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Anomalous fluctuations in homogeneous fluid phase of active Brownian particles
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Giant number fluctuations (GNF) are an anomaly universally observed in active fluids with polar or nematic
order. In this paper, we show that GNF arise in the fluid phase of active Brownian particles (ABP), where the
polar order is absent. GNF in ABP extends over a large but finite length which characterizes the growing velocity
correlations. To suppress unwanted phase separation and allow ones to explore the disordered fluid phase at large
activities, we impart the inertia, or the mass, to the ABP. A linearized hydrodynamic theory captures our findings,
but only qualitatively. We find numerically a nontrivial scaling relation for the density correlation function, which
the linearized theory cannot explain. The results suggest ubiquitousness of the anomalous fluctuations even in
the disordered homogeneous fluid phase in the absence of the directional order.
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I. INTRODUCTION

Active matter refers to a broad class of many-body sys-
tems consisting of self-propelling constituents, such as flocks
of birds, herds of animals, bacterial colonies, or even self-
propelled colloidal particles [1–3]. In the past few decades,
we have witnessed tremendous progress in the studies of
active matter. Active matter systems exhibit many nontriv-
ial phenomena that are prohibited in equilibrium systems.
Representative examples include anomalous increases of par-
ticle number fluctuations known as giant number fluctuations
(GNF) [4–6], spatiotemporal chaotic patterns of velocities
fields reminiscent of turbulence [7,8], and spontaneous sep-
aration of constituent particles into dense and dilute phases
called the motility-induced phase separation (MIPS) [9,10].

The active Brownian particles (ABP) model is one of the
simplest models of active matter [10] and has been used to
study MIPS theoretically [11–19] and numerically [10,20–
26]. MIPS resembles the liquid-vapor phase separation in
equilibrium systems, and some efforts were made to under-
stand MIPS by mapping ABP and other active fluids into
the effective equilibrium system [13,16,17,27–29]. Recently,
however, it has been realized that MIPS of ABP is accom-
panied by intrinsically nonequilibrium phenomena, such as
negative surface tension [28,30], reversal of the Ostwald
process [31,32], and spatial velocity correlation [33]. In par-
ticular, the spatial velocity correlation is not only observed
inside the MIPS phase but also in the high-density regimes,
including the crystalline [34,35], amorphous [36,37], and even
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dense fluid phases [34,38,39]. The spatial velocity correlation
is manifested as the vortex-shaped patterns, which suggests a
deep connection with the active turbulence [39].

Since the longitudinal part of the velocity field is directly
related to the density field, it is natural to expect that the
growth of the velocity correlation leads to an increase of the
density fluctuations similar to GNF in the ordered phase of
polar active fluids [2,40–42]. If such large density fluctua-
tions exist in ABP fluids, it is tempting to see the connection
between them and GNF observed in the systems with polar
long-range order. Several studies have reported large number
fluctuations in ABP [10,21,25], but it is difficult to judge
whether the observed data are due to bona fide GNF or origi-
nated from heterogeneities by MIPS.

In this paper, we demonstrate that the homogeneous fluid
state of ABP, despite the absence of the polar or nematic
order, develops the large density fluctuations and GNF, whose
sizes increase with the growing spatial correlation of the lon-
gitudinal velocity. The main obstacle to observing number
fluctuations is heterogeneous density modulation caused by
MIPS at high activity. One way to avoid MIPS is to explore
the high-density region [34,38,39], but the glassy slow dynam-
ics or the precursor of crystallization would intervene there.
Another route is to study the intermediate-density fluid phase
outside the binodal region. However, the activity is too low
to observe any meaningful signal of the growing fluctuations.
To overcome these practical issues, we consider ABP with the
inertia term or the mass. It is known that MIPS is suppressed
if the inertia term is added to the original overdamped ABP
[43]. If the mass is sufficiently large, then the system remains
homogeneous without a sign of phase separation even at high
activity. It enables one to investigate intrinsically nonequilib-
rium fluctuations without being impeded by unwanted MIPS.

We confirm numerically that the spatial velocity correlation
develops even at intermediate densities. Their longitudinal
and transverse modes are characterized by two distinct cor-
relation lengths, as reported in the high-density fluid state
[38]. The transverse velocity correlation is associated with the

2643-1564/2023/5(1)/013077(13) 013077-1 Published by the American Physical Society

https://orcid.org/0000-0001-9496-6305
https://orcid.org/0000-0001-8036-8435
https://orcid.org/0000-0001-7682-1233
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.013077&domain=pdf&date_stamp=2023-02-02
https://doi.org/10.1103/PhysRevResearch.5.013077
https://creativecommons.org/licenses/by/4.0/


KURODA, MATSUYAMA, KAWASAKI, AND MIYAZAKI PHYSICAL REVIEW RESEARCH 5, 013077 (2023)

vortex structure, reminiscent of active turbulence [39],
whereas the longitudinal one is accompanied by the spatial
correlation of the density fluctuations. The correlation lengths
of the longitudinal velocity and density increase with the
activity. This results in the emergence of GNF. Contrary to
the case of polar fluids where GNF arise due to the polar
order [2,40–42], GNF in ABP are confined in a large but
finite length scale corresponding to longitudinal correlation
length. We develop a linearized fluctuating hydrodynamic
theory from the microscopic model and show that the grow-
ing lengths and GNF can be qualitatively captured by the
linearized theory. The theory clarifies the similarities and
differences of the mechanism of GNF between our system
and the polar active fluids in the ordered phase [2,4,40,41].
However, the linearized theory fails to explain the nontrivial
scaling relation and scaling exponents shown by the simula-
tion. This implies that the nonlinear coupling of fluctuations
is at play.

This paper is organized as follows. In Sec. II, we describe
the model and simulation setting. Numerical results are shown
in Sec. III. The analysis based on the linearized hydrodynamic
theory is sketched in Sec. IV. We devote Sec. V to a summary.

II. MODEL AND SIMULATION SETTING

We consider two-dimensional active Brownian particles
with a finite mass, which we refer to as the inertial active
Brownian particles (iABP). The Langevin equation which
iABP obey is written as

m
d2r j (t )

dt2
= −ζ

dr j (t )

dt
− ∇ j

∑
k<l

U (rkl ) + ζv0e(φ j ), (1)

where r j is the position of the jth particle, m is the mass
of a particle, ζ is the friction coefficient, U (rkl ) is the pair-
wise interaction potential between the particles k and l , rkl =
|rk − rl | is the distance between the two particles, and ∇ j de-
notes the gradient acting on r j . The last term of the right-hand
side of Eq. (1) is the active noise. Its strength is characterized
by the self-propelling speed v0, and the direction is repre-
sented by a unit vector e(φ j ) = (cos φ j, sin φ j ). The dynamics
of orientation φ j of the particle j is described by

dφ j (t )

dt
=

√
2

τp
η j (t ), (2)

where η j (t ) is the Gaussian white noise that satisfies 〈η j (t )〉 =
0 and 〈η j (t )ηk (t ′)〉 = δ j,kδ(t − t ′). The symbol 〈· · ·〉 denotes
the ensemble average, and τp is the persistence time, an es-
sential parameter characterizing how far the system is from
equilibrium. In the τp → 0 limit, Eq. (1) becomes the equilib-
rium Langevin equation with the effective temperature Teff =
v2

0τpζ/2. Mandal et al. [43] employed the iABP with both the
translational thermal noise and the rotational inertial term for
φ j , which we do not consider here for simplicity.

The simulation setting is as follows. We employ the Weeks-
Chandler-Andersen potential as a pairwise potential [44]:

U (rkl ) = 4ε

{(
σ

rkl

)12

−
(

σ

rkl

)6

+ 1

4

}
θ (21/6σ − rkl ), (3)
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FIG. 1. Snapshots of particle configurations in (M, Pe) space;
ρ = 0.5 and N = 4 × 104. MIPS is suppressed as M increases. In
this study, we focus on the region M = 80, Pe � 200.

where θ (x) is the Heaviside step function and σ is the di-
ameter of a particle. We choose τv = σ/v0 and σ as the
units of time and length, respectively. The number density
is set relatively low at ρ = 0.5, and the system size is L =√

N/ρ. Control parameters in the simulation are the Péclet
number defined by Pe = τp/τv = τpv0/σ , the dimensionless
mass M = m/(ζ τv ), and the energy ratio ε/(ζv0σ ). Here we
set ε/(ζv0σ ) = 100. We carry out the Brownian dynamics
simulation for iABP with the periodic boundary condition. To
integrate the equation of motion, we use the Euler-Maruyama
method with a time step �t = 10−2τv . The number of parti-
cles N = 1 × 104, 4 × 104, and 1 × 105 are chosen to check
the system size effect. For the computation of the correlation
functions discussed below, we take the time average after con-
firming that the system is sufficiently relaxed to the stationary
state by monitoring the time evolution of the potential energy.

III. NUMERICAL RESULTS

Figure 1 shows snapshots of particle configurations in
(M, Pe) space. At M = 1, the inertia effect is negligible,
and the system undergoes MIPS at Pe � 50, as reported for
the overdamped ABP [10,20,25]. As M increases, the MIPS
phase boundary line shifts to a larger Pe continuously, and at
the largest M � 80, the system remains in the homogeneous
fluid phase even at Pe = 300 (see also Appendix A for the
system size dependence). Now that we successfully generated
a homogeneous fluid with large Péclet numbers, we explore
the properties of nonequilibrium fluctuations of ABP with-
out being intervened by unwanted inhomogeneity induced by
MIPS.

Figure 2 presents typical snapshots of the density field
ρ(r) [Figs. 2(a)–2(c)], velocity field v(r) [Figs. 2(d)–2(f)],
and vorticity field �(r) = [∇ × v(r)]z [Figs. 2(g)–2(i)] for
Pe = 1, 50, and 200 at M = 80 (see Appendix B for the
computation method). First, we focus on the velocity and
vorticity fields. The colors in Figs. 2(d)–2(f) represent the
angle of vector v(r) with respect to the x axis. The veloc-
ity pattern is uniform for Pe = 1, where the system is close
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FIG. 2. Snapshots of density [(a)–(c)], velocity [(d)–(f)], and vorticity fields [(g)–(i)] for Pe = 1, 50, 200 at M = 80. Number of particles
is N = 4 × 104. The horizontal and vertical axes denote the x and y coordinates, respectively. Small boxes in panels (d)–(f) correspond to the
plot range of panels (g)–(i), respectively. The colors represent the local density in panels (a)–(c), the angle of local velocity with respect to
the x axis in panels (d)–(f), and the local vorticity in panels (g)–(i), respectively. Black arrows in panels (g)–(i) represent the direction of local
velocity. The horizontal white scale bars in panels (e), (f), (h), and (i) denote the longitudinal and transverse correlation lengths obtained by
the velocity correlation functions (see the text).

to equilibrium. As Pe increases, velocity-aligned domains
appear and their sizes grow. Concomitantly, the vorticity field
�(r) develops as shown in Figs 2(g)–2(i). The sizes of the
patterns, however, are appreciably smaller than those of v(r).
To quantify these spatial patterns, we define the longitudinal
and transverse velocity correlation functions in the Fourier
space by [38]

ω‖(q) = 1

N
〈|J‖(q)|2〉, ω⊥(q) = 1

N
〈|J⊥(q)|2〉. (4)

Here we decomposed the Fourier transformed current J(q) =∑
j ṙ je−iq·r j as J(q) = J‖(q)q̂‖ + J⊥(q)q̂⊥; q̂‖ and q̂⊥ denote

the unit vector parallel and perpendicular to the wave vec-
tor q, respectively. As we can directly derive from Eq. (1),
both ω‖(q) and ω⊥(q) take the value ω0 = Pe/[2(M + Pe)] at
q = 0. This value is used for the fitting to evaluate correlation
lengths discussed below. ω‖(q) is a good measure to probe the
extent of the alignment of the velocity of particles, whereas

ω⊥(q) probes the development of the vorticity pattern. Fig-
ures 3(a) and 3(b) show the q dependence of ω‖(q) and ω⊥(q)
for various Pe at M = 80 (see Appendix E for ρ dependence).
Both ω‖(q) and ω⊥(q) grow significantly at small wave num-
ber. This behavior indicates the development of the spatial
correlations of both the longitudinal and transverse velocities.
We extract correlation lengths by fitting with the Ornstein-
Zernike function ωμ(q) = ω0/[1 + (ξμq)2], (μ =‖,⊥), for
the two correlation functions [see the insets of Figs. 3(a) and
3(b)] [38]. The fitting range is q < 0.06 for ω‖(q) and q < 0.3
for ω⊥(q). Figure 3(c) shows the correlation length obtained
by fitting for Pe � 10. We left out the data for Pe = 1 because
the data are too small to extract the correlation length. We find
that the two correlation lengths are distinct; the longitudinal
length ξ‖ is much longer than the transverse counterpart ξ⊥,
and ξ‖ grows with Pe, whereas the dependence of ξ⊥ on Pe
is much weaker, which is again consistent with the results in
Ref. [38]. ξ‖ and ξ⊥ are comparable to the sizes of patterns
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FIG. 3. The velocity correlation functions and static structure
factor at M = 80 in the Fourier space. (a) The longitudinal, (b) trans-
verse part of the velocity correlation functions, and (d) the static
structure factor. Filled circles and triangles represent data for N =
4 × 104 and N = 1 × 105, respectively. The latter data are depicted
with standard error. The insets of panels (a) and (b) are the fits by the
Ornstein-Zernike function (the dashed line). (c) The longitudinal and
transverse correlation lengths ξ‖ and ξ⊥ obtained by the fitting as a
function of the Péclet number. The dotted line is the fit by ξ‖ ∝ Pe1/2,
and the blue dashed line is the fit by the linearized hydrodynamic
theory (see Sec. IV). The inset is the log-log plot of the same data.
The inset of panel (d) is the rescaled curves of S(q) by ξ‖ and α (see
the text).

of the velocity and the vorticity shown in Figs 2(e), 2(f)
2(h), and 2(i). These observations are qualitatively consistent
with the numerical results by Szamel and Flenner [38] and
the prediction of the linearized fluctuating hydrodynamic the-
ory by Marconi et al. [45]. Note that large spatial velocity
correlations can be confirmed in real space, as reported in
Refs. [34,35]. The thus-obtained correlation length is close
to the value of ξ⊥ (see Appendix C). This is natural, as ξ⊥ is
smaller than ξ‖. The vortex pattern in Figs. 2(h) and 2(i) and
the bahavior of ω⊥(q) at high Pe are reminiscent of the active
turbulence reported in various active matter systems [7,8,46–
54]. We find that the energy spectrum E (q) obtained from the
velocity correlation function ω(q) = ω‖(q) + ω⊥(q) exhibits
weak power-law behavior (see Appendix D). However, the
power-law exponent of E (q) is small compared with those
reported in other studies [7,8,46–54]. Seeking a link between
the active turbulence and the observed spatial correlation is
out of the scope of the present study and is left for future
work.

In Fig. 3(d), we show the density correlation func-
tion, or the static structure factor, defined by S(q) =
〈δρ(q)δρ(−q)〉/N , where δρ(q) = ρ(q) − 〈ρ(q)〉 is the fluc-
tuations of the Fourier transformed density field ρ(q) =
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FIG. 4. Number fluctuation �N as a function of 〈N〉 at M = 80.
The solid and dot-dashed lines are simulation data and power-law
fits, respectively. The dotted lines indicate 〈N〉α with α = 0.5 and
0.9 shown as a guide to the eye. The vertical dashed lines represent
the value of 〈N〉 at � = ξ‖. The dependence of the exponent α on Pe
is plotted in the inset.

∑
j e−iq·r j . S(q) at small wave number is almost constant at

Pe = 1 but rises significantly as Pe increases, meaning that
the density fluctuations increase at large scales. Note that the
increase of S(q) at small wave numbers is distinct from that
observed in the MIPS phase (see Appendix F). In the latter
case, S(q) is well fitted by q−(d+1) (d is the spatial dimen-
sion), which is called Porod’s law [55,56], and it is a natural
consequence of the domains created by the phase separation.
On the contrary, the system in our study is spatially uniform
and the increase of S(q) observed in Fig. 3(d) is induced by
the large correlation of the longitudinal velocity field.

Finally, we investigate the particle number fluctuations
defined by �N =

√
〈(N − 〈N〉)2〉. We measure �N and the

average number of particles 〈N〉 in the sub-box with the side
length � (< L) in the whole system. In equilibrium systems,
�N should be proportional to 〈N〉1/2. In active matter with
polar or nematic order, however, GNF characterized by �N ∝
〈N〉α with a larger exponent α > 0.5 are observed [5,6,42,57–
64]. The iABP model is ideal for examining GNF because
MIPS is absent even at large Péclet numbers. In Fig. 4, we plot
�N as a function of 〈N〉 for several Pe for a fixed M(= 80).
�N behaves as 〈N〉α with exponent α > 0.5 for large Pe.
We chose the fitting range as 〈N〉 ∈ [100, 1000] to extract the
exponent α. The dot-dashed lines in Fig. 4 are the power-law
fit of the simulation data. Interestingly, the side length � at
which �N deviates from the power law is comparable to ξ‖, as
indicated by vertical dashed lines in Fig. 4. The dependence of
the exponent α on Pe is plotted in the inset of Fig. 4. Starting
from the smallest value of α � 0.5 at Pe = 1, α increases with
Pe, up to α � 0.85 at the largest Pe.

The number fluctuation �N is related to the static structure
factor S(q) by S(q → 0) = �N2/〈N〉 at large �. Therefore,
�N ∝ 〈N〉α leads to S(q) ∝ q−β in the reciprocal space. The
two exponents are related by β = 4α − 2 [4,65]. On the other
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hand, it is natural to expect that the density fluctuations are
characterized by the correlation length of the longitudinal
velocity correlation function, ξ‖. Thus, we assume the scaling
form

S(q) = ξ
β

‖ f (qξ‖), (5)

where the scaling function satisfies f (x) ∼ const for x < 1
and f (x) ∼ x−β for x > 1. The inset of Fig. 3(d) is the
rescaled plot of S(q) for Pe � 10. The data collapse to a single
curve for Pe � 50, but the data for Pe = 10 deviate from the
curve. This supports the validity of the scaling ansatz at least
for Pe � 50 and confirms the relation between GNF and S(q).

IV. QUALITATIVE DESCRIPTION OF GIANT
NUMBER FLUCTUATIONS

To explain the connection between the velocity correla-
tion and GNF observed above, here we develop a linearized
fluctuating hydrodynamic theory for the homogeneous fluid
state of iABP. For active fluids with polar or nematic order,
the linearized hydrodynamics explain GNF as a result of cou-
pling between the density field and order parameter, which is
prohibited in equilibrium systems [2,4,41]. GNF in the fluid
state of iABP, where the order or Goldstone modes are absent,
arise by a similar but different mechanism. In this section, we
sketch their derivation. Following Dean’s method [66,67] and
assuming that the interaction term (pressure gradient) linearly
depends only on the density, we can derive the linearized
equation for the density, current, and polarization fields from
Eqs. (1) and (2) (see Appendix G for derivation):

∂tδρ(r, t ) = −∇ · δJ(r, t ),

m∂tδJ(r, t ) = − 1

ρχ
∇δρ(r, t ) − ζ δJ(r, t ) + ζv0δp(r, t ),

∂tδp(r, t ) = − 1

τp
δp(r, t ) +

√
ρ

τp
ϒ(r, t ), (6)

where p(r, t ) = ∑N
j=1 e[φ j (t )]δ[r − r j (t )] denotes the polar-

ization, and ϒ(r, t ) is the Gaussian white noise with zero
mean and the correlation 〈ϒα (r, t )ϒβ (r′, t ′)〉 = δα,βδ(r −
r′)δ(t − t ′) with α, β = x, y. The coefficient χ is the “com-
pressibility.” From Eq. (6), it is straightforward to calculate the
equal time correlation functions in Fourier space. The longi-
tudinal velocity correlation function ω‖(q) and static structure
factor S(q) are calculated as

ω‖(q) = ω0

1 + (ξ‖q)2
(7)

and

S(q) = S0

1 + (ξ‖q)2
, (8)

respectively (see Appendix G). Here the values at q = 0 are
given by ω0 = v2

0τp/[2(τm + τp)] and S0 = ρζχv2
0/2D. ξ‖ =√

τp/[ρζχ (1 + τm/τp)] is the correlation length. The theory
predicts that ω‖(q) and S(q) are characterized by the same
correlation length ξ‖, which supports numerical results shown
in Figs. 3(a) and 3(d). Furthermore, Eq. (8) means that the
density correlation function behaves as S(q) ∼ q−2 on length
scales smaller than ξ‖. From the argument above Eq. (5), this

yields GNF; �N ∼ 〈N〉1 with the exponent α = 1. The argu-
ment given above elucidates how GNF in our system arise due
to the growth of the spatial longitudinal velocity correlation
caused by persistence motion, and they are confined in the
region of size ξ‖. This also explains the numerical results in
Fig. 4 qualitatively. We note that the linearized hydrodynamic
theory can explain the growth of the correlations of the density
and longitudinal velocity, but it cannot predict the growth
of the transverse velocity or the vortex, as pointed out in
Ref. [38].

Finally, we remark that the prediction of the linear hy-
drodynamic theory is only qualitative. Recall that the static
structure factor S(q) satisfies the scaling relation Eq. (5) with
the exponent β = 4α − 2 and β varies with Pe (cf. the in-
set of Fig. 4). In contrast, the linearized theory predicts the
Ornstein-Zernike form with the fixed β(= 2). Also, S(q) ob-
tained numerically is larger than predicted by the linearized
theory at small wave numbers (see Appendix G). These ob-
servations suggest that nonlinear coupling of the fluctuations
between different hydrodynamic modes is at play. Further-
more, as shown by the blue dashed line in Fig. 3(c), the fit
by theoretical prediction of ξ‖ [below Eq. (G42)] deviates
from the numerical data. Note that, in the small M limit, our
theoretical prediction for ξ‖ is reduced to ξ‖ ∝ Pe1/2 obtained
theoretically for overdamped ABP [38]. Somehow the fit by
ξ‖ ∝ Pe1/2 [dotted line in Fig. 3(c)] works better than our
theoretical prediction. More quantitative assessments of these
results are left for feature work.

V. SUMMARY

In this paper, we studied the growing density or number
fluctuations in the disordered homogeneous phase of ABP for
a wide range of Péclet numbers. It was possible by introducing
the inertia to the original overdamped ABP model, which
suppresses MIPS and generates the disordered homogeneous
fluid. This system is ideal for studying the inherent nonequi-
librium fluctuations unimpeded by MIPS. We first confirmed
that the spatial velocity correlation has two distinct corre-
lation lengths, ξ‖ and ξ⊥, corresponding to the longitudinal
and transverse modes, even at a relatively low density. ξ⊥
corresponds to the size of vortex patterns, which is reminis-
cent of active turbulence in the simple spherical active matter
[39]. ξ‖ is longer than ξ⊥ and grows with the Péclet number.
The growing longitudinal velocity correlation is related to the
spatial correlation of the density fluctuation or the structure
factor S(q). We found that S(q) grows at small wave numbers
with Péclet numbers and has the same characteristic length
as the longitudinal velocity correlation function. The large
density fluctuations in the wave vector space is nothing but
the large number fluctuations, or GNF, in the real space. We
measured the number fluctuation �N in a sub-box of the size
� and showed that it grows as �N ∼ 〈N〉α with the exponent
α > 0.5. The exponent α increases monotonically with Péclet
number. The largest sub-box size below which we observe
GNF agrees with ξ‖. These facts yield a scaling relation for
S(q) characterized by ξ‖ and α. Our results provide a coherent
picture of the origin of GNF observed in ABP. We address that
the origin of GNF here is similar but strictly different from
GNF observed in ordered active fluids [42,63]. In the ordered
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active fluids such as the Vicsek model, the active nematic
[5,60], or the self-propelled rods [58], GNF are understood
as the “infection” of Goldstone modes of the ordered phase
to the density field [2,4,40,41]. In our model, however, the
system is globally disordered, and there is no Goldstone mode.
Instead, the large spatial velocity correlation yields GNF. We
also showed that our results can be captured by a linearized
hydrodynamic theory qualitatively but not quantitatively. A
quantitatively valid theoretical treatment would require an
analysis that fully considers nonlinear couplings of fluctua-
tions. Our results suggest that the anomalously large density
fluctuations should be universally and ubiquitously present in
various active matter systems, even without explicit global
orders and phase separation.
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APPENDIX A: SYSTEM SIZE DEPENDENCE
OF PHASE BEHAVIOR

In Fig. 1, we have shown the “phase diagram” in (M, Pe)
space and the phase boundary between the MIPS and homoge-
neous phase. We have chosen a relatively large simulation size
of N = 4 × 104 because the phase boundary is sensitive to the
system size. In Fig. 5, we show the phase diagram obtained
from the smaller system N = 1 × 104. The red-lined panels
are configurations for the parameters in which the system
undergoes MIPS at a larger system size of N = 4 × 104, as

1 10 20 30 40 50 60 70 80 M

Pe

1

50

100

200

300

400

500

FIG. 5. The “phase diagram” of iABP for the system size N =
1 × 104. Each panel is the snapshot of particle configuration for
corresponding parameters (M, Pe). For the parameters indicated by
the red-lined panels, the system undergoes MIPS for larger system
size N = 4 × 104.

shown in Fig. 1 of the main text. Furthermore, Fig. 5 shows
that MIPS disappears at very large Pe (� 500) in the small
system. This re-entrant transition is reminiscent of the results
shown by Mandal et al. [43], in which the inertia of both
the position and the rotation (of the active noises) as well as
the thermal noise are taken into account. We address that the
re-entrance observed in our current model is the artifact due
to the small system size.

APPENDIX B: CALCULATION OF COARSE-GRAINED
DENSITY, VELOCITY, AND VORTICITY FIELDS

We have shown the coarse-grained density, velocity, and
vorticity fields in Fig. 2 of the main text. These quantities are
calculated as follows. The local density ρ(r) is obtained by
averaging the number of particles in a circle with a radius of
3σ placed on every node of a square-lattice with the lattice
constant σ . The velocity field v(r) was obtained by taking the
Gaussian-weighted average in a circle with a radius of 3σ .
The value of the variance of the Gaussian function is chosen
in such a way that the Gaussian function is 0.1 at r = 3σ .
The vorticity field �(r) = ∂xvy − ∂yvx is calculated as �(r) �∑

cell v(r) · δr/δScell, a line-integral along the circumference
of a square cell with a side length 0.25σ . δScell is the area of
the cell.

APPENDIX C: VELOCITY CORRELATION
FUNCTION IN REAL SPACE

In Fig. 6(a), we show the velocity correlation function in
real space [34,35], that is defined by

C(r) = 1

N

〈∑
j �=k

v j · vkδ(r − r j + rk )

〉
. (C1)

This is the Fourier transformation of ω(q) = ω‖(q) + ω⊥(q)
introduced in the main text. One observes that the spatial
velocity correlation grows as Pe increases in the real space.
We fit the data by a function C(r) = Ar−1/2e−r/λ, which is
the Fourier transformation of the Ornstein-Zernike function
at large r [68]. The dashed lines in Fig. 6(b) are fits by this
function. The fitting range is chosen as r > 5 for all Pe’s. The
triangle symbols in Fig. 6(b) represent the correlation length
λ that is found by the fitting of C(r). We find that λ � ξ⊥
and C(r) is dominated by the transverse part. This is natural
because ξ⊥ � ξ‖ as seen in Fig. 6(b).

APPENDIX D: ENERGY SPECTRUM AND
VELOCITY DISTRIBUTION

In the main text, we observed the development of the
vortex structures whose spatial patterns are reminiscent of
the turbulence. In the standard inertial turbulence of fluids
at high Reynolds numbers, the fingerprint of the turbulence
is the universal scale-free behavior of the energy spectrum,
known as the Kolmogorov law [69]. A similar power law is
also found in the energy spectrum in various active matter
systems [7,8,46–54]. Such behaviors are aptly called active
turbulence. However, the exponent of the power law depends
on systems. Little is known about the universality of active
turbulence. Here we show the energy spectrum of the iABP
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FIG. 6. (a) The velocity correlation function in the real space. The mass is fixed at M = 80. The dashed lines are fits by C(r) = Ar−1/2e−r/λ.
(b) The correlation lengths of the velocity correlation function. The triangle symbols are the correlation length obtained from C(r). The circles
and diamonds are ξ‖ and ξ⊥ shown in Fig. 3(c) in the main text. The dotted line is a fit by ξ‖ ∝ Pe1/2.

model studied in the main text. In two dimensions, the en-
ergy spectrum is related to the velocity correlation function
ω(q) = ω‖(q) + ω⊥(q) by

E (q) = 2πqω(q). (D1)

In Fig. 7(a), the energy spectra E (q) for several Pe’s at M =
80 are shown. One observes a faint sign of the power law
with the amplitudes increasing with Pe at intermediate wave
numbers at q � 0.1. A crude estimate of the exponent γ of the
power law E (q) ∼ q−γ is approximately equal to 0.6, which
is much smaller than values reported in the past [7,8,46–54].

Recently, the non-Gaussianity of the velocity distribution
has been reported in ABP and the active Ornstein-Uhlenbeck
particles (AOUP) at high densities and high Pe [39,70]. We
evaluated the velocity distribution to check if such deviation
is also observed for low densities. In Fig. 7(b), we show the

velocity distribution for Pe = 1 and 200 at M = 80. The solid
lines are the corresponding Gaussian distribution defined by

P(v) =
√

M

2πTkin
exp

(
− Mv2

2Tkin

)
, (D2)

where Tkin = M〈v2
x + v2

y 〉/2 is the kinetic temperature. For
both Pe’s, the observed distribution functions are well fitted by
the Gaussian, as in other systems at turbulent states [8,47,53].

APPENDIX E: DENSITY DEPENDENCE
OF SPATIAL CORRELATIONS

In the main text, we showed spatial correlation functions
only at ρ = 0.5. However, these large spatial correlations exist
even at more low densities. Figure 8 represents spatial correla-
tion functions for ρ = 0.3, 0.4, and 0.5. We confirm existence
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FIG. 7. (a) The energy spectrum E (q) for Pe = 50, 100, and 200 as a function of q. The mass is fixed at M = 80. The black broken lines
of q−0.6 and q0.6 are guides for the eyes. (b) The velocity distribution function P(v) for M = 80. The empty circles with blue and orange edge
colors denote the numerical results for Pe = 1 and 200, respectively. The solid lines are fits by the Gaussian distribution.
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FIG. 8. Density dependence of spatial correlation functions at Pe = 200. The mass is fixed at M = 80. (a) The longitudinal velocity
correlation function, (b) transverse velocity correlation function, and (c) static structure factor for ρ = 0.3, 0.4, and 0.5. All data are from the
simulation with N = 4 × 104.

of large correlations for all quantities, longitudinal velocity,
transverse velocity, and density correlation functions. Hence,
we conclude that the results in the main text are insensitive to
the densities.

APPENDIX F: DENSITY CORRELATION IN MIPS PHASE

It is known that the system undergoing the phase sepa-
ration with smooth surfaces develops the peak in the static
structure factor characterized by a power law, S(q) ∝ q−(d+1)

in the low-wave-number regime. This is called Porod’s law
[55,56]. Porod’s law is also observed in MIPS phase of active
matter [22,26]. We show that Porod’s law is also observed for
iABP when the system undergoes MIPS. Figures 9(a)–9(c)
are snapshots of the system undergoing MIPS for several M’s.
The colors represent the local density calculated by averaging
the number of particles in a circle with a radius of 3σ . For the
smallest inertia, M = 1, the phase boundary is sharp, and their
surface is smooth. When M = 30 and 80, on the other hand,
the phase boundaries become diffusive, and the surfaces are
blurred. This behavior might be related to the difference in
the (effective) temperatures between the dense and gas phase
in the presence of inertia [43]. In Fig. 9(d), we show the
static structure factor S(q) for M = 1, 30, and 80. For M = 1,
Porod’s law, i.e., S(q) ∝ q−3, is clearly observed at low q’s
[22,26]. For the higher inertia, M = 30 and 80, S(q) deviates
from Porod’s law, although the heights of S(q) at low q’s are
unaltered. This behavior should be the consequence of the
change in the sharpness of the phase boundaries.

In any case, we address that the development of the peak of
S(q) at low q’s reported in the main text is distinct from trivial
Porod’s law of MIPS.

APPENDIX G: FLUCTUATING
HYDRODYNAMIC DESCRIPTION

In Sec. IV of the main text, we employed an effective
hydrodynamic description to elucidate the qualitative mecha-
nism of the large density fluctuations or GNF. Here, we derive
an effective hydrodynamic equation for iABP by following
Dean’s method [66,67], and calculate the longitudinal velocity
correlation function and static structure factor.

1. Derivation of the fluctuating hydrodynamic equations

Our stating point is the equation of motion for the iABP in
two dimensions:

dr j (t )

dt
= v j (t ), (G1)

m
dv j (t )

dt
= −ζv j (t ) −

N∑
k=1

∇ jU (r jk ) + ζv0e[φ j (t )], (G2)

dφ j (t )

dt
=

√
2

τp
η j (t ). (G3)

Here η j (t ) is a white noise that satisfies 〈η j (t )〉 = 0 and
〈η j (t )ηk (t ′)〉 = δ j,kδ(t − t ′) and U (r) is the pairwise po-
tential. We assume that ∇U (0) = 0 for simplicity. e(φ) =
(cos φ, sin φ) is the unit vector pointing to the direction of the
active random force. Hydrodynamic fields of this system are
the number density

ρ(r, t ) =
N∑

j=1

δ[r − r j (t )], (G4)

density current

J(r, t ) =
N∑

j=1

v j (t )δ[r − r j (t )], (G5)

and polarization

p(r, t ) =
N∑

j=1

e[φ j (t )]δ[r − r j (t )]. (G6)

By differentiating these hydrodynamic fields with respect to
time, we obtain the following set of equations. For the density,
it is the continuum equation;

∂tρ(r, t ) = −∇ · J(r, t ). (G7)

For the current and the polarization fields,

m∂t J(r, t ) = − ∇ · Mvv(r, t ) − ζJ(r, t )

− ρ(r, t )
N∑

k=1

∇U (r − rk ) + ζv0 p(r, t ), (G8)
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FIG. 9. Snapshots in MIPS phases for Pe = 500, (a) M = 1, (b) M = 30, and (c) M = 80. The color bar indicates the magnitude of density.
The system size is N = 4 × 104. (d) The static structure factor S(q) for each parameter.

∂t p(r, t ) = −∇ · [Mev(r, t )]T −
N∑

j=1

de[φ j (t )]

dt
δ[r − r j (t )],

(G9)

where tensors Mvv(r, t ) and Mev(r, t ) are defined by

Mvv(r, t ) := m
N∑

j=1

v j (t )v j (t )δ[r − r j (t )], (G10)

Mev(r, t ) :=
N∑

j=1

e[φ j (t )]v j (t )δ[r − r j (t )]. (G11)

These tensors can be rewritten in terms of hydrodynamic
fields, following the procedure discussed in Ref. [67], as

Mvv(r, t ) = mJ(r, t )J(r, t )

ρ(r, t )
, (G12)

Mev(r, t ) = p(r, t )J(r, t )

ρ(r, t )
. (G13)

The potential part in the right-hand side of Eq. (G8) can be
expressed as

N∑
k=1

∇U (|r − rk|) = ∇ δF[ρ(·, t )]

δρ(r, t )
, (G14)

where the functional F[ρ] is defined by

F[ρ(·, t )] := 1

2

∫
V

d2r
∫

V
d2r′ ρ(r, t )ρ(r′, t )U (|r − r′|).

(G15)
Substituting these expressions, Eq. (G8) becomes

m∂t J(r, t ) = − ∇ ·
[

mJ(r, t )J(r, t )

ρ(r, t )

]
− ζJ(r, t )

− ρ(r, t )∇ δF[ρ(·, t )]

δρ(r, t )
+ ζv0 p(r, t ). (G16)

Next, we derive the equation for polarization. The time
derivative of the unit vector e[φ j (t )] in right-hand side of
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Eq. (G9) is given by

de[φ j (t )]

dt
=

√
2

τp

[− sin φ j (t )
cos φ j (t )

]
◦ η j (t )

= − 1

τp
e j (t ) +

√
2

τp

[− sin φ j (t )
cos φ j (t )

]
• η j (t ), (G17)

where the symbols ◦ and • denote the Stratonovich and Itô
product, respectively. We have adopted the Itô representation
for the multiplicative noise to ensure that the average of the
noise is zero [71]. Using Eq. (G17), Eq. (G9) is rewritten as

∂t p(r, t ) = − 1

τp
p(r, t ) − ∇ ·

[
J(r, t )p(r, t )

ρ(r, t )

]
+ �(r, t ),

(G18)
where the noise term �(r, t ) is defined as

�(r, t ) :=
√

2

τp

N∑
j=1

[− sin φ j (t )
cos φ j (t )

]
• η j (t )δ[r − r j (t )].

(G19)

We rewrite this noise as

�(r, t ) =
√

ρ(r, t )

τp
ϒ(r, t ), (G20)

which satisfies 〈ϒα (r, t )〉 = 0 and

〈ϒα (r, t )ϒβ (r′, t ′)〉 = δα,βδ(r − r′)δ(t − t ′). (G21)

We can prove Eq. (G21), by calculating the each component
of noise correlations and compare the results from Eq. (G19).
For example, the (x, x) component is calculated as

〈�x(r, t )�x(r′, t ′)〉 = 2

τp

N∑
j=1

〈sin2 φ j (t )〉δ[r − r j (t )]

× δ(r − r′)δ(t − t ′). (G22)

Using Eq. (G3), the expectation value of sin2 φ j (t ) can be
obtained as

〈sin2 φ j (t )〉 = 1
2 − 1

2 cos[2φ j (0)]e−4t/τp . (G23)

The summation
∑N

j=1 cos[2φ j (0)] becomes 0 in the limits of
N → ∞ because the initial value of angles φ j (0) is com-
pletely random. Hence, in the limit of N → ∞, Eq. (G22)
becomes

〈�x(r, t )�x(r′, t ′)〉 = ρ(r, t )

τp
δ(r − r′)δ(t − t ′). (G24)

The (y, y) component of Eq. (G19) is also given by Eq. (G24)
in the limit of N → ∞. The correlation function between
x and y component of Eq. (G19) becomes 0 by using the
relation

〈sin φ j (t ) cos φ j (t )〉 = 1
2 sin[2φ j (0)]e−4t/τp . (G25)

It is noteworthy that the noise correlation for the polarization
field is identical to those of another, or simpler, active matter
model known as the AOUP model [72], in the continuum
limit.

Below, we summarize the derived fluctuating hydrody-
namic equation for iABP;

∂tρ(r, t ) = −∇ · J(r, t ), (G26)

m∂t J(r, t ) = −∇ · P(r, t ) − ζJ(r, t )

− ∇ ·
[

mJ(r, t )J(r, t )

ρ(r, t )

]
+ ζv0 p(r, t ), (G27)

∂t p(r, t ) = − 1

τp
p(r, t ) − ∇ ·

[
J(r, t )p(r, t )

ρ(r, t )

]

+
√

ρ(r, t )

τp
ϒ(r, t ), (G28)

with the pressure tensor P(r, t ) defined by

∇ · P(r, t ) := ρ(r, t )∇ δF[ρ(·, t )]

δρ(r, t )
. (G29)

Now let us consider the linearization of the fluctuating
hydrodynamics of iABP so that we can derive the correla-
tion functions. We assume that the pressure tensor Eq. (G29)
depends only on the density field. To the linear order in
the density fluctuation δρ(r, t ) = ρ(r, t ) − ρ in the hydrody-
namic limit [38], we have

∇ · P(r, t ) � 1

ρχ
∇δρ(r, t ). (G30)

Here χ is a “compressibility” defined by χ−1 :=
ρ∂P/∂ρ|ρ(r)=ρ where P is a diagonal component of P(r, t ).
Linearizing Eqs. (G26)–(G28) and using Eq. (G30), we arrive
at

∂tδρ(r, t ) = −∇ · δJ(r, t ), (G31)

m∂tδJ(r, t ) = − 1

ρχ
∇δρ(r, t ) − ζ δJ(r, t ) + ζv0δp(r, t ),

(G32)

∂tδp(r, t ) = − 1

τp
δp(r, t ) +

√
ρ

τp
ϒ(r, t ). (G33)

Note that the equation for the polarization fluctuation
Eq. (G33) is a simple Ornstein-Uhlenbeck process and, thus,
we can regard δp(r, t ) as a colored noise of Eq. (G32). In other
words, Eq. (G32) is written as

m∂tδJ(r, t ) = − 1

ρχ
∇δρ(r, t ) − ζ δJ(r, t ) + �act (r, t ),

(G34)

with an active noise �act (r, t ) := ζv0δp(r, t ) whose correla-
tion is written as

〈
�act

α (r, t )�act
β (r′, t ′)

〉 = v2
0ζ

2ρ

2
e−|t−t ′ |/τpδα,βδ(r − r′).

(G35)

In the limit of τp → 0, the active noise becomes white noise
and the fluctuation dissipation relation is recovered.
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FIG. 10. (a) Numerical data and the fit by the theory [second equation of Eq. (G40)] of the longitudinal correlation length ξ‖ [identical to
Fig. 3(c) in the main text]. The inset is the log-log plot of the same data. The blue dots represent the numerical values. The blue dashed line
is the fitting curve of the second equation of Eq. (G40). The fitting parameter are found to be bτv/σ

2 � 18.8. The black dotted line represents
the prediction from the overdamped ABP, ξ‖ ∝ Pe1/2. Panel (b) is the numerical results of the static structure factor. Dashed lines represent the
theoretical prediction of Eq. (G42) drawn by using the fitting parameter obtained from panel (a).

Recently, Marconi et al. [45] has derived similar fluctuat-
ing hydrodynamic equations for the underdamped ABP and
AOUP model starting from the BBGKY hierarchy.

2. Velocity and density correlation functions

From Eqs. (G31) and (G34), we can easily calculate the
longitudinal velocity and density correlation function. By
Fourier transforming in time and space, Eq. (G31) and (G34)
are written as

−iωδρ̌(q, ω) = −iqδJ̌‖(q, ω), (G36)

−iωδJ̌‖(q, ω) = −iγ bqδρ̌(q, ω) − γ δJ̌‖(q, ω)

+ 1

m
�̌act

x (q, ω), (G37)

where γ = ζ/m and b = 1/(ρζχ ). The variables with check
symbol X̌ (q, ω) represent the Fourier transformed quantities
with respect to r and t . By eliminating the density field from
Eq. (G37) and using the Wiener-Khinchin theorem, we obtain
the dynamical longitudinal velocity correlation function in
Fourier space:

ω‖(q, ω) = 1

N

∫ ∞

−∞
dt 〈δJ̃‖(q, t )δJ̃‖

∗
(q, 0)〉eiωt

= v2
0γ

2Dω2

[(ω2 − γ bq2)2 + γ 2ω2](ω2 + D2)
, (G38)

where D = 1/τp and the variables with tildes, X̃ (q, t ), are the
Fourier transformed variables with respect to r. By integrat-
ing Eq. (G38) over ω, we obtain the equal time correlation
function,

ω‖(q) = 1

2π

∫ ∞

−∞
dω ω‖(q, ω) = ω0

1 + (ξ‖q)2
, (G39)

with

ω0 := v2
0γ

2(D + γ )
= v2

0τp

2(τm + τp)
,

ξ 2
‖ := bγ

D(D + γ )
= bτp

1 + τm/τp
. (G40)

Here τm = 1/γ is the inertial relaxation time. Next, we cal-
culate the density correlation function. Using Eq. (G36), the
dynamical structure factor is written as

S(q, ω) = q2

ω2
ω‖(q, ω)

= v2
0γ

2Dq2

[(ω2 − γ bq2)2 + γ 2ω2](ω2 + D2)
. (G41)

By integrating over ω, we obtain the static structure factor
given by

S(q) = 1

2π

∫ ∞

−∞
dω S(q, ω) = S0

1 + (ξ‖q)2
(G42)

with

S0 := v2
0

2bD
= 1

2
v2

0τpζρχ = ρTeffχ, (G43)

where we defined the effective temperature by Teff :=
v2

0τpζ/2. Both ω‖(q) and S(q) are of the Ornstein-Zernike
type are characterized by a single correlation length ξ‖.

3. Comparison of the linearized theory with numerical results

Here we quantitatively compare simulation results to theo-
retical prediction. The filled circles in Fig. 10(a) are the same
data for ξ‖ presented in Fig. 3(c) in the main text. Recall that
ξ‖’s are obtained by fitting ω‖(q) with the Ornstein-Zernike
function. We fit the data by our theoretical prediction, the
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second equation of Eq. (G40), (dashed lines) using bτv/σ
2 =

18.8 as a fitting parameter. The dotted line is ξ‖ ∝ √
Pe

which was predicted by the overdamped ABP in Refs. [37,38]
and works better than our theoretical prediction. However,
since the differences between the two predictions are not
large, it is early to decide which scaling works better. Using
the fitting parameter obtained from Fig. 10(a), we compare

the simulated S(q) with theoretical prediction, Eq. (G42).
Substantial discrepancies between simulation data and theo-
retical prediction can not be remedied by a slight change of
the fitting parameter bτv/σ

2 and, therefore, implies that the
nonlinear coupling of the fluctuations, which are completely
absent in our theoretical analysis, is not negligible at large
Pe’s.
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