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Manipulation and enhancement of Einstein-Podolsky-Rosen steering between two mechanical
modes generated by two Bogoliubov dissipation pathways
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We consider a three-mode optomechanical system in which two mechanical oscillators are independently
coupled to a cavity mode driven by two controllable lasers. By controlling the two-tone driving, one can prepare
the entanglement and Einstein-Podolsky-Rosen (EPR) steering of two mechanical modes, in which the cavity
mode acts as a single reservoir to cool two Bogoliubov modes. We find that the direction of EPR steering can
be manipulated effectively by adjusting the damping rates and the thermal noises of two mechanical modes. In
addition, we show that the entanglement and EPR steering between two mechanical modes can be enhanced
by adding a parametric amplifier (PA) into the cavity. The effects of the strength and phase of the PA on the
mechanical entanglement and EPR steering are analyzed and discussed in detail. Meanwhile, the additional PA
can also expand the region of the one-way steering and strengthen the robustness of the entanglement and EPR
steering against the thermal noise. The present scheme may provide effective resources for quantum information
processing.
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I. INTRODUCTION

Quantum entanglement and Einstein-Podolsky-Rosen
(EPR) steering, initially introduced by Schrödinger [1] to
discuss the EPR paradox [2,3], are significant features of
quantum mechanics, and nowadays play an important role in
quantum information processing. Quantum entanglement can
be used to test the fundamental limits of quantum mechanics
[4–8] and also has potential applications in many quantum
technologies, such as quantum networking [9–11] and quan-
tum metrology [12–15]. EPR steering is a kind of nonclassical
correlation that is stronger than entanglement but weaker than
Bell nonlocality [16], which provides a novel insight on quan-
tum nonlocality [17], and describes the ability of one party to
remotely control the other party’s states through local mea-
surements. Apart from its fundamental physical significance,
due to the asymmetrical characteristics, EPR steering has
important practical applications in quantum information, such
as the one-sided device-independent quantum key distribution
protocols [18–20], quantum teleportation [21], and so on. A
lot of work in both theory and experiment are devoted to the
generation and quantification [22,23] of EPR steering for the

*qguo@sxu.edu.cn
†tczhang@sxu.edu.cn

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

continuous variable in various physical systems such as cavity
optomechanical systems [24–31], magnonic systems [32–35],
and others [36–42].

In recent years, based on the optomechanical system, a
number of schemes for entanglement generation have been
proposed by using a variety of methods, such as modu-
lating external driving field [43–46], combining auxiliary
systems [47,48], and adding a nonlinear medium [49–52].
However, entanglement is easily disturbed by environmental
noise in these schemes; the system dissipation is detrimen-
tal to the generation of entanglement. Tan [53] and Wang
et al. [54,55] independently proposed an approach for the
generation of nonclassical states in optomechanical systems
by using dissipation and it has recently attracted wide interest
in reservoir engineering. By introducing two-tone driving in
the reservoir-engineering method, one can construct two Bo-
goliubov dissipation pathways to prepare high entanglement
between two mechanical modes or between a mechanical
mode and a cavity mode [48,55–57]. Reservoir engineering
has been proved to be a very promising method for prepar-
ing entanglement [48,55,56,58–60], which is beneficial for
experimental implementation due to its independence from
the initial state of the system. The macroscopic entanglement
between two mechanical oscillators has been implemented
experimentally by using reservoir engineering [61,62].

On the other hand, EPR steering of macroscopic and mas-
sive objects has attracted much interest, and many different
methods for preparing EPR steering have been proposed
in the optomechanical system, such as adding a three-level
atom [26,27], a controllable phase [4,28], and thermal noise
[29–31]. Very recently, the EPR steering in a cavity magnonic
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system has also attracted the attention of many researchers
[32–35]. Compared with entanglement and Bell nonlocality,
one significant feature of EPR steering is its asymmetrical
characteristics. The steerability of the two entangled parts can
be different; even the steering can exist in one direction but
not in the other, i.e., one-way steering. This feature gives the
EPR steering many important potential applications in quan-
tum cryptography and quantum information. Therefore, the
manipulation of the steering direction and the generation of
the one-way steering become the focus of many researchers.
The existing methods for generating asymmetrical EPR steer-
ing usually relies on the asymmetry of the system’s intrinsic
mechanism [26–28,34,35] or the asymmetry induced by the
external environment [29–31]. What is more, the experimental
study for EPR steering has been widely reported and the one-
way steerability has been observed in recent years [38–42].

Motivated by these works above, in this paper, we investi-
gate the generation and manipulation of the EPR steering in
a three-mode optomechanical system consisting of two me-
chanical oscillators and a cavity driven by two-tone lasers. By
optimizing the ratio of the two-tone driving, we can structure
two Bogoliubov dissipation pathways to prepare the entangle-
ment and two-way EPR steering in much broader parameter
regions. We numerically study the manipulation of the EPR-
steering direction and find that the asymmetrical and one-way
EPR steering can be achieved by adjusting the damping rates
and the thermal noises of two mechanical modes. In addition,
it is shown that the entanglement and EPR steering between
two mechanical modes can be enhanced via adding a paramet-
ric amplifier (PA) into the cavity. Meanwhile, the introduction
of the PA will strengthen the robustness of the entanglement
and EPR steering against the thermal noise, which will relax
the requirements for experimental conditions and make the
scheme more practical.

This paper is organized as follows. In Sec. II, we de-
scribe the basic model of the scheme in detail and obtain the
effective Hamiltonian. In Sec. III, we show the generation
of mechanical entanglement and two-way EPR steering by
two Bogoliubov dissipation pathways. In Sec. IV, we study
the way to manipulate the direction of the EPR steering via
adjusting the damping rates and the thermal noises of the
mechanical modes. In Sec. V, by adding a PA into the cavity
we show that the entanglement and EPR steering between the
two mechanical modes can be enhanced. Finally, conclusions
are presented in Sec. VI.

II. DESCRIPTION OF THE MODEL

As shown in Fig. 1, we consider a cavity optomechanical
system involving two mechanical oscillators and a cavity that
is driven by two controllable lasers. The Hamiltonian (in the
unit of h̄ = 1) is

H = ωca†a + ωb1 b†
1b1 + ωb2 b†

2b2 + g1a†a(b†
1 + b1)

+ g2a†a(b†
2 + b2) + Hdr, (1)

with

Hdr = (ε+aeiω+t + ε∗
+a†e−iω+t ) + (ε−aeiω−t + ε∗

−a†e−iω−t ).

(2)

FIG. 1. Schematic representation of the system considered. Two
mechanical oscillators b1 and b2 coupled to a cavity mode driven by
two lasers with different amplitudes ε± and frequencies ω±.

Here a (a†) is the annihilation (creation) operator of the cavity
mode with frequency ωc and decay rate κ; b j (b†

j ) (j = 1, 2) is
the annihilation (creation) operator of the mechanical modes
with frequency ωb j and decay rate γ j ; g j is the single-photon
optomechanical coupling strength between the cavity and the
jth mechanical oscillator; and ω± are the frequencies of two
lasers. Hdr denotes the driving of the electromagnetic mode
with the amplitudes ε+, ε−.

In the following, we assume that the single-photon op-
tomechanical coupling rates are equal, i.e., g1 = g2 = g.
In the strong driving case, each Heisenberg operator can
be rewritten as O = 〈O〉 + δO (〈O〉 = 〈a〉, 〈b1〉, 〈b2〉) (δO =
a, b1, b2), where δO is the zero-mean quantum fluctuation
operator around the classical c-number first moments 〈O〉.
Remarkably, the mean value of the cavity mode meets
〈a〉 = a+e−iω+t + a−e−iω−t under the conditions of two-laser
driving, in which a± is the coherent light field amplitude.
Meanwhile, as long as |〈a〉| � 1, standard linearization tech-
niques can be applied to Eq. (1). When the single-photon
optomechanical coupling g j is small, the small frequency
shift of the cavity g(〈bi〉 + 〈b∗

i 〉) � ωc can be neglected. We
define H0 = ωca†a + �b†

1b1 + �b†
2b2, and ±� = ω± − ωc.

The linearized Hamiltonian in the rotating frame with respect
to H0 is

Hlin =�1b†
1b1 + �2b†

2b2 + G+(b1a + b†
1a†)

+ G+(b2a + b†
2a†) + G−(b1a† + b†

1a)

+ G−(b2a† + b†
2a), (3)

where �1 = ωb1 − �, �2 = ωb2 − �, and G± = ga± is the
optomechanical coupling strength. Note that we have made
the rotating-wave approximation in Eq. (3) by omitting
the effects of all high-frequency terms, which is valid in the
resolved sideband regime. The Hamiltonian can be use to
generate a two-mode squeezed state based on the reservoir-
engineering approach [54,55,58]. For the two bosonic modes
b1 and b2, one can introduce delocalized Bogoliubov-mode
annihilation operators

β1 = S(r)b1S†(r) = b1 cosh r + b†
2 sinh r,

β2 = S(r)b2S†(r) = b2 cosh r + b†
1 sinh r. (4)
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Here S(r) = exp[r(b1b2 − b†
1b†

2)] is the two-mode squeezing
operator with squeezing parameter r = arctanh(G+/G−). It
is well known that the joint ground state of β1 and β2 is
the two-mode squeezed state of the two mechanical modes.
Therefore, the entanglement of two mechanical oscillators can
be achieved by cooling the modes β1 and β2 to their ground
states. In terms of the Bogoliubov modes defined in Eq. (4),
the Hamiltonian in Eq. (3) can be written as

Hlin = β
†
1β1(�1 cosh2 r + �2 sinh2 r)

+ β
†
2β2(�1 sinh2 r + �2 cosh2 r)

− sinh 2r

2
(β†

1β
†
2 + β1β2)(�1 + �2)

+ G(aβ
†
1 + a†β1) + G(aβ

†
2 + a†β2), (5)

where G =
√

G2
− − G2

+. In order to explain the physical mech-
anism clearly, we here set �1 = −�2 = 	, i.e., ωm = �,
where 	 = ωb1 −ωb2

2 denotes the frequency difference between

the two mechanical oscillators and ωm = ωb1 +ωb2
2 is the aver-

age of the two mechanical frequencies. Then the parametric
amplification term between the Bogoliubov modes, i.e., the
third term in the equation above, can be eliminated, and the
system Hamiltonian becomes

Hlin = 	(β†
1β1 − β

†
2β2) + G(aβ

†
1 + a†β1) + G(aβ

†
2 + a†β2).

(6)

In the following, we focus on the regime G+ < G−, such
that the dynamics is stable [56,64]. From the Hamiltonian
above, we can see that βi (i = 1, 2) and a are coupled by the
beam-splitter-like interaction. If the occupancy of the cavity
is kept low, the cavity mode a acts as an engineered reservoir
which can be exploited to cool the hybrid modes β1 and
β2, in an ideal case, into their ground states, to generate the
stationary entanglement of modes b1 and b2. We will show
in such state there is EPR steering and the steering can be
manipulated and enhanced. To acquire large steady-state en-
tanglement, one demands that the squeezing parameter r =
arctanh(G+/G−) should be large, i.e., requires the increase of
G+ (keep G− constant). However, increasing G+ will result
in the suppression of this cooling ability due to G+/G− → 1
and G =

√
G2

− − G2
+→0 in Eq. (6), which means the increase

of the coupling ratio G+/G− has two competing effects, as
previously studied in Refs. [55,56,58–60]. Thus the maximal
steady entanglement is obtained by balancing of these two
competing effects.

III. ENTANGLEMENT AND TWO-WAY EPR STEERING

In this section, we discuss the generation of entanglement
and two-way EPR steering between mechanical modes by

numerical simulation. In fact, the entanglement generation
between two mechanical modes by two-tone driving can be
intuitively drawn from the previous work [55], which has been
demonstrated by different research groups [56,60]. The reason
we discuss entanglement generation here is to compare the
parameter region where entanglement exists with the region
where EPR steering exists. When the dissipation and input
noises induced by a Markovian environment are considered,
following the standard technique [63], the quantum Langevin
equations (QLEs) governing the dynamics of the linearized
system can be written as

ḃ j = i[Hlin, b j] − γ j

2
b j + √

γ jb j,in,

ȧ = i[Hlin, a] − κ

2
a + √

κain. (7)

b j,in and ain are independent zero-mean vacuum input noise
operators obeying the following correlation function:

〈b j,in(t )b†
j,in(t ′)〉 = (n j,th + 1)δ(t − t ′),

〈b†
j,in(t )b j,in(t ′)〉 = n j,thδ(t − t ′),

〈ain(t )a†
in(t ′)〉 = (na + 1)δ(t − t ′),

〈a†
in(t )ain(t ′)〉 = naδ(t − t ′), (8)

with n j,th and na being equilibrium mean thermal occupancies
of the jth mechanical mode and cavity, respectively. Introduce
the position and momentum quadratures corresponding to the
bosonic annihilation operator o (o = b j, a, b j,in, ain),

Qo = o + o†

√
2

, Po = o − o†

i
√

2
, (9)

and define the vectors of quadrature operators and input
noises as

R = [Qb1 , Pb1 , Qb2 , Pb2 , Qa, Pa]T ,

N = [√
γ1Qb1,in ,

√
γ1Pb1,in ,

√
γ2Qb2,in ,

× √
γ2Pb2,in ,

√
κQain ,

√
κPain

]T
. (10)

Then the linearized QLEs of the quantum fluctuations can be
rewritten as

dR

dt
= MR + N, (11)

where M is a 6×6 matrix:

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

− γ1

2 �1 0 0 0 G− − G+
−�1 − γ1

2 0 0 −G− − G+ 0
0 0 − γ2

2 �2 0 G− − G+
0 0 −�2 − γ2

2 −G− − G+ 0
0 G− − G+ 0 G− − G+ − κ

2 0
−G− − G+ 0 −G− − G+ 0 0 − κ

2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (12)
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FIG. 2. Density plots of the mechanical entanglement EN (a) and two-way EPR steering G1→2 (G2→1) (b) versus the ratio of coupling
strengths G+/G− and the detuning �/ωm. The chosen system parameters are (in units of ωm) κ = 0.1, 	 = 0.1, γ1 = γ2 = 10−3, G− = 0.1,
and n1,th = n2,th = 0.

The system is stable only if all eigenvalues of the drift matrix
M have negative real parts, which can be derived from the
Routh-Hurwitz criterion [64]. Since the system is linearized,
it remains in Gaussian state from an initial Gaussian state
whose information-related properties [53–59] can be entirely
characterized by a 6×6 covariance matrix (CM) σ with
components σk,l = 〈RkRl + RlRk〉/2 (k, l = 1, 2, . . . , 6). The
steady-state CM fulfills the Lyapunov equation [65]

Mσ + σMT = −D, (13)

where the diffusion matrix D = diag[γ1(2n1,th + 1)/2,

γ1(2n1,th + 1)/2, γ2(2n2,th + 1)/2, γ2(2n2,th + 1)/2, κ (2na +
1)/2, κ (2na + 1)/2], whose components characterizing
the stationary-noise correlations has been defined through
δ(t − t ′)Dk,l = 〈Nk (t )Nl (t ′) + Nl (t ′)Nk (t )〉/2. By utilizing
Eq. (13), one can study the system’s properties of
entanglement and EPR steering. Here we focus on the
entanglement and EPR steering between the two mechanical
modes, so we should first extract the first four rows and
columns of the full 6×6 CM σ to obtain the reduced 4×4 CM
σm, which can be written as the block matrix form

σm =
(

V1 V12

V T
12 V2

)
, (14)

where V1, V2, and V12 are 2×2 matrices. We quantify the
entanglement between the two oscillators by adopting the log-
arithmic negativity [66] which has been proposed as a reliable
quantitative estimate of continuous-variable entanglement
[67]. The definition of logarithmic negativity EN is given by

EN = max[0,−ln(2η−)], (15)

where η− ≡ 2−1/2{� − [�2 − 4detσm]1/2}1/2 is the smallest
symplectic eigenvalue of the partially transposed CM, with
� ≡ detV1 + detV2 − 2detV12. If EN > 0, i.e., η− < 1/2, the
mechanical modes are entangled and the larger EN the higher
the degree of the entanglement. Moreover, the quantification
of EPR steering has been introduced for arbitrary two-mode
Gaussian states of a continuous-variable system [68]. The
quantum steerability of Gaussian modes b1 → b2 and

b2 → b1 is quantified, respectively, as [23]

G1→2 = max[0, S(2V1) − S(2σm)],

G2→1 = max[0, S(2V2) − S(2σm)], (16)

with S(σ ) = [ln det(σ )]/2. G1→2 > 0 (G2→1 > 0) means the
presence of EPR steering from mode b1 (b2) to mode b2 (b1),
and the value of G1→2 (G2→1) represents the strength of the
steerability.

Now we numerically simulate the behavior of the entangle-
ment and EPR steering in the parameter space by employing
EN and G1→2 (G2→1). From Eq. (3), we can see the system dy-
namics depends on the coupling strength G± and the detuning
�. Specifically, Eq. (6) clearly shows that the ratio G+/G−
determines the coupling strength G between the cavity and
Bogoliubov modes. Therefore, we investigate the dependence
of EN and G1→2 (G2→1) on the parameters G+/G− and �/ωm,
and the numerical results are shown in Figs. 2 and 3. Note that
we here choose identical mechanical damping rates γ1 = γ2

and the ideal environment n1,th = n2,th = 0, combined with
the simultaneous cooling of the two Bogoliubov modes, so
the EPR steering obtained here is two-way symmetrical, i.e.,
G1→2 = G2→1, as shown in Figs. 2(b) and 3. From Fig. 2,
we can see that the EPR steering G1→2 has similar variation
trends as EN and reaches the maximum value at the same
position. The parameter region existing EPR steering is con-
tained within the region existing entanglement, which is a sign
that the nonclassical correlation of steering is stronger than
entanglement.

Figure 3(a) shows the entanglement and steering first in-
crease and then decrease sharply with the increase of G+/G−.
That is because the larger G+/G− the larger squeezing pa-
rameter r=arctanh(G+/G−) that leads to the increase of
entanglement. However, when G+/G− → 1, the coupling

strength G=
√

G2− − G2+ → 0 means the cooling ability is
suppressed and the entanglement will be reduced. There-
fore, EN and G1→2 (G2→1) are nonmonotonic functions of
G+/G− and take maximum values for a specific G+/G−, and
there is no entanglement and EPR steering for G+/G−=1.
From Fig. 3(b), it is clear that the entanglement and EPR
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FIG. 3. The entanglement EN and two-way EPR steering (G1→2 and G2→1) versus the ratio of coupling strengths G+/G− for �/ωm = 1
(a) and the detuning �/ωm for G+/G− = 0.5 (b), respectively. The chosen parameters are the same as those in Fig. 2.

steering reach their maximums when �/ωm = 1, which can
be explained from Eqs. (3) and (6). To get the desired
Hamiltonian equation (6), we have chosen �1 = −�2 =
	, i.e., � = ωm. If � �= ωm, there will be a parametric-
amplification-like interaction between the two Bogoliubov
modes in Eq. (6) that will affect the cooling and reduce the
entanglement.

IV. MANIPULATING THE DIRECTION
OF THE EPR STEERING

Due to the identical damping rates and the two Bogoliubov
dissipation channels, the EPR steering obtained above is the
symmetrical two-way steering. Here we investigate how to
manipulate the steering direction via imbalanced mechanical
dampings and thermal noises, whose physical mechanism is
qualitatively clear, that is, the asymmetrical external environ-
ment of the two oscillators will cause asymmetrical quantum
correlation that is beneficial for the generation of one-way
EPR steering.

We firstly numerically simulate the manipulation of the
EPR steering using imbalanced damping rates in Fig. 4, which
displays the stationary entanglement and EPR steering of the
mechanical modes as functions of the coupling ratio G+/G−,
where different mechanical damping rate ratios γ1/γ2 are used
in different subplots. From Figs. 4(a) to 4(d) the damping-rate
ratio γ1/γ2 gradually increases, and we can see that the max-
imal values of entanglement and EPR steering decrease with
the increase of γ1, which implies that the damping is harmful
for the degrees of the entanglement and EPR steering. The
regions of two-way, one-way, and no-way EPR steering are
respectively indicated by different colors in Fig. 4. With the
increase of γ1/γ2, the region of one-way steering gradually
becomes lager. When the ratio γ1/γ2 is large enough, only
the steering from mode b2 to b1 G2→1 is present, and G1→2

disappears completely, as shown in Fig. 4(c) where γ1/γ2 = 5.
That is because the large γ1/γ2 means the interaction between
b1 and its thermal bath is stronger than that between b2 and
its bath, resulting in the steering G1→2 dropping faster than
the steering G2→1. That is to say, the mechanical mode with

larger damping rate is more difficult to steer the other one. As
γ1/γ2 continues to increase, both G1→2 and G2→1 disappear
completely, but the mechanical entanglement still exists as
shown in Fig. 4(d) where γ1/γ2 = 13, which is also attributed
to the stricter nonclassical correlation of steering than of en-
tanglement. From the analysis above, it can be seen that one
can manipulate the EPR steering direction and obtain one-way
steering by adjusting the damping difference between the two
modes.

Now we begin to analyze the manipulation of the EPR
steering via asymmetrical thermal noises of the two mechan-
ical modes. The subplots in Fig. 5 display the mechanical
entanglement EN and EPR steering G1→2 (G2→1) as functions
of G+/G−, for different thermal noises. The symmetrical two-
way steering is present for symmetrical noises n1,th = n2,th

as shown in Fig. 5(a). From Figs. 5(b) and 5(c), it can be
seen that the imbalanced thermal noises will induce asym-
metrical EPR steering, and the larger the difference between
thermal phonon numbers of the two thermal baths, the larger
the one-way steering region. When the thermal noise is large
enough, the EPR steering vanishes but the entanglement can
still be obtained as shown in Fig. 5(d). From Fig. 5, we
can also see that, with the increase of the thermal phonon
numbers, the degrees of the entanglement and EPR steering
decrease, but for n1,th > n2,th, the steerability G1→2 > G2→1.
That is to say, the thermal noise as a factor of decoherence
will reduce the nonclassical correlation but have a positive
effect on the generation of one-way steering. Therefore, it is
worth noting that the larger damping rate γ1 leads to one-way
steering from mechanical mode b2 to b1, but the larger thermal
noise n1,th gives one-way steering in the opposite direction.
That is because, according to Refs. [22–24,35], the condi-
tions G1→2 > 0 and G2→1 > 0 can be expressed as |〈b1b2〉| >√
〈b†

2b2〉(〈b†
1b1〉 + 1/2) and |〈b1b2〉| >

√
〈b†

1b1〉(〈b†
2b2〉 + 1/2),

respectively, in terms of correlation-based inequalities, which
means that the mode with more occupancies is more likely
to steer the mode with less occupancies. The lesser damp-
ing rate and larger thermal noise will be beneficial to
the mode’s occupancy and thus improve the ability of
steering.
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FIG. 4. Mechanical entanglement EN and EPR steering G1→2,G2→1 as functions of the effective coupling ratio G+/G− for different
damping rate ratios γ1/γ2: (a) γ1/γ2 = 1, (b) γ1/γ2 = 3, (c) γ1/γ2 = 5, and (d) γ1/γ2 = 13, where γ2 = 10−2ωm and the other parameters
are the same as those in Fig. 3(a).

V. ENHANCING ENTANGLEMENT AND EPR STEERING
BY INTRODUCING PARAMETRIC AMPLIFIER

In this section, we study how to enhance the entanglement
and EPR steering and increase the range of asymmetric steer-
ing between two mechanical modes in the system above. It
has been demonstrated that a PA inside an optomechanical
system can enhance the cooling of the mechanical oscillator

[69,70]. Here, we will show that, by putting a PA in the
optomechanical cavity in Fig. 1, the mechanical entanglement
and the EPR steering discussed above can be enhanced. We
assume that the gain of the PA is  depending on the power of
the pump field driving the PA, and the frequency and the phase
of the pump field are 2ωc and θ , respectively. The Hamiltonian
of the system in the rotating frame with respect to H0 is
given by

H ′
lin = (a†2eiθ + a2e−iθ ) + �1b†

1b1 + �2b†
2b2 + G+(b1a + b†

1a†) + G+(b2a + b†
2a†)

+ G−(b†
1a + b1a†) + G−(b†

2a + b2a†), (17)

where �1 = −�2 = 	. The first term shows the parametric amplification process. By replacing the Hamiltonian in Eq. (3) with
Eq. (17) and deriving again Eqs. (5)–(12), the new drift matrix reads as

M ′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

− γ1

2 �1 0 0 0 G− − G+
−�1 − γ1

2 0 0 −G− − G+ 0
0 0 − γ2

2 �2 0 G− − G+
0 0 −�2 − γ2

2 −G− − G+ 0
0 G− − G+ 0 G− − G+ − κ

2 + 2 cos θ 2 sin θ

−G− − G+ 0 −G− − G+ 0 2 sin θ − κ
2 − 2 cos θ

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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FIG. 5. Mechanical entanglement EN and EPR steering G1→2,G2→1 as functions of the effective coupling ratio G+/G− for different thermal
noises n1,th and given n2,th = 0: (a) n1,th = 0, (b) n1,th = 4, (c) n1,th = 11, and (d) n1,th = 17. The other parameters are the same as those in
Fig. 3(a).

Then by solving the Lyapunov equation, we can obtain the
new CM σ ′

m, which will be used to investigate the effect of the
strength and phase of the PA on the mechanical entanglement
and EPR steering.

We numerically simulate the mechanical entanglement and
the two-way EPR steering G1→2 (G2→1) versus the ratio
G+/G− for different  values in Figs. 6(a) and 6(c), respec-
tively. It can be found that both the entanglement and the
steering are significantly improved by introducing the PA,
and the degrees of both the entanglement and the steering
increase with the increase of the PA strength . In particular,
when G+/G− = 0, the entanglement still exists when the PA
is present, but the steering equals to 0 whether the PA is
added or not, which means, without the two-tone driving, one
can generate the entanglement but cannot generate the EPR
steering by using the PA and a single driving. In Figs. 6(b)
and 6(d), we evaluate the effect of the phase θ of the PA
on the mechanical entanglement EN and two-way EPR steer-
ing G1→2 (G2→1) corresponding to the optimal ratio G+/G−,
which shows that EN and G1→2 (G2→1) fluctuate periodically
with θ . The amplitudes of the fluctuations increase with the
increase of , and the fluctuation period is 2π . Such depen-

dence of EN and G1→2 (G2→1) on the phase θ is physically
intuitive due to the fact that the different phase θ of the
PA corresponds to the different squeezing direction of the
cavity field generated by the parametric amplification pro-
cess, so the two-mode squeezing between the two mechanical
oscillators originating from the cavity field naturally changes
with θ .

In order to explore the effect of the PA on the asymmetry
of the steering, in Fig. 7, we introduce imbalanced damping
rates and compare the asymmetrical steering G1→2 and G2→1.
It can be seen from Fig. 7, by adding the PA in the cavity,
the asymmetry of the steering |G2→1 − G1→2| is significantly
increased. We use the pink (or dark gray) to depict the region
of one-way steering without PA, and the green (or light gray)
to depict the expanded region of one-way steering after adding
PA, respectively, which shows that the introduction of the PA
not only increases the one-way steering, but also expands the
region of the one-way steering.

Thermal noise, i.e., the environment temperature, is a key
factor affecting the performance of the optomechanical sys-
tem. Therefore, we now analyze and discuss its effects on
entanglement generation and EPR steering. Without loss of
generality, we assume the two mechanical modes are in the
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FIG. 6. Mechanical entanglement EN (a) and two-way EPR steering G1→2 (G2→1) (c) as functions of the effective couplings ratio G+/G−,
for  = 0,  = 0.1G−,  = 0.2G−, and θ = 0. The maximized entanglement EN (b) and maximized two-way EPR steering (d) for the optimal
ratio G+/G− as functions of the phase θ . The other parameters are the same as those in Fig. 3(a).

same environment, i.e., n1,th = n2,th = nth. Figure 8 shows the
degrees of entanglement and EPR steering for the optimal
ratio G+/G− versus the mean thermal phonon number nth, in
which dashed and solid lines denote the case without and with

FIG. 7. Asymmetrical EPR steering as functions of the effective
couplings ratio G+/G− for the cases without PA ( = 0) and with
PA ( = 0.1G−, θ = π/2), where γ1 = 2γ2 = 2 × 10−2ωm; other
parameters are the same as those in Fig. 3(a).

the PA, respectively. Obviously, both the robustness of the
entanglement and the EPR steering against the environment
temperature can be strengthened by introducing the PA. Com-
paring Fig. 8(a) with 8(b), we can find that EPR steering is
more sensitive to thermal noise than entanglement, regardless
of the presence or absence of PA.

VI. CONCLUSIONS

In summary, we have studied how to generate mechanical
entanglement and EPR steering in the cavity optomechanical
system via two Bogoliubov dissipation pathways. The numer-
ical results showed that the entanglement and EPR steering
can be obtained by controlling the two-tone driving. It has
been shown that the direction of the EPR steering can be
manipulated by imbalanced damping rates or asymmetrical
thermal noises of the mechanical modes, which provides two
effective ways to achieve one-way EPR steering. What is
more, we numerically simulated the entanglement and EPR
steering in the case adding a PA into the optomechanical
cavity, which showed that, due to the introduction of the PA,
the degrees of entanglement and EPR steering are enhanced,
and the parameter region of the one-way steering is expanded.
The entanglement and EPR steering for the presence of the PA
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FIG. 8. Mechanical entanglement EN (a) and two-way EPR steering G1→2 (G2→1) (b) for the optimal ratio G+/G− as functions of the mean
thermal phonon number nth of the mechanical modes for γ1 = γ2 = 10−4ωm, θ = 0. The other parameters are the same as those in Fig. 3(a).

have stronger robustness against the thermal noise compared
with that without the PA. Given the potential application of the
one-way steering in one-sided device-independent quantum
key distribution, the generation, manipulation, and enhance-
ment schemes for the EPR steering presented here may be
meaningful for quantum cryptography and quantum informa-
tion processing.
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