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Oscillation quenching in Stuart-Landau oscillators via dissimilar repulsive coupling

Subhasanket Dutta ,1 Omar Alamoudi ,2,4 Yash Shashank Vakilna,2 Sandipan Pati ,2,* and Sarika Jalan 1,3,†

1Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore-453552, India
2Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, Texas 77225, USA

3Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore,
Khandwa Road, Simrol, Indore-453552, India

4Biomedical Engineering Program, King Abdulaziz University, Jeddah, Saudi Arabia

(Received 26 June 2022; accepted 4 November 2022; published 2 February 2023)

Quenching of oscillations, namely, amplitude and oscillations death, is an emerging phenomenon exhibited
by many real-world complex systems. Here, we introduce a scheme that combines dissimilar couplings and
repulsive feedback links for the interactions of Stuart-Landau oscillators and analytically derive the conditions
required for the amplitude death. Importantly, this analysis is independent of the network size, presents a
generalized approach to calculate the stability conditions for various different coupling schemes, and befits
nonidentical oscillators as well. Last, we discuss the similarities of the quenching of oscillations phenomenon
with the postictal generalized Electroencephalogram (EEG) suppression in convulsive seizures.
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I. INTRODUCTION

Coupled Stuart-Landau (SL) oscillators can display a wide
range of emerging phenomena, such as synchronization, pat-
tern formation, quenching of oscillations, etc. In particular,
quenching of oscillations arising due to coupling between
the pairs of oscillators has drawn considerable attention from
the nonlinear dynamics community due to the widespread
occurrence of this phenomenon in many natural systems. For
example, in laser systems, various types of couplings among
the laser components can lead to the quenching of oscilla-
tion [1]. In neurological systems, oscillation death has been
proposed to be the root cause of various neurodegenerative
diseases and has been modeled using coupled nonlinear os-
cillators [2]. A few other systems manifesting quenching of
oscillations are atmosphere [3], electronic circuits [4], etc.

There have been persistent efforts to realize the quenching
of oscillations in various nonlinear model systems, among
which coupled Stuart-Landau oscillators turn out to be apt for
understanding the origin and implications of such behaviors.
Quenching of oscillations in coupled Stuart-Landau oscilla-
tors are primarily achieved in three manners, by introducing a
parameter mismatch [5], communication delays [6], and con-
jugate coupling [7]. Few experimental setups incorporating
these designs have successfully achieved oscillations quench-
ing or the death state [8]. A death state of an oscillator can
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be classified into two major categories: amplitude death (AD)
and oscillation death (OD). Amplitude death corresponds to
all the oscillators settling down to the same fixed point located
at the origin. In oscillation death, oscillators settle at different
fixed points or the same fixed point away from the origin
[6] (Fig. 1). The dynamical equation for an uncoupled SL
oscillator can be written by

ż(t ) = (a2 − |z(t )|2)z + iωz. (1)

Here z is a complex variable depicting the dynamical state of
an oscillator with ω being its intrinsic frequency. The oscilla-
tor has one unstable fixed point acting as a center for a stable
circular limit cycle of radius a.

A set of identical SL oscillators (ωi = ω j) is unable to
show quenching of oscillation with a simple diffusive cou-
pling through the z variable. However, different coupling
schemes play different governing roles in determining steady-
state behaviors. For instance, the oscillation death state is
achieved for the coupling term being present only in the real or

FIG. 1. xi vs t plot depicting three different dynamical states for
two randomly selected nodes form a network of N = 1000 [Eq. (3)].
Lorentzian frequency distribution parameters are ω0 = 2.0 and � =
0.30.
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imaginary part of z [5]. In fact, there could be a transition from
the oscillatory state (OS) to AD when z is coupled diffusively
with its conjugate z∗ [7]. Moreover, in the identical oscillators,
repulsive feedback coupling [9,10] and diffusive coupling in
dissimilar (also referred to as conjugate) variables [2,11] can
steer AD and OD. In nonidentical oscillators, frequency mis-
match and coupling strength are enough to bring the oscillator
death, even for simple diffusive coupling via the z variable.
Nonidentical SL oscillators coupled through diffusive cou-
plings on small-world networks have been shown to support
OD [12,13], and on scale-free networks have been shown to
yield a complete AD state [14]. Lately, the first-order abrupt
transition to AD, popularly referred to as explosive death,
has become a topic of great interest due to the theoretical
curiosity fueled by observations of the phenomenon’s exis-
tence in many real-world systems. The first-order transition
to AD can be successfully induced in coupled oscillators via
an environmental coupling scheme in a single layer [15,16] as
well as in multiplex networks [17,18].

Further, there have been persistent efforts to model large-
scale brain networks using coupled oscillators on networks
[19–22]. For example, few previous studies have consid-
ered simple linear phase oscillators to understand various
emerging dynamical features of brain networks [19]. A sim-
ple brain network model consists of firing neurons acting
as nodes connected through synapses defining interactions
between the pairs of neurons. Dynamical behaviors of an
individual neuron/node were first studied by the Hodgkin-
Huxley model, explaining the initiation and propagation of
action potential in neurons [23]. Subsequently, other mod-
els like Fitzhugh-Nagumo (explaining spiking in neurons)
and Hindmarsh-Rose (explaining spiking, bursting in neu-
rons) [24,25] were discovered. However, in large-scale brain
networks, the collective behavior of the nodes was consid-
ered to be quite low dimensional, and information about the
dynamical evolution of each neuron was shown to be rela-
tively irrelevant [26,27]. A well-known model representing
large-scale brain dynamics is the neuronal mass model, which
presents an ensemble approach in which the dynamics of a
patch of the cortex (a local population of neurons) are repre-
sented by a set of differential equations reduced in dimension
[26]. Further advances in this field led to the discovery of
more realistic models, such as the whole brain model and the
brain networks model, where brain areas were treated as nodes
in a coupled dynamical system. These patches of the cortex
are considered as units or nodes coupled with each other
according to their anatomical connectivity (edge) patterns.
Simplified models such as the Kuramoto oscillator [28] and
SL oscillators [22,29,30] have been used in a similar fashion
to portray large-scale brain dynamics. Different models are
constructed such that they can explain the phenomenon of
interest [27,28].

Synchronized activities among the different brain regions
have been associated with the onset of the seizure from the
preseizure region [19]. It is common knowledge that soon
after the generalized tonic-clonic seizures, the brain state
exhibits a transition to an isoelectric EEG state, with the
existence of a profound scalp EEG voltage attenuation (<10
µV), referred to as the postictal generalized EEG suppres-
sion (PGES) [20,21]. While we do not claim that the model

presented here provides a mechanism behind the occurrence
of PGES in the human brain, the phenomenon depicted by
this model bears a close resemblance to PGES. Furthermore,
to make the modeling of PGES more realistic, for the coupling
matrix of Eq. (3), we have considered the functional corre-
lation matrices generated for the EEG time series data from
brain during seizure.

First, we develop a theoretical framework to analyze am-
plitude death in coupled SL oscillators on complex networks.
Earlier theoretical works on SL oscillators pertain to the
linear stability analysis for direct mean-field diffusive cou-
pling [31] and diffusive conjugate coupling [7] on globally
coupled and star networks [32]. We consider SL oscillators
with dissimilar repulsive feedback couplings and develop an
analytical approach that is independent of the size of the
underlying coupling network. The method is a generalized
one as it facilitates calculations of necessary and sufficient
conditions to attain amplitude death for other coupling forms.
The key lies in the fact that the analysis uses a generalized
form of coupling matrix, providing it an edge over previously
existing frameworks. Then, we numerically study the dynam-
ical behaviors of this setup on various network architectures,
namely, globally coupled networks, regular lattice networks,
Erdős-Rényi (ER) random networks. Finally, we numerically
analyze the results of Eq. (1) with the functional coupling
matrices generated from real time series EEG data of patients,
and discuss the similarity between the phenomenon depicted
by the model with PGES.

II. MODEL

Dynamical evolution of an uncoupled SL oscillator is gov-
erned by Eq. (1). Upon substituting z = x + iy, the resulting
equation is

ẋk = Px
k , ẏk = Py

k , (2)

where

Px
k = (

1 − x2
k − y2

k

)
xk − wkxk,

Py
k = (

1 − x2
k − y2

k

)
yk + wkyk .

An introduction of the dissimilar repulsive feedback coupling
between a pair of connected nodes through both the x and y
coordinates results in the following equation:

ẋk = Px
k − εx

N

N∑
j=1

Ajk (y j + xk ),

ẏk = Py
k − εy

N

N∑
j=1

Ajk (x j + yk ). (3)

Here Ajk is the adjacency matrix representing the underlying
network structure. For an unweighted network, its elements
take the value 1 when jth and kth nodes are connected, and
0 otherwise. Whereas, for a weighted network, the elements
of the adjacency matrix are represented by the interaction
weights. For identical oscillators, it has been found that
an introduction of the similar diffusive coupling does not
yield oscillator death (see Appendix A 1), whereas dissim-
ilar repulsive feedback links bring oscillator death. Further,
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TABLE I. Amplitude (A) and oscillation (E ) death measures for
different states.

Name A E

AD = 0 = 0
OD = 0 �= 0
OS �= 0 �= 0

we consider different cases with the nodes having different
coupling schemes and couplings being in only one dimen-
sion. We consider the weighted interaction matrix generated
from the postseizure data. First, we model the eight in-
tracranial channels of the brain as nonidentical Stuart-Landau
oscillators on a directed weighted network. The dynamical
equation of such nodes can be given by Eq. (3) with ω cho-
sen from a Lorentzian frequency distribution with parameters
corresponding to the frequency band. Further, we study the
dynamics of each node and the network as a whole.

Coupling of a SL oscillator with another SL oscillator may
either give birth to additional fixed points than those that exist
for the single uncoupled oscillator, or may change the stability
properties of the existing fixed point(s). In the following we
define an order parameter which quantifies the variance of
fluctuation of the dynamical variables over a time span, which
tends to 0 for both OD and AD cases:

r = 1

N

N∑
i=1

(〈xi〉max,t − 〈xi〉min,t ), E =
∑N

i=1 |zi|2
N

.

For numerical purposes, if 0 < E < 0.001 and 0 < r <

0.001, we infer that the system has reached the state of AD
(Table I).

Further, the different network architectures to define pair-
wise interaction matrices are constructed as follows. In a
regular one-dimensional (1D) ring lattice, each node is con-
nected to its k neighbors. To produce an ER random network
with an average degree n/N , we randomly connect n edges
out of the possible N (N − 1)/2 edges [33]. The scale-free
network here is created via the Barabasi-Albert model in the
following manner: starting with an initial mo number of nodes,
at each time step, one node with m connections(m < mo) is
added. The connection probability of this new node getting
attached to an existing node is proportional to the degree of
that node.

III. ANALYTICAL CALCULATION

Let us now provide the mathematical formalism to analyze
the stability of coupled SL oscillators on various setups. First,
we present the generalized characteristic equation for the
coupled SL oscillators on globally coupled networks. There-
after, we consider globally coupled nodes having dissimilar
repulsive feedback couplings and try to solve using the gener-
alized characteristics equation. We further mix various kinds
of couplings and study the dynamical evolution of the coupled
oscillators for the mixed setup.

At first, let us consider a setup of globally coupled SL
oscillators with a generalized form of the coupling matrix F ,
which can be changed later according to the different setups.

The generalized coupled differential equations for globally
coupled networks of the Stuart-Landau oscillators can be
written as[

ẋk

ẏk

]
=

[(
1 − x2

k − y2
k

)
xk − iωkyk(

1 − x2
k − y2

k

)
xk − iωkyk

]
+ F (x j, xk, y j, yk ).

The corresponding Jacobian matrix takes the form

|Iλ − M|=

⎛
⎜⎝

M1 + F1 . . F1

F2 M2 + F2 . .

Fi . Mi + Fi .

FN . . MN + FN

⎞
⎟⎠,

where Mi = (λ − a1 −ωi

ωi λ − a2
). However, a1, a2, and Fi vary in

accord with the coupling scheme of each node. To deduce
the stability conditions for the AD state, the challenge lies
in solving the characteristic equation for the corresponding
Jacobian matrix (M) given by det(I2Nλ − M ) = 0. Let us first
solve det(I2Nλ − M ) = 0, for which we use the following
lemma.

Matrix-determinant lemma. If X is n × n, and U and V are
n × m matrices,

|X + UV T | = |X | × |Im + V T X −1U |, (4)

where Im is an identity matrix of the dimension m × m and
On×n is a null matrix of dimension n × n.

Proof. To prove this theorem we will expand the determi-
nant as follows: �

|X + UV T |=
∣∣∣∣X + UV T U

On×n Im

∣∣∣∣
∣∣∣∣ In On×m

−V T Im

∣∣∣∣=
∣∣∣∣ X U
−V T Im

∣∣∣∣,∣∣∣∣ X U
−V T Im

∣∣∣∣ = |X | × |I2 + V T X −1U |

using identity for the determinant of block matrices,∣∣∣∣A B
C D

∣∣∣∣ = |D| × |D − CA−1B|. (5)

Next, we apply the following lemma to find out the character-
istic equation and the corresponding eigenvalues. (λI2N − M )
can be written as

(λI2N − M ) = Md + UV T ,

where

Md =

⎡
⎢⎢⎢⎣

M1 0 0 . . .

0 M2 0 0 . .

. . . . . .

. . . . . .

0 0 . . . MN

⎤
⎥⎥⎥⎦,

U =

⎡
⎢⎢⎢⎣

F1

F2

F3

.

.

⎤
⎥⎥⎥⎦, V =

⎡
⎢⎢⎢⎣

I2

I2

I2

.

.

⎤
⎥⎥⎥⎦.
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By using the matrix determinant lemma [Eq. (4)] and
Eq. (5) we obtain

|λIN/2 − M| = |Md | × ∣∣I2 + V T M−1
d U

∣∣
= |Md | ×

∣∣∣∣I2 + V T

(
adj(Md )

|Md |
)

U

∣∣∣∣
= �N

i=1|Mi| ×
∣∣∣∣∣I2 +

N∑
i=1

adj(Mi )Fi

|Mi|

∣∣∣∣∣.
The generalized characteristic equations are given by

�N
i=1|Mi| = 0 and

∣∣∣∣∣I2 +
N∑

i=1

adj(Mi )Fi

|Mi|

∣∣∣∣∣ = 0, (6)

where adj(Mi ) is the adjoint matrix of Mi. What follows is
that the characteristic equation reduces to a determinant of a
2 × 2 matrix which is independent of the size of the network.
Moreover, such a reduction allows this scheme to work even
when nodes are connected through a different form of the
coupling provided each node has the same coupling scheme
separately. Let us consider various different cases as test beds
for the analysis. Note that the simplest case is the one where
identical oscillators are diffusively coupled. This coupling
does not exhibit AD Appendix A 1.

a. Introduction of dissimilar repulsive feedback cou-
pling. First, we consider a system where all nodes are coupled
via dissimilar repulsive feedback. The matrices Mi and Fi

which remain the same for all values of i, can be given by
Mi = (λ − 1 + ε ω

−ω λ − 1 + ε)and Fi = ( 0 ε/N
ε/N 0 ). This setup yields

the following eigenvalues:

λ = 1 − ε ±
√

ε2 − ω2, λ = 1 − ε ± iωo. (7)

The conditions for the origin to be a stable state is satis-
fied for Re[λi] < 0 for all i. Applying this condition, from
Eq. (7) we get that for (i) ε < ω, ε > 1, and (ii) ε > ω,
1 − ε ± √

ε2 − ω < 0 yielding ε < (1 + ω2)/2.
Now we consider a system of identical oscillators with

two kinds of coupling. Some nodes have coupled via repul-
sive dissimilar coupling, whereas others have coupled via
simple diffusive coupling. The dynamical equation for the
simple diffusively coupled nodes can be given by Eq. (A1)
of Appendix A 1, whereas the nodes with the repulsive link
will be governed by Eq. (3). Proceeding similarly to the last
section, the coupling matrices for the nonrepulsive and the
repulsive schemes are given by F1 and F2, respectively. How-
ever, the matrices M1 and M2 remain the same for both types
of nodes. The M1, F1, and F2 matrices are given by M1 =
(λ − 1 + ε ω

−ω λ − 1 + ε), F1 = (−ε/N 0
0 −ε/N ), and F2 = ( 0 ε/N

ε/N 0 ).
Next, if we consider a fraction of n nodes coupled with

other nodes through the repulsive feedback couplings and a
fraction of 1 − n nodes coupled without the repulsive links
(referred to as the regular nodes), for a globally coupled net-
work, the coupling matrix for the regular nodes will be given
by F2 and the coupling matrix corresponding to the repulsive
nodes will be given by F1. Substituting them in Eq. (6) leads
to the following eigenvalues:

λ1,2 = 1 − εn ±
√

ε2n2 − ω2, λ3,4 = 1 − ε ± iω. (8)

FIG. 2. Parameter space plot ω vs ε for a globally coupled net-
work of size N = 1000 consisting of identical oscillators (ωi = ω j =
ω ∀i, j). (a) All nodes having dissimilar repulsive feedback coupling,
(b) with half of the nodes having dissimilar repulsive feedback and
another half with direct diffusive couplings, (c) dissimilar repulsive
feedback coupling via x variable only, and (d) dissimilar repulsive
feedback coupling via y variable only. The solid black lines represent
the transition boundaries calculated numerically, whereas the yellow
line represents the analytical region corresponding to the stable ori-
gin (AD).

The real part of these eigenvalues [Eq. (8)] must be negative
for the amplitude death state to occur, which provides us the
conditions n > 1/ε and ε < (1 + ω2)/2n. Figures 2(a) and
2(b) confirm a perfect match between the numerical results
and theoretical predictions for both the cases.

b. Dissimilar repulsive coupling in x variable. For the
dissimilar repulsive coupling applied only to the x variable,
the dynamics of the corresponding coupled equation will
be governed by ẋk = Px

k − ε
N

∑N
j=1(y j + xk ), ẏk = Py

k . The
parameter space diagram obtained through the numerical cal-
culations consists of AD and OS regions only. We find the
necessary condition for these states to occur using the ex-
pression derived in Eq. (6). The matrices required for the
calculation are M = (λ − 1 + ε ω

−ω λ − 1)and F = (0 ε/N
0 0 ). Substi-

tuting them in Eq. (6) and solving this equation we get the
following eigenvalues:

λ1,2 = 2 − ε ± √
ε2 − 4ω2 − 4ωε

2
,

λ3,4 = 2 − ε ± √
ε2 − 4ω2

2
. (9)

The necessary conditions can be derived from Re[λ1,2 <

0] [Eq. (9)] as ε > 2 and ε < (1 + ω2)/(1 − ω) while ε2 −
4ω2 − 4ωε > 0. From Re[λ3,4 < 0] [Eq. (9)], one gets the
necessary conditions as ε > 2 and ε > 1 + ω2. However,
the condition 2 < ε < 1 + ω2 prevails. This theoretical result
matches with the numerical predictions illustrated in Fig. 2(c).

c. Dissimilar repulsive coupling through the y vari-
able. Upon applying the dissimilar repulsive coupling in only
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the y variable, the dynamical equation could be written as

ẋk = Px
k , ẏk = Py

k − ε

N

N∑
j=1

(x j + yk ).

Again using the same procedure as in the last section, we
analytically confirm a match with the numerical results. Here,
M = (λ − 1 ω

−ω λ − 1 + ε) and F = ( 0 0
ε/N 0).

Solving the generalized characteristic equation for these M
and F values yields the following eigenvalues:

λ1,2 = 2 − ε ± √
ε2 − 4ω2 + 4ωε

2
,

λ3,4 = 2 − ε ± √
ε2 − 4ω2

2
. (10)

For the origin to be stable, we need Re[λ] < 0. There-
fore, from Re[λ1,2] < 0 [Eq. (10)] we derive the conditions
ε > 2 and ε < (1 + ω2)/(1 + ω), and similarly Re[λ1,2] < 0
[Eq. (10)] yields ε > 2 and ε < (1 + ω2). The condition ε <

(1 + ω2)/(1 + ω) is dominant and provides us the governing
equation characterizing the transition between the AD and
OD states, which also matches with the numerical results
[Fig. 2(d)].

d. Nonidentical oscillators. Next, we consider the case of
nonidentical oscillators, i.e., ωi �= ω j . For Lorentzian intrin-
sic frequency distribution given by g(ω) = �

π[(ω−ωo)2+�2] , one
obtains the following characteristic equation:

1

ε2
=

[ ∫ +∞

−∞

λ − 1 + ε

(λ − 1 + ε)2 + (ω)2
g(ω)dω

]2

+
[ ∫ +∞

−∞

ω

(λ − 1 + ε)2 + (ω)2
g(ω)dω

]2

which can further be written as 1
ε2 = ∫ +∞

−∞
1

λ−1+ε+iω g(ω)

dω
∫ +∞
−∞

1
(λ−1+ε)−i(ω) g(ω)dω. The eigenvalues of this equa-

tion then can be given by

λ = 1 − ε + � +
√

ε2 − ω2,

which yields the following condition for stability of the origin:

If � > 1, ε > 1, and if � < 1, 1 < ε <
(1 − �)2 + ω2

o

2(1 − �)
.

(11)
As seen from Fig. 3(b), the numerical results are in agreement
with the analytical results [Eq. (11)]. The time series of two
nodes for a system(N = 1000) with Lorentzian distribution
(ωo = 2.0 and � = 0.33) is shown in Fig. 1.

e. Bifurcation diagram. Figure 3(a) is drawn using XP-
PAUTO software [34] depicting two types of bifurcation. The
first one is reverse Hopf bifurcation (HB) where a stable origin
transforms into an unstable origin along with two stable limit
cycles as the coupling strength decreases. The second one
is pitchfork bifurcation (PB) where a stable origin becomes
unstable and two more symmetric fixed points come into
existence as coupling strength increases.

FIG. 3. (a) Bifurcation plot for dissimilar repulsive coupling via
x variables for identical oscillators (ω = 2.0); red dashed line corre-
sponds to the stable limit cycle, solid black line represents the stable
fixed point, and dashed black line represents an unstable limit cycle.
(b) Parameter space � vs ε plot for nonidentical globally coupled
networks of size N = 1000 and Lorentzian frequency distribution
with ω0 = 2.0. The solid black and yellow dashed lines represent
the transition boundaries calculated numerically and analytically,
respectively.

IV. NUMERICAL RESULTS FOR VARIOUS
MODEL NETWORKS

Next, we analyze the dynamical behaviors of coupled SL
oscillators for this setup on various network architectures.
We investigate how a particular network structure affects the
onset of the oscillator death by considering four different net-
work architectures apart from the globally coupled network,
namely, the regular 1D lattice, ER random, small-world, and
scale-free networks.

Among these, the scale-free and D lattices have the same
lowest critical coupling strength at which AD occurs. While
the small-world network has a slightly more critical cou-
pling value as compared to the D lattice, the ER random
network achieves AD at a higher critical coupling strength
(Fig. 4). The above observation implicates that the critical
coupling strength increases when the regular D lattice is dis-
torted and changed to the ER random networks. Moreover,
with an increase in the average degree of these, we observe
a similar rise in the critical coupling network (as shown in
Appendix A 2).

FIG. 4. E vs ε, for nonidentical oscillators with ω0 = 5.0 for
various different network architectures (black circle, scale-free; red
triangle, small world; blue square, regular; and green triangle, ER
random networks). (a) N = 100, 〈k〉 = 10. (b) N = 1000, 〈k〉 = 20.

013074-5



SUBHASANKET DUTTA et al. PHYSICAL REVIEW RESEARCH 5, 013074 (2023)

FIG. 5. � band for P2Sz1: The red and blue lines represent Ei vs t and ri vs t , respectively. The yellow and violet dashed lines correspond
to the start and end of the ictal region. Each subfigure represents the dynamics of a node (full names are provided in Appendix B).

V. SEIZURE DATA NETWORKS

PGES refers to the diffuse background attenuation (<
10 V) in the postictal state. The phenomenon is often observed
following bilateral tonic-clonic seizures, and has been asso-
ciated with a sudden unexpected death in epilepsy [35,36].
The mechanism and origin of occurrence of PGES are under
intense investigations [37–39]. Here we show similarities of
the phenomenon observed by Eq. (3) with PGES in convulsive
seizures. We do not claim that Eq. (3) presents an accurate
model to the brain activities; nevertheless, the quenching of
oscillations manifested by the model bears a resemblance to
PGES. Moreover, to bring the model a step closer to the
brain activities, we present the results for the coupling ar-
chitecture corresponding to the correlations matrices for the
EEG multivariate time series data for seizure. This correlation
matrix dataset consists of the 8 × 8 × f × t tensor where f
and t are, respectively, the number of the frequency levels and
time steps for which data is recorded. The whole frequency
range is divided into five bands or levels. The bands are as
follows: �: 2–4; θ : 4–7; α: 8–12; β: 12–30; and γ : 30–40.
Hence, each 8 × 8 matrix represents an adjacency matrix at a
particular time at a particular frequency level. Each of these
adjacency matrices is constructed by calculating the corre-
lation between the time series of the eight channels at the
corresponding frequency level for a particular time window.
The detailed method for calculating Generalized Partial di-
rected coherence (gPDC) matrices is given in Appendix B.

a. Overall oscillation suppression. While different regions
for different patients reflect different behaviors, one typical
pattern common in most of the nodes for all the patients is

that the amplitude starts to decrease in the ictal region as
compared to the preictal region. Ergo, there exists a consider-
able suppression of the oscillation in the majority of the nodes
around the ictal and in the initial stages of the postictal region
for all the patients’ data we have investigated. The amplitude
remains low for the initial points of the postictal region and
then slowly recovers with time (Figs. 5 and 6).

b. Mechanism of the amplitude death. The uncoupled
equation represents a limit cycle oscillator, to which the cou-
pling acts as a decaying term resulting in the amplitude death
at certain values of the frequency and the coupling strength.
The impact of this coupling term as a whole also depends on
the associated coupling matrices (underlying network archi-
tectures), and therefore there exists a change in the critical
coupling strength for which death occurs with the network
structure. Additionally, the average degree of the network also
plays a decisive role in deciding the amount of suppression of
oscillations on the network.

VI. CONCLUSION

This paper proposes a coupling setup that yields oscillation
death in coupled Stuart-Landau oscillators, and develops a
theoretical framework to derive the necessary and sufficient
conditions for attaining the oscillator death state for this setup
with a fraction of nodes having repulsive feedback couplings.
The analytical predictions are confirmed with the numerical
experiments. Additionally, numerical results for the amplitude
death on a few other model networks has been presented.
Furthermore, we numerically analyzed the coupled dynam-
ics model for the weighted correlations matrix constructed
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FIG. 6. � band for P1Sz2: The red and blue lines represent Ei vs t and ri vs t , respectively. The yellow and violet dashed lines correspond
to the beginning and ending of the ictal region. Each subfigure represents the dynamics of a node (full names provided in Appendix B).

from the seizure data, and found that the phenomenon of
amplitude suppression in the model resembles that with the
PGES. One of the immediate future extensions of this work
is to derive analytical conditions for other states than AD,
and to develop a generalized theoretical framework that can
incorporate various forms of the couplings [40] and adaptation
rules [41,42]. Further future directions are to have a more
realistic model for the brain and to replicate these results in
a larger cohort, particularly by including a postictal state that
lacks PGES to understand the origin of PGES. Furthermore,
the neural underpinning of such OD to AD transition or oscil-
lation suppression could also be harnessed towards developing
neuromodulation therapy principled to perturbation of the
coupling process to prevent or rescue OD/AD.
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APPENDIX A: EXTENSIONS ON THE MODEL

1. Oscillators without repulsive feedback coupling

An introduction of the diffusive coupling between a pair
of connected nodes through both the x and the y coordinates
results in the following equations:

ẋk=Px
k + ε

N

N∑
j=1

Ajk (x j − xk ), ẏk=Py
k + ε

N

N∑
j=1

Ajk (y j − yk ).

(A1)

Here Ajk is the adjacency matrix representing the underlying
network structure. For an unweighted network, its elements
take the value 1 when the jth and kth nodes are connected, and
0 otherwise. Whereas, for a weighted network the elements
of the adjacency matrix are represented by the interaction
weights. Here, we consider the case of identical oscillators
with all the nodes having the same frequency ωo. Next, we
can proceed to calculate the Jacobian matrix and then F
and M matrices. The coupling matrix F and matrix M for
this model will be the following: M = (λ − 1 + ε −ω0

ω0 λ − 1 + ε) and

F = (−ε/N 0
0 −ε/N ). Next, by inserting them into Eq. (6), we

get the solutions for the eigenvalues as

λ1,2 = (1 − ε) ± iω,

λ3,4 = 1 ± iω.

As we can see that one of these eigenvalues will always have a
positive real part which can never be negative with the change
in parameters, we can conclude that we can never obtain the
amplitude death for this setup.

2. More on model networks

Here in Fig. 7 we have observed the dynamical behavior of
nonidentical SL oscillators on ER random networks with the
various average degrees. It was found that the critical value of
coupling strength decreases as we increase the average degree
of the ER random network.
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FIG. 7. E vs ε, for SL oscillators with dissimilar repulsive cou-
pling on an ER random network with N = 100 with Lorentzian
frequency distribution with ωo = 5.0.

APPENDIX B: DATA GENERATION PROCESS

1. Patient and surgical procedure

Two adult patients with suspected drug-resistant temporal
lobe epilepsy (mesial and temporal plus) underwent stere-
oelectroencephalography (SEEG) for localization of seizure
foci. The Institutional Review Board approved the study for
recording local field potentials (LFP) from the thalamus dur-
ing SEEG exploration [43]. Before the surgery, the patients
provided written consent for thalamic electrode implantation
and recording for research purposes. The ethics, consenting
process, safety, and accuracy of our thalamic implantation
have been published previously [44]. The thalamic implanta-

tion was unilateral and ipsilateral to the seizure foci and none
of the patients had any thalamic bleed or related neurologi-
cal complications. Overall, four focal to bilateral tonic-clonic
seizures (two seizures per patient) were analyzed.

2. Data acquisition

The optimal SEEG electrode implantation strategies were
planned using robotic assistance (ROSA device; Medtech,
Syracuse, NY) to sample thalamic nuclei and preplanned tem-
poral network regions of interest. The multielectrodes (PMT
Corporation, Chanhassen, MN) have 12–16 contacts per depth
electrode, 2 mm contact length, 0.8 mm contact diameter,
and 1.5 mm inter-contact distance. Natus Quantum (Natus
Medical Incorporated, Pleasanton, CA; sampling rate 2048
Hz; hardware filters were present in the acquisition procedure:
0.08–13 Hz of sampling frequency hardware filtering; input
noise 2 V peak to peak, and 16-bit precision) was used to
record intracranial video EEG. Signals were referenced to
a common extracranial electrode placed posteriorly in the
occiput near the hairline.

3. Electrode localization

Electrode localization was performed by coregistering
Preimplantation magnetic resonance imaging and postim-
plantation computerized tomography axial images using
LEAD-DBS software [45,46] and the electrode trajectories
were mapped using iElectrodes software [47]. Eight brain
regions were uniformly selected constituting the thalamo-
cortical network, which is composed of amygdala (Amy),

FIG. 8. � band for P1Sz1: The red and blue lines correspond to Ei vs time and ri vs time, respectively, the yellow dashed line corresponds
to the time where the ictal region starts, and the violet dashed line represents the end time where the ictal region ends.
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FIG. 9. � band for P2Sz2: The red and blue lines correspond to Ei vs time and ri vs time respectively, the yellow dashed line represents
the time where the ictal region starts, and the violet dashed line corresponds to the end time where the ictal region ends.

hippocampus (HC), temporal neocortex (TNC), superior and
inferior frontal gyrus (S/I FG), anterior cingulate (aCing),
orbitofrontal (OF), and thalamus (Thal). Moreover, as a repre-
sentative of this global phenomenon we have sampled neural
activity within the cortical (frontal, cingulate, lateral tempo-
ral) and subcortical (amygdala, hippo, and thalamus) regions.
More importantly, these regions sampled are part of the lim-
bic network that is involved in temporal lobe epilepsy and
are commonly sampled for epilepsy surgery [48]. So these
regions are functionally connected and are clinically relevant
in epilepsy [49].

4. Data preprocessing and MVAR model

For each of the four seizures, the continuous SEEG data
is composed of 30-min preictal, ictal, and 30-min postictal
periods. The data were divided into 30-s epochs each with 3-s
overlaps. The data were detrended and filtered by an eighth-
order bandpass Butterworth filter with cutoff frequencies
of 1–500 Hz. A multivariate autoregressive (MVAR) model
X (t ) = ∑p

τ=1 A(τ )X (t − τ ) + ε(t ) of order (p = 8) was fit to
each SEEG epoch from eight channels. The coefficients of
the model, A(τ ), were estimated using minimization of the
residual noise ε(n) and were estimated via the Vieira-Morf
partial correlation method. If the model fits the data well, the
noise (innovation) vector ε(n) = [ε1(n), . . . , εk (n)]T follows
a MV standard white noise process having zero mean and

covariance matrix �e = (
σ11 . . σ1K

. . . .

σ11 . . σ1K

), assuming that

each vector component is at least a weakly stationary time
series. If we denote the (K × K ) identity matrix as IK , the

MVAR model can be transformed to the frequency domain,
as E ( f ) = B( f )y( f ), where E (F ) is the Fourier transform of
the residual noise vector and B( f ) = Ik − ∑p

τ=1 A(τ )e− j2π f τ .
Assuming that ε(n) is the input signal to the model and y(n)
the output signal from the model, B( f ) essentially results
from the Fourier transform of the augmented matrix of the
coefficients of the model [setting A(0) = Ik].

5. Directed functional connectivity measure

Partial directed coherence (PDC) was introduced by Bac-
cala and Sameshima in 2001 as a normalized estimate between
the interval [0,1] and measures per frequency of the ratio
of the outflow of the channel to channel i overall outflows
from channel j [50]. PDC inherently distinguishes between
direct and indirect interactions and can capture the directed
and weighted Granger-connectivity structure scheme between
each pair in the network. A generalized form of PDC (gPDC)
was proposed by Baccala in 2007 which introduced a second
inner normalization that makes it very robust with regard to in-
accuracies and variability of measured data [51]. It is based on
the Fourier transformed augmented coefficient matrix, Bi j ( f ),
and the diagonal elements of the covariance matrix, σkk , of the
innovation process of the MVAR model, and is defined as

gPDC j→i( f ) = |Bi j ( f )|/σii√∑
k |Bk j ( f )|2/σ 2

kk

.

gPDC is normalized between the interval [0,1], as well.
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FIG. 10. Time-frequency representation from stereo EEG trace
showing an absence of neural activity between 0 and 29 s of PGES.
First motor response (t 40 s) was preceded by a burst of neural activ-
ity at 30 s. Thal, centromedian thalamus; Amy, amygdala; Ins, insula;
Tem, lateral temporal; Orb, orbitofrontal; Front, lateral frontal; ant
and post hippocampus; cing-ant, cingulate; and PGES, postictal gen-
eralized EEG suppression.

APPENDIX C: SIMULATION RESULTS
FOR OTHER PATIENTS

We have performed numerical simulations using dissim-
ilar repulsive feedback coupled SL oscillators on networks
obtained from two more seizure data (Figs. 8 and 9). The
results show similar behavior to other seizures which helps
us in proving the robustness of our findings.

APPENDIX D: PGES AND RELATION TO SUPPRESSION
TO NEURAL ACTIVITY

PGES is a well-established electrophysiological phe-
nomenon associated with an increased risk of SUDEP
(sudden unexpected death in epilepsy). A landmark prospec-
tive multicenter study (called MORTEMUS) published in the
prestigious journal Lancet Neurology confirmed the presence

of PGES in all the observed cases of SUDEP. PGES is de-
fined as diffuse scalp EEG background suppression <10 µV
observed postictally. The “G” in PGES represents spatial
(“generalized or diffuse”) suppression observed in scalp EEG.
Thus, during the PGES phenomenon, there is unequivocal
generalized amplitude suppression as recorded by scalp EEG.

Examples of a few intracranial EEG studies during PGES
are in Refs [52,53]. Similarly, over the last 5 years, we had
collated and curated rare intracranial EEG (stereo EEG) data
when patients had generalized tonic-clonic seizures followed
by scalp EEG confirmed PGES. These patients had simulta-
neous scalp EEG and invasive stereo EEG recordings from
multiple brain regions during epilepsy surgical evaluation. In
addition, we recorded invasive EEG from thalamic subregions
through Institutional Review Board (IRB)-approved protocol.
Thus we have rare recordings from cortical and thalamic brain
regions during scalp EEG confirmed PGES. To date, no center
has reported human thalamocortical invasive EEG changes
during PGES. Thus our data is novel and is uniquely poised to
provide insights into thalamocortical changes during the scalp
and invasive EEG-confirmed amplitude suppression (PGES).

During PGES, there is a diffuse scalp EEG suppression,
and we have selected the cases where there is confirmed
thalamocortical invasive EEG suppression (as in Fig. 10). This
paper only used invasive stereo depth electrode recordings for
signal processing and modeling. Further, we wish to high-
light that for the signal processing, we have only used stereo
depth electrode recordings. These recordings [also sometimes
called local field potentials (LFPs)] from clinical depth elec-
trodes are used in developing brain-computer interfaces (like
language and motor mapping and modulation), seizure map-
ping, and subsequent surgical resection with the underlying
a priori that bipolar montage-derived LFPs from invasive
EEG electrodes have high signal fidelity and represent local
neural ensemble activity [54]. During PGES, we have con-
firmed suppression of neural activity from direct invasive EEG
recordings from the thalamocortical regions (like Fig. 10), and
this data was used for modeling.
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