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Emergence of quasiperiodic behavior in transport and hybridization
properties of clean lattice systems
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Quasiperiodic behavior is mostly known to occur in systems with enforced quasiperiodicity or randomness, in
either the lattice structure or the potential, as well as in periodically driven systems. Here, we present instead a
rarer setting where quasiperiodic behavior emerges in clean, nondriven lattice systems. We illustrate this through
two examples of experimental relevance, namely an infinite tight-binding chain with a gated segment, and a
hopping particle coupled to static Ising degrees of freedom. We show how the quasiperiodic behavior manifests
in the number of states that are localized by the geometry of the system, with corresponding effects on transport
and hybridization properties.
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I. INTRODUCTION

Some of the most striking discoveries in physics occur
when simple systems are found to exhibit unexpectedly com-
plex behavior. These are often prime examples of the beauty
and elegance of mathematical modeling that succeeds in de-
scribing the world around us. Examples include the chaotic
motion of the double pendulum [1,2] and the quantum Hall
effect of a 2D electron gas in a strong applied field [3].

Without claim of drawing a comparison in importance, we
present here a simple result that fits well in this category. In
one of its simplest forms, our finding shows that the number
of states localized [4] on a gated portion of an infinite tight-
binding chain forms a quasiperiodic sequence in the number
of gated sites. Equivalently, the number of resonance peaks
in the conduction along the chain also forms a quasiperiodic
sequence. This happens for both negative and positive gate
potential, within the bounds of the tight-binding band. We
provide both an exact solution to the problem as well as a
simple, elegant, and intuitive (albeit only effective) derivation
of the same solution.

Our results are of direct relevance to several experimen-
tal settings—thinking for example about cold atoms [5,6],
trapped ions [7,8], quantum dot arrays [9], superconducting
cubits [10], and other quantum simulators [11]—and can be
readily verified in a laboratory. Moreover, in addition to this
simplest formulation of the problem, we show that a similar
phenomenology is expected to play a role in other settings,
for instance when particles hopping on a lattice are coupled to
underlying spin degrees of freedom, as in the Falicov-Kimball
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model [12] and in systems that exhibit disorder-free localiza-
tion [13].

Quasiperiodic systems have received significant attention
of late (see for instance Refs. [14–28]). In most cases how-
ever the quasiperiodicity is built into the system, e.g., via
quasiperiodic modulation of on-site potentials and hopping
amplitudes, or induced by incommensurate periodic driving;
then, properties deriving from it are studied. Examples where
quasiperiodicity is not seeded but rather emerges from peri-
odic constituents are rare (most notably this was uncovered
to result from the interplay of lattice filling fractions and
interactions in Refs. [29,30]; however, see also Ref. [31] for an
example of a quasicrystalline potential emerging from collec-
tive light scattering). In our setting, the quasiperiodic behavior
emerges in a clean system made of nondriven periodic
components—something that does not happen often in nature.
We envision that the simple mechanism discussed in this work
is likely to operate in interesting ways in other condensed
matter systems, and possibly in higher dimensions as well.

II. GATED CHAIN

We study a tight-binding chain of lattice spacing a = 1 and
hopping amplitude t = 1, with a segment of length L gated at
potential, i.e., on-site energy, V0. The rest of the system (i.e.,
the left and right leads) is kept at the reference potential V =
0. The Hamiltonian of the system is given by

H = −t
∑

i

[c†
i+1ci + H.c.] +

∑
i

Vic
†
i ci, (1)

where Vi is finite on the gated segment and vanishes on the
leads. The system is illustrated in Fig. 1(a).

Due to the mismatch in on-site potential between the gated
segment and the leads, some states localize on the gated seg-
ment, while other states are extended over the whole system.
Our goal is to investigate the nature of these localized states,
and more precisely how their number changes with the system
parameters L and V0. As we detail below, the number of
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FIG. 1. (a) Illustration of the gated chain. The solid black dots
illustrate the infinite leads, at potential V = 0. The solid pink dots il-
lustrate the gated segment of length L at potential V0, here for L = 5.
(b) Number of states localized in the gated region Nloc as a function of
its length L. We subtracted the linear slope (1 − α)L to emphasize the
quasiperiodic nature of the fluctuations following from sampling at
integer L. Numerically obtained data from conductance simulations
(black dots) and IPR (blue squares) overlap and agree perfectly with
the analytical prediction in Eq. (4) (black line).

states Wannier-Stark-localized on the gated segment forms a
quasiperiodic sequence as a function of the discrete length L
of the segment; see Fig. 1(b).

By choosing an appropriate ansatz for the wave function,
we look for eigenstates of the Schrödinger equation that are
exponentially decaying on the leads (i.e., localized on the
gated segment); see Appendix A for details and Appendix F
for examples of wave function profiles. We find that the num-
ber of such states corresponds to the number of solutions of
either of the following equations:

−earccosh[V0/2−cos k] = cos
[
k − k L+1

2

]
cos

[−k L+1
2

] , (2)

−earccosh[V0/2−cos k] = sin
[
k − k L+1

2

]
sin

[−k L+1
2

] . (3)

The task can be conveniently recast into counting the num-
ber of qn = nπ/L with n ∈ {1, . . . , L} larger than απ ≡
arccos (V0

2 − 1), which is the point in the Brillouin zone where
the dispersion of the isolated infinite gated segment intersects
the band edge of the isolated leads; see Fig. 2(a). Knowing qn

and α, one can show that the number of states localized on the
gated segment is given by

Nloc = L − floor(αL), (4)

which is a linearly growing function of L with slope 1 − α,
and it exhibits quasiperiodic fluctuations whenever α is irra-
tional.

We note in passing that the same result can be obtained
using Levinson’s theorem [32], appropriately modified for a
lattice model, from the phase difference between the states at
the bottom and top of the band (see Appendix B).

The quasiperiodicity can be distinctly seen in Fig. 1(b),
where we also verify the perfect agreement between the an-
alytical result, Eq. (4), and the numerical calculation of Nloc

using both the inverse participation ratio (IPR) and transport
measurements. Albeit simple, we find this result surprising
since the leads and the gated segment are periodic, and there
is no additional quasiperiodicity or randomness present in the
system.

A. Simple counting argument

It is tempting to interpret the above qn as the wave vector of
a tight-binding chain of length L with open boundary condi-
tions. The argument appears then to be counting the number of
discrete eigenenergies of the gated segment, whose dispersion
in the limit of infinite length is Egated(k) = V0 − 2 cos k, that
fall outside the continuous band of the leads, of dispersion
Eleads(k) = −2 cos k.

The two dispersions intersect at k = ±απ , as illustrated
in Fig. 2(a), and one can see that the discrete energies of
the gated segment fall outside the band of the leads if qn >

απ . Recalling that n = 1, 2, . . . , L, one can straightforwardly

FIG. 2. (a) Dispersion of the infinite leads (black solid line) and of the gated segment in the L → ∞ limit (pink dashed line). The two
dispersions overlap for k ∈ [−απ, απ ]. We also show the energies of an isolated gated segment with L = 9 plotted as a function of qn = πn/L;
n = 1, 2, . . . , L (pink solid dots). Counting the number of discretized energies falling outside of the bandwidth of the leads gives the number
of states localized on the gated segment, which in this case is 4 states. (b) IPR for a gated segment of length L = 50 with V0 = 0.33 (left) and
V0 = 1.45 (right), comparing two different lead sizes, Lleads = 5 × 103 and Lleads = 104. States with E > 2 (highlighted by a green rectangle)
are localized inside the gated segment and their IPR is independent of the lead size. (c) Conductance through the whole system as a function
of energy of the incident particle. Here we used L = 9 and V0 = 1.45. We remind that potentials and energies are expressed in units of the
hopping amplitude t = 1.
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count such states and obtain L − floor(αL) for the number of
states localized on the gated segment, which coincides with
the exact solution, Eq. (4).

This is however only an intuitive, and somewhat incorrect,
picture which happens coincidentally to give the correct an-
swer. In the exact calculation, the qn’s are simply a tool to
count the number of solutions and have no direct physical
interpretation.

B. Probing localized states

One way to probe the localized states is by computing the
IPR of the eigenstates of the Hamiltonian (1),

IPR(En) =
∑

j |ψ j (En)|4∑
j |ψ j (En)|2 . (5)

The IPR is known to scale as (i) O(1/Ltot ) for states extended
over the whole system of length Ltot = 2Lleads + L, where
Lleads is the number of sites in a single lead; (ii) O(1/(2Lleads))
for states localized on the leads (when one allows for a small
matrix element due to tunneling across the gated segment);
and (iii) O(1/L) for states localized only on the gated seg-
ment. We use exact diagonalization and compare the results
for two different sizes of leads, 5 × 103 and 104 sites, and for
different gate potentials. The results for a gated segment with
L = 50 sites are shown in Fig. 2(b), for V0 = 0.33 and V0 =
1.45 (recall that we work in units where t = 1). We see that all
the states with energy E > 2 have an IPR that is independent
of the size of the leads, meaning that these states are localized
on the gated segment. The aforementioned states cannot hy-
bridize with the states belonging to the leads as their energy
falls outside their bandwidth. On the other hand, states falling
within the bandwidth of the leads hybridize and delocalize.

The steplike behavior seen in Fig. 2(b) is a numerical arti-
fact of the diagonalization algorithm. When the energy of the
eigenstates is smaller than −2 + V0, the particle cannot prop-
agate across the barrier; however, a small tunneling amplitude
exists for finite values of L such that the eigenstates found
by diagonalization are even and odd superpositions of the
states on the left and on the right lead, and the IPR is approx-
imately 1/(2Lleads) [which in the figure is indistinguishable
from 1/(2Lleads + L), the IPR of delocalized states]. As we
continue to lower the energy of the eigenstates however, the
tunneling amplitude is correspondingly suppressed; when it
falls below numerical accuracy, the diagonalization routine is
no longer able to find even and odd superpositions of states on
the left and on the right lead, but rather sees the left and right
lead states as eigenstates of the system. This results in an IPR
∼1/Lleads and in the step increase observed when we consider
the lowest energy eigenstates.

Another way to directly probe the aforementioned local-
ized states is via energy-dependent transport, i.e., via the
conductance

G(E ) = e2

h
T (E )T ∗(E ), (6)

where e is the charge of the particle, E is its incident energy,
and T is the transmission coefficient. The above conduc-
tance is observed to have an oscillatory behavior in energy,
with maxima reaching the value e2/h, and the distance be-

FIG. 3. (a) Left: Illustration of the FM segment in an AFM chain.
Black points and arrows illustrate the infinite AFM leads and pink
ones illustrate the FM segment of length L, here for L = 3. Right:
The AFM and FM dispersions for W = 0.5. The FM band overlaps
with the lower AFM band in the region k ∈ [−γπ, γπ ] (for W � 1)
and with the upper AFM band in the region k ∈ [−βπ,−π/2] and
k ∈ [π/2, βπ ]. (b) Number of states localized in the gated region
as a function of its length for W = 0.1. We subtracted the linear
slope (1 − β + 1/2 − γ )L to emphasize the quasiperiodic nature of
the fluctuations following from sampling at integer L. We observe
a perfect agreement between numerical data obtained from conduc-
tance (black dots), IPR (blue squares), and the analytical prediction
in Eq. (9).

tween them determined by the length L (see Appendix D). In
Fig. 2(c) we show the numerical result from the simulation
of a system consisting of two identical and infinite leads and
a gated segment of L = 9 sites (see Appendix C for a plot
of the conductance as a function of V0 for fixed L). The
peaks in conductance occur once E is in resonance with the
energies of the gated segment that hybridize with the leads,
i.e., the energies that lie within the bandwidth of the leads. By
counting the number of peaks Npeaks, whose maxima reach the
value e2/h, we can extract the number of states that localize
on the gated segment as Nloc = L − Npeaks. The result for the
gated chain discussed before is shown in Fig. 1(b). We observe
perfect agreement with Nloc obtained by IPR, as well as with
the analytical prediction (4). Interestingly, a simple analytical
calculation of conductance which assumes that the leads do
not affect the dispersion of the gated segment gives the same
expression for Nloc as in Eq. (4); see Appendix D.

III. FERROMAGNETIC SEGMENT IN AN
ANTIFERROMAGNETIC CHAIN

Similar quasiperiodic behavior occurs also in related sys-
tems of relevance to other experimental settings. Consider for
instance the case of an Ising chain where + and − correspond
to an on-site energy ±W for a tight-binding particle along
the same chain, with hopping amplitude t = 1 (where without
loss of generality we set W > 0). Specifically, take an infinite
antiferromagnetic (AFM) chain with a ferromagnetic (FM)
insertion + + . . . + of length L [see Fig. 3(a) for a precise
illustration of how we define the inserted FM segment].
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The dispersion of the AFM leads is given by

EAFM(k) = ±
√

W 2 + 2(1 + cos k), (7)

which exhibits a gap near zero energy, in contrast with the
case considered earlier. The dispersion of the FM segment is
instead given by the usual relation

EFM(k) = W − 2 cos k. (8)

Both dispersions are illustrated in Fig. 3(a). Note that the FM
segment overlaps with both bands of the leads for W � 1
and only with the upper band for W > 1. The FM band over-
laps with the lower AFM band for k ∈ [−γπ, γπ ] (for W �
1), where γπ ≡ arccos(W ), and with the upper AFM band
for k ∈ {[−βπ, π/2], [π/2, βπ ]} with βπ ≡ arccos[ 1

2 (W −√
W 2 + 4)] [the values of β and γ are visually represented in

the right panel of Fig. 3(a) for added clarity].
All states falling outside of the AFM bands correspond to

states localized on the FM domain, falling off exponentially
when moving into the AFM leads (see Appendix F for exam-
ples of wave function profiles). Using a corresponding ansatz
for the lattice wave function, as we did for the gated segment
earlier, one can explicitly find the localized eigenstates of
the system (see Appendix E) by solving equations similar
to Eqs. (2) and (3). As shown in Appendix E, the number
of states localized on the FM segment with energies above
the upper AFM band can be found by counting the number
of qn = nπ/L with n ∈ {1, . . . , L} larger than βπ , i.e., L −
floor(βL). Similarly, the number of states localized on the FM
segment with energies in the gap of the AFM dispersion can
be found by finding the number of q∞

n = nπ/(L + 2) < π/2
and if W � 1 then subtracting the number of qn = nπ/L �
γπ . This leads to ceil(L/2) − floor(γ L) localized states in
the gap for W � 1 and ceil(L/2) for W > 1. The total number
of states localized on the FM domain is thus given by (Ap-
pendix E) [33]

NFM
loc =

{
L − floor(βL) + ceil(L/2) − floor(γ L), W � 1,

L − floor(βL) + ceil(L/2), W > 1.

(9)

To confirm the above formula, we numerically extract the
number of states localized on the FM domain, NFM

loc , using both
IPR and conductance. The results for NFM

loc as a function of size
of the FM domain L are shown in Fig. 3(b), where we observe
perfect agreement with the analytical prediction, Eq. (9).

As an aside, we note that it is possible to numerically
compute the number of localized states on the FM domain
more efficiently by counting the number of sign changes in the
Sturm sequence obtained by relating the subdeterminants of
the Hamiltonian [34]. This enables one to treat larger system
sizes at a relatively low computational cost compared to full
diagonalization.

IV. CONCLUSIONS

In this paper, we demonstrated how quasiperiodic behavior
can emerge in clean periodic systems without driving, borne
out of a mechanism similar to the one that gives rise to
Wannier-Stark localization [35–37]. For instance, we showed
that the number of localized states on a gated segment of a

tight-binding chain (equivalently, the number of peaks in the
conductivity along the chain) is a quasiperiodic function of
the length of the segment. A similar behavior arises when
the tight-binding particle is instead subject to on-site coupling
to static Ising degrees of freedom, which form an antiferro-
magnetic chain with a ferromagnetic segment of finite length
inserted into it. We provide both an exact solution as well
as an intuitive effective description of the phenomenon, and
we discuss how it is directly relevant to various settings, from
gated quantum dot arrays to systems described by the Falicov-
Kimball model. Similar behavior can be expected in general if
a finite segment is inserted into spatially translationally invari-
ant leads. Quasiperiodicity should arise when the dispersion
of the inserted segment intersects the band edge of the leads
at some k = απ , with α irrational.

(We note in passing that when both gating and coupling to
an underlying spin pattern are present, additional features may
appear in the form of states localized at the boundaries of the
segment.)

The mechanism discussed in our work is not inherently
limited to 1D noninteracting systems and the experimental
platforms mentioned in the introduction. Similar mechanisms
are expected to operate for example in strongly interacting
systems, e.g., quantum wires described by Luttinger liquid
theory, that are coupled to leads of finite bandwidth [38–41].
They should also be relevant to two- and higher-dimensional
gated systems. One can trivially see it if one uses a separable
potential: V (x, y) = V0[�(x) + �(y)], where � is a function
that takes the value 1 on a segment of length L and vanishes
elsewhere in the system. This potential results in an infinite
cross pattern in 2D (of potential V0), with a raised square at
its core (of potential 2V0 and size L × L). The exact analytical
solution follows directly from the 1D case, and we verified
numerically that the agreement is excellent already for L and
Lleads of the order of a few tens of sites. The case of a simple
square potential, where V = V0 only on a region of size L × L
and V = 0 elsewhere, is less straightforward and attempting
an analytical solution is beyond the scope of the present work.
However, one would expect—and indeed numerical simula-
tions suggest—that the quasiperiodic behavior of the number
of localized states survives in that case too; the numerical
results are unfortunately too limited in accessible system sizes
to be conclusive on their own.

On a more speculative note, one may wonder what hap-
pens when several FM insertions of different lengths are
present in the AFM Ising chain that determines the on-site
potential in the Falicov-Kimball-inspired model presented in
the main text. Based on our results, one would expect the
system to exhibit a quasiperiodically distributed number of
quasilocalized states that weakly interact with one another via
the exponentially decaying tails of their wave functions. The
effects of such states on transport as well as on the many-body
properties of the system are interesting directions for future
work.
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APPENDIX A: ANALYTICAL DERIVATION OF
Nloc (DIRECT CALCULATION)

We study an infinite tight-binding chain with constant hop-
ping amplitude t = 1 and on-site potential

Vn =
⎧⎨
⎩

0, n � 0,

V0, 1 � n � L,

0, n � L + 1,

(A1)

where n labels the sites and goes from −∞ to ∞.
By solving the Schrödinger equation analytically, we de-

rive an expression for the number of states localized on the
gated segment. There are two bulk equations, one for the leads
and one for the gated segment, given by

−ψn−1 − ψn+1 = Eψn, (A2)

−ψn−1 + V0ψn − ψn+1 = Eψn. (A3)

Using the ansatz ψn = Aeikn separately for the leads and the
gated segment, we obtain the dispersions

Egated(k) = V0 − 2 cos k,

Eleads(k) = −2 cos k.
(A4)

Being interested in studying the states which localize on
the gated segment and decay exponentially into the leads, we
construct the following ansatz,

ψn =

⎧⎪⎪⎨
⎪⎪⎩

A e−(p+iπ )(L+1)/2e(p+iπ )n, n � 0,

B cos
sin [kn − k(L + 1)/2], 1 � n � L,

±A e(p+iπ )(L+1)/2e−(p+iπ )n, n � L + 1,

(A5)

where we have taken advantage of the fact that the potential
is symmetric about the middle of the gated region, meaning
that the eigenstates must be symmetric or antisymmetric about
(L + 1)/2. Note that (L + 1)/2 is not restricted to integer val-
ues and the following derivation therefore holds irrespective
of L being even or odd. Note also that there are only two
possible choices for the oscillatory phase ϕ of the wave func-
tion in the leads that give real energies: 0 and π . In our case,
all the possible localized states are captured by ϕ = π and
we will thus only consider this case here (ϕ = 0 would only
give E < −2). Having explicitly accounted for the oscillating
part of the wave function in the leads, we consider only real
p > 0. The state in Eq. (A5) has two unknowns: k and the
relation between A and B (p is given by requiring Eleads(p) =
2 cosh p = Egated(k); namely, p(k) = arccosh[V0/2 − cos k]).
To find these unknowns, we have to impose the boundary
equations which couple the leads and the gated segment.
These are in general four equations (two equations for each
boundary), but since we have already imposed the exchange
symmetry of the wave function, we only need to consider

FIG. 4. The pink lines illustrate LHS(k) for different V0. The blue
lines represent RHS(k) for L = 12. The black dashed line shows
C(k) = −1. The blue lines (RHS) cross this line for qn = π/Ln. The
pink lines touch C(k) for απ .

the equations for one of the boundaries. The boundary equa-
tions for the left boundary read

−ψ−1 − ψ1 = Eψ0, (A6)

−ψ0 + V0ψ1 − ψ2 = Eψ1. (A7)

Inserting the ansatz Eq. (A5) into Eqs. (A6) and (A7), we
arrive at the following equation for k:

−ep(k) =
cos
sin

[
k − k L+1

2

]
cos
sin

[−k L+1
2

] , (A8)

with p(k) = arccosh[V0/2 − cos k].
This equation in general has several discrete solutions ki,

and each ki corresponds to a state localized on the gated
segment as long as p(ki ) > 0. Finding an explicit expression
for the solutions ki is difficult, but we can count the number of
solutions by considering the behavior of the functions on the
two sides of the equation.

The left-hand side

LHS(k) = −earccosh[V0/2−cos k] (A9)

is a function starting at LHS(k) = −1, for k =
arccos (V0/2 − 1) ≡ απ , and decreasing monotonically
as k → π ; see Fig. 4. For convenience, we define the starting
point of LHS as a constant function

C(k) = −1. (A10)

The right-hand side (of which we have one for the symmet-
ric eigenstates and another for the antisymmetric eigenstates)

RHS(k) =
cos
sin

[
k − k L+1

2

]
cos
sin

[−k L+1
2

] (A11)

is a function with derivative RHS′(k) � 0 for k � 0 [and
RHS′(k) = 0 only for k = 0, π ].
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The functions LHS(k) and RHS(k) are illustrated in Fig. 4,
where we plot RHS(k), which is independent of V0, for L =
12, together with LHS(k) for a range of different values of V0.

To find an analytical expression for the number of solutions
ki for an arbitrary length L of the gated segment, let us start
from the limit V0 = 0 and increase V0 continuously to see how
the number of solutions increases. For V0 = 0 there are no so-
lutions [α = 1 and k = π = απ solves the equation, but this
solution is delocalized as p(απ ) = 0 with Egated(απ ) = 2].
As one then lets V0 > 0, one immediately finds an allowed
solution for the RHS line crossing C(k) at π , but for a ki

slightly smaller than π (ki decreases continuously from π as
V0 increases, approaching the divergence of the corresponding
RHS line; see Fig. 4). We then have only one solution until V0

has increased enough for the next RHS line to fulfill

C(απ ) = RHS(απ ). (A12)

In fact we first get a new allowed solution when V0 is infinitesi-
mally larger than the value solving Eq. (A12), as k = απ gives
p(απ ) = 0. Then, upon further increasing V0, the number of
solutions stays constant (but the values of ki change continu-
ously) until V0 is larger than the next value solving Eq. (A12).
Consequently, the number of solutions of Eq. (A8) is the
number of solutions C(q) = RHS(q) with q > απ . This fol-
lows from the fact that the derivative of RHS is positive, as
illustrated in Fig. 4. Here, we see that once an RHS line
crosses −1 for q > απ , it must necessarily also cross LHS(k)
for some k = ki smaller than q and it must give us an allowed
solution for this ki.

It can easily be shown that C(q) = RHS(q) for qn = πn/L
with n ∈ {−L, . . . ,−1, 1, . . . , L}. Counting the number of so-
lutions now reduces to counting how many qn = πn/L > απ .
This set of q’s is indeed not the values ki solving Eq. (A8), and
thus not the proper k’s characterizing the localized eigenstates
on the gated segment; they are simply the values which solve
C(q) = RHS(q). No physical significance should be given to
these q’s other than them being a tool to count the number
of solutions of Eq. (A8). Negative k gives the same physical
state as positive k and Eq. (A8) is symmetric for k → −k;
thus we only need to count the positive solutions. In summary,
we arrive at the condition for solutions of the Schrödinger
equation localized on the gated segment

n > αL. (A13)

As 0 < n � L, the number of such solutions is given by

Nloc = L − floor(αL). (A14)

APPENDIX B: ANALYTICAL DERIVATION OF Nloc

(LEVINSON’S THEOREM)

Levinson’s theorem relates the difference in the phase shift
of the extended states at zero and infinite momentum to the
number of bound states. We here show that Levinson’s theo-
rem, appropriately modified for our lattice model, can be used
to obtain the number of localized states, and it reproduces our
earlier result, Eq. (4). To show this, let us consider the same
model as in Appendix A, with finite size for convenience, and
focus on the states that are extended on the leads. We write

one ansatz for the antisymmetric states (ψA) and one for the
symmetric states (ψS):

ψA
n =

{
A sin

[
kn − k L+1

2 + δA(k)
]
, −Lleads < n � 0,

B sin
[
k′n − k′ L+1

2

]
, 1 � n � L,

(B1)

ψS
n =

{
A cos

[
kn − k L+1

2 + δS (k)
]
, −Lleads < n � 0,

B cos
[
k′n − k′ L+1

2

]
, 1 � n � L,

(B2)

where the form of the wave function on the right lead follows
by symmetry. δA(S)(k) is the scattering phase shift defined so
that it vanishes for V0 = 0. k′ is given by k′ = arccos(V0/2 +
cos k) and is imaginary for −2 � E < −2 + V0 and real for
−2 + V0 � E � 2.

The open boundary conditions of the chain are imposed
by assuming ψ (−Lleads) = ψ (Lleads) = 0. Consequently, the
allowed values of k are those where either of the functions

f A(k) =
(

−kLleads − k
L + 1

2
+ δA(k)

)
/π, (B3)

f S (k) =
(

−kLleads − k
L + 1

2
+ δS (k)

)
/π − 1

2
(B4)

take an integer value.
For sufficiently large Lleads, f A(S)(k) is a monotonically

decreasing function of k [we require ∂δ
∂k < Lleads + L+1

2 , which
includes the requirement that δ(k) is continuous]. If we con-
sider f A(S)(k) at the minimum and maximum momentum, i.e.,
k = 0 and k = π , we can then count the number of antisym-
metric (symmetric) extended states as

NA(S)
ext = ceil[ f A(S)(k = 0)] − floor[ f A(S)(k = π )] − 1. (B5)

We have here paid extra caution to states with momenta k = 0
and k = π , as necessary. Their wave functions are zero every-
where and should thus not be included in the counting. This
explains the choices of ceil and floor and why we subtract one
in NA(S)

ext .
By imposing the boundary equations between the leads and

the gated segment, we find that the phase shift is given by

cot

[
δA(k) − k

L + 1

2

]
= sin[k′ − k′(L + 1)/2]

sin[−k′(L + 1)/2] sin k
− cot k,

(B6)

tan

[
δS (k) − k

L + 1

2

]
= − cos[k′ − k′(L + 1)/2]

cos[−k′(L + 1)/2] sin k
+ cot k,

(B7)

where an appropriate integer number of π should be added to
the phase shift so that it is continuous.

For V0 = 0, the phase shift is necessarily zero and all states
are extended. We then have

NA
ext

∣∣
V0=0 = Lleads − 1 + ceil[(L + 1)/2],

NS
ext

∣∣
V0=0 = Lleads + ceil[L/2],

013083-6
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FIG. 5. The number of localized states found from Levinson’s
theorem compared to L − floor(αL) for V0 = 0.33.

giving 2Lleads + L states in total. As the total number of anti-
symmetric and symmetric states both should be independent
of V0, we find that the number of localized states is

NA
loc =

{
1
π

[δA(k = π ) − δA(k = 0)] + 1
2 , L even,

1
π

[δA(k = π ) − δA(k = 0)], L odd,
(B8)

NS
loc =

{
1
π

[δS (k = π ) − δS (k = 0)] + 1
2 , L even,

1
π

[δS (k = π ) − δS (k = 0)] + 1, L odd.
(B9)

The total number of localized states is Nloc = NA
loc + NS

loc.
Numerically solving for δ(k), we end up with the number of
localized states shown in Figs. 5 and 6, which is in perfect
agreement with Eq. (4).

FIG. 6. The number of localized states found from Levinson’s
theorem compared to L − floor(αL) for V0 = 1.45.

FIG. 7. Conductance as a function of V0 for L = 10, in the gated
chain model in Sec. II.

APPENDIX C: DEPENDENCE ON V0

Figure 7 shows the dependence of peaks in the conduc-
tance, from which the number of localized states can be
extracted, on V0. Notice that the behavior of the system de-
pends continuously on the gated voltage, and Nloc(V0) does not
show quasiperiodic behavior as a function of the gate voltage
V0.

APPENDIX D: ANALYTICAL CALCULATION OF THE
CONDUCTANCE

The conductance through a single-channel 1D system is
given by the Landauer formula

G(E ) = e2

h
T (E )T ∗(E ), (D1)

where E is the energy of the incident particle and T is the
transmission coefficient through the gated region. To obtain
the transmission coefficient, we first write the wave function
of the free particle in continuum in the left and right leads (L,
R) and in the gated region (M)

ψL(x) = eikx + Re−ikx, (D2)

ψM(x) = Aeik′x + Be−ik′x, (D3)

ψR(x) = T eikx, (D4)

where k and k′ are the momenta of the leads and the middle
region, respectively. Using the following boundary conditions,

ψL(0) = ψM(0), ψM(L) = ψR(L),

∂xψL(0) = ∂xψM(0), ∂xψM(L) = ∂xψR(L),
(D5)

we obtain the expression for the transmission coefficient

T =
[

1 −
(

1 + κ

1 − κ

)2
]

e−ikL

eik′L − (
1+κ
1−κ

)2
e−ik′L

, (D6)

013083-7
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where κ ≡ k/k′. The energy dependence is obtained by invert-
ing Eqs. (A4), which gives

k(E ) = arccos

(
−E

2

)
,

k′(E ) = arccos

(
V0 − E

2

)
,

κ (E ) = arccos
(−E

2

)
arccos

(V0−E
2

) .

(D7)

The energy-dependent conductance then follows,

G(E ) =
e2

h

[
1 − (

1+κ
1−κ

)2
]2

1 + (
1+κ
1−κ

)4 − 2
(

1+κ
1−κ

)2
cos

[
2 arccos

(V0−E
2

)
L
] .

(D8)

Note that G(E ) is an oscillatory function with maxima reach-
ing e2

h located at energies En that maximize the cosine term in
the denominator, namely when

arccos

(
V0 − En

2

)
= π

n

L
, (D9)

with n ∈ N. To count the total number of oscillations in the
conductance for a given length L, we first need to restrict the
energies En to an interval [−2, 2], which is the bandwidth
of the leads. The number of oscillations in conductance for
a fixed length L is

Npeaks(L) =
⌊

L

π
arccos

(
V0

2
− 1

)⌋
(D10)

= floor(αL), (D11)

with the same definition of α as in the main text and in
Appendix A.

APPENDIX E: ANALYTICAL DERIVATION OF NFM
loc

The second example we consider in the main text is an
infinite tight-binding chain with constant hopping amplitude
t = 1 and on-site potential

Vi =
⎧⎨
⎩

(−1)i+1W, i � 0,

+W, 1 � i � L,

(−1)i+L+1W, i � L + 1,

(E1)

where i labels the sites and goes from −∞ to ∞. This can
be viewed as a hopping particle interacting with classical
Ising spins living on the sites of the chain, arranged in an
infinite antiferromagnetic (AFM) pattern with a ferromagnetic
(FM) insertion of length L. [Notice that, for convenience, we
adopted a labeling convention for the potential in Eq. (E1)
such that L = 0 corresponds to an infinite AFM pattern.]

We analytically derive the expression for the number of
states localized on the FM segment by solving the Schrödinger
equation. In this case, the potential is symmetric about i =
(L + 2)/2. Thus, we only need to solve for i � (L + 2)/2 and
enforce a symmetric/antisymmetric wave function. Note that
(L + 2)/2 is not restricted to integer values and the following
derivation therefore holds irrespective of L being even or odd.

The AFM leads are divided into two sublattices. We there-
fore have three bulk equations: two for the leads and one for
the FM segment, given by

−ψ−
n−1 + (+W )ψ+

n − ψ−
n = Eψ+

n , (E2)

−ψ+
n + (−W )ψ−

n − ψ+
n+1 = Eψ−

n , (E3)

−ψFM
n−1 + (+W )ψFM

n − ψFM
n+1 = EψFM

n , (E4)

where ψ+ (ψ−) is the wave function on the sublattice of
potential +W (−W ) in the left AFM lead and ψFM is the wave
function in the FM segment. We have introduced a new index
n to label the unit cells, implying i = 2n − 1, 2n in the left
lead whereas i = n in the FM segment.

Using the ansatz ψ+
n = Aeikn for the leads, we get the

dispersion

EAFM(k) = ±
√

W 2 + 2(1 + cos k), (E5)

and using the ansatz ψFM
n = Aeikn for the FM segment, we get

the dispersion

EFM(k) = W − 2 cos k. (E6)

We are interested in finding the states which localize on
the FM segment and therefore decay exponentially into the
leads. To search for such solutions, we construct the following
ansatz,

ψ+
n = Ae−(p+iϕ)(L+2)/2e(p+iϕ)n, n � 0, (E7)

ψFM
n = B

cos

sin

[
kn − k

L + 2

2

]
, 1 � n � L + 1, (E8)

where the wave function on the right lead (n > L) follows
from symmetry considerations.

Inserting the ansatz into the bulk equations, we get

EAFM(p, ϕ) = ±
√

W 2 + 2[1 + cosh(p + iϕ)] (E9)

and

ψ−
n = − (1 + ep+iϕ )

EAFM(p, ϕ) + W
ψ+

n . (E10)

To find the allowed values for k in Eq. (E8), we need
to impose the boundary equations which couple the leads
and the FM segment (p is given by requiring EAFM(p, ϕ) =
EFM(k); namely, p(k) = arccosh[2 cos2 k − 2W cos k − 1]).
The boundary equations for the left boundary read

−ψ+
0 − W ψ−

0 − ψFM
1 = Eψ−

0 ,

−ψ−
0 + W ψFM

1 − ψFM
2 = EψFM

1 .
(E11)

Here, k and −k correspond to the same physical state, and
we will only consider k � 0. Note also that there are only
two possible choices for the oscillatory phase ϕ of the wave
function in the leads that give real energies: 0 and π . Here
we need to consider the two cases separately: An oscillatory
phase ϕ = 0 gives energies above the upper band, while an
oscillatory phase ϕ = π gives energies in the gap.

Let us first consider the states above the upper band, ϕ = 0.
Inserting the ansatz, Eqs. (E7) and (E8), into the boundary
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FIG. 8. The pink lines illustrate LHS0(k) for different values of
W . The blue lines represent RHS(k) for L = 12. The black dashed
line shows C(k). The blue lines (RHS) cross C(k) for qnπ/Ln. The
pink lines (LHS) touch C(k) for k = βπ .

equations Eq. (E11), we get the following equation for k:

2(cos k − W )
ep(k)

1 + ep(k)
=

cos
sin

[
k − k L+2

2

]
cos
sin

[−k L+2
2

] , (E12)

with p(k) = arccosh[2 cos2 k − 2W cos k − 1]. Again, we can
quite easily count the number of solutions by considering the
behavior of the functions on the two sides of the equation.

The left-hand side

LHS0(k) = 2(cos k − W )
earccosh[2 cos2 k−2W cos k−1]

1 + earccosh[2 cos2 k−2W cos k−1]
(E13)

is a function starting at LHS0(k) = cos k − W for k =
arccos [(−W − √

W 2 + 4)/2] ≡ βπ , which decreases mono-
tonically as k → π ; see Fig. 8. This is similar to what we had
for the gated segment, but now the value of LHS0(βπ ) varies
with W . It can be shown that the line C(k) giving the end point
of LHS for a certain W is given by

C(k) = 1

cos k
. (E14)

The right-hand side (of which we have one for the symmet-
ric eigenstates and another for the antisymmetric eigenstates)

RHS(k) =
cos
sin

[
k − k L+2

2

]
cos
sin

[−k L+2
2

] (E15)

is a function with derivative RHS′(k) � 0 for k � 0 [and
RHS′(k) = 0 only for k = 0, π ].

The functions LHS0(k) and RHS(k) are plotted in Fig. 8,
where we show RHS(k), which is independent of W , for L =
12, and LHS0(k) for a range of different values of W .

To find an analytical expression for the number of solutions
ki of Eq. (E12) for an arbitrary length L of the FM segment,
we need to find the solutions of

C(q) = RHS(q) (E16)

FIG. 9. The pink lines illustrate LHSπ (k) for different values of
W . The blue lines represent RHS(k) for L = 12. The black dashed
lines shows C(k) = 0 and k = π/2. The blue lines (RHS) cross C(k)
for qn = π/Ln. The pink lines (LHS) touch C(k) for γπ and diverge
to −∞ for k → π/2.

and count the number of solutions q which are larger than
βπ . It is straightforward to show that C(q) = RHS(q) for
qn = πn/L with n ∈ {ceil(L/2), . . . , L}.

Counting the number of solutions now reduces to counting
how many qn = πn/L > βπ . Note again that we only allow
solutions corresponding to real p(k) > 0, and k = βπ is thus
not an allowed solution. We thus end up with

N0
loc = L − floor(βL) (E17)

states localized on the FM segment with energies above the
upper AFM band.

To count the number of localized states with energies in the
gap we must set ϕ = π . LHS(k) then becomes

LHSπ (k) = −2(cos k − W )
earccosh[−2 cos2 k+2W cos k+1]

1 − earccosh[−2 cos2 k+2W cos k+1]
,

(E18)
while RHS(k) stays the same as in Eq. (E15). LHSπ (k)
starts at k = γπ ≡ arccosW with LHSπ (γπ ) = 0 [k = 0
for W > 1 with LHSπ (0) = −2(1 − W )earccosh(2W −1)/(1 −
earccosh(2W −1))] and decreases continuously as k → π/2,
where it diverges to −∞.

The functions LHSπ (k) and RHS(k) are plotted in Fig. 9
for a range of different values of W .

In this case, counting the number of solutions reduces
to counting the number of solutions to RHS(q) = 0 with
q > γπ which belongs to an RHS line that diverges to −∞
for some k < π/2. RHS(q) = 0 for qn = πn/L with n ∈
{1, . . . , L − 1} and RHS(q∞) → −∞ for q∞

n = πn/(L + 2)
with n ∈ {1, . . . , L + 1}. To find the number of solutions, we
subtract the number of qn � γπ (for W > 1, we subtract the
number of qn < 0, which is trivially zero) from the number of
q∞

n < π/2. Note that k = γπ and k = π/2 are not allowed
solutions, as these have p = 0.
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FIG. 10. Examples of eigenstate wave functions localized on the
gated segment for V0 = 1.45 and L = 50. Top: E = 2.06. Middle:
E = 2.95. Bottom: E = 3.45. The top panel also shows a delocalized
state with E = 0.566 in light gray for comparison.

The total number of q∞
n < π/2 is ceil(L/2) and the total

number of qn � γπ is floor(γ L). We therefore have

Nπ
loc =

{
ceil(L/2) − floor(γ L), W � 1,

ceil(L/2), W > 1,
(E19)

states which localize in the gap.
The total number of states localized on the FM segment is

thus

NFM
loc =N0

loc + Nπ
loc

=
{

L − floor(βL) + ceil(L/2) − floor(γ L), W � 1,

L − floor(βL) + ceil(L/2), W > 1.

(E20)

APPENDIX F: WAVE FUNCTION PROFILES

We present here some illustrative examples of the eigen-
state wave functions localized on the gated/ferromagnetic
segment discussed in our work.

Figure 10 shows examples of wave functions with energies
E > 2 for the gated chain model in Sec. II. The localized
behavior is clearly evident for E > 2, when compared to a de-
localized state for E < 2 shown in the top panel for reference
(light gray curve).

Figure 11 shows similar examples of eigenstate wave func-
tions for the ferromagnetic segment in an antiferromagnetic
chain model in Sec. III.

FIG. 11. Examples of eigenstate wave functions localized on the
ferromagnetic segment for W = 0.1 and L = 50. Top: E = 0.0265
(in the gap). Middle: E = 2.05. Bottom: E = 2.10. The top panel
also shows a delocalized state with E = 0.543 in light gray for
comparison.

APPENDIX G: SPECIAL CASES

While the quasiperiodic behavior discussed in the main
text is generic, there are fine-tuned values of the system
parameters when it disappears. For completeness, we re-
view them here briefly for the two models considered in our
work.

1. Gated segment

In the case of the gated segment, Nloc shows periodic
fluctuations about its linear behavior whenever α is rational,
implying that απ = arccos(V0/2 − 1) is a rational number
times π . This occurs for an infinite set of fine-tuned values of
V0 (e.g., V0 = {2 − √

2, 1, 2}); however, it is a set of measure
zero on the real line.

2. Ferromagnetic segment in an antiferromagnetic chain

Let us now consider the example of a ferromagnetic seg-
ment in an antiferromagnetic chain. For W � 1, NFM

loc only
depends on β and the situation is very similar to that of the
gated segment. If β is rational, which happens for an infinite
but sparse number of values W , NFM

loc shows periodic fluctu-
ations. In the case of W < 1, NFM

loc depends on both β and γ

and it only loses its quasiperiodic behavior if both β and γ

are rational. We only find one value of W where this happens,
namely W = √

2/2.
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