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Dismantling the information flow in complex interconnected systems
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Microscopic structural damage, such as lesions in neural systems or disruptions in urban transportation
networks, can impair the dynamics crucial for systems’ functionality, such as electrochemical signals or human
flows, or any other type of information exchange, respectively, at larger topological scales. Damage is usually
modeled by progressive removal of components or connections and, consequently, systems’ robustness is
assessed in terms of how fast their structure fragments into disconnected subsystems. Yet, this approach fails to
capture how damage hinders the propagation of information across scales, since system function can be degraded
even in absence of fragmentation—e.g., pathological yet structurally integrated human brain. Here, we probe the
response to damage of dynamical processes on the top of complex networks, to study how such an information
flow is affected. We find that removal of nodes central for network connectivity might have insignificant effects,
challenging the traditional assumption that structural metrics alone are sufficient to gain insights about how
complex systems operate. Using a damaging protocol explicitly accounting for flow dynamics, we analyze
synthetic and empirical systems, from biological to infrastructural ones, and show that it is possible to drive
the system towards functional fragmentation before full structural disintegration.
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I. INTRODUCTION

Despite the diversity of physical attributes, all complex
systems can be viewed as large collections of units ex-
changing information to function properly—e.g., spreading of
diseases through social systems, human flows between urban
areas through transportation networks, financial transactions
between financial agents in stock markets, and electrochem-
ical signals exchanged among neurons in the human brain.
Of course, regulation and maintenance of such pairwise
communications necessitates the presence of an underlying
structure, a network, exhibiting high resistance to disintegra-
tion [1–8] even under sever damage—e.g., genetic mutations
in gene-gene interaction networks [9], extinction of species
in ecosystems [10], failure of Internet routers [11] or un-
availability of transportation means [12]. During the last
decade, network integrity—i.e., the existence of pathways be-
tween every pair of units guaranteeing that they can exchange
information—has been widely used as a proxy of network
robustness, under progressive removal of units or connections
[12,13], indicating that in many empirical systems the full
disintegration happens only if a large fraction of the system is
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damaged. While structural integrity is a necessary condition
for information exchange, it is barely sufficient to quantify
the effect of damage on the flow of information within the
systems (see Fig. 1), a property crucial for system’s func-
tionality. For instance, it has been shown that by analyzing
the perturbation of information flow, one can distinguish the
healthy brain from the pathological one, even in absence of
significant structural differences among the two types of con-
nectomes [14]. Accordingly, a number of methods have been
developed to capture unit-unit communications, considering
the coupling between the structure and dynamical processes
governing the flow of information [15–17] and to account
for the heterogeneity and intervening of temporal and spatial
information propagation scales [18,19]. Yet, the robustness
literature is still predominantly limited to structural analyses,
missing a functional perspective.

Of course, in special cases, like for very sparse networks,
or when only short-range interactions are under investigation,
the role played by the structure is expected to be dominant.
In those cases, structural indicators provide a reliable descrip-
tion of the flow dynamics and shortest paths, sequences of
minimum number of links connecting pairs of nodes, might
reliably describe the flow pathways in the system. However,
in most scenarios, damage can locally or globally perturb
the information dynamics in empirical systems—e.g., lesions
impairing the flow of electrochemical signals within the larger
or smaller sections of the brain, to failures of transportation
systems hindering human flows at the level of districts, cities
or regions—and ignoring the dynamics of how information
spreads and the multiscale nature of interactions can lead to
poor results. To this end, a novel framework is needed to
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FIG. 1. Impairment of information flow and functional degradation. (a) The structure of a complex system is shown, where two components
A and B are highlighted in blue. To perform a system-specific function, A and B must communicate—e.g., Broca and Wernicke areas in human
brain for speech production, London and Berlin airports for flow of business people, industry section and academia exchanging ideas and
knowledge for technological development—and the flow of information between them can be modeled using differential equations coupling
the structure, noted as G, and dynamical processes, governed by the control operator Ĥ . (b) The dependence of functionality on the scale of
information propagation in the system, from short- to long-range, and damage destroying part of the system. A and B cannot perform the
system-specific function, if the communication range is short or in cases where the structure is damaged while the communication scale is not
large enough. Note that the damage depicted here is not severe enough to dismantle the structure, yet it has a considerable effect on the flow
and, thus, functionality.

go beyond the traditional structural paradigm and investigate
functional robustness of interconnected systems, character-
ized in terms of the system’s ability to maintain the flow
exchange under random or targeted disruptions (for empirical
examples, see Table I).

Here, we assess functional robustness in terms of the
effect of unit removal on the information dynamics: a de-
crease in the average received information (ARI) per unit,
modeled using diffusion processes coupled with the network,
and an increase in the dispersion of units in the diffusion
manifold induced by the information dynamics, quantified
as their average-squared diffusion distance (ASDD). We use
statistical physics of complex information dynamics [20]
to identify and target the critical components of the sys-
tem based on the impact of their removal on the von
Neumann entropy [21]. We demonstrate that this method
directly reduces the overlap between flows originating from
different parts of the system and, consequently, leads to ef-
ficient dismantling of the information flow—i.e., functional
dismantling.

Our results show that while attack strategies based on topo-
logical indicators such as degree, closeness, and betweenness
are effective in a limited number of scenarios, they are not
distinguishable from random failures when the network is not
sufficiently sparse or when the mid- or long-range commu-
nications are the target. Instead, our approach can identify
the most central components of the human connectome, the
neural network of the Caenorhabditis elegans, European air-
line network, and Chilean power grid, at multiple propagation
timescales, whose removal effectively disturbs the flow of
information in those systems.

II. FROM STRUCTURAL TO FUNCTIONAL ROBUSTNESS

The size of the largest connected component (LCC)—i.e.,
the number of nodes in the largest group of nodes that are
connected together via sequences of links—has been exten-
sively used as a proxy for structural robustness of networks
[1,3,13]. In this case, the network is considered to be struc-
turally dismantled when the size of LCC drops, consequent
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to removal of a fraction of links or nodes representing the
damage imposed on the system, either in the form of random
failures or targeted attacks. While the former can be easily
simulated, using an algorithm that randomly removes nodes
from the network and keeps a record of the size of LCC,
there is no unique way to model the latter. To compensate,
a variety of centrality measures have been introduced to rank
the nodes according to different criteria of importance, and
remove them, one by one, aiming to pose the maximum pos-
sible damage to the structure [22]. However, we still lack a
universal centrality measure proven to be the most effective in
quick structural dismantling of all network types.

In general, there are two types of attack strategies: (i) static,
where the ranking of the nodes is computed only once at
the beginning of the algorithm, and (ii) iterative, where the
centrality of nodes are updated, after every node removal.
The first category has significantly lower computational cost,
while the second one is more effective in leading networks
to quick structural impairment. On the one hand, iterative
betweenness—i.e., a centrality that ranks the nodes according
to the number of shortest paths crossing them—shows im-
pressive performance [22] with reasonably low computational
complexity. On the other hand, new measures of centrality
have been introduced to combine topological metrics with
meta data analysis [23] or based on machine learning [24],
geometry [25], and, very recently, statistical physics [21].

In this work, we aim to study functional robustness, in
contrast with the structural. Our goal is to test the performance
of the widely used, yet purely topological, metrics includ-
ing iterative degree, betweenness, eigenvector, and closeness
centrality, in dismantling the flow of information, instead
of dismantling the structure. Additionally, we compare the
structural metrics with a recent centrality measure named
entanglement [21] (see Appendix B), that ranks the nodes
according to the impact of their removal on the diversity of
flow pathways in the system, providing a suitable candidate
for effective functional dismantling. It is worth mentioning
that entanglement centrality has also been previously studied
against a large number of widely used structural and dynam-
ical centrality measures and shown to outperform them, or
perform as well as the best of them, in dismantling a wide
range of networks structurally [21]—i.e., structural disman-
tling, in contrast with the functional dismantling, concerns
with fragmentation of structure into subnetworks and the met-
ric used for its assessment is the size of the largest connected
components (LCC), which drops quickly when an attack strat-
egy is being effective for structural dismantling. As a follow
up, here we study the effectiveness of the best performing
structural measures in the same study [21] compared with
entanglement, excluding other dynamical metrics, and mea-
sure their effectiveness on metrics we will introduce in the
following sections to measure functional robustness, instead
of structural robustness.

In the following, we first introduce ARI and ASDD, as
proxies for functional robustness. Then, we review the defini-
tion of entanglement centrality derived from statistical physics
of complex information dynamics. Finally, we show that topo-
logical metrics fail to identify the nodes central for the flow
dynamics, under a number of scenarios. We demonstrate that,
surprisingly, the effectiveness of attacks guided by topological

measures on the functional robustness is not distinguishable
from random damage. This result highlights that topological
information, including the distribution of degree and shortest
paths, is not sufficient to capture the information flow in
synthetic and empirical networks and, therefore, shortest paths
are not determinant of the node-node interactions.

III. QUANTIFYING FUNCTIONAL ROBUSTNESS

Different levels of abstraction can be implemented in
modeling a complex phenomenon, from agent based mod-
eling [26], where one tries to insert every available detail
into the equations, to the mean-field approaches, where even
the agents might be coarse grained [27,28] into fields with
no regard for the connectivity patterns, heterogeneity, etc.
Comparing the two approaches, one immediately observes a
tradeoff. High-resolution modeling is often preferred when
exact calculations are necessary for decision or policy making.
Yet, low-resolution modeling is also powerful, as it captures
the most important factors and their associations, providing
understanding at the expense of precision. For instance, most
network science studies during the last two decades ground
themselves in structural analysis of real-world systems, count-
ing the number of connections, finding the geodesic distances
as plausible transportation routes and studying the modular-
ity and hierarchy of the structure, all based on distribution
of links among the nodes. One abstraction level above the
structural analysis is to couple the network with dynamical
processes, such as classes of diffusion, that are general enough
to describe a wide range of transport phenomena [29], at
least to the first-order approximation, and suitable to model
communications between the nodes.

To mathematically describe the coupling, we identify the
nodes of a network as canonical vectors |xi〉, i = 1, 2, . . . , N
and encode their connections in the operator Ŵ which in
the space of nodes—shaped by the canonical vectors |xi〉—
represents the adjacency matrix, where 〈x j |Ŵ |xi〉 = Wi j is the
binary value indicating presence (1) or absence (0) of a link
between i and j, or the weight of the link connecting them
in a weighted representation, in accordance with notation of
a fundamental reference of this work [20]. The field |φ(τ )〉
is assumed on top of the network, and its amount at node i
at time τ is shown as 〈xi|φ(τ )〉. The flow of the field from
one node to another will be used as a proxy for information
exchange between the two. The evolution is governed by the
linear or, in case of nonlinear dynamics, linearized equation

∂τ |φ(τ )〉 = −Ĥ (Ŵ )|φ(τ )〉, (1)

where Ĥ (Ŵ ) is a control operator. Note that the equation is
exact for a range of dynamical processes, including ran-
dom walks, consensus dynamics, synchronization near the
meta-stable manifold, and continuous diffusion. As explained
before, in this work we focus on diffusion dynamics where
the control operator becomes the Laplacian matrix Ĥ (Ŵ ) =
K̂ (Ŵ ) − Ŵ , with K̂ (Ŵ ) being the diagonal degree matrix
where 〈x j |K̂ (Ŵ )|xi〉 = δi jki with the Kronecker δ function
δi j that is equal to 1 when i = j and 0 otherwise, and ki =∑N

j=1 Wi j being the degree of node i.
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Solving the linear equation, one obtains the propagator
Û (τ,Ŵ ) = e−τ Ĥ (Ŵ ). Consequently, information flow from
node i to node j can be described using a propagator method
similar to the Euclidean path integrals 〈x j |Û (τ,Ŵ )|xi〉, and
by changing τ from low to high values, the propagator can
encode short-, middle-, and long-range communications [20].

In this case, the average received flow per node reads

A(τ,Ŵ ) = 1

N

N∑
i, j=1

〈x j |e−τ Ĥ (Ŵ )|xi〉(1 − δi j ), (2)

where N is the number of nodes in the network and δi j = 1
if i = j and δi j = 0 otherwise, excluding the diagonal ele-
ments of the propagator, because the diagonal elements do
not encode pairwise information exchange between the nodes.
As explained earlier, 〈x j |e−τ Ĥ (Ŵ )|xi〉 encodes the information
flow from node i to j. Therefore,

∑N
i=1〈x j |e−τ Ĥ (Ŵ )|xi〉 gives

the overall information received by node i with its average
over all nodes: 1

N

∑N
i, j=1〈x j |e−τ Ĥ (Ŵ )|xi〉, being ARI.

Significant damage is expected to lower the average re-
ceived information per node. In the following sections, we
apply random and targeted removal of the nodes to a range
of synthetic and empirical networks and study the alterations
of ARI along dismantling trajectories, keeping a record of the
effect of progressive damage on the communications. Note
that the nodes removed in the process do not exchange infor-
mation with the network, having no impact on the summation
in Eq. (2), and can be assumed excluded from the analysis.
Therefore, after removal of m nodes, the denominator of
Eq. (2) would be equal to N − m. This comes naturally by
removing the kth row and column of the adjacency operator
Ŵ , after removing the node k.

Remarkably, a Taylor expansion of the propagator at
τ � 1, given by Û (τ,Ŵ ) ≈ Î − τ Ĥ (Ŵ ) = Î − τ K̂ (Ŵ ) +
τŴ , suggests that at small propagation scales, the information
exchange is fully determined by the structure. Note that the
diagonal elements do not affect the summation in Eq. (2) and
the off-diagonal elements are directly given by the adjacency
operator Ŵ , with Î being the identity matrix. However, at
larger propagations scales, it is expected that a nontrivial
weighted summation of network paths are required to explain
the flow dynamics.

Based on the same propagator, one can consider the Eu-
clidean distance between the propagation of the field at time
τ from nodes i and j

Dτ (i, j) = ‖e−τ Ĥ (Ŵ )|xi〉 − e−τ Ĥ (Ŵ )|x j〉‖2

=
√∑

k

(〈xk|e−τ Ĥ (Ŵ )|xi〉 − 〈xk|e−τ Ĥ (Ŵ )|x j〉
)2

, (3)

which induces a metric, called diffusion distance [30], on the
network and consequently a (geo)metric structure on the set
of nodes, called diffusion geometry [30]. According to Dτ

nodes i and j are close if the flows emanating from them
are similar or, in probabilistic terms, if the probability that
two independent random walkers starting from nodes i and j
respectively meet in any node k at time τ is high. Observe
also that the information dynamics maps each node i ∈ V

to a point e−τ Ĥ (Ŵ )|xi〉 on a hyperspace of RN [31], called
diffusion space, where nodes connected by many short walks
lie close to each other. Since the diffusion distance integrates
the information on the connectivity of the network at different
scales, it is also sensitive to those structural changes forming
bottlenecks in the information flow.

We summarize the geometric information provided by the
diffusion distance through the ASDD,

D2(τ,Ŵ ) = 1

2N2

∑
i, j

D2
τ (i, j), (4)

which can be shown to be a measure of dispersion in the diffu-
sion space, exploiting the fact that the propagator e−τ Ĥ (Ŵ ) is a
stochastic matrix—the Laplacian Ĥ (Ŵ ) is, indeed, a Q matrix
[31,32] and, under particular assumptions on φ (1) describes
an edge-centric random walk [15]; see the Appendix A. Con-
sequently, we expect that the network dismantling increases
the dispersion of the nodes (points) in the diffusion space.

For a visual illustration of information propagation and the
functional geometry of networks, see Fig. 2. As mentioned
above, when τ is sufficiently small, information exchange is
limited to the locality of the nodes, among first neighbors, and
through the shortest paths connecting them to the spatially dis-
tant ones. Also, at this temporal scale, the diffusion distance
between the nodes is expected to be strongly determined by
the shortest paths connecting them—i.e., the local geometry
of the network. While, as one increases τ in a network that
is not extremely sparse, the longer paths (and their number)
become important, modulating the amount of exchanged field
among the nodes and the mutual diffusion distance between
them. In this regime, we expect that both ARI and ASDD
cannot be understood in terms of purely structural metrics
such as betweenness and degree.

It is worth noting that diffusion dynamics provides a first-
order approximation of the transport phenomena in many
complex systems. Yet, it is interesting to generalize ARI and
ASDD to other types of dynamics. For instance, in continuous
diffusion high degree nodes tend to spread larger amounts of
field. In contrast, for random walks governed by normalized
Laplacian matrices, due to the conservation of the number of
walkers jumping out of each node, the overall flow of the field
from localities are equal and the behavior of ARI and ASDD is
expected to be different. A natural generalization of this work
is to consider other context-dependent dynamical processes,
such as neural dynamics, regulatory dynamics or epidemic
spreading, and investigate the impact of the dynamics on func-
tional robustness as compared to purely diffusive processes.

IV. ENTANGLEMENT CENTRALITY

Originally, the notion of density matrices has been in-
troduced in quantum mechanics to capture the pairwise
coherence between quantum states in a physical system [33].
Similarly, complex networks, as collections of pairwise con-
nections between objects, cannot be fully described by vectors
or distribution functions, without information loss. Therefore,
following this analogy and inspired by the framework of
quantum statistical physics, the state of complex networks
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FIG. 2. Multiscale information propagation. Top row shows the propagation from an arbitrary node (having high field concentration at
τ = 0). At small temporal scales, the field propagation is limited to the locality (τ = 0.1, 0.5), while the global interactions are allowed at
larger temporal scales (τ = 5). The equilibrium of the dynamics happens when the field reaches the final distribution, independent of its
initial conditions. Below each plot in the top row, the propagation geometry constructed from Eq. (3), embedded in two dimensions using
multidimensional scaling, is shown. Each dot corresponds to a node and node colors indicate the average diffusion distance between all
vertices in the network. The nodes become closer in the diffusion manifold as one tunes τ to larger values, from separate units to functional
modules and, eventually, reaching full integration. Similar coloring can be obtained using average-squared diffusion distance instead of average
diffusion distance.

has been derived in terms of density matrices [20], describing
statistical ensembles of stream operators given by the outer
product of eigenvectors of a control operator Ĥ that guides
the flow dynamics—note that such density matrix has been
only used to analyze classical complex networks and its ap-
plicability in case of quantum complex networks is still open
to be explored. The framework has been successfully applied
to analyze and improve the transportation properties of social
and infrastructural multiplex networks [29], cluster the human
microbiome [34] extract the mesoscale organization and func-
tional diversity of the human brain [14,35], and characterize
functional modules in fungal networks [36].

More technically, in this framework, the density matrix
derived from the formalism [20] reads

ρ̂(τ,Ŵ ) = Û (τ,Ŵ )

Tr(Û (τ,Ŵ ))
, (5)

with its corresponding von Neumann entropy

S (τ,Ŵ ) = −Tr(ρ̂(τ,Ŵ ) log2 ρ̂(τ,Ŵ )). (6)

Importantly, the von Neumann entropy is a function of the
propagator Û (τ,Ŵ ) and, directly, relates to the information
flow. Interestingly, the von Neumann entropy has been shown
to be a measure of diversity of flow pathways in the systems
[20], depending on the spectrum of the Laplacian matrix
which, also, determines the characteristic times of a random
walks, the diffusion time and the functional latent diffusion
geometry of the system. Therefore, it is expected that the
von Neumann entropy can provide an effective indicator for
functional robustness analysis. Previously, the effect of node
removal on the diversity of flow pathways, reflected in the von
Neumann entropy, has been used as a measure of centrality,
named network entanglement. The effectiveness of network

entanglement in structural dismantling has been compared
against a range of mostly used structural and dynamical cen-
trality measures [21]. It has been shown that attacks guided
by entanglement dismantled synthetic and empirical networks
faster than other measures, or as fast as the best of them.
Yet, the computational complexity of entanglement has been
shown to be higher than many of these measures, being around
O(N3) after mathematical approximations and treatment. This
makes other structural and dynamical metrics, even though
with lower performance in guiding structural or functional
attacks, more scalable. Nevertheless, entanglement allows for
interpretation and better understanding of the multiscale na-
ture of node importance in terms of the effect of its removal on
the diversity of flow pathways and, therefore, assessing func-
tional robustness, as shown in the following. For a more com-
prehensive review of network entanglement and the slightly
different version of it used here, please see Appendix B.

In the following, we compare the effectiveness of attack
strategies guided by entanglement with those based on struc-
tural metrics including the ones with highest performance in
structural dismantling, like iterative betweenness (For more
information on the implementation of attack strategies based
on entanglement and other measures, see Appendix B).

V. SYNTHETIC NETWORKS

We study the functional robustness of four different net-
work classes, including Barabasi-Albert [37], Erdos-Renyi
[38], stochastic block model with four communities, and
Watts-Strogatz [39] models, as useful models of real-world
systems. For each class, 10 independent realizations with
N = 256 nodes and average degree approximately equal to
12 are evaluated under random failures and targeted attacks
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FIG. 3. Functional dismantling of synthetic networks. Ten independent realizations of four classes of network (N = 256 and average
degree ≈12) have been considered: Barabasi-Albert (BA), Erdos-Renyi (ER), Stochastic Block Model with four communities (SBM4), and
Watts-Strogatz (WS). ARI and ASDD at different temporal scales (τ = 1, 3, 5) have been studied under random failures and targeted attacks
based on structural centrality measures, including iterative degree, betweenness, closeness, and eigenvector and entanglement, as a functional
metric. The gray area in each plot shows the region in which the effectiveness of structural measures is comparable to random selection of
nodes. Under all scenarios considered here, entanglement centrality is able to impose larger impact on ARI and ASDD.

guided by structural measures including iterative degree, be-
tweenness, closeness, and eigenvector centrality.

In most cases and as long as the size of damage—i.e., the
percentage of removed nodes—is not considerably large, the
effectiveness of these structural metrics on ARI and ASDD is

not distinguishable from that of random failures (see Fig. 3).
It is worth highlighting that even the performance of iterative
betweenness, which is known to be highly efficient in dis-
mantling the networks structurally, is comparable to random
disruptions unless the size of damage is considerably large.
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FIG. 4. Functional dismantling of the human connectome. Attacks based on entanglement centrality provide the upper bound for
functional damage on the human connectome, among the considered centrality measures. The overall effectiveness of structural measures
are indistinguishable from each other and comparable with random failures at large temporal scales. The spatial locations of nodes match the
positions of brain regions given by the dataset. The size of the nodes is proportional to their degree. Dark gray indicates the top 10% of the
nodes according to entanglement centrality, at specific τ . As an example, the effect of removal of 20% of nodes guided by betweenness and
entanglement centrality, on the structure and emergent functional state [36]—i.e., a network in which the edge weights are given by the amount
of flow exchange between the nodes—has been illustrated, at τ = 30.
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FIG. 5. Functional dismantling of C. elegans neural system. The neural network of the nematode worm C. elegans (N = 297) is considered.
The effect of random failures and targeted attacks guided by iterative betweenness, degree, eigenvector, closeness, and entanglement centrality
measure on ARI and ASDD is plotted at multiple propagation timescales τ = 1, 3, 10, 30. Attacks based on entanglement centrality provide the
upper bound for damage among the considered centrality measures. The spatial locations of nodes match the positions of brain regions given
by the dataset. The size of the nodes is proportional to their degree. Dark gray indicates the top 10% of the nodes according to entanglement
centrality, at specific τ .

The only counter example among the considered cases is for
Barabasi-Albert networks at small temporal scales, τ = 1, due
to the characteristic heterogeneity of its degree distribution.
Generally, it is evident that the ability of structural measures
in capturing centrality is higher in case of smaller propaga-
tion times. This means that if the flow dynamics on a real
network is local—e.g., the spreading of a niche content on
an online social network like Twitter cannot happen forever
and reach everyone since after some time T > 0 the tweet
is scrolled down the timeline—then attacking topologically
central nodes is efficient also for dismantling the information
flow. Of course, this is expected as small τ characterizes local
interactions between the nodes and the local interactions can
be directly described by the adjacency matrix, regardless of
the coupling between network and diffusion dynamics.

According to our results, entanglement as a functional
metric outperforms the structural ones, under almost all con-

sidered circumstances. This is even more interesting in the
light of the previous works, showing that this measure has no
particular correlation with and cannot be captured by any of
a wide range of structural and dynamical centrality measures
[21].

VI. EMPIRICAL NETWORKS

In this section, we analyze the functional robustness of
four empirical interconnected systems, including two natural
and two man-made: an averaged human connectome (N =
188) provided by the NKI-Rockland sample including brain
regions and their structural connections constructed using dif-
fusion tensor imaging (DTI) [40], the neural network of the
nematode worm C. elegans (N = 297) representing neurons
linked by their neural junctions [39], the reduced Chillean
power grid network [41,42] (N = 218) representing power
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FIG. 6. Functional dismantling of Chilean power grid. The Chillean power grid network (N = 218) indicating power plants and substations
is considered. The effect of random failures and targeted attacks guided by iterative betweenness, degree, eigenvector, closeness and entan-
glement centrality measure on ARI and ASDD is plotted at multiple propagation timescales τ = 1, 3, 10, 30. Attacks based on entanglement
centrality provide the upper bound for damage among the considered centrality measures. The overall effectiveness of structural measures are
almost indistinguishable from each other. The spatial locations of nodes match the positions of brain regions given by the dataset. The size of
the nodes is proportional to their degree. Dark gray indicates the top 10% of the nodes according to entanglement centrality, at specific τ .

plants and substations, and the European airlines network
(N = 450) [43], originally a multilayer with thirty-seven lay-
ers that we aggregate into a single layer network.

While most well-known structural centrality measures
have been generalized to be able to cope with weighted net-
works, their success is mostly shown for binary adjacency
matrices in the literature. For this reason, these measures
are expected to be less competent for the analysis weighted
network against a functional measure like entanglement. Con-
sequently, for the weighted real-world networks studied here,
such comparison can be unfair and, more importantly, the
result of such juxtapositions would not support the core
message of this study, which is to show that structural in-
formation cannot provide a multiscale proxy for node-node
interactions. Therefore, we binarize the weighted adjacency
matrices, keeping only the elements above the threshold of
one sigma—i.e., one standard deviation above the average

of elements—and use the binarized networks to perform the
analysis of functional robustness.

According to our results, attacks guided by entanglement
exhibit an upper bound for the damage reflected in ARI and
ASDD, especially when long range interactions are under
investigation, in almost all scenarios (see Figs. 4–7). In the
human connectome and C. elegans network the gap between
structural metrics and entanglement is more evident, com-
pared with the technological networks. Brain networks are
characterized by different interlinked regions, which are able
to (i) carry on specific tasks processing information inside
each module and (ii) integrate information functioning as a
whole and enabling cognition, thanks to long-range links, a
multiscale modular organization [44], rich-clubs and cores
[45], etc. Not only the network topology shapes flows in the
brain but also different communications dynamics do [46],
since the creation of each synaptic connection involves a
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FIG. 7. Functional dismantling of EU airlines. the European airlines network (N = 450) is considered. The effect of random failures and
targeted attacks guided by iterative betweenness, degree, eigenvector, closeness and entanglement centrality measure on ARI and ASDD is
plotted at multiple propagation timescales τ = 1, 3, 10, 30. Attacks based on entanglement centrality provide the upper bound for damage
among the considered centrality measures. The overall effectiveness of structural measures are almost indistinguishable from each other. The
spatial locations of nodes match the positions of brain regions given by the dataset. The size of the nodes is proportional to their degree. Dark
gray indicates the top 10% of the nodes according to entanglement centrality, at specific τ .

tradeoff between costs (in terms of energy) and benefits (e.g.,
increasing the routing or the diffusion efficiency of the net-
work, or the network resilience). Hence, removing highly en-
tangled nodes, may not disrupt the network topologically but
may have a nontrivial impact the brain functions. The multi-
scale property of entanglement allows for the identification of
different groups of nodes that are important for short, middle
and long range signaling. For example, in the human connec-
tome at τ = 1 and τ = 3 the important regions are distributed
almost equally across the right and left hemispheres with a
tilt from the occipital at τ = 1 to the temporal areas at τ = 3.
However, at middle propagation scales, τ = 10, most central
regions populate in the right hemisphere and at the large
scales, τ = 30, this asymmetry shifts to the left hemisphere.

As mentioned earlier, for very sparse networks or when one
is interested in exploring only short range interactions limited

to the locality, the structure is expected to play a dominant role
and, therefore, structural centrality measures become reliable
for dismantling the flow. Our results clearly confirm the for-
mer expectation, as the structural centrality measures exhibit
a better performance at small temporal scales, where nodes
interact inside their neighborhood and the adjacency matrix
provides a good proxy for the flow, in all considered cases. As
explained before, it can also be mathematically demonstrated
in terms of a Taylor expansion of the propagator at τ � 1,
as Û (τ,Ŵ ) ≈ Î − τ Ĥ (Ŵ ) = Î − τ K̂ (Ŵ ) + τŴ . The latter
expectation is also supported by our empirical network
analysis. As shown for European airlines and Chilean power
grid, the sparseness of technological networks make them
more vulnerable to functional impairment under attacks based
on structural metrics. For example, the Chilean power grid
network with N = 218 has only 527 links. Nevertheless, even
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FIG. 8. Microscopic effect of attacks on the human connectome. For human connectome and along the dismantling trajectory determined
by the entanglement centrality, (a) red line represents the correlation/negative logarithm of p value of received information of nodes and their
degree centrality, while cyan line is the correlation between of received information and betweenness centrality. (b) Distribution of received
field per node along the dismantling trajectory is represented, and the value for each node is according to the color bar. The white area indicates
nodes with zero received information.

in such cases, entanglement centrality outperforms the struc-
tural measures, provides insights into the multiscale nature
of node importance for information flow and of the process-
driven network geometry, and identifies groups of nodes that
are specifically important at every scale and whose removal
has also the strongest impact on the diffusion geometry of the
network.

VII. MICROSCOPIC EFFECTS AND DISTRIBUTION OF
RECEIVED INFORMATION

According to the results presented in the previous sections,
removal according to the structural centrality measures have
roughly similar effects comparable to random noise. Here we
investigate the microscopic effects of attacks based on entan-
glement centrality, in contrast with the reported results about
ARI (average received information over the entire network)
and study individual nodes. As expected, after a handful of
removals, ARI will significantly decrease, but a valid question
is: can the distribution of received information be predicted
or explained using structural centrality measures? Are there
some nodes that are very strongly affected while others are
not affected much at all, or is the decrease in ARI roughly
uniform across different nodes?

Here we analyze how degree and betweenness centrality
correlate with the distribution of received information (see
Figs. 8–11) and present the distribution along the dismantling
trajectory. Our findings clearly show that the nodes with high
or low received information cannot be predicted using struc-
tural metrics such as degree or betweenness, as the correlation
is either low, insignificant or inconsistent—i.e., high only for
small range of dismantling steps.

VIII. DISCUSSION

Instead of the traditional approach to the problem of net-
work robustness that is based on quantifying the resistance
of networks to structural impairment, we explored the func-
tional effect of progressive damages. To this aim, exploiting
diffusion dynamics coupled with the structure, we introduced
two descriptors: the average received information per node
and the average-squared diffusion distance between the nodes.
Thus, we assessed the effect of random and targeted attacks
guided by a number of widely used centrality measures on
these metrics, in a broad range of scenarios including syn-
thetic and empirical networks.

Our results indicate that removing the nodes with high
topological centrality, for example the ones having high
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FIG. 9. Microscopic effect of attacks on the neural network of C. elegans. For C. elegans and along the dismantling trajectory determined
by the entanglement centrality, (a) red line represents the correlation/negative logarithm of p value of received information of nodes and their
degree centrality, while cyan line is the correlation between of received information and betweenness centrality. (b) Distribution of received
field per node along the dismantling trajectory is represented, and the value for each node is according to the color bar. The white area indicates
nodes with zero received information.

degree or betweenness, might have a surprisingly insignificant
effect on the flow dynamics. More specifically, the effective-
ness of attack strategies guided by such structural metrics can
be indistinguishable from that of random removal of nodes,
most evident when mid- to long-range propagation timescales
are considered and the network is not extremely sparse. This
finding stands as further evidence supporting the paradigm
shift happening in today’s network science, based on the
fact that structural information, on their own, can be unre-
liable. For instance, the limitation of iterative betweenness
in identifying the important nodes suggests that the trans-
port phenomena cannot be captured only in terms of shortest
paths, an approximation taken for granted in the literature.
Alternatively, we have shown that using statistical physics of
complex information dynamics, one can identify nodes whose
removal directly impacts the diversity of flow pathways in
the system as a whole and the system’s geometry induced
by the information diffusion, leading to a quick impairment
of the flow dynamics in a range of synthetic and a multitude
of empirical systems across scales, from the neural network of
C. elegans and human connectome to Chilean power grid and
European airlines.

Overall, apart from the practical aspects such as flow dis-
mantling and multiscale identification of central units, our

work provides insights into both applicability and limita-
tion of structural metrics in capturing complex collective
phenomena, such as information dynamics. In other words,
the functional robustness framework has been able to differ-
entiate two regimes: (i) where the role played by the network
is dominant and structural metrics can be reliably used as
fast and effective tools to proxy interactions and (ii) where
the structural measures are not sufficiently sophisticated to
capture the complexity arising from the coupling between
structure and dynamics. In (i) the system’s units are far apart
in the diffusion space, because at very small timescales the
flows are localized around their source and the dynamical
proximity of the nodes in the network, captured by the diffu-
sion distance, depends mostly on the local connectivity. While
in regime (ii) the intermediate timescales of the dynamics
allow the integration of local and global connectivity infor-
mation, so that the geometry is able to reveal not only the
fine details of the topology but also the interplay between the
global structure and the flow pathways between pairs of nodes.
The link between geometry, flow dynamics, and functional
robustness is the spectrum of the Laplacian matrix: Its eigen-
values quantify the diversity of flow pathways in the system
but also the characteristic times of a random walk among its
units and the shape of the system in its diffusion space.

013084-12



DISMANTLING THE INFORMATION FLOW IN COMPLEX … PHYSICAL REVIEW RESEARCH 5, 013084 (2023)

FIG. 10. Microscopic effect of attacks on the Chilean power grid. For Chilean power grid and along the dismantling trajectory determined
by the entanglement centrality, (a) red line represents the correlation/negative logarithm of p value of received information of nodes and their
degree centrality, while cyan line is the correlation between of received information and betweenness centrality. (b) Distribution of received
field per node along the dismantling trajectory is represented, and the value for each node is according to the color bar. The white area indicates
nodes with zero received information.

Our work introduces a novel functional perspective into
the robustness analysis of interconnected systems, indicates
the failure of structural metrics in identifying the nodes
central for information dynamics and highlights the power
of methods grounded in statistical physics and geometry in
unraveling the complex interplay between the structure and
dynamics.

APPENDIX A: DIFFUSION GEOMETRY

1. On the diffusion distance.

We start by showing that the Laplacian matrix Ĥ (Ŵ ) =
K̂ (Ŵ ) − Ŵ is a Q − matrix on the set of nodes V of the
network G = (V, E ) or, more precisely, that −Ĥ (Ŵ ) does. In
the jargon of probability theory, a Q − matrix [32] on V is a
matrix Q = (qi j : i, j ∈ V ) such that

(i) 0 � −qii < +∞ for all i,
(ii) qi j � 0 for all i 	= j,
(iii)

∑
j∈V qi j = 0 for all i.

The check is immediate. This is equivalent [32, Theorem
2.1.2] to proving that e−τ Ĥ (Ŵ ) is a stochastic matrix for all
τ � 0, i.e., it has nonnegative elements and its rows sum up to
1. From a Q matrix Q it is always possible to obtain its jump

matrix � = (πi j : i, j ∈ V ) setting

πi j =
{ qi j

−qii
j 	= i & qii 	= 0,

0 j 	= i & qii = 0,

πii =
{

0 qii 	= 0,

1 qii = 0.

Observe that the jump matrix corresponding to our Ĥ (Ŵ )
is K̂ (Ŵ )−1Ŵ —qi j = Wi j and −qii = k1—with ones on the
diagonal for isolated nodes, if any. Finally, by Ref. [32, The-
orem 2.8.2] we have that the master equation (1) defines
a continuous-time Markov chain with generator −Ĥ (Ŵ ) on
V , i.e., a right-continuous process with (independent) expo-
nential holding times of rates ki. In network terms this is
an edge-centric continuous-time random walk with rate ki

of leaving the ith node [15] and 〈x j |e−τ Ĥ (Ŵ )|xi〉 =: pτ (i, j)
represents the transition probability from i to j in time τ or
equivalently, for fixed initial node i, e−τ Ĥ (Ŵ )|xi〉 = pτ (i, ·) =:
pτ (i) is a bump function on i with increasing support as
τ grows [47]. The diffusion distance (3) can then be seen
as a distance between bump functions and, in this case, it
is useful to write its eigenmode expansion using the (in-
verse) graph Fourier transform [15,48]. The Laplacian matrix
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FIG. 11. Microscopic effect of attacks on the EU airlines network. For EU airlines and along the dismantling trajectory determined by the
entanglement centrality, (a) red line represents the correlation/negative logarithm of p value of received information of nodes and their degree
centrality, while cyan line is the correlation between of received information and betweenness centrality. (b) Distribution of received field per
node along the dismantling trajectory is represented, and the value for each node is according to the color bar. The white area indicates nodes
with zero received information.

Ĥ (Ŵ ) is real and symmetric, for undirected networks, it
can then be diagonalized Ĥ (Ŵ ) = Q̂	Q̂∗, where Q̂ = Q̂(Ŵ )
is an N × N matrix of the orthonormalized eigenvectors
|ϕ�〉, � = 0, 1, ...N − 1 of Ĥ (Ŵ ) such that 〈ϕ�|ϕ�′ 〉 = δ��′ ,
i.e., Q̂Q̂∗ = Q̂∗Q̂ = Î , and 	̂ = 	̂(Ŵ ) is the diagonal ma-
trix of its eigenvalues λ�, � = 0, 1, ...N − 1. Consequently,
e−τ Ĥ (Ŵ ) = Q̂e−τ	̂Q̂∗ and

pτ (i, k) =
N−1∑
�=0

a�(i; τ )ϕ�(k),

with

{
a�(i; τ ) = e−τλ�a�(i; 0),
a�(i; 0) = 〈xi|ϕ�〉 =: ϕ�(i).

Equation (3) can then be rewritten as

D2
τ (i, j) = ‖pτ (i) − pτ ( j)‖2 =

∑
�

[a�(i; τ ) − a�( j; τ )]2

=
∑

�

e−2τλ� [ϕ�(i) − ϕ�( j)]2. (A1)

Finally, observe that if network G is undirected and fully
connected then the eigenvalues of Ĥ (Ŵ ) are λ0 = 0 and
λ� = N for all � = 1, . . . , N − 1. ϕ0 is constant and can

be removed from the summation (A1) hence D2
τ (i, j) =

e−2Nτ
∑

��1[ϕ�(i) − ϕ�( j)]2, so that distances are determined
uniquely by the eigenspace of λ = N . Equivalently, this can
be seen using the fact that in this case Ĥ (Ŵ ) = (N − 1)I −
Ŵ and, since IŴ = Ŵ I , e−τ Ĥ (Ŵ ) = e−τ (N−1)eτŴ , where eτŴ

contains the information about the number of paths of increas-
ing length between pairs of nodes, which does not depend on
its extremes for fully connected networks [49].

2. Average-squared diffusion distance (ASDD).

Eq. (1) maps nodes in a network to a cloud of points
in the diffusion space, whose dispersion can be quantified
using a generalized scalar measure of variance as the trace
of their (sample) covariance matrix. We here show that this is
equivalent to computing the ASDD.

Let us fix τ > 0, so we can drop it from the notation, and
call pi j = 〈x j |e−τ Ĥ (Ŵ )|xi〉. Equation (4) becomes

D2(τ,Ŵ ) = 1

2N2

N∑
i, j=1

N∑
k=1

(pik − p jk )2,
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while the trace of the sample covariance matrix C correspond-
ing to the N vectors {e−τ Ĥ (Ŵ )|xi〉, i = 1, . . . , N} is

Tr(C) = 1

N

N∑
i=1

N∑
k=1

(pik − p̄i )
2.

The equivalence can be proved using a known property of
the variance—also known as variance deformation formula
[50]—but it is also easily proved “by hand” in case par-
ticular case of undirected networks, where the Laplacian
matrix Ĥ (Ŵ ) is symmetric. First, observe that for all i p̄i =
1
N

∑N
k=1 pik = 1

N =: p̄. Then,

Tr(C) = 1

N

N∑
i=1

(
N∑

k=1

p2
ik − 2 p̄

N∑
k=1

pik +
N∑

k=1

p̄2

)2

= 1

N

(
N∑

i=1

m2
i − 1

)
,

where we called m2
i = ∑N

k=1 p2
ik the raw second moment of

the ith random vector. Similarly,

D2(τ,Ŵ ) = 1

2N2

N∑
i, j=1

N∑
k=1

p2
ik − 2

N∑
k=1

pik p jk +
N∑

k=1

p2
jk

= 1

2N2

N∑
i, j=1

[
m2

i − 2(P2)i j + m2
j

]

= 1

2N2

(
2N

N∑
i=1

m2
i − 2

N∑
i=1

N∑
j=1

(P2)i j

)

= 1

N

(
N∑

i=1

m2
i − 1

)
,

where we used the undirected network assumption and the
semigroup property of e−τ Ĥ to write p jk = pk j yielding∑N

k=1 pik p jk = (P2)i j and then
∑

j (P
2)i j = 1.

Finally, two minor observations: first, here we use the bi-
ased sample covariance, but its unbiased version, with factor

1
N−1 instead of 1

N , can also be used provided that the sum
of squared distances is also divided by 1

N (N−1) instead of 1
N2 ,

i.e., the zeros on the diagonal are not counted in in the sum.
Second, the factor 1

2 in the ASDD definition can also be seen
as a re-scaling into [0, 1] of the diffusion distances, which are
indeed bounded in [0,

√
2] [31].

APPENDIX B: NETWORK ENTANGLEMENT
CENTRALITY

It is possible to describe the macroscopic state of complex
interconnected systems, in terms of physical quantities such as
entropy [34] and free energy, in a multiresolution approach de-
termined by the propagation timescale τ of signals, introduced
in the text. The density matrix derived from the formalism [20]
reads

ρ̂(τ,Ŵ ) = Û (τ,Ŵ )

Tr(Û (τ,Ŵ ))
, (B1)

FIG. 12. Flow overlap. Propagation of flow from two nodes,
represented in red and yellow, as arrows emanating from them. The
overlap region is colored in gray—i.e., the nodes within the gray
zone receive information from both initiators. The overlap between
the flow emanating from any pair of nodes, i and j, can be calcu-
lated using cosine similarity between the corresponding propagation
vectors Û (τ,Ŵ )|xi〉 and Û (τ,Ŵ )|x j〉. Conversely, average cosine
dissimilarity of propagation vectors indicates the diversity of flow
pathways in the system, which is proportional to the system’s von
Neumann entropy [20].

and the corresponding von Neumann entropy is given by

S (τ,Ŵ ) = −Tr(ρ̂(τ,Ŵ ) log2 ρ̂(τ,Ŵ )). (B2)

Interestingly, the von Neumann entropy measures the mixed-
ness of the ensemble of stream operators directing the
information propagation. In other words, it provides a proxy
for diversity of flow pathways in the system, characterizing
the functional diversity of nodes in sending or receiving in-
formation [20]. More specifically, entropy is shown to be
inversely proportional to the average overlap of the flow ema-
nating from every pair of nodes i and j, given by Û (τ,Ŵ )|xi〉
and Û (τ,Ŵ )|x j〉 (see Fig. 12). For instance, in a totally dis-
mantled network of N isolated nodes and no connections, the
flow vectors initiated by nodes have zero overlap, leading to
highest possible entropy log2 N [34] and largest possible pair-
wise diffusion distances Dτ (i, j) = √

2 for all i, j, and τ and,
consequently, to the maximum spreading of the nodes in the
diffusion space, i.e., D2(τ, (̂W )) = 1. Conversely, the prop-
agation vectors have the highest possible overlap in a fully
connected network. Also in this case the diffusion distance is
constant for all pairs of nodes and is uniquely determined by
τ and by the number of nodes (see the Appendix A).

Assume the initial entropy a network, before damage,
is S (0)(τ,Ŵ ). At the final stage, where all the nodes are
detached—i.e., all the links connecting them are removed—
and the full structural and functional dismantling is achieved,
it follows S ( f )(τ,Ŵ ) = log2 N . If we want the fastest tran-
sition from S (0)(τ,Ŵ ) to S ( f )(τ,Ŵ ), in what order should
we rank and, respectively, disrupt the units? The simplest
answer to this question is that at each step, we remove the
node whose removal has the maximum increase in the von
Neumann entropy. For instance, let S (m−1)(τ,Ŵ ) be the en-
tropy of the network before the removal of mth node and
S (m)

i (τ,Ŵ ) be the entropy of the network if one removes
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FIG. 13. Detachment process. Node-network entanglement is
defined in terms of the entropy change due to detachment of one
node. Network von Neumann entropy provides a proxy for the di-
versity of flow pathways [20]: Therefore, the node having highest
entanglement with the network is important, as its removal severely
affects information exchange. This makes entanglement a power-
ful measure to identify the nodes that are functionally critical for
information dynamics and to find attack strategies to functionally
dismantle networks.

the ith node at the mth step (see Fig. 13). The entanglement
[21] between the ith node and the network at that step is
defined as

ε
(m−1)
i (τ,Ŵ ) = S (m)

i (τ,Ŵ ) − S (m−1)(τ,Ŵ ), (B3)

that can be used as a measure quantifying the importance of
that node for diversity of flow pathways. At each step, we
identify the node with maximum entanglement by

max
i

[
ε

(m−1)
i (τ,Ŵ )

] = max
i

[
S (m)

i (τ,Ŵ )
]
. (B4)

Note that the second term in Eq. (B3) is independent
of the node to be removed and, therefore, it vanishes from

the maximization. Assuming that the ith node has the high-
est entanglement at the mth step, the entropy at mth step
reads S (m)(τ,Ŵ ) = S (m)

i (τ,Ŵ ). Note that the algorithm must
exclude the nodes that are already isolated, before perform-
ing the maximization, since the detachment process does not
make sense for them.

It is worth mentioning that the detachment process consid-
ered here (see Fig. 13) is slightly different from the original
definition [21], where the node was removed with its inci-
dent edges shaping an independent star network. In fact, the
previous definition has a nice property, used to prove that
the behavior of entanglement of a node at very small τ is
determined by its degree. However, it seems also more natural
to think that the detached node becomes isolated from the rest
of the network, as considered here.

Similarly, we calculate ARI and ASDD along the dis-
mantling trajectory determined by other centrality measures
used here: We identify the most important node, accord-
ing to the centrality measure being studied, and cut it
from the network. We calculate the new ARI and ASDD.
Then we repeat the procedure until the network is fully
dismantled.

APPENDIX C: DEFINITIONS

In this Appendix we collect some common expressions
used in the literature and in this work, with the relative (tenta-
tive) definitions and examples from different fields.

TABLE I. A list of definitions and examples related to structural and functional robustness is provided here.

Expression Definition and examples

Structure The arrangement of and relations between the components of complex systems,
often modeled in terms of networks where components are nodes and their
connections are links. Sometimes topological structure, or simply “the network
topology,” is used to indicate the arrangement of dyadic interactions between
units, in contrast with “weighted structure,” which also includes the intensity of
the interactions.

In physics: The connections between states of physical systems determining the
rates of transitions between them.

In biology: The network encoding connections between cells, organs, or species.
In chemistry: The the interrelations between chemical compounds in a chemical

reaction network.
In social sciences: The relationships between individuals in a social network.
In transportation systems: The network of transportation routes connecting

districts, urban areas, regions, countries, or continents.
Dynamical
process

Quantities or fields change with respect to time, according to rules imposed by
differential equations each known as a dynamical process.

In physics: The thermalization protocol describing the transitions between physical
states of a system.

In biology: The biochemical equation governing the spreading of chemicals or
electrical signals among cells, organs, or species.

In chemistry: The reaction-diffusion equations describing the behavior of the
population corresponding to a chemical reaction network.
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TABLE I. (Continued.)

Expression Definition and examples

In social sciences: The consensus dynamics between individuals in a social
network, or the dynamical equations describing the spread of pathogens or news
between them.

In transportation systems: The equation describing the flow of people or goods
through the network of transportation routes connecting districts, urban areas,
regions, countries, or continents.

Information
exchange

A general term to describe the effect of components of complex systems on each
other, often modeled in terms of the flow of a physical quantity between pairs of
nodes, governed by dynamical processes. Communication is here used as a
synonym.

In physics: The exchange of particles between two physical states, induced by a
thermalization protocol or external forces.

(1) In biology: The exchange of electrochemical signals between two cells, organs,
or species.

(2) In chemistry: The influence of two chemical compounds on each other, leading
to a change in their populations, in a chemical reaction network.

(3) In social sciences: The consensus dynamics between individuals in a social
network, or the dynamical equations how one individual infects the other with a
pathogen or informs the other about a news.

(4) In transportation systems: The exchange of people or goods between two
nodes, through the network of transportation routes connecting districts, urban
areas, regions, countries, or continents.

Information
flow

Emanation of a quantity or field, whose exchange between the components proxies
their communications, from a source, often considered to be one of the
components, into the system, through the links.

(1) In physics: The flow of particles from one physical state into others, induced by
a thermalization protocol or external forces.

(2) In biology: The flow of electrochemical signals from cells, organs, or species.
(3) In chemistry: The impact of a chemical compound on the populations of others,

in a chemical reaction network.
(4) In social sciences: The flow of pathogen or news from an individual to the rest.
(5) In transportation systems: The flow of people or goods from one of the nodes,

through the network of transportation routes connecting districts, urban areas,
regions, countries, or continents.

Impairment of
information
flow

When damage significantly lowers the exchange of the field, that proxies
communications, between the components across the system.

(1) In physics: When external perturbations lower the flow of particles from one
physical state into others, induced by a thermalization protocol or external forces.

(2) In biology: When damage lowers the flow of electrochemical signals from
cells, organs, or species.

(3) In chemistry: When external perturbations lowers the impact of a chemical
compound on the populations of others, in a chemical reaction network.

(4) In social sciences: When damage lowers the flow of pathogen or news from an
individual to the rest.

(5) In transportation systems: When damage lowers the flow of people or goods
from one of the nodes, through the network of transportation routes connecting
districts, urban areas, regions, countries, or continents.

Function System-specific tasks expected to be performed, that can involve a single
component or a group of components that exchange information with each other.

(1) In physics: The activity of a classical or quantum heat engine with certain
properties like power and efficiency.

(2) In biology: The physiological activity of a cell, organ, system, or body.
(3) In chemistry: The characteristic behavior of a chemical compound or groups of

chemicals linked in a chemical reaction network.
(4) In social sciences: The activity or behavior of an individual or a group of them

in a society.
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TABLE I. (Continued.)

Expression Definition and examples

(5) In transportation systems: Financial activities that depend on the flow of people
or goods from one of the nodes, through the network of transportation routes
connecting districts, urban areas, regions, countries, or continents.

Operation While function and operation are used interchangeably in the literature, the more
precise definition of operation is the method and mechanism by which a system
or a part of it performs its function.

Degradation
of function

When damage disturbs the components performing a function or impairs the flow
of information between groups of component, preventing them from performing
a function.

(1) In physics: Perturbed activity of a classical or quantum heat engine that reflects
in certain properties like power and efficiency.

(2) In biology: Significant perturbation of physiological activity of a cell, organ, or
body.

(3) In chemistry: Significant perturbation of the dynamics of a groups of chemicals
linked in a chemical reaction network.

(4) In social sciences: Significant disturbance in activity of an individual or a group
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urban areas, regions, countries, or continents.
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