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Unsupervised interpretable learning of phases from many-qubit systems
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Experimental progress in qubit manufacturing calls for the development of new theoretical tools to analyze
quantum data. We show how an unsupervised machine-learning technique can be used to understand short-
range entangled many-qubit systems using data of local measurements. The method successfully constructs the
phase diagram of a cluster-state model and detects the respective order parameters of its phases, including string
order parameters. For the toric code subject to external magnetic fields, the machine identifies the explicit forms
of its two stabilizers. Prior information of the underlying Hamiltonian or the quantum states is not needed;
instead, the machine outputs their characteristic observables. Our work opens the door for a first-principles
application of hybrid algorithms that aim at strong interpretability without supervision.
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I. INTRODUCTION

A shared central theme of quantum computation science
and quantum many-body physics is the estimation of a quan-
tum state from a large number of measurements. Standard
quantum state tomography quickly becomes infeasible for this
task due to the exponential scaling of the many-body Hilbert
space [1–3]. Various strategies, such as matrix product state
(MPS) tomography [4,5], neural network tomography [6,7],
and randomized measurements [8–10] have been proposed to
improve the efficiency by restricting the target functions to
particular information or specific types of quantum states. A
noticeable recent advance in efficiency is the development of
shadow tomography [11,12] and the classical shadow scheme
[13–15], which promise to estimate a range of observables
accurately from considerably less measurements. Neverthe-
less, the resources required to achieve a certain accuracy still
strongly depend on the entanglement properties of the target
state and the complexity of the observable [13,16]. Therefore,
it is highly desirable to develop an algorithm where the defin-
ing features of an unknown complex quantum state can be
detected and returned as an interpretable output. Those can
then be used to make predictions for new measurements and
serve as input for more sophisticated tomography processes.

In this work, we show that the tensorial-kernel sup-
port vector machine (TK-SVM) [17,18] can directly analyze
positive-operator valued measure (POVM) measurements and
identify local entanglement structures in quantum states, in
addition to its proven power of detecting hidden tensorial
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orders [17,18] and classical ground-state constraints [19]. The
unsupervised nature and the strong interpretability of this
machine promise to characterize complex quantum states and
construct unknown quantum phase diagrams without knowl-
edge of the states or the Hamiltonian. We demonstrate the
capability of our method by mapping out the phase diagram
of a cluster model without supervision and extracting its
analytical string order parameters for arbitrary ranks using
experimentally accessible data. The machine is also applied to
a toric code model subject to a magnetic field [20], where we
show that it can distinguish the topologically ordered phase
from a trivially disordered phase and identify the stabilizer
operators even far away from the zero field limit.

II. METHOD

One of the two uses of our framework is the detection of
local observables that are translational invariant with respect
to a unit cell comprised of a number of adjacent lattice sites.
To that end, a support vector machine (SVM) is trained to
classify the input samples against a set of fictitious featureless
samples. Once the training is completed, the local observables
characterizing the input are retrieved from the learning-model
internals. In this context, interpretability means that the model
internals have a direct physical meaning. This is in sharp
contrast to neural-network based methods, which often lack
interpretability. The second use of TK-SVM consists in ex-
ploring completely unknown phase diagrams. For this purpose
multiclassification of a predefined grid of phase points is
carried out, followed by partitioning of a graph that is built
from learning-model parameters as weighted edges and phase
points as vertices.

Although standard SVM is a supervised learning method,
TK-SVM can be seen as unsupervised, since the labeling of
training samples used in TK-SVM carries no information at
all about the physical quantities (order parameters) that are
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FIG. 1. Work flow of the tensorial-kernel support vector machine (TK-SVM). The learning stage is unsupervised and local correlation
patterns as well as local orders in the state can be extracted systematically from the trained model.

being learned. The TK-SVM working scheme is depicted in
Fig. 1.

Data and classical map. From a many-qubit system,
repetitive POVM measurements are taken to serve as input
to TK-SVM. Informational completeness (IC) of measure-
ments is crucial to our approach, which is why we require
POVM outcomes as input data (details in Appendix A). The
choice of the IC-POVM does not affect the algorithm or
the results. Therefore, we consider the experiment-friendly
and intuitive Pauli-6 POVM with six possible outcomes, de-
fined by a set of positive semidefinite Hermitian matrices
M↑α = 1

3 |↑α〉〈↑α| and M↓α = 1
3 |↓α〉〈↓α| with α ∈ {x, y, z}

and {|↑α〉, |↓α〉} representing the eigenbases of the Pauli op-
erators X , Y , and Z . Every possible outcome is assigned
to a three-component classical vector S = (Sx, Sy, Sz ), e.g.,
M↑x �→ (+1, 0, 0), M↓x �→ (−1, 0, 0), M↑y �→ (0,+1, 0).
Measuring each qubit of the system in a random Pauli basis
and mapping the outcomes yields one classical snapshot of a
quantum state. This is repeated a number Ns of times to obtain
a set of samples used as input data.

Feature vector construction. The SVM at the core of our
framework does not directly operate on classical spin config-
urations, but on a set of feature vectors constructed from these
configurations instead. Two hyperparameters, cluster—a col-
lection of adjacent lattice sites—and rank generally determine
the way that a feature vector is constructed. In this section,
only the chain lattice is considered, as the generalization
to other lattice geometries is straightforward. For the chain
lattice, there is only one possible cluster shape: the string.
Therefore, the relevant hyperparameters become string length
n and rank r. The optimal choice of n and r depends on the
precise nature of the local orders present. Nematic order, for
instance, can by definition never be captured at rank r = 1.
In practice finding the optimal choice of hyperparameters re-
quires multiple TK-SVM runs on a trial-and-error basis. Often
it is also necessary to combine results from several different
choices of hyperparameters to obtain a complete physical
picture. The latter is the case for the cluster model.

For a fixed choice of hyperparameters, a classical spin con-
figuration of L sites is partitioned into nonoverlapping clusters
{Sc

i } �−→ {Sc
J,α}, where i ∈ {1, . . . , L} labels the lattice sites,

c ∈ {x, y, z} the spin component, J ∈ {1, . . . , L/n} labels the
clusters, and α ∈ {1, . . . , n} the site within one cluster. Note
that, for the partitioning to be meaningful, L/n must be in-
teger. For every cluster J , a feature vector of rank r is then
constructed by taking all possible products of different Sc

J,α

with exactly r factors. This yields a set of feature vectors
{φJ} upon which, in a last step, the cluster average is taken
to produce an averaged feature vector φ

φJ = {
Sc1

J,α1
× Sc2

J,α2
× · · · × Scr

J,αr

}
, (1)

φ = n

L

∑
J

φJ . (2)

To exclude trivial products in Eq. (1), any two site indices,
e.g., α1 and α2, must be different. This condition forbids r
to be greater than n. Additionally, redundancies are removed
from Eq. (1) by imposing an ordering α1 < α2 < · · · < αr

on the site indices. This simplification is allowed since Pauli
operators on different sites commute. The dimension of the
resulting feature vector is independent of the system size L
and given by dim(φ) = (n

r

) × 3r .
The procedure above describes how to construct one fea-

ture vector from one sample. It is however desirable to create
a single feature vector from several samples, by extending
the average in Eq. (2), to enhance accuracy. Especially with
increasing rank, the cluster average should be taken over in-
creasingly many samples. This ensures that the error of the
components of φ, which can be seen as estimators of r-point
correlators, stays arbitrarily small. For more details on the
feature vector construction see Appendix B.

A. Learning local orders (binary classification)

When used to learn local orders, the input samples con-
stitute the first class of the training set, whereas the second
class of the training set is constructed internally. With the aim
to learn physical quantities only from the input samples, the
artificial second class is chosen to lack any sort of information.
Physically the artificial class might be interpreted as sam-
ples from a system at infinite temperature. To emulate such
a system, POVM outcomes are generated randomly accord-
ing to a uniform distribution. After the artificial samples are
generated, feature vectors are constructed as described in the
previous section. This results in two labeled sets of feature
vectors that can now be fed to the SVM.

In our approach, besides quantifying the learning success
(Appendix D), the decision function is never used to predict
unknown samples. Instead the focus lies solely on the infor-
mation gained from the input samples, which is encoded in the
learning-model internals after training. These model internals
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are extracted from the decision function and interpreted as
physical observables, characterizing the input samples.

The quadratic-kernel SVM decision function predicting the
class of an unknown feature vector φ = {φμ} reads

d (φ) =
∑

s

λsys(φ
(s) · φ)2 − b (3)

=
∑
μν

(∑
s

λsysφ
(s)
μ φ(s)

ν

)
φμφν − b (4)

=
∑
μν

Cμνφμφν − b, (5)

where s runs over the combined training set of feature vectors
from both classes, ys = ±1 represents the class label of each
feature vector, and λs as well as the bias b are the SVM op-
timization parameters. The resulting coefficient matrix {Cμν}
depends on the training data and optimization parameters only
and exposes all local orders present in the phase of inter-
est (that the input samples were taken from). From each of
its nonvanishing components, an analytical expression inter-
preted as order parameter or part of an order parameter can be
recovered. Typically a small subset of columns or rows of Cμν

is sufficient for inferring an order parameter and constructing
the entire matrix is not necessary (see Appendix B). This
allows us to examine large clusters and high ranks, which
is particularly useful for detecting nonlinear and extended
orders.

B. Learning a phase diagram (multiclassification)

In general a model’s phase diagram might be completely
unknown. In this case it is simpler to first get an idea of
the phase diagram’s topology by roughly determining phase
boundaries, instead of extracting order parameters of ran-
domly selected phase points. Using labeled samples from two
separate phase points A and B as input (without constructing
the artificial class), TK-SVM allows one to decide whether
they belong to the same phase, without explicitly extracting
local orders from the decision function. Note that the samples
are labeled without knowing if they are truly physically dif-
ferent or not, meaning that this application of TK-SVM is still
unsupervised. The decision whether two classes belong to the
same phase is based on a criterion derived in [21],

|bA,B| 	 1if A, B in the same phase,

� 1if A, B in different phases, (6)

which relies on the bias b of the decision function Eq. (3)
alone.

To find the approximate topology of an unknown phase
diagram, we first fix a grid of M phase points. Then, for
all possible M(M − 1)/2 different pairs of phase points TK-
SVM runs a binary classification task, returning a set of
biases. Succeeding the classification stage, a graph is con-
structed using phase points as vertices and the set of absolute
biases as weighted edges. Since all points of the same phase
are strongly connected (large bias modulus) and points of
different phases are weakly connected, partitioning the result-
ing graph directly yields the topology of the phase diagram.
There are many standard methods to partition a graph; the one

used in this work is the spectral graph partitioning method
introduced by Fiedler [22,23] (summarized in Appendix C).
In practice, this protocol for unsupervised learning of a phase
diagram turns out to perform better than the kernel principal
component analysis (PCA) [21] and persistent homology [24]
methods.

III. APPLICATIONS

A. Cluster model

To demonstrate the abilities of TK-SVM, we consider a
spin-1/2 Hamiltonian including a paramagnetic, a symmetry-
broken, and a symmetry-protected topological (SPT) phase,

H = −
L−1∑
i=2

Zi−1XiZi+1 − h1

L∑
i=1

Xi − h2

L−1∑
i=1

XiXi+1, (7)

where the sums run over the lattice sites of a chain with
open boundary conditions and the external field h1 � 0.
Distinct phases of the Hamiltonian can be understood
from the following limits: for h1 → +∞ the system is
a paramagnet with all spins pointing along x̂, while for
h2 → −∞ it is an Ising antiferromagnet along x̂. The
ground state at h1 = h2 = 0 is known as the cluster state
protected by a Z2 × Z2 symmetry and plays a crucial role in
measurement-based quantum computations [25–28].

The data used in this work is generated from density
matrix renormalization group (DMRG) simulations [29]; nev-
ertheless we expect the same analysis to apply for POVM
measurements of experimental origin. A total of 255 data
sets, each containing Ns = 5000 POVM samples, are collected
uniformly in a region spanning the whole phase diagram, with
system size L = 72. Since a Hamiltonian can generally host
distinct types of phases and a single phase may also develop
more than one order, two strategies may be used to construct
the phase diagram. The first one is to carry out a multiclassifi-
cation over the entire data set with different ranks and clusters,
each covering several types of orders. The full phase diagram
is then obtained by combining the results of the subsequent
graph partitioning. Alternatively, one can work iteratively by
restricting the multiclassification to data sets belonging to
the same component (subgraph) of a preceding classification
analysis and repeat until a converged phase diagram topology
is reached. Both strategies are more efficient than finding a
universal rank and cluster sensitive to all orders and they
can be combined in practice. In the current problem, we find
that rank r = 3 and cluster size n = 3 reproduce the expected
phase diagram, as shown in Fig. 2. Increasing r and n does not
reveal a finer partitioning; hence no other phases are found.

After obtaining the phase diagram, we wish to investigate
the order parameters characterizing each phase. We focus our
discussion on interpreting the SPT phase, since the paramag-
netic and antiferromagnetic phases only lead to very simple
features 〈∑L

i=1 Xi〉 = 1 and 〈∑L/2
i=1 X2i−1 − X2i〉 = 1. We start

by discussing the pure cluster model in the limit h1 = h2 = 0
and analyze ranks and clusters up to r, n = 9. The first non-
trivial feature emerges at n = r = 3 with a structure

Bk := Zk−1XkZk+1, (8)
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FIG. 2. Upper panel: partitioned graph corresponding to the clus-
ter model phase diagram, learned at rank r = 3 and cluster size n =
3. The graph consists of a uniform 15 × 17 grid of phase points (filled
circles) as vertices and the set of normalized bias parameters, ob-
tained from all mutual classification tasks between the phase points,
as edges. Partitioning the graph leads to three components (sub-
graphs), which are identified as the paramagnetic (PM), SPT ordered,
and antiferromagnetic (AFM) phases. Every phase point is colored
according to the appropriate Fiedler vector entry, which indicates
its phase correspondence. The background displays the expectation

value of the string order parameter Sodd
n = 〈Z1(

∏ n−1
2

k=1 X2k )Zn〉 with
length n = 15, which is finite in the SPT phase but vanishes else-
where. Lower panel: a histogram of the Fiedler vector entries (for
details, see Appendix C), whose values are color coded (the horizon-
tal axis). The three separated regions correspond to the three phases.

where k = 2, . . . , n − 1 labels qubits within the cluster. In-
creasing the rank to r = 4 and cluster size to n � 5, two
additional structures are detected (see Fig. 3),

BkBk+1 = Zk−1YkYk+1Zk+2, k ∈ {2, . . . , n − 2}, (9)

BkBk+2 = Zk−1XkXk+2Zk+3, k ∈ {2, . . . , n − 3}. (10)

FIG. 3. Nontrivial features in the SPT phase learned at r =
4, n = 5. The figures show a nonvanishing column of the associated
Cμν matrix, with ν̄ chosen such that φν̄ = Z2Y3Y4Z5 is a prominent
feature. (a) The pure cluster state in the limit h1 = h2 = 0. Nonvan-
ishing features (diamonds) can be systematically retrieved: the three
apparent features correspond to entangled patterns B2B4, B2B3, and
B3B4 [cf. Eqs. (9) and (10)]. (b) All phase points belonging to the
SPT phase according to the graph partition are pooled and treated as
one data set. The features from the pure limit remain dominant, as
they reflect the local correlation structure of the whole phase.

TABLE I. Excerpt of nontrivial features learned at different ranks
and cluster sizes r, n. The dimension of the feature space is dim(φ) =(n

r

) × 3r . Nf denotes the number of nonvanishing features at fixed r
and n.

r, n dim(φ) Nf Example

3,6 540 4 B4 = Z3X4Z5

4,5 405 3 B3B4 = Z2Y3Y4Z5

5,7 5103 8 B2B4B6 = Z1X2X4X6Z7

6,9 61236 30 B2B4B5B7 = Z1X2Y4Y5X7Z8

7,9 78732 35 B2B3B5B6B8 = Z1Y2Y3Y5Y6X8Z9

8,9 59049 22 B2B3B4B6B7B8 = Z1Y2X3Y4Y6X7Y8Z9

9,9 19683 6
∏8

k=2 Bk = −Z1Y2X3X4X5X6X7Y8Z9

In Table I we summarize the features learned for ranks and
cluster sizes r, n ∈ {3, . . . , 9}. Extrapolating n, r → ∞, they
reproduce the commonly used “dense” and “odd” string order
parameters [27,30]

Sdense
n→∞ =

〈
n−1∏
k=2

Bk

〉
= (−1)n

〈
Z1Y2

(
n−2∏
k=3

Xk

)
Yn−1Zn

〉
, (11)

Sodd
n→∞ =

〈 n−1
2∏

k=1

B2k

〉
=

〈
Z1

⎛
⎝ n−1

2∏
k=1

X2k

⎞
⎠Zn

〉
. (12)

Although the high-rank features can be generated by the build-
ing block Bk , it is remarkable that a machine automatically
picks up all variants of the string correlations.

To find the order parameter for arbitrary parameter values
of h1, h2, all data sets belonging to the same phase according
to the machine-learned phase diagram are pooled. For the SPT
phase the resulting pooled data set contains 96 × 5000 sam-
ples. Classifying the pooled data set against random samples
reveals that the same operators as in Table I remain dominant
throughout the phase. Secondary features caused by finite
h1, h2 are significantly weaker; see Fig. 3. We thus identi-
fied characteristic local entanglement structures in a quantum
phase, without relying on particular known limits nor any
other information about the Hamiltonian. This marks a crucial
difference of our machine compared to popular strategies in
neural-network based algorithms [31–33], which make use of
special known limits during the training stage.

B. Toric code subject to magnetic fields

Characterizing long-range entangled topological phases,
e.g., by identifying their anyonic statistics [20,34] or topolog-
ical classes [35,36], in a purely data-driven manner, arguably
remains beyond the capabilities of existing machine learning
algorithms [37]. Nevertheless, information about local corre-
lation patterns can bring valuable insight into the state and
guide further tomography processes specialized for topologi-
cal features. To examine what information can be learned from
local POVM data, we consider a toric code model subject to
magnetic fields hx, hz > 0 [20],

H = −
∑

v

∏
i∈v

Zi −
∑

p

∏
i∈p

Xi − hx

∑
i

Xi − hz

∑
i

Zi. (13)
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FIG. 4. Features detected by TK-SVM for the toric code model
using a (2 × 2)-unit cell (eight sites) cluster at rank 4. The prominent
coefficient matrix column ν̄ is given by φν̄ = Av , with v the only
vertex contained in an eight-site cluster. (a) In the zero field limit
hx, hz → 0, two features (blue diamonds) reflecting the vertex and
plaquette operators Av and Bp are captured. (b) The same features
remain prominent even at sizable magnetic fields hx = hz = 0.3
close to the phase boundary. (c) In the nontopological phase at
(hx, hz ) = (0, 1.5), multiple trivial features appear due to the strong
polarization.

Qubits are located on the bonds of a square lattice and v and
p denote vertices and plaquettes of the lattice. This model
is topologically ordered for hx = hz � 0.34 if hx = hz and
hx (hz ) � 0.33 if hz (hx ) = 0 [38]. Training data are produced
by exactly diagonalizing the Hamiltonian Eq. (13) on a peri-
odic system with 18 qubits.

We first investigate the pure toric code limit hx = hz → 0.
Ns = 1000 Pauli-6 POVM snapshots are collected and dis-
criminated against random samples. We find that, using a
cluster of 2 × 2 unit cells (8 qubits, as in Appendix B) at
rank 4, the machine captures two features whose interpreta-
tion yields the toric code stabilizers Av = ∏

i∈v Zi and Bp =∏
i∈p Xi, as shown in Fig. 4. The same procedure is carried

out at sizable fields (hx, hz ) = (0.3, 0.3), where we identify
the same prime features in contrast to the trivial paramagnetic
phase at (hx, hz ) = (0, 1.5) as can be seen in Fig. 4. The
machine can successfully detect the correct stabilizers from
local measurements sampled far away from the pure toric code
limit. Although stabilizers do not directly characterize the
topological phase, their explicit forms indicate the underlying
gauge structure and can inspire specialized feature mapping
and kernel designs. For instance, one may generate training
sets by sampling closed loops [39,40] or define the kernel
of a gauge symmetry [41,42], which are strategies employed
in previous studies of machine-learning intrinsic topological
orders.

IV. SUMMARY

Machine learning techniques exhibit growing abilities of
analyzing complex classical and quantum data. In this work,
we demonstrated the potential of TK-SVM as a first-principle
method to detect entanglement structures in many-body qubit
systems. We constructed the phase diagram of the cluster
model, without supervision, from experimentally accessible
POVM snapshots. Furthermore we extracted the respective
order parameters of the phases systematically and, in particu-
lar, discussed the local entanglement patterns and string order
parameters of its SPT phase. Finally, we examined an intrinsic
topological phase subject to magnetic fields and showed the
machine’s ability to detect the explicit stabilizers with data far

away from the pure limit. Our results pave the way to inves-
tigate membranelike order parameters in higher dimensional
SPT phases [43] and analyze local measurements of general
topological models such as lattice gauge theories [44] and
fracton models [45].
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APPENDIX A: IC-POVM AND CLASSICAL MAP

Over a Hilbert space of dimension d , a general POVM is
defined as a set of positive-semidefinite operators M = {Mi},
called “outcomes,” which sum to identity

∑
i Mi = I . To be

informationally complete (IC), the outcomes of a POVM must
span the whole space of self-adjoint operators acting on the
Hilbert space. This can only be fulfilled if the POVM has
at least d2 outcomes; if it has exactly d2 outcomes it is
called minimal IC-POVM. Moreover, a POVM is symmetric
if the overlap between any two different outcomes is constant
Tr(MiM j ) = const. Informational completeness ensures that
the density matrix can be uniquely determined from the prob-
abilities Tr(Miρ) and is therefore a strict necessity for our
algorithm. On the other hand, POVM symmetry is completely
optional for TK-SVM. Given an IC-POVM, every outcome is
mapped onto a classical vector S ∈ Rd2−1 serving as repre-
sentation of a single site quantum state, the density matrix of
which is determined by d2 − 1 real parameters. Specifically
for the spin 1/2 (d = 2) case, the classical one-to-one map
Mi �→ Si ∈ S2 (onto the Bloch sphere) reads

Mi = d

|M|ρ(Si ) = 1

|M| (I + Si · σ ), (A1)

where σ denotes the Pauli vector. A straight-forward choice
for an IC-POVM is the Pauli-6 POVM, defined by the set
of Bloch vectors {(±1, 0, 0)T , (0,±1, 0)T , (0, 0,±1)T }. Al-
though it is not minimal, it has the advantage of being easy to
implement in experiments by simply measuring each site in a
randomly chosen Pauli basis.

Alternatively, one might use the Tetra-POVM, which is
minimal and symmetric (SIC-POVM), defined by the set
{(0, 0, 1)T , (2

√
2/3, 0,−1/3)T , (−√

2/3,−√
2/3,−1/3)T ,

(−√
2/3,

√
2/3,−1/3)T }, spanning a tetrahedron. Given that

a certain POVM is IC, if all of its Bloch vectors can be
expressed as linear combinations of the vectors defining a
second POVM, then this second POVM is IC as well. Using
either the Tetra- or the Pauli-6 POVM yields fully consistent
results in our application of TK-SVM.
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FIG. 5. Different examples of clusters for the chain lattice (top) and square link lattice (bottom). For an unknown quantum state,
natural choices for a cluster include multiple lattice cells and the nearest neighbors of a site. The clusters may or may not be overlapping.
Nonoverlapping clusters are appropriate for detecting structures with translational symmetry breaking, while overlapping clusters are more
suitable for probing structures with translational invariance. In the case of nonoverlapping clusters of the chain, the lattice size L must be
divisible by n, such that the number of clusters Ncl. = L/n is meaningfully defined as an integer. Similar conditions arise for other lattices
when using nonoverlapping clusters. In the case of the square link lattice, the vertex and plaquette clusters are sufficient to learn the constraints
Av = 1 and Bp = 1, respectively. The most unbiased cluster choice when no information about the Hamiltonian is available, however, is a
multiple of unit cells of the lattice such as the eight-site cluster, which is large enough to capture both local constraints simultaneously.

APPENDIX B: CLUSTERING AND FEATURE DETECTION

For a fixed choice of hyperparameters every Bloch-vector
configuration is partitioned into clusters {Sc

i } �−→ {Sc
J,α} as

described in Sec. II for the chain lattice. Figure 5 shows
several possible clustering choices for the chain and square
link lattice. The feature construction used in TK-SVM makes
use of the fact that local order parameters of symmetry-broken
phases [17] and entanglement structures of SPT phases [43]
can be represented by a finite number of elementary degrees
of freedom. The feature mapping provides a high-dimensional
vector space to host potential local orders and entanglement
structures, while SVM optimizations search for their explicit
expressions. The results of the SVM optimization are weights
(λs) for the feature vectors φ(s), from which the coefficient ma-
trix Cμν = ∑

s λsysφ
(s)
μ φ(s)

ν [cf. Eq. (5)] is constructed. Each
row or column of Cμν encodes pairwise correlations between
a feature φν and the entire set of features {φμ}. Hence, to find
the nontrivial features, it typically suffices to construct a few
nonvanishing rows or columns of the matrix. Without loss of
generality, one can start by examining a single column with
strong overall weight |∑s λsφ

(s)
ν |. The number of columns

required for information convergence may depend on the na-
ture of an order but is in principle bounded by the size of the
unit cell. In case of SPT phase in the cluster-state model and
the toric code (Fig. 3 and Fig. 4 in the main text), a single
nonvanishing column is enough for extracting the features.

APPENDIX C: GRAPH PARTITIONING

A weighted graph G = (V, E ,w) is defined as a tuple of
a set of vertices V , a set of edges E , and a set of normalized
weights w on the edges. All graphs produced by TK-SVM are
of a restricted class of undirected graphs with no self-edges
(edges that connect a vertex to itself) and no multiedges (E is
not a multiset).

The goal is to find a two-way partition V1 ∪ V2 = V | V1 ∩
V2 = ∅, such that |V1| ≈ |V2| and the connectivity, i.e., the

summed weight of all edges connecting V1 and V2, is minimal.
Fiedler’s theory [22,23] makes use of the Laplace matrix

�i �= j =
{−wi j, if (i, j) ∈ E ,

0, otherwise, �ii =
∑

{ j|(i, j)∈E}
wi j .

(C1)

Further define a partition vector as x = {xi = ±1} where a
positive (negative) sign indicates that the vertex i belongs to
V1 (V2). For simplicity we assume that the graph is connected,
as the discussion of multicomponent graphs can always be re-
duced to discussing the disconnected components separately.

For an arbitrary partition vector x, the quadratic form xT �x
equals four times the connectivity

xT �x =
∑

(i j)∈E

wi j (xi − x j )
2 = 4

∑
(i j)∈Econ

wi j, (C2)

where Econ ⊂ E is the set of edges that connect V1 and V2.
So the goal is to find a partition vector that minimizes the
quadratic form while maintaining (approximately) equally
sized parts. By changing from discrete variables xi ∈ {−1, 1}
to continuous ones zi ∈ [−1, 1] and diagonalizing �, it can be
shown that

min(z�z) = |V | λ2, (C3)

with λ2 being the second smallest of all eigenvalues of �.
Note that any Laplace matrix has non-negative eigenvalues.
Thus the argument minimizing the quadratic form is simply
the second eigenvector z(2) of �. To recover a discrete solution
from the optimal continuous partition vector z(2), the sign
function is applied to each component

xmin = sgn(z(2) ). (C4)

For a general multi- rather than two-way partition of the
graph, in place of the sign function applied to the Fiedler
vector, clustered appearances of similar entries can indicate
more than two parts. In applications of TK-SVM, the final
number of parts of the graph is unknown, requiring a multiway
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FIG. 6. Dependence of binary prediction accuracy on the number
of samples (Ns) and system size (L). The x axis is scaled with the
number of local clusters, L/n, in the sample. Samples are collected
from the clean cluster state and classified against random samples. A
r = n = 5 TK-SVM with overlapping clusters is employed.

partition and hence a continuous representation of the Fiedler
vector. The lower panel of Fig. 2 displays the histogram of
Fiedler vector entries as obtained from partitioning the graph
constructed for the cluster model.

In the TK-SVM framework, we relate the learning of an
unknown phase diagram to a graph partitioning problem.
Specifically, each data set sampled at some physical parameter
is represented as a vertex in the graph. Edges connecting two
vertices are weighted by the bias parameter b; see Eq. (6). The
weights are normalized using a Lorentzian function

w(eb) = 1 − b2
c

(|b| − 1)2 + b2
c

∈ [0, 1), (C5)

where the parameter bc sets a characteristic scale quantifying
“	 1.” As we consider a fully connected graph, edges be-
tween data sets located deep in phases are also included. This
redundancy makes the choice of bc uncritical: the partitioning
is typically robust against varying bc over several orders of
magnitude [19].

APPENDIX D: BENCHMARKING PREDICTION
ACCURACY

Here we investigate the learning efficiency of our machine
as a function of system size and number of samples. For
simplicity, we restrict ourselves to train the cluster state of

FIG. 7. Dependence of binary prediction accuracy on the ranks
and number of samples for a system of size L = 72, using overlap-
ping clusters. An accuracy of ∼0.8 is typically enough to learn a
clear structure for the underlying order.

length L against random samples. The learning success is
determined by the accuracy with which the machine correctly
classifies data from an unseen test set. The benchmarks in this
section aim to understand how many samples are sufficient
for our machine to learn the characteristic observables of an
entangled quantum state.

We first discuss the dependence on system size with fixed
rank r and cluster size n. As displayed from the coinciding
data points for L = 18, 36, 72 in Fig. 6, our machine shows
a (nearly) constant complexity over the total number of clus-
ters NsL/n: fewer samples are needed for larger systems to
reach a certain accuracy. This is understood from the feature
construction Eq. (1): larger systems have more local clusters
to average over, yielding smaller errors of the corresponding
feature.

Next, we discuss the effects of the rank r, which detects
r-body quantities. We choose r = n for simplicity and analyze
the prediction accuracy up to rank r = 9. As shown in Fig. 7,
the required number of samples to reach good accuracy scales
exponentially with r as expected, since the dimension of the
feature space is ∝ 3r . This has a clear physical implication:
in general, the efficiency of an unbiased machine learning
algorithm strongly depends on the nature of the phase and
the complexity of the target variable. A few samples are typi-
cally enough for learning the simplest orders, but complicated
orders and entanglement patterns require more. It also repre-
sents an intrinsic difficulty for unbiased algorithms to learn
arbitrarily high-rank quantities and long-range entanglement
structures.
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