight enhancement of the efficiency for the
WM made from indistinguishable particles in the intermediate
temperature regime.

IV. FINITE-TIME DYNAMICS

So far we studied the performance of the engine in the adi-
abatic limit, which results in a vanishing power output due to
the long timescale of the strokes. While reducing the duration
of the strokes increases the power, it will, however, inevitably
lead to the decrease of the efficiency due to the generation of

irreversibility and inner friction [40-50]. To understand the
tradeoff between the power and the efficiency of the engine,
we next study the compression and expansion strokes at finite
time for an engine made from two distinguishable particles.
For this we consider three cases. First, we change the interac-
tion between two values that are known to give a boost to the
efficiency and work output in the adiabatic limit (the optimal
case), and second we drive the interaction in such a way that
the WM remains scale-invariant, for which the efficiency in
the adiabatic limit is given by no. As a third case we consider
two noninteracting particles to benchmark our results. As our
focus is on the nonadiabatic excitation during the compression
and expansion strokes, we do not consider the dynamics of
the isochoric strokes. The duration 7 of the compression and
expansion stokes are taken to be same and for the optimal case
the ramps for the time-dependent protocols for the trap and
interaction strengths are given by

\° £\ £\’
f(t):f(0)+10Af(;) —15Af<;> ~|—6Af<;) ,
(14)

where Af = f(t) — f(0) for f = {g, w}. In the case of scale-
invariant dynamics the interaction strength is connected to the
w(t)

trap frequency through g(¢) = g(0) 50 and we choose w(t)
to be given by Eq. (14). To quantify the performance of the
engine at finite time, we calculate the efficiency n and also the

effective power (EP) of the engine defined as
Wi(r)
2t

While the latter does not strictly correspond to the power of
the engine since we only consider the total duration of the
compression and expansion strokes 27, we always assume that
the WM fully thermalizes during the isochoric stokes for a
short fixed time. The EP then tells us how the power of the
engine is affected by nonadiabatic excitations created during
the work strokes, and if the duration of the isochoric stokes is
short enough, it corresponds to the first approximation of the
engine power. Finally, we also quantify the irreversibility of
the cycle by calculating the irreversible work,

Wier(7) = W (1) — Waa, (16)

P(t)=—

s)

where W4 is the work output of the engine in the adiabatic
limit.

The EP, the irreversible work, and the efficiency as func-
tions of t are shown in Fig. 8. Compared to the noninteracting
case, using an interacting system in a cycle of finite duration
provides a significant boost to the power in both the optimal
case and the scale-invariant case. Moreover, one can see that
the EP in the optimal case is larger than in the scale-invariant
case for longer stroke durations, which is due to the work
output being larger in the adiabatic limit. However, for fast
strokes the EP for the scale-invariant case becomes larger and
the maximum value is reached at a shorter time than in the
optimal case. While this is a small effect, it is consistent with
the greater amount of irreversible work being generated in
the optimal case [see Fig. 8(b)]. It can also be seen from the
fact that even if the efficiency in the adiabatic limit in the
optimal case is greater, it decreases faster for shorter times
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FIG. 8. (a) Effective power output (EP), (b) irreversible work, and (c) efficiency as a function of . The green line corresponds to the
optimal case, the red dashed line corresponds to the scale-invariant case and the black line to the noninteracting case. The compression ratio is
K = % the cold inverse temperature is S, = % and the hot inverse temperature is f, = Wlf For the optimal case the interactions are g; = 1.95

and g, = 1.4 such that the efficiency in the adiabatic limit is n ~ 0.7, and for the scale-invariant case the interactions are g; = § r=1.95.

than in the scale-invariant case [see Fig. 8(c)]. Finally, one
can note that the irreversible work generated by driving the
interaction in the scale-invariant case is not very significant
and therefore the efficiency in this case stays relatively close to
the efficiency of the noninteracting case, even for short times.

V. CONCLUSION

In summary, we have investigated a quantum Otto heat
engine, where the working medium is an interacting quantum
system and the interaction is driven at the same time as the
trap frequency of the system during the adiabatic strokes. In
our case the interaction is a short-ranged and repulsive, and we
have shown that it allows to change the performance of the
engine and outperform a quantum Otto heat engine realized
with noninteracting particles.

The performance of the engine is modified for two reasons:
the first is that the interaction does not have the same effect on
all eigenstates and therefore the eigenenergies do not change
uniformly during the adiabatic strokes. This is in contrast to
models where the energy shift due to the interactions is the
same for all states, such as the Calogero-Sutherland model,
and which do not diverge from the Otto efficiency in the
adiabatic limit [15,18]. This means that our engine shows a
different behavior for finite interaction values. The second
reason is that the interaction affects the energy distribution
which allows, for example, to lose less energy during the
cold isochore. The interaction has, however, only a very small
effect in the case of indistinguishable bosons, while it can sig-
nificantly modify the engine performance for distinguishable
particles due to the presence of odd eigenstates states that are
not affected by the interaction. While the tiny influence of the
interaction in the indistinguishable case would be extremely
difficult to experimentally observe, the significant improve-
ment obtained in the distinguishable case can be expected to

be experimentally measurable. Furthermore, we have found
that the interactions mostly matter at low temperatures, and
that increasing the number of particles does not seem to mod-
ify the influence of the interaction on the engine performance.
In fact, it continues to enhance the work output and the effi-
ciency in the case of distinguishable particles.

We have also studied nonadiabatic engine cycles of finite
duration and quantified the tradeoff between the power and
efficiency. We have shown that driving the trap and the in-
teraction by keeping the WM scale-invariant generates less
irreversible work which allows better performances in terms
of power but also efficiency at short timescales. More gen-
erally, using an interacting system in a finite-time cycle is
significantly advantageous in terms of power. Our work there-
fore shows the potential for developing QHEs that possess
multiple control parameters which can be changed during the
work strokes.

A number of interesting questions immediately emerge
from our work. While we have only considered repulsive
interactions, attractive interactions could potentially also lead
to higher efficiencies. Furthermore, since the external poten-
tial has a strong influence on the spectrum, optimising the
trapping potential would be a insightful study relating to the
quantum nature of the engine [25]. Finally, considering long
range interactions within the working medium [51] could lead
to engines that show different behavior at higher temperatures.
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