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Unraveling time- and frequency-resolved nuclear resonant scattering spectra
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Owing to their extremely narrow line-widths and exceptional coherence properties, Mössbauer nuclei form
a promising platform for quantum optics, spectroscopy, and dynamics at energies of hard x-rays. A key
requirement for further progress is the development of more powerful measurement and data analysis techniques.
As one approach, recent experiments have employed time- and frequency-resolved measurements, as compared
to the established approaches of measuring time-resolved or frequency-resolved spectra separately. In these
experiments, the frequency-dependence is implemented using a tunable single-line nuclear reference absorber.
Here, we develop spectroscopy and analysis techniques for such time- and frequency-resolved nuclear resonant
scattering spectra in the frequency-frequency domain. Our approach is based on a Fourier-transform of the
experimentally accessible intensities along the time axis, which results in complex-valued frequency-frequency
correlation (FFC) spectra. We show that these FFC spectra not only exhibit a particularly simple structure,
disentangling the different scattering contributions, but also allow one to directly access nuclear target properties
and the complex-valued nuclear resonant part of the target response. In a second part, we explore the potential of
an additional phase control of the x-rays resonantly scattered off of the reference absorber for our scheme. Such
control provides selective access to specific scattering pathways, allowing for their separate analysis without the
need to constrain the parameter space to certain frequency or time limits. All results are illustrated with pertinent
examples in nuclear forward scattering and in reflection off of thin-film x-ray cavities containing thin layers of
Mössbauer nuclei.
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I. INTRODUCTION

Mössbauer nuclei are established as a versatile tool for
highly sensitive spectroscopic studies of condensed matter
systems [1–3]. Owing to their extremely narrow line-widths
and exceptional coherence properties [4–6], they also form
a promising platform for quantum optics at hard x-ray en-
ergies [7–11]. In the future, state-of-the-art and upcoming
x-ray light sources with unprecedented quality and intensity
may open up a regime of nonlinear [12–14] and nonequilib-
rium phenomena [15] which has only started to be explored
experimentally [16]. However, exploring this regime will re-
quire advanced measurement and data analysis techniques to
access a broader range of observables, and to compare theo-
retical predictions with experimental observations. Examples
include spectroscopy beyond the linear response regime [17],
photon-correlation measurements [18], or methods to study
the time-resolved sample dynamics after external stimuli,
potentially on a per-shot basis [19].
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As a first step toward this goal, recent experiments em-
ployed a time- and frequency-resolved measurement of the
scattered x-ray intensity [20–23], as compared to the estab-
lished approaches of measuring time-resolved or frequency-
resolved spectra separately [2], the latter of which can be
obtained, for instance, by probing the nuclear absorption using
pure nuclear Bragg reflections to produce highly monochro-
matic x-ray light on the scale of the nuclear line-width [24].
Alternatively, the frequency-selectivity can be achieved using
a heterodyne approach by adding an additional single-line
reference absorber, in the following referred to as analyzer,
on a velocity drive up- or downstream of the target under
investigation [25,26]; see Fig. 1. This method is also used to
perform time- and frequency-resolved data acquisition, which
provides a number of significant advantages over other de-
tection schemes using single-line reference absorbers, even
though it does not require changes to the experimental setup
apart from the electronics. On the one hand, it allows one to
apply several established data analysis methods using a single
experimental data set only. For example, late-time integration
methods established as a standard analysis approach for x-ray
cavities probed in reflection [25,27,28] or related stroboscopic
methods [29–31] can be employed by integrating the two-
dimensional data set along part of the time axis. Importantly,
the time- and frequency-resolved spectra allow one to improve
the recovery of the target spectra by optimizing the integra-
tion range throughout the data analysis [32,33]. Similarly,
off-resonant methods can be employed in spectral regions
with large detuning between analyzer and target, which may
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FIG. 1. Schematic of a setup to record time- and frequency-resolved nuclear resonant scattering spectra in forward and grazing incidence
geometry. The goal is to characterize the resonant target response. An additional single-line analyzer mounted on a Doppler drive is used to
introduce a variable frequency dependence. Resonant and nonresonant scattering in analyzer and target lead to four interfering scattering
pathways contributing to the detection signal. An example for the experimentally accessible scattered intensity as function of analyzer
frequency and arrival time of the scattered photons is shown in the lower right panel. The corresponding frequency-frequency correlation
(FFC) spectrum studied in this work is obtained via a Fourier transform along the time axis. An example FFC spectrum for the data in the
lower-right panel is shown in the lower-left panel. It exhibits clear horizontal and diagonal linear structures which can be interpreted in terms of
spectral correlations within the combined analyzer-target-system. In the second part of this work, an additional phase control between resonant
and nonresonant response of the analyzer is considered to disentangle the different scattering pathways.

even provide access to the complex-valued target response
[29,30,34,35]. These methods typically exploit the interfer-
ence between particular scattering pathways, which can be
studied in the time [34] or frequency domain [35]. However,
these established methods share the drawback that they only
make use of select regions of the recorded two-dimensional
spectra. On the other hand, the two-dimensional data set al-
lows for a much more stringent comparison between theory
and experiment. One reason for this are the rich interference
structures, which are lost in the usual one-dimensional data by
the integration over the other axis (see bottom-right panel of
Fig. 1 for an example). Interestingly, these structures encode
intensity and phase of the target response. In Refs. [20,21], the
complex-valued target response was determined by fitting the-
ory models to the entire two-dimensional spectrum, thereby
using all recorded data rather than only parts of it. However,
this approach is computationally demanding as compared to
other methods, and requires model fits to extract the desired
target properties.

This raises the question, if the two-dimensional spectra
can also be analyzed in different ways, which ideally provide
access to the desired target properties in a more transparent
way, without requiring global fits to the entire spectra, but
still allow one to exploit the time- and energy correlations in
the spectra, and to make use of large parts or even the entire
experimental data set in the analysis.

Motivated by this, here, we develop spectroscopy and anal-
ysis techniques which are based on the Fourier transform of
experimentally accessible time- and frequency-resolved in-
tensities along the time axis. The resulting complex-valued
frequency-frequency correlation (FFC) spectra exhibit partic-
ularly simple signatures comprising horizontal and diagonal
structures, which can be associated to different contributing
scattering processes. These signatures (see the bottom-left
panel of Fig. 1 for an example) facilitate a selective analysis
of the different scattering contributions. We in particular focus
on two analysis approaches. First, we discuss linear fits to
the diagonal structures in the frequency-frequency correla-
tion spectra, which allow one to extract nuclear resonance
energies, as well as spectral line features such as collective
energy shifts and superradiant line broadenings. Second, we
show that horizontal or vertical sections through the diagonal
structure provide access to amplitude and phase of the nuclear
resonant part of the target response, cross-correlated with
the analyzer response. This retrieval of the response without
contributions from the off-resonant scattering in the target
is of particular interest for x-ray cavity targets containing
Mössbauer nuclei, since their spectra typically are strongly af-
fected by the interference of electronic and nuclear response,
in dependence on the x-ray incidence angle. We further show
that an additional control of the relative phase between the
electronic and nuclear response of the analyzer allows one
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to disentangle different scattering pathways, thereby facil-
itating their selective analysis without imposing additional
constraints such as a large analyzer-target detuning. All ap-
proaches are illustrated using examples of practical relevance.

The manuscript is structured as follows: The next sec-
tion briefly describes a generic experimental setup used to
record time- and frequency-resolved spectra including phase-
and frequency-control of the nuclear reference absorber.
Further, we derive expressions for the frequency-frequency
correlation spectra in linear response theory, and discuss
them in particular limiting cases. Section III presents the two
analysis approaches for the diagonal structures, including nu-
merical examples in forward scattering and cavity reflection.
Section IV introduces the phase control of the analyzer as an
additional control parameter, and discusses its implications
for the analysis of the diagonal structure. Finally, Sec. V
summarizes the results.

II. LINEAR-RESPONSE FORMALISM AND SPECTRAL
CORRELATIONS IN NUCLEAR RESONANT SCATTERING

For our analysis, we consider the setup shown schemat-
ically in Fig. 1. A temporally short and spectrally broad
x-ray pulse delivered by an accelerator-based x-ray source
is used to probe a target containing Mössbauer nuclei. Both,
forward scattering geometries and reflection from x-ray cav-
ities will be considered. Additional frequency information
is gained by introducing a single-line reference absorber,
which can be tuned in frequency by � via a Doppler drive.
Throughout this paper, frequencies are given in units of
the target single-nucleus line-width γ . Each target features
a near-instantaneous electronic response ∝ δ(t ), and a de-
layed nuclear response, which we denote as Si(t ), with i ∈
{a, t} for analyzer and target [4,5,36–39]. The two-stage
setup thus gives rise to four different scattering channels
[34,40], as illustrated in Fig. 1. In the experiment, the time-
and frequency-resolved intensity of the scattered light is
measured, which gives rise to two-dimensional spectra as il-
lustrated in the bottom right panel of Fig. 1 [20,21]. A Fourier
transform along the time axis then leads to the frequency-
frequency correlation spectra considered here. We note that
Ref. [35] employed a similar Fourier transform to select a
particular frequency region for a subsequent analysis in the
time domain. The bottom left part of Fig. 1 shows the real
value as an example, clearly exhibiting the horizontal and
diagonal structures. In Sec. IV, we will further consider the
possibility of controlling the relative phase φ between the
electronic and nuclear response of the analyzer.

A. Time- and frequency-resolved spectra in the linear
response formalism

A theoretical description of time- and frequency-resolved
nuclear resonant scattering spectra can be given employing
the linear response formalism (see, e.g., Refs. [4,5]) which is
justified by the narrow line-width characteristic of Mössbauer
transitions that typically leads to low excitation in state-of-
the-art experiments, even at high-brilliance third-generation
synchrotron sources. Neglecting polarization effects [41],
each target i in the beam path can be described by a scalar

transfer function T̂i(ω) in the frequency domain or (impulse)
response function Ti(t ) in the time domain. Here and in the
following, the “hat” denotes quantities in the frequency do-
main. Then, the outgoing field is given by

Êout(ω) = T̂i(ω)Êin(ω), (1)

Eout(t ) = (Ti ∗ Ein)(t ) (2)

in the frequency or time domain, respectively. Next to the
convolution ∗ in Eq. (2), we also define the cross-correlation �,

( f ∗ g)(x) =
∫ ∞

−∞
dy f (x − y)g(y), (3)

( f � g)(x) =
∫ ∞

−∞
dy f ∗(y − x)g(y), (4)

for two complex-valued functions f , g of frequency or time
variables x, y. The convolution can be interpreted as applying
a filter f to g, or a propagation of an input g at point y to the
final output f ∗ g at point x by virtue of the response function
f . The cross-correlation f � g, however, can be thought of as
scanning the functions f and g for similarities by introducing
relative shifts x between them. Both quantities and their inter-
pretations will turn out to be instrumental for understanding
the diagonal and horizontal structures appearing in Fourier-
transformed time- and frequency-resolved spectra, the real
part of which is shown in the lower left plot of Fig. 1 as an
example.

The responses of nuclear targets in forward scattering
and grazing incidence geometry comprise two fundamentally
different scattering processes: Prompt scattering nonresonant
with the nuclear transition and coherent resonant scattering
delayed by the slow decay of the nuclear transition. On the
timescale of the nuclear decay, the prompt radiation can be
described by a Dirac-δ(t )-like pulse and thus the outgoing
field in nuclear resonant scattering is of the form

Eout(t ) = α[δ(t ) + Si(t )] ∗ Ein(t ). (5)

Here, the prefactor α accounts for attenuation and dispersion
imposed by the surrounding nonresonant material and Si(t )
denotes the nuclear resonant part of the target’s response.
A two-target setup formed by a reference absorber foil Ta

(analyzer) and an unknown target Tt in forward scattering
geometry as depicted in Fig. 1 can be described by the total
response function T (t ) = (Tt ∗ Ta)(t ). The response of the
reference absorber with tunable transition frequency ωa + �

and relative phase φ between the prompt and scattered part
can be written as

Ta(t,�, φ) = αa[δ(t ) + e−i�t eiφSa(t )]. (6)

Note that, typically, we will consider thin reference absorbers
whose spectral features are more narrow than those of the
target absorber. However, the subsequent analysis does not
employ approximations of the reference absorber’s response
function based on this thin-analyzer limit, and our numerical
results below will exhibit effects beyond this limit. In the
following, for notational brevity, we will absorb the detuning
and phase dependence into the nuclear scattering response as

Sa(t,�, φ) = e−i�t eiφSa(t ), (7)
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and suppress the dependence on φ throughout this section as
phase control will become of relevance only later in Sec.IV.

With these considerations, the experimentally accessible
time- and frequency-dependent intensity at the detector can
be expressed in terms of response functions as

I (t,�) = |(T ∗ Ein )(t )|2
= (T ∗ Ein)∗(t ) (T ∗ Ein )(t ), (8)

where the �-dependence arises via Ta in the response func-
tion T . Such two-dimensional time- and frequency-resolved
spectra allow for a much more stringent comparison of ex-
perimental data to theory predictions than the corresponding
one-dimensional time-spectra or energy-spectra alone, and
have been measured in recent experiments [20,21,42].

B. Frequency-frequency correlation spectrum

To discuss spectral correlations, we define the frequency-
frequency correlation (FFC) spectrum as the Fourier-
transform of the experimentally accessible intensity Eq. (8)
along the time axis,

I(ν,�) =
∫ ∞

−∞
dt eiνt I (t,�) (9)

= E2
0

∫ ∞

−∞
dt eiνt T ∗(t ) T (t )

= E2
0

2π
(T̂ � T̂ )(ν), (10)

where the initial pulse was written as Ein(t ) = E0δ(t ) as it
is typically orders of magnitude shorter than the nuclear
evolution timescales. Note that I (t,�) vanishes for times
t < 0 since the excitation occurs at t = 0. However, the
symmetric integration will allow us to derive simple analyt-
ical expressions for the case with detection time gating in
Sec. III D. Interestingly, the FFC spectrum Eq. (9) can be ex-
pressed as the (spectral) autocorrelation of the total response
function T̂ . The result Eq. (10) can thus be regarded as a
frequency-domain instance of the Wiener-Khinchin theorem
which relates the Fourier transform of the power spectral
density |T (t )|2 to the autocorrelation (T̂ � T̂ )(ν) (see, e.g.,
Ref. [43]). As we will see in the following, the Fourier trans-
formation in Eq. (9) translates temporal interference effects
into spectral correlations from which spectral features and
the phase information of the nuclear target can be extracted.
However, it is important to note that the FFC spectrum it-
self is not an intensity, as it is complex-valued for general
Fourier frequencies ν. The reason is that it is derived via
the Fourier transform from the experimentally accessible real-
valued intensity. Regarding previous detection schemes using
single-line reference absorbers as mentioned in the introduc-
tion, we note that the FFC spectrum reduces to the real-valued
time-integrated spectrum for ν = 0 (cf. Ref. [25]). By only
integrating over certain parts of the time-axis, late-time, and
stroboscopic spectra (see, e.g., Ref. [30]) can be recovered
from the same ν = 0 contribution. In this sense, the FFC
spectrum can be regarded as a generalization of these methods
to arbitrary Fourier frequencies ν using the same data set. The
case where the signal at early times is discarded, is discussed
in more detail in Sec. III D and Appendix A. In the following,

we focus on the ideal case in which all times are available
for data analysis to derive analytical expressions for the most
relevant features of these spectra.

A numerical example for the FFC spectrum in Eq. (9) is
given in Fig. 1. The bottom-right panel shows the experimen-
tally accessible time- and frequency-resolved intensity I (t,�)
in Eq. (8). The bottom-left panel shows the real part of the
FFC spectrum in Eq. (9), which is dominated by a set of hor-
izontal and diagonal spectral features in the �-ν plane. Note,
that throughout this paper, we only plot and analyze the pos-
itive ν branch of the FFC spectrum since the inversion of the
Fourier frequency ν → −ν leads to complex conjugation of
the FFC signal. The main part of our FFC analysis, however,
will be carried out on its real part or absolute value and thus
the negative ν branch contains only redundant information.

For an interpretation of these diagonal features, we rewrite
the spectral autocorrelation function Eq. (10) using the
Fourier-domain response functions

T̂ (ω) = T̂t (ω)T̂a(ω), (11)

T̂a(ω,�, φ) = αa[1 + Ŝa(ω,�, φ)], (12)

as

I(ν,�) = E2
0 |αa|2
2π

[(T̂t � T̂t )(ν) + (T̂t � T̂t Ŝa)(ν)

+ (T̂t Ŝa � T̂t )(ν) + (T̂t Ŝa � T̂t Ŝa)(ν)]. (13)

Equation (12) shows the clear separation of nonresonant (elec-
tronic) scattering, which is approximately constant on the
scale of the nuclear resonances, and the frequency-dependent
nuclear resonant scattering in form of the nuclear resonant re-
sponse Sa(ω,�, φ) in the frequency-domain. This separation
is crucial for the evaluation of the FFC spectrum in the form
of Eq. (13), the single parts of which can be interpreted as
follows: the first term describes spectral correlations between
different transitions in the target, as will be further discussed
below. The other three terms contain the contribution T̂t Ŝa =
αt [Ŝa + ŜaŜt ] combining target and analyzer. Its first addend
∼Ŝa arises from the aforementioned nonresonant (electronic)
scattering in the target followed by resonant (nuclear) scat-
tering processes in the analyzer foil. It forms the basis of
the heterodyne-type detection schemes which determine the
target response using interference between radiation emitted
from the target and analyzer, respectively (cf. Refs. [32,34]).
It will turn out to be the main origin of the diagonal struc-
ture found in FFC spectra. The second addend ∼ŜaŜt = Ŝa,t ,
known as radiative coupling [4,5,40,44], describes processes
with resonant scattering in both analyzer and target. In the
following, we will exploit that these two scattering contribu-
tions are naturally separated owing to their different scattering
amplitudes as a function of detuning between analyzer and
target and will focus on the first contribution, as it dominates
the FFC spectra in the large analyzer-target detuning limit.

C. Large analyzer-target detuning limit

The resonantly scattered part of the analyzer response
Ŝa(ω) is nonzero in the vicinity of the resonance frequency
ω = ωa + � only. For the same reason, the full target re-
sponse becomes spectrally flat far-off nuclear resonance,
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FIG. 2. Decomposition of FFC spectra into single-target and two-target contributions. Panel (a) shows the real part of the FFC spectrum
I(ν, �) after removal of the off-resonant background. It can be separated into two parts shown in panels (b) and (c). The first part in panel
(b) is the sum of the individual responses of target and analyzer, corrected for the nonresonant absorption. The horizontal structures are due
to quantum beats in the target. As guide to the eye, the relevant mutual detunings between the target transitions are indicated by dashed
red lines. Panel (c) is the difference between the spectra in panels (a) and (b). This spectrum is dominated by diagonal structures, which
originate from the interference of the resonant scattering off of the different target resonances with the resonant analyzer response. These results
are obtained for a 2-μm-thick enriched α-57Fe target with hyperfine field B = 33.3 T and a stainless-steel single-line analyzer as described
in the main text. The level structure and the relevant transitions in the target are shown in panel (d). The orange, red, and green transitions
describe the scattering of left-circularly, linearly, and right-circularly polarized light, respectively.

i.e., T̂t (ω) ≈ αt . As a result, we can approximate

T̂t (ω)Ŝa(ω) ≈ αt Ŝa(ω) (14)

in the limit of large detunings � + ωa − ωt between the
analyzer and target transitions with frequencies ωt . In this
approximation, the spectral autocorrelation function can be
written as

Ioff (ν,�) ≈ E2
0 |αa|2
2π

[(T̂t � T̂t )(ν) + |αt |2(Ŝa � Ŝa)(ν)

+ αt (T̂t � Ŝa)(ν) + α∗
t (Ŝa � T̂t )(ν)]. (15)

The first two terms correspond to the full target response
F[|Tt (t )|2] and the resonantly scattered part of the analyzer
response F[|Sa(t )|2], where F denotes the Fourier transform.
These contributions can be determined from separate mea-
surements of the time-dependent scattered intensity of the
target and the analyzer alone, i.e., in the absence of the re-
spective other target. Their complex-valued contributions to
Eq. (15) then follow from a Fourier transformation analogous
to Eq. (9).

This separation of the single-stage contributions T̂t � T̂t and
Ŝa � Ŝa from the FFC spectrum is illustrated in Fig. 2. The full
FFC spectrum in Fig. 2(a) decomposes into the single-stage
response parts shown in Fig. 2(b) and the residual two-target
contributions in Fig. 2(c). Clearly, the single-stage responses
correspond to the horizontal lines in Fig. 2(a) since they do
not depend on �, whereas the two-target parts give rise to the
diagonal lines. Note that, if the single-stage contributions are
removed by subtracting the time-resolved analyzer and target
intensities, the count rates of the three measurements of the
time- and frequency-resolved spectrum, the time-resolved tar-
get spectrum and the time-resolved analyzer spectrum, have to
be adjusted to each other, e.g., by adapting the count rates such
that after subtraction the horizontal lines have been removed.
Alternatively, the horizontal lines can be removed directly
from the FFC spectrum by determining their vertical position
and shape far away from the diagonal structure. As these
contribution to the FFC spectrum are detuning-independent,
a subtraction of the result directly clears the horizontal lines

from the entire spectrum without the need of additional mea-
surements. We pursue the first approach in the numerical
analysis in Sec. III, while the second one is applied to the hor-
izontal lines appearing in the sum spectrum Iinv in Sec. IV A.

After subtracting the single-stage contributions, we remove
the constant off-resonant background contribution to T̂t , which
can be written in the same form as Eq. (12), i.e., the part
proportional to |αt |2 in the second line of Eq. (15), to study
the nuclear resonant part Ŝt of the response alone. This can
be done, e.g., by rejecting the first few nanoseconds after
pulse arrival at the detector. Then, finally, the spectral auto-
correlation function in the large analyzer-target detuning limit
Eq. (15) can be written as

IDia(ν,�) = INR
0

2π
[(Ŝa � Ŝt )(ν) + (Ŝ∗

a � Ŝ∗
t )(−ν)], (16)

where we used ( f � g)(ν) = (g∗ � f ∗)(−ν). Further, we de-
fined INR

0 = E2
0 |αaαt |2 which describes the intensity at the

detector after the two-target setup in the absence of nuclear
scattering.

It is important to note that throughout the derivation of
Eq. (16), no assumptions were made on the analyzer and target
response functions, except for the general features that the
scattering contributions to the response functions cover only
a limited spectral region, and that the full response function
is spectrally flat outside this nuclear resonance region. There-
fore, the expression Eq. (16) holds for general nuclear targets.

The interpretation of Eq. (16) will be discussed in more
detail in Sec. II E which also reveals its relation to the diagonal
structures in the FFC spectrum and how it can be employed to
extract the complex-valued nuclear resonant part of the target
response from experimentally accessible FFC spectra.

D. Relation to off-resonant methods in the time domain

The derivation of Eq. (16) relied on the large analyzer-
target detuning, to isolate a single scattering channel of
interest. In the literature, several methods have been reported
which employ a similar parameter regime to study time-
and frequency-resolved nuclear resonant scattering spectra,
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specifically for the recovery of the complex-valued target re-
sponse function [34,35]. These latter methods operate in the
time-domain, and we can connect our energy-domain result
Eq. (16) to them via the so-called cross-correlation theorem
[45] as

IRM(ν,�) = INR
0

2π
[(Ŝt � Ŝa)(ν) + (Ŝa � Ŝt )(ν)]

= INR
0

2π
({F[S∗

t (t )] ∗ F[Sa(t )]}(ν)

+ {F[S∗
a (t )] ∗ F[St (t )]}(ν))

= 2INR
0

∫ ∞

−∞
dteiνt Re[S∗

t (t )Sa(t )]. (17)

We see that the spectral cross-correlation between target and
analyzer response are mapped to the interference between
the corresponding time-domain responses and thus, studying
the diagonal structure in the FFC spectrum is analogous to
studying the hyperbolic interference pattern appearing in the
time- and frequency-resolved intensities.

Our analysis below exploits specific features of the energy-
domain representation, and extends the previous results in
several ways. Most notably, we will discuss the spectroscopy
of thin-film cavities probed in grazing incidence, and show
that the off-resonant approaches allow one to access the nu-
clear target response alone, without the usual interference with
the electronic scattering on the cavity structure.

Further, it is important to note that both the energy- and
time-domain approaches discussed so far are restricted to
off-resonant spectral regions, in which the radiative coupling
contributions are negligible. Hence, data recorded near res-
onance between analyzer and target cannot be employed for
the analysis and, as a consequence, these spectroscopy meth-
ods do not allow one to access the interesting regime in
which radiative couplings substantially modify the target dy-
namics [21–23,40,44]. To overcome these limitations, below
in Sec. IV, we will discuss a method to suppress different
scattering channels to become more independent of the large
analyzer-target detuning limit or related approximations, and
will demonstrate its advantages by comparison to the off-
resonant method.

A brief comparison of the off-resonant methods to the so-
called late-time integration spectroscopy methods is given in
Appendix A.

E. Interpretation of the frequency-frequency
correlation spectrum

After having derived the spectral autocorrelation function
Eq. (10) in the large analyzer-detuning limit Eq. (16), and
hence a representation of the FFC spectrum in terms of re-
sponse functions in this limit, we now turn to its interpretation,
which will form the basis for further analysis below.

1. Thin-analyzer limit

To this end, we for the moment assume an idealized case
of a single-line analyzer with negligible line-width and ab-
sorption αa and resonance frequency ωa + � given by the

scattering response function

Ŝa(ω,�) = δ(ω − � − ωa). (18)

Then, Eq. (16) simplifies to

Iid(ν,�) = INR
0

2π
[Ŝt (ωa + � + ν) + Ŝ∗

t (ωa + � − ν)]. (19)

Thus, in this idealized (“id”) analyzer case, the FFC spectrum
provides direct access to the desired nuclear resonant target re-
sponse Ŝt . Interestingly, the two contributions of Ŝt in Eq. (19)
are centered around ωa + � ± ν. This can be understood by
noting that the analyzer response at ωa + � is shifted by the
Fourier frequency ±ν in the cross correlation. We can thus
identify the two contributions as the origin of the two branches
of the diagonal structures with positive or negative slopes in
the FFC spectrum.

Below, we will also consider analyzers with finite thick-
ness, in which case Eq. (19) generalizes to Eq. (16), i.e.,
the target response is additionally cross-correlated with the
analyzer response function.

As a final remark, we note that, while the diagonal structure
is directly related to the nuclear resonant target response Ŝt ,
the FFC spectrum in principle also allows to study the full tar-
get response T̂t if the nonresonant background is not removed
in the derivation of Eq. (16), at the cost of retaining a large
nonresonant background in the FFC spectrum. This approach,
however, is out of the scope of this publication.

2. Extracting information on the target response from the
diagonal structures in the FFC spectrum

As a result of Eq. (19), the target can be characterized via
the diagonal structures in the FFC spectrum in two different
ways. First, the diagonals are governed by the relation

ν(�) = ±(� − ωt + ωa), (20)

which defines lines in the ν−�-plane with slope ±1 and
offset ±(ωa − ωt ). Thus, upon extrapolating the diagonals
in the FFC spectrum, they both cross the ν = 0 coordinate
axis at � = ωt − ωa, and thereby provide access to the target
transition frequency. Note that this argument generalizes to
multiple target transitions as discussed below.

Second, one may analyze the spectral shape of the di-
agonals in the FFC spectrum as function of � or ν. From
Eq. (19) it follows that in both cases, this shape corresponds
to the desired shape of the nuclear resonant target response.
Note that the FFC spectrum is complex-valued, and thereby
provides access to the amplitude and the phase of the resonant
response Ŝt . This “phase problem” of extracting the phase of
a target response is an ubiquitous problem in spectroscopy,
imaging and diffraction experiments [34,46–48].

Both approaches will be discussed in Sec. III. There, the
more realistic situation with a finite analyzer width in Eq. (16)
will be considered. Then, the target spectrum is broadened
and modified in amplitude through the correlation with the
analyzer spectrum. Therefore, in practice, analyzers with a
spectrum narrow as compared to the desired target spectrum
should be employed. Further, different horizontal and vertical
cuts through the diagonals can be combined to reduce uncer-
tainties in the recovery of the target response.
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3. Horizontal structures in the FFC spectrum

The horizontal lines appearing in the FFC spectrum (cf.
Fig. 2) can be attributed to a beating of light scattered on target
transitions with different resonance frequencies. The different
scattering channels interfere due to the coherent nature of the
scattering, giving rise to the so-called quantum beats [4,5,39].
As in the case of the diagonal structures in the FFC spectrum,
the Fourier-transform of the time- and frequency-resolved in-
tensity of this beating pattern will peak whenever the Fourier
frequency ν equals one of the detunings between a pair of
interfering hyperfine transitions [Fig. 2(b)]. Note, however,
that not all detunings between hyperfine transitions, which
are indicated in Fig. 2(c), appear as horizontal lines in the
spectrum. This is due to the fact that in our calculation the
sample is irradiated by an unpolarized beam and the hyper-
fine field is oriented perpendicularly to the beam direction.
Hence, photons scattered off the �m = 0 and �m = ±1 are
orthogonally polarized and do not interfere with each other
(cf. Ref. [41]) and thus the corresponding peaks/lines do not
appear in Fig. 2.

III. ANALYSIS OF THE DIAGONAL STRUCTURE

In the previous Sec. II E 2, we have shown that the diago-
nal structure in the FFC spectrum is formed by correlations
of analyzer and target responses centered around positions
ν(�) = ±(� − ωt + ωa). This allows for the determination
of spectral target parameters by extrapolating the diagonals
toward the crossing point with the ν or � axis. Furthermore,
horizontal or vertical cuts through the diagonals provide ac-
cess to the complex-valued nuclear resonant part of the target
response function Ŝt (cross-correlated with the analyzer re-
sponse function). In this section, we demonstrate the practical
feasibility of both of these approaches, by evaluating repre-
sentative model data of nuclear forward scattering targets and
thin-film cavities.

A. Computational details on the analysis

The model data evaluated in this section are calculated
using the software package PYNUSS [49], which features
methods to evaluate nuclear forward scattering and cavity
reflection spectra, similar to the software package CONUSS

[50], but is written in the language Python [51] and features
substantial extensions for the analysis of quantum optical
applications in nuclear resonant scattering. In PYNUSS, for-
ward scattering and cavity reflection spectra are calculated
using the transfer matrix and layer formalism, respectively
[39,50]. Our model system is the Mössbauer isotope 57Fe with
transition energy h̄ωt = 14.4 keV and single-nucleus decay
rate h̄γ = 4.7 neV. As analyzer, an enriched stainless steel
sample (57Fe 55Cr25Ni20) of thickness 1 μm with the same
transition frequency ωa = ωt (the isomeric shift is neglected
for simplicity, without loss of generality) and single-nucleus
line-width is used for the calculation. Different targets will be
considered in the analysis, as specified below.

Following Sec. II, the diagonal analysis is then performed
on the complex-valued quantity

Ibc(ν,�) = F[(I (t,�) − |αt |2Ia(t ) − |αa|2It (t ))�(t − t1)],

(21)

where I (t,�) is the experimentally accessible time- and
frequency-resolved intensity, Ia(t ) and It (t ) are the individual
time-spectra of analyzer and target, respectively, and αa, αt the
prefactors describing electronic absorption. Compared to the
discussion of the FFC spectrum in the Sec. II, these two terms
correspond to the single-stage contributions T̂t � T̂t and Ŝa � Ŝa

in the first line of Eq. (15) In the following discussion we will
refer to Ibc(ν,�) as the background-corrected FFC spectrum.

In practice, this quantity can be measured in different ways.
One approach is to measure I (t,�), Ia(t ), and It (t ) sepa-
rately. One then has to consider possible variations in the total
number of resonant incident photons contributing to the differ-
ent spectra to perform the subtraction. Alternatively, one can
measure I (t,�) only, and then determine the �-independent
background to be subtracted directly in the FFC spectrum
in regions far away from the diagonal structures. This latter
approach will be discussed in more detail in Sec. IV.

As discussed in Sec. II C, the background correction in
Eq. (21) removes the horizontal lines and low-frequency back-
ground as shown in Fig. 2. Further, the Heaviside � function
serves to exclude the first few nanoseconds of the recorded
intensity after the nuclear excitation, mainly for two reasons:
First, from a theoretical point of view, it is desirable to exclude
the contribution from the prompt pulse from the analysis
since it is orders of magnitude more intense than the nuclear
resonant response and thus leads to a large background in
the Fourier spectrum. This lower cutoff can, in principle, be
set during data evaluation if the spectrum has been measured
reliably at all times. However, the second reason for rejecting
the intensity at early times is the fact that the prompt radiation
leads to a detector overload during the first few nanoseconds
after pulse arrival. Thus, typically the first few ns are not
available for data evaluation. Throughout the analysis, we will
first consider the ideal case with all times available for data
analysis and then discuss the effect of a finite measurement
time range in Sec. III D.

Regarding the discussion of the FFC spectrum and diag-
onal structure around Eq. (15) and Eq. (16), the background
removal via the time-gating �(t − t1) in Eq. (21) removes the
off-resonant background proportional to |αt |2 in the second
line of Eq. (15) (for details, the reader is referred to the dis-
cussion in Sec. II C) and thus the background-corrected FFC
spectrum is expected to be described well by Eq. (16) in the
large analyzer-target detuning limit, which will be exploited
to reconstruct the complex-valued nuclear resonant target re-
sponse in Sec. III C.

B. Extracting spectral parameters via linear fits
to the diagonal structure

We start by performing linear fits to the diagonal structure,
which we then extrapolate toward the crossing points with
the ν or � axes, to extract spectral information on the target
such as resonance energies. In spectroscopic applications of
nuclear resonant scattering, the spectra often feature multi-
ple splitted, broadened, and shifted resonances, e.g., due to
magnetic or electric hyperfine fields. In such a multiresonance
case, the condition Eq. (20) generalizes to

ν j (�) = ±(
� − ω

( j)
hf + ωa

)
, (22)
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TABLE I. Magnetic hyperfine splittings of 57Fe extracted using the line fits to the off-resonant FFC spectrum’s diagonal structures. The
results compare results with and without optimization of the fit range, and corresponding data for two different time gatings. The first column
indicates reference values obtained from a calculation using PYNUSS. All results are given in units of the single-nucleus line-width γ .

PYNUSS Ref. Off-resonant Off-resonant (opt.) Gating (20 ns) Gating (40 ns)

8.7596 8.652(25) 8.719(12) 8.83(32) 9.32(39)
32.0605 31.956(27) 32.053(17) 32.35 (51) 32.32(52)
55.3406 55.159(42) 55.267(15) 56.00(55) 55.1(1.1)

with slope ±1 and points of intersection (ωa − ω
( j)
hf ) with

the ν axis for each transition resonance frequency ω
( j)
hf sep-

arately. To extract these resonance frequencies via linear fits
to the diagonal structures in the FFC spectrum, one has to
determine points along the diagonals through which the lines
should be fitted. In the following, we discuss two approaches
to perform such linear fits, based on horizontal or vertical
sections through the FFC spectrum. Note that in both cases,
each resonance frequency ω

( j)
hf is obtained via a fit of a di-

agonal line with the offset as the single free parameter, which
combines data over a broad range of detunings values, thereby
reducing the detrimental effect of statistical or systematic un-
certainties. These fits do not require prior knowledge about the
target systems, and in this sense are model-independent. This
suggests the diagonal analysis of FFC spectra as a versatile
spectroscopic technique at pulsed x-ray sources.

As a specific example, we extract the magnetic hyperfine
splittings of 57Fe with internal hyperfine field B = 33.3 T
from the FFC spectra. As a reference to compare the linear fit
results to, we determine the three positive hyperfine transition
frequencies as peak maxima of the nuclear resonant target
spectrum calculated with PYNUSS for a 0.3-μm-thin target foil.
The results are tabulated as a function of the single-nucleus
line-width γ in Table I in the column “PYNUSS Ref.”

Figure 3(a) shows the real part of the background-corrected
FFC spectrum of a 2-μm-thick α-57Fe foil irradiated by lin-
early polarized light in forward scattering geometry as given
in Eq. (21). The magnetic hyperfine field is oriented perpen-
dicular to the beam propagation direction and tilted by an
angle of 45 degrees with respect to the beam polarization axis
to ensure that all hyperfine transitions are addressed during the
scattering process. In computing the FFC spectrum, we first
consider the ideal case, by including intensities from times
slightly after the x-ray excitation to suppress the prompt non-
resonant contribution, up to measurement times larger than
10γ −1 to ensure high resolution along the ν axis. The effect of
more restricted measurement time intervals will be discussed
in Sec. III D below. Further, we choose the real part of the
(complex-valued) FFC spectrum for the peak evaluation since
it is more symmetric and spectrally narrower than its absolute
value, as the imaginary part features a broad asymmetric line
shape.

1. Vertical cuts along the ν axis

The first approach employs vertical cuts along the ν axis
through the FFC spectrum. As an example, we analyze di-
agonals with positive slope. To avoid spectral overlap with
diagonals of negative slope, we restrict the analysis to de-
tunings � which are larger in magnitude than the outermost

crossing point of the diagonals with the ν = 0 axis, as indi-
cated by the red diagonal lines in Fig. 3(a). For each such
�, we analyze a vertical cut through the diagonal structure
in the FFC spectrum, as exemplified by the yellow line in
Fig. 3(a). The section corresponding to the yellow line in
panel (a) is shown in panel (b), which shows that the maxima
of the different diagonals are clearly resolved. The respective
lines formed by these maxima across different detunings are
then linearly fitted with a fixed slope of 1 and offset b. The
detuning range considered for the linear fits is indicated by
the red lines in Fig. 3(a), which represent the result of the
linear fits. The fit parameters then allow one to determine the
transition frequencies ω

( j)
hf relative to the resonance frequency

ωa of the analyzer via Eq. (22).
The results of this analysis for the three positive-valued

hyperfine splittings �ω together with the corresponding fit
errors are given in Table I in the column “Off-resonant.” To

FIG. 3. Extraction of spectral parameters via linear fits to the
diagonal structure. Panel (a) shows the real part of the FFC spectrum
for a 2-μm-thick α-iron enriched in 57Fe probed in nuclear forward
scattering (see main text for details). The analyzer is a stainless
steel foil as described in the main text. The diagonal structure is
clearly visible. The line fits used to extract the resonance positions
are marked in red. Panel (b) shows a vertical cut through panel (a) at a
detuning � = 100γ . This detuning is indicated by the yellow vertical
line in panel (a). The six resonances of the magnetically split α-Fe
spectrum can clearly be distinguished.
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check for residual effects of resonant contributions on the
diagonal structure at small detunings, we further repeated
the above analysis for different � fit ranges. To this end,
we evaluated 20 fits j ∈ {1, 2, . . . , 20} in which the first 5 j
datapoints (stepsize δ� = 0.5γ ) with the lowest detunings �

were excluded. Out of those 20 fits, we then chose the one
with the lowest fit error as the optimized result. The results of
this procedure are shown in column “Off-resonant (opt.)” in
Table I. The comparison of the unoptimized and optimized
off-resonant fit results with the corresponding theory refer-
ence values shows a good agreement within a 2% margin of
the relative error which demonstrates the feasibility of spectral
parameter determination from the diagonal structure. Further,
the optimized result yields lower fit errors and more accurate
results indicating that there indeed is a residual effect of res-
onant (e.g., radiative coupling) effects or the negative-slope
diagonal branches on the positive-slope diagonal structure
close to � = 0.

2. Horizontal cuts along the � axis

Alternatively, an analogous second approach based on hor-
izontal cuts along the � axis is possible. This approach can be
advantageous in case of finite measurement time range for the
time-dependent intensity imposed by experimental constraints
such as the pulse structure of the x-ray source. The reason is
that this time range determines the frequency resolution along
the ν axis in the FFC spectrum. If this resolution becomes too
coarse due to the experimental limitations, then an accurate
determination of the maxima along the vertical sections may
be challenging. An example for this will be discussed in
Sec. III D. In contrast, the resolution along the horizontal �

axis is determined by the Mössbauer drive, and can be chosen
independent of the pulsed x-ray source characteristics. For
an analysis along the � axis, smaller detunings � should be
avoided since they may be perturbed by resonant effects such
as the radiative coupling of analyzer and target. Further, also
the tails of the negative-slope diagonal structure branch may
lead to a slight asymmetry of the positive-slope branch and
vice versa at low �. In practice, it is possible to perform both
the horizontal and the vertical cut analysis on the same data
set, and to compare the results for a consistency check.

Summarizing this part on extracting spectral parameters,
we conclude that the results of the analysis underpin the theo-
retical explanation of the diagonal structure given in Sec. II B
and provide us with an intuitive and simple way of determin-
ing the spectral structure of nuclear targets from FFC spectra.

C. Extracting the resonant target response function via
sections through the diagonal structure

In this subsection, we consider the second method to
extract information from the diagonal structure in the FFC
spectrum, by making use of the fact that horizontal or vertical
cuts through the diagonals in the limit of large analyzer-target
detuning provide access to the complex-valued resonant tar-
get response function. In the large analyzer-target detuning
and thin-analyzer limit, this follows from Eq. (19), which
states that the FFC spectrum is expected to be essentially
proportional to the desired nuclear resonant part of the tar-
get response. For thicker analyzers, this result generalizes to

FIG. 4. Extraction of the target response function. Results are
shown for a target and analyzer configuration as in Fig. 3. Panel
(a) shows the true nuclear resonant target spectrum without analyzer
as a reference, evaluated using the PYNUSS software package. Panel
(b) depicts the absolute value of a vertical cut at � = 100γ through
the FFC spectrum (dashed blue line). For comparison, the absolute
value of the reference nuclear resonant target response correlated
with the analyzer response according to Eq. (16) is shown as solid
black line. Panel (c) shows the corresponding phase of the two
quantities in panel (b).

Eq. (16), which shows that then the FFC spectrum is deter-
mined by the cross-correlation between nuclear resonant part
of the target response and analyzer response.

1. Extraction of the complex-valued resonant target response
function in nuclear forward scattering

As a first example, we consider the same target and an-
alyzer configuration as in Sec. III B. To this end, as the
reference, we calculate the nuclear resonant target response
Ŝt (�) alone using PYNUSS. Figure 4(a) shows the desired
energy spectrum |Ŝt (�)|2 obtained with this calculation.

Our goal then is to determine the complex-valued nuclear
target response Ŝt (�) itself from the experimentally acces-
sible FFC spectrum which, in turn, is complex-valued as
the Fourier transform of the time- and frequency-resolved
intensity. Following Eq. (16), in the large target-analyzer
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detuning case, the complex-valued FFC spectrum corresponds
to Ŝt (�), cross-correlated with the analyzer response Ŝa(�).
To verify this prediction, we show the absolute value of a
vertical cut through the FFC spectrum at � = 100γ as the
dashed blue line in Fig. 4(b). The black solid line shows the
absolute value of the cross-correlated nuclear target response
Ŝt (�), according to Eq. (16), obtained from the reference
calculation using PYNUSS. It can be seen that the two curves
agree very well.

The corresponding results for the phase of the cross-
correlated Ŝt (�) are shown in Fig. 4(c). Again, the two curves
agree well, except for lower frequencies ν, where the phase
of the FFC spectrum deviates from the reference calculation.
This deviation can be attributed to resonant couplings between
target and analyzer which lead to a low-frequency background
at lower ν. It shows that resonant effects do also affect the
spectral shape of vertical sections through the FFC spectrum
and suggests that small values of ν should be avoided as well.
The influence of this defect can be reduced by choosing larger
detunings � for the vertical cut, such that the relevant part of
the target spectrum moves away from lower ν values.

The effect of the cross-correlation of the desired target re-
sponse with the analyzer response in the FFC spectrum can be
seen in the comparison of Figs. 4(a) and 4(b). The resonances
in the spectrum in Fig. 4(a) exhibit so-called double-hump
profiles, which is a well-known effect in thicker targets (see,
e.g., Ref. [4]). In contrast, these effects are not visible in
Fig. 4(b) due to the cross-correlation with the analyzer re-
sponse, which broadens the observed spectrum.

Overall, we find that the FFC spectrum indeed provides
access to the complex-valued nuclear resonant target response
function. The broadening due to the cross-correlation with the
analyzer response again highlights the usefulness of thin ana-
lyzers, which allow one to resolve target spectra with higher
spectral resolution.

2. Extraction of the complex-valued resonant target response
function in reflection from x-ray cavities

As a second example, we discuss the recovery of the
complex-valued resonant target response function for Möss-
bauer nuclei embedded in x-ray cavities. Similar to the
forward-scattering case in the previous section, the nuclear en-
ergy spectra observed in reflection and evaluated by standard
methods like the late-time integration are modified by an in-
terference with the electronic response of the cavity structure
[39]. This interference is particularly prominent in the cavity
case, since it depends on the x-ray incidence angle around
the cavity resonance, and may lead to a full response with an
asymmetric Fano profile [52]. For this reason, the extraction
of the nuclear response, unperturbed by the electronic cavity
response, from the FFC spectrum is of particular relevance for
the field of nuclear quantum optics, as discussed below.

For the cavity settings, all calculations are performed using
the software package PYNUSS [49], which uses the layer for-
malism [39] to calculate the full (resonant and nonresonant)
response; see Sec. III A. As our model system, we use a thin-
film cavity with layer structure 2.2 nm Pt/10 nm C/0.6 nm
57Fe/10 nm C/Pt from top to bottom probed by near-resonant
x-rays in grazing incidence (cf. Fig. 1). Here, the last Pt layer

FIG. 5. Extraction of the complex-valued target response func-
tion in reflection for Mössbauer nuclei embedded in a thin-film
cavity. The Figure shows the absolute value squared of the
background-corrected FFC spectrum as given in Eq. (21) with the
intensity at time zero set to zero. The cavity structure is 2.2 nm
Pt/10 nm C/0.6 nm 57Fe/10 nm C/Pt (layer structure from the top
to the bottom), and the probing x-rays impinge at a fixed incidence
angle θ = 2.8 mrad. In comparison to Fig. 3(a), the single-line nature
of the nuclear response is clearly visible, as well as an asymmetry of
the spectrum around � = 0. The yellow vertical line indicates the
cut at � = 100γ used in the further analysis.

is assumed to be sufficiently thick to prevent any transmis-
sion through this layer. Due to the low thickness of the Fe
layer, magnetic long-range order is absent, and the nuclei
do not experience a magnetic hyperfine field. As a result,
no magnetic splitting appears in the spectra. Figure 5 shows
the background-corrected FFC spectrum of such a cavity at
incidence angle θ = 2.8 mrad, specifically, the absolute value
squared of the quantity given in Eq. (21) with the intensity at
time zero set to zero.

In contrast to forward scattering, the electronic response of
the cavity is different in that it also has a resonance structure,
due to the different modes of the cavity. As a result, the
magnitude of the off-resonant electronic background observed
in reflection varies with the x-ray incidence angle around the
cavity resonance, as the variation in the angle effectively scans
the incident light frequency across the cavity resonance. How-
ever, a variation of the incidence angle also leads to a relative
phase between the electronic and the nuclear response, such
that the Lorentzian response of the nuclei appears as Fano
line shapes in the total cavity response [52] (for details, see
Appendix B). Both effects are clearly visible in Fig. 6(a),
which shows reference cavity spectra evaluated using PYNUSS

for different incidence angles. The nuclear response corre-
sponds to the spectral Fano structures around � = 0. The
off-resonant electronic background becomes visible at large
detunings |�| 	 γ away from the nuclear resonance.

In Fig. 6(b), we show the corresponding nuclear target
responses reconstructed via vertical cuts through the FFC
spectrum, as illustrated in Fig. 5 for one particular incidence
angle. In contrast to the reference spectra in panel (a), in all
cases, the reconstructed resonances are of Lorentzian shape,
and the off-resonant background is low. In the following, we
will show that this difference to Fig. 6(a) is due to the fact
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FIG. 6. Cavity spectra for different x-ray incidence angles θ1 =
2.75 mrad, θ2 = 2.8 mrad, θ3 = 3.0 mrad, and θ4 = 3.3 mrad. Panel
(a) shows full reference cavity reflection spectra calculated using the
software package PYNUSS. The effect of the electronic scattering on
the cavity structure is clearly visible in the off-resonant background
varying with the incidence angle, and in the modification of the
Lorentzian nuclear response into a Fano line profile. Panel (b) shows
the nuclear target response recovered from the FFC spectrum by
vertical sections at � = 100γ (cf. yellow line in Fig. 5). These
spectra are not affected by the electronic scattering on the cavity,
and therefore remain of Lorentzian shape for all incidence angles.
Therefore, the dependence of the superradiant line broadening and
the resonance energy shift on the incidence angle become clearly
visible.

that the recovery via the FFC spectrum determines the tar-
get response function independent of the electronic scattering
contribution. As a result, no off-resonant background con-
tributes, and the nuclear line shape is observed in its original
Lorentzian form. We note that this is a qualitative difference
to the standard late-time integration method for measuring
energy spectra of cavity targets, which does not provide access
to the nuclear response alone.

As a first approach to verifying the recovery of the nu-
clear target response alone, we exploit that the resonances for
the various incidence angles in Fig. 6(b) differ in line-width
and center frequency. The variations of the line-width with
the incidence angle in Fig. 6(b) are known in the literature
as superradiance γs [5,16,28,36,37,53–56] and the variations
in the resonance position are related to the collective Lamb
shift �CLS [28,57–65]. They are of particular relevance, since
the manipulation of the resonance properties via these col-
lective effects forms the basis for the implementation of

FIG. 7. Collective nuclear parameters of the two-level system
realized by the cavity structure in Fig. 5. Panel (a) shows the energy
shift of the nuclear resonance related to the collective Lamb shift
as function of the x-ray incidence angle, and panel (b) shows the
corresponding superradiantly enhanced decay rate. The red dashed
lines are the recovery results obtained from fitting a model to the
FFC spectrum (see main text for details). The green dashed line in
panel (a) is obtained using a simple maximum determination. As
a reference, the solid black line shows the parameters obtained via
a Fano line fit to the reference cavity spectrum calculated using
PYNUSS.

more advanced quantum optical level schemes with nuclei
[11,31,42,66–73].

In the ideal two-level case, the nuclear response comprises
a single Lorentzian [66,70,71] which can be characterized
by the parameters γs and �CLS only. In the following, we
therefore show that these nuclear parameters can be deter-
mined from FFC spectra, and thereby the nuclear response.
To this end, we employ a fit model to extract γs and �CLS

from cuts through the FFC spectra (details on the fit model
are provided in Appendix B). For �CLS, we alternatively use
a simple determination of the maxima of the cuts through
the FFC spectrum, similar to the resonance determination in
Sec. III C 1.

The results are shown in Fig. 7. Figure 7(a) shows the shift
�CLS of the resonance energy as function of the incidence
angle θ . The red dashed line depicts the parameters extracted
via the fit to the cut through the FFC spectrum. Results from
the simple maxima determination are shown as the green
dashed line. In comparison, the black solid line shows the cor-
responding values obtained via Fano line fits to the reference
cavity spectra in Fig. 6(a) calculated using PYNUSS. It can be
seen that the overall agreement of all curves is good across
the entire angular range. At two incidence angles, around

013071-11



LUKAS WOLFF AND JÖRG EVERS PHYSICAL REVIEW RESEARCH 5, 013071 (2023)

θ ≈ 2.5 mrad and θ ≈ 3.1 mrad, the simple maxima determi-
nation method suffers slightly larger deviations from the other
two curves. This deviation can be traced back to uncertainties
in the maxima determination because of the residual double-
hump spectrum of the analyzer, which becomes relevant since
the line-width of the cavity falls below the effective analyzer
width at off-resonant angles and thus the shape of the analyzer
response dominates the cross-correlation of both response
functions.

Figure 7(b) shows corresponding results for the collec-
tively enhanced total decay rate c = (γ + γs)/2 as function
of the incidence angle θ . As expected [5,28,57,58], the super-
radiance is highest close to the cavity resonance. Again, the
agreement between results extracted from the FFC spectrum
to the reference calculations is good. Toward off-resonant
incidence angles, the line-width extracted from the FFC spec-
trum saturates to a value slightly larger than that of the
reference spectra. The reason for this is the convolution with
the analyzer response, which sets a lower limit to the line-
width in the FFC spectrum. In contrast, the resonance position
in Fig. 7(a) is not affected by the broadening due to the cross-
correlation with the analyzer response.

3. Determination of the complex-valued nuclear response
of an EIT cavity

Next, we demonstrate that the FFC spectrum also provides
direct access to the complex-valued nuclear response of a
more complex cavity structure, using the relevant example of
a cavity featuring electromagnetically induced transparency
(EIT) [31,70,74]. More specifically, we consider a layer
structure Pd (1.5 nm)/B4C (49.8 nm)/57Fe (0.57 nm)/B4C
(97.1 nm)/57Fe (0.57 nm)/B4C (35.4 nm)/Pd (43.7 nm)/Si
at incidence angle θ = 2.28 mrad, as it was discussed in
Ref. [73].

To recover the nuclear resonant target response from the
diagonal structure, we consider vertical cuts through the FFC
spectrum at � = −200γ , and show the corresponding real
and imaginary parts in Fig. 8. As a reference, the figure fur-
ther shows the cross-correlation between the resonant target
and analyzer responses calculated using PYNUSS, i.e., it does
not contain contributions from the electronic response of the
cavity. As in the forward scattering case, the spectral shape
of both real and imaginary part is reproduced well by the
FFC spectrum, and we again find that the FFC spectrum
calculated from the diagonal spectra provides direct access to
the complex-valued nuclear target response. Note that eval-
uation of the FFC spectrum at larger detunings � compared
to the discussion in Sec. III C 1 reduces the low-frequency
background that impedes the full response reconstruction in
the forward scattering case Fig. 4.

To summarize the results of Sec. III C, we showed that
the complex-valued target response function can be recovered
from the FFC spectrum in the case of nuclear forward scat-
tering as well as in the case of reflection from a cavity. In the
latter case, it is important to note that the method presented
here indeed provides access to the complex-valued nuclear
target spectrum, independent of the background of and inter-
ference with possible electronic scattering channels usually
present in the cavity reflection spectra. This is a key difference

FIG. 8. Extraction of the nuclear response of a cavity-target
probed in reflection. The figure shows the (a) real (b) imaginary
parts of a cut through the diagonal structure in the FFC spectrum
along the ν axis at detuning � = −200γ (dashed blue curves).
The solid black lines show the corresponding cross-correlation of
the nuclear resonant responses of cavity and analyzer as given by
Eq. (16) as a reference. The dip in the spectra is an electromag-
netically induced transparency feature. The cavity layer structure is
Pd (1.5 nm)/B4C (49.8 nm)/57Fe (0.57 nm)/B4C (97.1 nm)/57Fe
(0.57 nm)/B4C (35.4 nm)/Pd (43.7 nm)/Si, and the x-ray incidence
angle is θ = 2.28 mrad.

to other spectroscopy techniques such as the late-time inte-
gration, which retrieve the absolute value of the total cavity
reflection spectrum. The possibility to access the complex-
valued nuclear response alone is of considerable interest for
the further development of nuclear cavity QED, as discussed
in Ref. [73], since the spectra corresponding to the nuclear
response relate to the quantum optical level scheme governing
the nuclear dynamics inside the cavity. Furthermore, from
the recovered spectra, also the collectively modified quantum
optical level scheme parameters can be extracted. Therefore,
the techniques presented here are expected to fuel further
developments in nuclear quantum optics.

D. Finite gating times

Both the theoretical discussion and the numerical results
presented so far have assumed the ideal case of all times from
arrival of the prompt pulse at t1 = 0 at the detector until a time
t2 	 1/γ , where practically all primary and secondary radia-
tion has decayed, being available for data analysis. However,
under realistic experimental conditions the first nanoseconds
after pulse arrival can not be used for reliable data evaluation
due to detector overload caused by the large intensities of the
prompt radiation produced by accelerator-based light sources
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(cf. Ref. [32]). However, repetition rates of these light sources
set an upper limit to recording time after pulse arrival before
the next bunch hits the target and detector (cf. Ref. [39]). To
understand the effect of these restrictions on the FFC spectra,
we first reconsider the theoretical derivation of the Fourier-
transformed time- and frequency-resolved intensity given in
Sec. II B by introducing finite integration boundaries and,
subsequently, discuss the applicability of diagonal analysis
of magnetic hyperfine splitting in 57Fe under these circum-
stances.

1. Theoretical analysis

For the theoretical discussion, we formally introduce Heav-
iside � functions excluding the interval [−t1, t1] and times
above t2 as well as below −t2 to ensure proper symmetry in the
Fourier domain. The usual lower cutoff of the integral bound-
aries in the time-domain necessary for causality reasons is
part of the target response, i.e., Tt (t ) ∼ �(t ) (cf. Appendix C),
and gives us this freedom in choosing the form of the gating
function at negative times to simplify the theoretical analysis.
In this case, the Fourier-transformed intensity reads

It1,t2 (ν,�) = E2
0

∫ ∞

−∞
dteiνt T ∗(t )T (t )�(|t | − t1)�(t2 − |t |)

= E2
0

4π2
{F[�(|t | − t1)�(t2 − |t |)] ∗ F[T ∗T ])}(ν)

= E2
0

2π2
(δt1,t2 ∗ (T̂ � T̂ ))(ν), (23)

where the operator F denotes the Fourier transform and the
(∗) and (�) operators the convolution and cross-correlation as
defined in Eqs. (3) and (4), respectively. Further, we intro-
duced

δt1,t2 (ν) = 1

2
F[�(|t | − t1)�(t2 − |t |)](ν)

=
∫ t2

t1

dt cos(νt ) = sin(νt2) − sin(νt1)

ν
.

The δt1,t2 function acts as a convolutional filter on the
autocorrelation of the response T̂ of the complete setup, re-
duces frequency resolution by virtue of the upper integration
boundary t2 and leads to additional oscillations in the final
spectrum characteristic of the chosen time-window [t1, t2] (cf.
Refs. [32,33]). In principle, these oscillations can be reduced
by different means, e.g., experimentally by using crossed
polarizer-analyzer setups (cf. Ref. [75]), by choosing suffi-
ciently late lower cutoff times t1 (late-time integration) [28,52]
(see also Appendix A), by smoothing the time window of the
lower cutoff during data evaluation [34], or by stroboscopic
detection techniques [29,30]. Furthermore, event-based data
acquisition providing access to time- and frequency-resolved
two-dimensional datasets allow one to choose and optimize
the integration limits after the experiment throughout the data
analysis [20,21]. There are also established deconvolution
techniques which, however, face the challenge that the filter
function δt1,t2 is zero outside the time range [t1, t2].

Finally, we note that the time-gated expression Eq. (23) is
consistent with the previous results without time-gating, since

δt1,t2 (ν)
t1→0−−−→

t2→∞ πδ(ν) (24)

FIG. 9. Effect of time gating on the extraction of target param-
eters from the diagonals in the FFC spectra. The two panels show
FFC spectra as in Fig. 3, but with initial time vetos of (a) 20 ns and
(b) 40 ns. In both cases, only times up to an upper limit of 192 ns are
considered. Although the Fourier effects due to the time windows are
clearly visible, the data can still be reliably fitted with lines of slope
one, as indicated by the red lines.

in the limit of vanishing time gating, where δ(ν) is the Dirac
δ distribution. Then, Eq. (23) reduces to Eq. (10).

2. Effect of temporal gating on the analysis of diagonal spectra

After having derived the expression for the FFC spectrum
in the presence of gating, we now consider the effect of the
gating on the diagonal spectra analysis. For this, we again an-
alyze our example of the magnetic hyperfine splitting in 57Fe
as described in Sec. III B, using spectra calculated according
to Eq. (21) with lower gating times t1 = 20ns, 40ns and up-
per integration time t2 = 192 ns. The latter upper integration
limit corresponds to a typical time windows in experiments
performed in the 40-bunch mode at the P01 high resolution
dynamics beamline [76] at the synchrotron-radiation facility
PETRA III [77]. The results are shown in Fig. 9 and Table I.
It can be seen that the resolution in Fourier space along the
ν axis is decreased by lowering the upper boundary t2. In
addition to the lower resolution introduced via t2, well-known
periodic structures distort the spectra, an effect that is stronger
in the case of the higher lower integration boundary t1 = 40 ns
due to the stronger truncation of the Fourier transform along
the time axis. Further, the visibility of the diagonal structures
reduces with increasing t1 such that the spectra become diffi-
cult to analyze for gating times larger than t1 = 40 ns.
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To overcome these limitations due to the gating, we applied
the analysis procedure introduced in Sec. III B to cuts through
the diagonal structure along the � axis, which does not suffer
from the reduced resolution, as discussed in Sec. III B 2. For
this reason, the �− and ν-axes are interchanged in Fig. 9 as
compared to Fig. 3(a). We found that the line fits marked as
red lines in Fig. 9 still could be performed reliably, and the
hyperfine splittings obtained from the crossing points with the
ν axis given in Table I under “Gating (20ns)” and “Gating
(40ns)” are accurate up to relative errors in the few percent
range.

We therefore conclude that the peak analysis of the
background-corrected FFC spectra involving vertical or hor-
izontal cuts through the diagonal structure combined with line
fits through the series of found peaks allows one to recover the
nuclear target parameters via time- and frequency-resolved
nuclear resonant scattering spectra even in the presence of
considerable time gatings constraining the measurement. Fur-
thermore, a direct analysis of single cuts allows one to recover
the complex-valued nuclear part of the target response, al-
though cross-correlated with the analyzer response. This is
particularly interesting for target nuclei embedded in thin-film
cavities as the nuclear response provides direct access to the
underlying quantum optical level scheme, independent of the
usual interference with nonresonant electronic scattering off
of the cavity structure. In this sense, our method is comple-
mentary to existing analysis methods which provide access
to the complete (resonant and nonresonant) cavity response,
thereby rendering the retrieval of the pure nuclear response
more difficult.

IV. ANALYSIS OF THE FFC SPECTRUM BEYOND THE
LARGE TARGET-ANALYZER DETUNING LIMIT USING

PHASE CONTROL

In Sec. II B we exploited that some of the different scat-
tering pathways contributing to the total detection signal (see
Fig. 1) can be approximately isolated from the others in
the large-detuning limit between target and analyzer. This
formed the basis for the off-resonant spectral analysis meth-
ods discussed in the present work and the previous literature
(cf. Sec. II D). However, this approach faces several draw-
backs. On the one hand, it fails in spectral regions where
resonant and off-resonant contributions to the signal overlap,
thereby excluding the possibility to study resonant effects
such as radiative couplings between targets and related
target-analyzer correlation effects. On the other hand, only
a restricted � range of the diagonal spectra can be used
for the off-resonant analysis, since these overlapping parts
cannot be disentangled close to resonance using the previ-
ously described recording and analysis scheme. Motivated by
this, in this section, we discuss a more sophisticated method
to separate the total detection signal into its various contri-
butions, which is based on a phase control of the analyzer
response. We demonstrate that this method can selectively
remove undesired signal contributions and thus allows access
to a larger amount of data, thereby improving the stability of
the diagonal line fit analysis against residual resonant effects
and the reconstruction of the phase-resolved nuclear target
response. In the future, it may further be employed to study

resonant effects that currently are discarded in the off-resonant
analysis.

The basic idea of this approach is to conduct a series of
measurements, systematically varying parameters that change
the different scattering contributions in a controlled and
unique way. Combining the different data sets then allows
one to separate the different scattering contributions. For ex-
ample, in the infrared to ultraviolet regime, coherent phase
control of laser pulses is exploited to remove undesired scat-
tering contributions in collinear geometry by so-called phase
cycling [78–81]. This raises the question, if similar meth-
ods could be applied in nuclear forward scattering as well.
While the phase between subsequent pulses at state-of-the-art
accelerator-based x-ray light sources can not be controlled, the
control of the relative phase between the exciting x-ray pulse
and the light scattered off of the nuclei has been demonstrated
using various approaches. Examples include the rotation of
the hyperfine field quantization axis [82–87], mechanical dis-
placements of the sample after the excitation [20,21,88–90],
or transient changes in the magnetic field strength [91]. In all
cases, a rapid manipulation is applied to the nuclei after the
initial excitation has passed the sample, such that it only af-
fects the scattered light. Note that the latter two approaches in
principle provide access to arbitrary relative phases between
incident and scattered light.

In the following, we show that such phase control allows
one to separate different scattering contributions without hav-
ing to impose the large detuning limit or to conduct reference
measurements of target and analyzer alone. To this end, we
denote the controllable relative phase between incident and
scattered light in the analyzer as φ. We consider the ideal case
in which the phase is applied near-instantaneously after the
initial excitation. Then, the analyzer response can be written
as (cf. Appendix D)

Ta(t,�, φ) = αa[δ(t ) + eiφSa(t,�)]. (25)

It is well-known that the scattering off of two targets in general
is not commutative [40]. In the present case, the outgoing
field behind both targets takes a different form depending on
whether the analyzer is placed before (subscript 1) or behind
(subscript 2) the target in the beam propagation direction (for
details, see Appendix D):

E1(t,�, φ) = E0αaαt [δ(t ) + eiφSa(t,�)

+ St (t ) + eiφSa,t (t,�)], (26)

E2(t,�, φ) = E0αaαt [δ(t ) + eiφSa(t,�)

+ St (t ) + Sa,t (t,�)]. (27)

In these expressions,

Sa,t (t,�) =
∫ ∞

−∞
dωe−iωt Sa(ω,�)St (ω) (28)

describes the radiative coupling between analyzer and tar-
get in the time domain. In particular, the radiative coupling
contribution to the outgoing field depends on the ordering of
analyzer and target, since the controllable phase only affects
the coupling term if the analyzer is placed in front of the target
(case 1). The reason is that in the reverse ordering (case 2),
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the analyzer phase change is already completed before the
scattered light from the upstream target reaches the analyzer,
such that no relative phases appear in the coupling term.

The time- and frequency-resolved intensity for the two
orderings then evaluate to

I1(t,�, φ) =
Ib + 2INR

0 Re[eiφS∗
t Sa + eiφS∗

t Sa,t + S∗
aSa,t ], (29a)

I2(t,�, φ) =
Ib + 2INR

0 Re[eiφS∗
t Sa + S∗

t Sa,t + eiφS∗
aSa,t ]. (29b)

Here, INR
0 = E2

0 |αaαt |2 as introduced in Sec. II B. Further, the
background intensity is given by

Ib = Ip + INR
0 (|St |2 + |Sa|2 + |Sa,t |2). (30)

Ip comprises the terms containing the δ(t ) function charac-
teristic of the prompt unscattered contributions, describing
the incoming radiation as well as interference between the
prompt pulse and resonantly scattered radiation at t = 0.
Like the other contributions in Ib, it is phase-independent if
the prompt radiation has passed before the phase imprint onto
the analyzer response has taken place.

The intensities in Eqs. (29) comprise the four contributions
Ib, S∗

t Sa, S∗
aSa,t , and S∗

t Sa,t . By forming suitable sums or differ-
ences of two intensities recorded with appropriate phases, any
two combinations of the above contributions can be isolated,
by suppressing the respective other two.

In the present context, the term S∗
aSt is of primary interest,

as it is the time-domain version of the scattering paths in
Eq. (16) which gives rise to the diagonal structure. Therefore,
we focus on the combinations

D1(t, χ ) = I1(φ = χ ) − I1(φ = χ + π )

= 4INR
0 Re[eiχ (S∗

t Sa + S∗
t Sa,t )], (31a)

D2(t, χ ) = I2(φ = χ ) − I2(φ = χ + π )

= 4INR
0 Re[eiχ (S∗

t Sa + S∗
aSa,t )], (31b)

S (t, χ ) = I1(φ = χ + π ) + I2(φ = χ + π )

= 2Ib + 2INR
0 Re[−2eiχ S∗

t Sa

+ (1 − eiχ )(S∗
a + S∗

t )Sa,t ], (31c)

which each isolate S∗
aSt with one of the three other terms

S∗
aSa,t , S∗

t Sa,t , and Ib, respectively, if χ = 0 is chosen in S .
Note that D1 and D2 each involve one particular ordering
of target and analyzer along the beam propagation direction,
while S is a combination of both orderings. Further, the terms
S∗

aSt in Eqs. (31) feature a prefactor of two as compared to
the individual spectra Eqs. (29). Corresponding to doubled
statistics for the desired scattering contribution, this compen-
sates for the larger measurement time required to record two
spectra for the sum- and difference evaluations. The additional
degree of freedom χ can be used to perform a tomography
by scanning the phase of the desired scattering contribution.
Such an analysis, however, is beyond the scope of this paper
and a value of χ = 0 is chosen as it recovers the form of the
diagonal term S∗

t Sa as discussed in previous sections [cf., e.g.,
Eq. (17)].

In the following, we perform the FFC analysis developed
in Sec. III on the detection signals in Eqs. (31a)–(31c).

A. Extracting spectral parameters from spectra
with phase control

We start with the extraction of spectral parameters as in
Sec. III B, by applying line fits of slope one to diagonals
formed by the peak maxima of sections along the ν axis.
To allow for a comparison of the different approaches, we
again determine the hyperfine splittings of the 2-μm-thick
α-iron target with magnetic hyperfine field B = 33.3 T. As
in Sec. III B, the sample is irradiated with linearly polarized
light while the hyperfine field is oriented perpendicularly to
the beam propagation direction and tilted by 45 degrees with
respect to the beam polarization axis, to observe all six tran-
sition lines in the spectrum. For the spectral analysis then the
real part of the FFC sum and difference spectra

ISa (ν,�) = F[D1(t, χ = 0)], (32a)

ISt (ν,�) = F[D2(t, χ = 0)], (32b)

Iinv(ν,�) = −F[S (t, χ = 0)�(t − t1)] − Ib(ν0) (32c)

are considered. The first spectra do not require additional cor-
rections, since the background contributions are automatically
removed by taking the difference of two spectra with phase
control in Eqs. (31a) and (31b). The third spectrum Eq. (32c)
contains two background corrections. First, the contribution
of the initial prompt pulse is suppressed by the step function
�(t − t1). Second, the single-target contributions Ib(ν0) are
removed. However, in contrast to the procedure in Eq. (21)
involving the subtraction of single-target spectra, here, we
follow another approach, directly based on the FFC spectra
measured with both targets. For this, we make use of the fact
that the FFC spectra approximately reduce to the background
in regions away from the diagonal structure. Specifically, we
determine the background correction from the FFC contri-
bution at the largest recorded detuning-value � for ν values
up to an upper limit ν0 well below the diagonal structure.
For ν values above this threshold, we instead approximate
the background by the FFC contribution at � = 0. This way,
the background correction Ib(ν0) is obtained directly from the
FFC spectra, in regions away from the diagonals for the entire
ν range.

For the numerical analysis, we again calculate all spectra
using PYNUSS, including a time-dependent phase shift for the
analyzer response which is zero at t = 0 and φ for times t > 0.
The FFC sum and difference spectra Eqs. (32a)–(32c) con-
sidered for the analysis are shown in Fig. 10. A comparison
of plots (a) and (b) shows that the ordering of analyzer and
target indeed has an influence: While the diagonal structure
is perturbed by residual effects if the analyzer is placed first,
corresponding to ISa (ν,�), shown in plot (a), no such per-
turbations are visible in plot (b) showing the opposite order,
corresponding to ISt (ν,�). Like in the case with the target
placed first [plot (b)], the background-corrected case Iinv(ν,�)
in plot (c) does not show these perturbations.

The retrieved transition frequencies obtained by the diag-
onal analysis of the phase-combined FFC spectra Eqs. (32a)–
(32c), corresponding to spectra recorded with the analyzer
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FIG. 10. FFC spectra obtained with phase-control of the resonant
analyzer response. Each panel shows a combination of two FFC
spectra recorded with different phase settings: Panel (a) shows the
phase-combined spectrum ISa with analyzer placed in front of the
target. Panel (b) shows the corresponding result ISt with analyzer
behind the target. Panel (c) shows Iinv after removing the off-resonant
background.

first, the target first and upon reversing target order, re-
spectively, are summarized in Table II in the columns ISa ,
ISt , and Iinv for comparison with the results obtained in
Sec. III B displayed in Table I without phase control. For
the three columns containing the additional “(opt.),” again
the optimization procedure involving multiple fits with differ-

ent ranges of detuning data were performed by subsequently
excluding low-detuning data points. From the different fit
results, the one with the least fit error is chosen. Overall, all
results agree well with the respective theoretical reference
values within a 2% margin. We find that the optimization
is most effective if the analyzer is placed first (ISa ), which
likely is due to the residual perturbations visible in Fig. 10(a),
while the other two results do not change significantly upon
optimization. Together with the undistorted appearance of the
diagonal structures in these cases in Fig. 10 this implies a
larger range of detuning values that can reliably be employed
for linear fit analysis compared to the off-resonant case in
Sec. III B and Table I, since the result with the least fit error is
reached very close to resonance already.

B. Effects of the target thickness on the parameter extraction

For a more systematic comparison of phase-combined and
off-resonant FFC spectra, we analyze the influence of thick-
ness effects on the diagonal structure of a single-line 57Fe
target (i.e., in the absence of hyperfine splitting). Figure 11(a)
shows the line shape as function of target thickness. It can be
seen that for thicker targets, the single line splits into a double-
hump profile [4], which impedes the simple determination of
a single maximum. Therefore, next to the simple fit of a line
through the maxima in the FFC spectra, we further consider a
model to fit the line shape of the single-line target, analogous
to the approach in Sec. III C 2. We use the model function (for
a derivation, see Appendix C)

ffit(ν) = A

[
exp

(
bt

i(ν − x) − S

)
− 1

]
+ h, (33)

with amplitude A ∼ baINR
0 accounting for electronic absorp-

tion and dispersion via INR
0 as well as the resonant coupling of

the radiation to the analyzer nuclei via ba, x = � − ωt + ωa

denoting the center frequency of each vertical spectrum and
S = (γt + γa + ba)/2 the decay rate of the target broad-
ened by the effective analyzer decay width. The thickness
parameters ba, bt for both analyzer and target are defined in
Appendix C. Note that, in deriving this formula, we distin-
guish between analyzer and target line-width γa and γt to
gain better insight into the functional dependence on both
quantities though the analyzed numerical data will continue
to use γa = γt = γ .

The exponential form of the fit model Eq. (33) is a conse-
quence of multiple scattering of photons propagating through
the target, also causing the double-hump profile. An additional
offset h was added to account for background in the Fourier
spectrum due to residual resonant effects. Knowing that the

TABLE II. Magnetic hyperfine splittings of 57Fe extracted from spectra using analyzer phase control. As in Table I, line fits to the off-
resonant diagonal structures of the FFC spectrum are used. The different columns compare results for the three phase-combined quantities in
Eqs. (32), both with and without optimization of the fit range. The first column indicates reference values obtained from a calculation using
PYNUSS. All results are given in units of the single-nucleus line-width γ .

PYNUSS Ref. ISa ISa (opt.) ISt ISt (opt.) Iinv Iinv (opt.)

8.7596 8.689(23) 8.748(10) 8.819(2) 8.824(2) 8.854(9) 8.852(1)
32.0605 32.032(20) 32.104(12) 32.169(7) 32.193(5) 32.247(8) 32.241(4)
55.3406 55.245(24) 55.310(10) 55.336(13) 55.374(5) 55.416(6) 55.416(6)
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FIG. 11. Extraction of target parameters as function of target
thickness. Panel (a) illustrates how the diagonal structure along the
ν axis at � = 100γ varies with target thickness. For thicker targets,
a characteristic “double-hump” profile appears. Panel (b) compares
the deviations between the reference transition frequency and the
corresponding transition frequencies obtained by linear fits to the
diagonals using different methods: The off-resonant method (yellow
line), and the phase-difference methods based on ISa (green), ISt

(red), and Iinv (blue). In all cases, the solid lines correspond to results
obtained by simple maxima determination while the dashed lines are
based on model fits to vertical sections through the diagonal struc-
ture, as explained in the main text. Panel (c) compares the thickness
parameters extracted from the different methods with the theoretical
reference value (black).

spectral shape of vertical or horizontal sections through the
diagonal structure corresponds to a double-hump profile, the
simple maxima determination can also be adapted to include
the two most prominent maxima of such sections followed by
an average over the lines formed by both sets of maxima.

Results of this analysis are shown in Fig. 11(b). It de-
picts the recovered target-analyzer detuning �0 = ωt − ωa

if no Doppler shift is applied as function of target thick-
ness. Since for a 57Fe target without hyperfine splitting and a
stainless steel analyzer without isomeric shift both transition
frequencies are identical (ωt = ωa), the plotted quantity also
describes the deviation between the real detuning and the
value recovered via diagonal analysis.

Eight curves falling into two categories of diagonal anal-
ysis methods are compared: The solid curves represent the
method introduced in Sec. III B which determines simple
maxima of each section along the ν direction and subsequent
linear fits to the resulting diagonals to give an estimate of the
target-analyzer detuning �0. The dashed curves use the same
linear fit approach to retrieve the target-analyzer detuning but
the peak position of each section along the ν axis is deter-
mined using the fit model Eq. (33) via the parameter x. Both
of these diagonal analysis methods are applied to four types
of FFC spectra: The yellow curves evaluate the off-resonant
spectra discussed in Sec. III while the other curves result from
evaluation of spectra including phase-control, specifically, dif-
ference spectra Eqs. (32a) and (32b) with analyzer (green)
and target (orange) placed first in the beam path and the sum
spectrum Iinv after background removal (blue). In obtaining
these results, the detuning fit range was kept constant as
[25γ , 175γ ).

From Fig. 11(b) we find that all four simple-maxima eval-
uations exhibit a maximum deviation from the reference value
at around 1.5γ which can be attributed to the appearance of
the double-hump profile for this target thickness. In contrast,
the sum spectrum (Iinv, blue curve) is hardly affected. Apart
from this, the sum spectrum and the difference spectrum with
target placed first (ISt , orange curve) reproduce the reference
value �0 = 0 much better than the other two curves across the
entire thickness range, and become almost constant toward
larger thicknesses. This feature can be explained by noting
that in the corresponding Eqs. (32b) and (32c), the target spec-
trum is absent except for the desired diagonal contribution. In
contrast, Eq. (32a) contains further contributions of the target
response which distort the diagonal spectrum with increasing
target thickness. Hence, to retrieve reliable spectral informa-
tion for targets thick compared to the analyzer width it appears
to be favourable to choose phase-combinations eliminating
the term S∗

t Sa,t the influence of which becomes significant
toward higher target thicknesses.

The results using the model fit approach (dashed lines)
all agree well with the expected result of zero through-
out the entire thickness range, without perturbation by
the double hump at around 1.5γ , since the shape of this
double-hump profile is included in the fit model Eq. (33).
However, toward larger target thicknesses, these curves start
to deviate more from the reference values than the two
better-performing simple-maxima results. We attribute this
to the fact that at higher target thickness, both the posi-
tive and negative ν diagonal structures become spectrally
broader and overlap stronger with the each other leading to
deviations from the fit model Eq. (33). This effect can be
reduced by excluding low-frequency data points in the vertical
spectra.

Figure 11(c) shows corresponding results for the thickness
parameter extracted from the four evaluated spectra as func-
tion of the target thickness. In all cases, the retrieved thickness
parameter are almost identical and agree well with the cal-
culated values for intermediate thicknesses, even though the
deviation increases with the target thickness. Also, in the limit
of thin targets, a plateau in the recovered thickness parameter
develops as the width of the diagonal spectra is bounded from
below by the analyzer spectral width.
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FIG. 12. Reconstruction of the nuclear resonant target response
from phase-combined FFC spectra: Panel (a) depicts the absolute
value of a vertical cut through the FFC spectra at � = 100γ (dashed
lines). For comparison, the absolute value of the reference nuclear
resonant response correlated with the analyzer response according
to Eq. (16) is shown as solid black line. Panel (b) shows the corre-
sponding phase of the quantities shown in panel (a). The blue line
corresponds to the background-corrected sum spectrum Iinv, while
the green and orange line correspond to the cases with the analyzer
(ISa ) and the target (ISt ) placed first in the beam path, respectively.

In summary, we found that the linear fit analysis of spectra
obtained using phase control not only allows one to use larger
parts of the recorded data than the corresponding off-resonant
methods, but also may provide better target parameter recov-
ery results. As a function of target thickness, a comparison
between different phase control approaches revealed that it
appears most favorable to eliminate the scattering channels
containing the term S∗

t Sa,t . Then, the phase control methods
provide a better recovery than the corresponding approaches
based on the off-resonant part of the spectrum only. Finally,
a more reliable recovery of the spectra as function of target
thickness could be achieved using fit models incorporating the
known double-hump profile.

C. Extracting the target response function using phase control

We conclude our comparison of FFC spectra obtained us-
ing phase-control with the off-resonant regime by reconstruct-
ing the complex-valued target response from sections along
the ν axis as described in Sec. III C 1.

Figure 12 compares absolute value and phase of a vertical
cut through the FFC spectrum at � = 100γ for the three phase
combinations Eqs. (32a)–(32c) with the reference spectrum
obtained by cross-correlating nuclear resonant target and an-
alyzer response explicitly (solid black line). It can be seen
that the results based on the difference spectra ISa (orange
line) and ISt (green line) agree very well with the theoretical
reference. In particular for the case with the target placed first

in the beam path (orange line), the phase at lower frequen-
cies ν is recovered even better than in the analysis based on
the off-resonant regions of the FFC spectrum in Fig. 4(b).
Interestingly, the analysis based on the sum spectrum Iinv

performs much worse, in particular toward higher frequencies.
We attribute this to the background removal, which distorts the
final result if resonant effects still contribute at the detuning
values used to determine the background contributions [cf.
discussion after Eq. (32c)].

Overall, we therefore conclude that additional control of
the relative phase between the resonant and nonresonant
radiation in nuclear resonant scattering experiments can im-
prove spectral analysis and target response reconstruction, as
it allows one to selectively separate otherwise overlapping
scattering channels across the entire detuning range. This
improvement is manifest in a higher amount of data close to
resonance that can be evaluated during the line fit analysis as
well as a better recovery of the phase of the nuclear response
in the lower Fourier frequency range compared to the off-
resonant approach without phase control. Further, thickness
effects impeding a reliable recovery of the spectral target
structure via the diagonal lines can be suppressed by selecting
appropriate scattering contributions thus allowing the study
of thick targets that are not accessible to the off-resonant
approach without phase control.

V. DISCUSSION AND SUMMARY

In this paper, we introduced frequency-frequency correla-
tion (FFC) spectra as a promising tool for spectral analysis
and phase-retrieval of arbitrary Mössbauer targets. These FFC
spectra are obtained as Fourier transforms of experimen-
tally accessible time- and frequency-resolved nuclear resonant
scattering spectra along the time axis. Our approach is mo-
tivated by the observation that FFC spectra exhibit a simple
structure comprising horizontal and diagonal features which
relate to different physical processes contributing to the scat-
tered light, and which can conveniently be analyzed.

We showed that this approach translates interference be-
tween different scattering channels into frequency-frequency
correlations revealing the spectral structure of the underlying
scattering system. Specifically, the cross-correlation between
nuclear resonant part of analyzer and target response appeared
as a diagonal structure in these frequency-frequency corre-
lation spectra that allowed access to target properties in two
ways.

First, using linear fits to these diagonals, we were able
to extract the resonance frequencies of the target, as well as
spectral line features such as collective energy shifts and line
broadenings, thereby establishing an intuitive and straightfor-
ward analysis tool for the FFC spectra.

Second, we found that sections through the diagonal struc-
ture provide access to amplitude and phase of the nuclear
resonant part of the target response, cross-correlated with
the analyzer response. In particular, they are not affected by
the off-resonant electronic scattering in the target. This is of
immediate interest for characterizing collective nuclear level
schemes in x-ray cavities, which so far have been associated
to cavity reflection spectra [11]. However, these spectra also
depend on the in- and out-coupling of the x-rays into the
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cavity and the interference of the nuclear response with the
nonresonant empty-cavity scattering, and therefore the asso-
ciated level schemes may not represent the actual nuclear
dynamics inside the cavity [73]. Then it may be favorable
to instead associate a level scheme to the nuclear dynamics
inside the cavity alone, and the approach presented here al-
lows one to experimentally access the corresponding nuclear
response unperturbed by the electronic scattering contribu-
tion. In this sense, the analysis approach presented here has
a qualitative advantage over the established late-time integra-
tion method. We note that time-domain off-resonant methods,
as discussed in Sec. II D, share this advantage, although so far
they have primarily been discussed in the forward scattering
case [34,35]. This again highlights the advantage of time-
and frequency-resolved measurements over time-resolved or
frequency-resolved approaches, since they not only allow one
to choose the late-time integration range in the data analysis
after the actual experiment, but also provide the basis for
both off-resonant analysis methods in the time- and energy-
domain. In other words, a single dataset can be evaluated
using three different methods, thereby also allowing for con-
sistency checks.

To demonstrate the practical feasibility of both FFC anal-
ysis approaches in relevant settings, we employed them to
determine magnetic hyperfine splittings of α-iron in forward
scattering geometry as well as the collective Lamb shift of
thin-film x-ray cavities as function of incidence angle θ from
simulated data. In all cases, good agreement was achieved
with corresponding reference calculations. Further, the super-
radiant enhancement of the nuclear decay in the cavity could
successfully be retrieved using an appropriate fit model. We
also considered experimental resolution limitations along the
Fourier frequency ν in FFC spectra, which may arise due to
measurement constraints in the time domain, e.g., due to the
x-ray pulse repetition rate determined by the radiation source.
This can be mitigated by employing our approach based on
the relative detuning � between analyzer and target rather
than on ν, since the former has an experimentally control-
lable resolution independent of the x-ray pulse structure. An
example analysis of the hyperfine splitting of α-iron including
time gating effects indeed showed that this way, results with
reasonable accuracy could be obtained.

In a second part, we considered the possibility of further
extending the FFC approach based on a control of the rel-
ative phase between the resonant and off-resonant analyzer
response. In the presence of such phase-control, the overall
response becomes dependent on the ordering of target and
analyzer. We showed that sums or differences of FFC spectra
recorded with suitable phase shifts or analyzer-target order-
ings allow one to disentangle different scattering pathways
across the entire FFC spectrum. In contrast, most previous ap-
proaches separated the pathways by restricting the analysis to
particular parameter regions such as the large target-analyzer
detuning case. This way, spectral backgrounds can be re-
moved, or scattering paths be excluded which prevent an
accurate FFC analysis, especially close to the resonances.
In the present work, we employed this technique to isolate
the interference contribution between the individual resonant
target and analyzer scatterings. We could thereby improve the
recovery of phase and spectral target structure as compared

to the off-resonant case without phase control and reliably
retrieve the target’s resonance structure even for thick tar-
gets where the off-resonant limit is difficult to reach. In
addition, we expect that the approach will also facilitate the
study of transition-specific dynamics and resonant couplings
[21,40,44] by suppressing nonresonant contributions to time-
and frequency-resolved spectra.

APPENDIX A: SPECTROSCOPY VIA
LATE-TIME INTEGRATION

The late-time integration spectroscopy method also em-
ploys frequency-tunable reference absorbers and has proven
to be particularly successful in quantum optical studies in-
volving thin-film cavities [28,31,42,52,67–69]. To gain insight
into its main assumptions, we briefly recall the derivation of
the late-time method given in Ref. [28]. The experimentally
accessible time- and frequency-resolved intensity I (t,�) as
given in Eq. (8) is integrated for late photon arrival times
[t1, t2] yielding the frequency-resolved observable

ILTM(�) = E2
0 |αa|2

∫ t2

t1

dt |Tt (t ) + (Tt ∗ Sa)(t )|2, (A1)

where the detuning dependence enters via the Doppler-shifted
analyzer response Ta(t ) = αa[δ(t ) + Sa(t,�)]. If the nuclear
resonant part of the analyzer response Sa is only nonzero in
the vicinity of ω = ωa + � and the target response varies
slowly over this frequency range, then their convolution can
be written as

(Tt ∗ Sa)(t ) = F−1[T̂t (ω)Ŝa(ω,�)]

≈ T̂t (ωa + �)Sa(t,�). (A2)

This approximation can be extended straightforwardly to
include first order derivatives of the phase of T̂t (cf.
Refs. [33,92]) but in general requires that the target response
is approximately constant across the spectral range of the
analyzer. Assuming further that at late times t1 	 0 the target
response Tt (t ) has already decayed, one can further approxi-
mate

ILTM(�) ≈ E2
0 |αa|2C|T̂t (ωa + �)|2, (A3)

where C = ∫ t2
t1

dt |Sa(t )|2. Thus, for sufficiently late integra-
tion times the integrated intensity ILTM becomes proportional
to the absolute squared of the frequency-domain target re-
sponse |T̂t (ωa + �)|2.

The two key approximations performed above require tar-
get spectra which are spectrally broad and smooth on scales of
the spectral analyzer width. Therefore, the method is particu-
larly useful for thin-film cavities probed in reflection which
feature spectrally broad resonances.

The strengths of the late-time method lies in its simple
measurement and analysis approach. However, in comparison
to the FFC methods discussed here, the late-time integration
has several drawbacks. First, it does not allow one to retrieve
the complex-valued target response. Second, it relies only
on data recorded at late times, such that most of the signal
photons cannot be used for the spectrum recovery. Finally,
the recovery sensitively depends on the choice of t1 and t2,
and the obtained spectra may be perturbed by time gating
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FIG. 13. Recovery of cavity spectra using late-time integration.
The Figure shows spectra obtained by integrating the time- and
frequency-resolved spectra over the time interval between t1 =
180 ns and t2 = 1600 ns. The four curves correspond to incidence
angles θ1 = 2.75 mrad, θ2 = 2.8 mrad, θ3 = 3.0 mrad, and θ4 = 3.3
mrad. The cavity is the same as the one considered in Sec. III C 2,
and the intensity scale is as in Fig. 6(a). At incidence angles θ1 and
θ2, the nuclear resonant response is spectrally broad, and the spectra
are reproduced well by the late-time integration, though with reduced
visibility. In contrast, the late-time spectra at incidence angles θ3, θ4

suffer from artifacts of the time integration and do not represent the
reference spectra in Fig. 6 well.

effects. Some of these challenges are illustrated in Fig. 13,
which shows late-time spectra of a thin-film cavity with layer
structure as given in Sec. III C 2 for the incidence angles con-
sidered in Fig. 6 with integration boundaries of t1 = 180 ns,
t2 = 1600 ns.

At incidence angles θ1 and θ2, the target spectra are repro-
duced well. However, the neglect of the early photons causes a
reduction of the usable spectral intensity by about three orders
of magnitude, as can be seen in comparison to the reference
spectra Fig. 6, which are drawn using the same scale. Further,
the late-time spectra for incidence angles θ3 and θ4 are com-
pletely distorted, even though only the incidence angle was
changed. The reason for this is that at these incidence angles,
the cavity resonance line-width is small [cf. Fig. 7(b)], such
that the approximations underlying the late-time integration
method break down. Note that time- and frequency-resolved
data acquisition can partially compensate for this downside
since it allows for a posteriori selection of the integration time
window.

APPENDIX B: COLLECTIVE PARAMETERS IN CAVITY
REFLECTION SPECTRA

To retrieve collective nuclear parameters such as the collec-
tive Lamb shift �CLS and superradiance γs from the diagonal
structure appearing in FFC spectra, a model function is re-
quired to fit the section along the ν axis through the diagonals
shown in Fig. 6.

To obtain such a fit function, we employ a quantum op-
tical model [66] of Mössbauer nuclei embedded in thin-film
cavities, which allows one to derive analytical expressions for

these parameters. For this, we calculate the time-domain re-
sponse for grazing-incidence reflection from a thin-film cavity
with a single layer of Mössbauer nuclei embedded in its center
(cf. Fig. 1) by Fourier transforming the cavity’s frequency-
domain response [92]

Tt (ω) = αt − i(αt + 1)

(
γs

2 + i�CLS
)

ω − (ωt + �CLS) + ic
, (B1)

where the empty-cavity reflection coefficient is given by

αt = 2κR

κ + i�c
− 1. (B2)

Here, κ is the total loss rate of the cavity, �c is the detuning
between the cavity mode and an external driving mode, and κR

is the in- and outcoupling rate of the cavity [66]. c = (γ +
γs)/2 denotes the total decay rate of the nuclei in the cav-
ity with γs the superradiant line-width [5,16,28,36,37,53–56],
and �CLS a level shift experienced by the nuclear ensemble
known as collective Lamb shift [28,57–65]. Though in gen-
eral frequency-dependent through the cavity-detuning �c, we
regard �CLS, γs, and αt as constants as function of frequency
since the cavity resonances are typically orders of magnitude
broader than nuclear resonances [70] and thus the empty-
cavity part becomes essentially flat in frequency-space. In this
case, a Fourier transform of the frequency response yields

Tt (t ) = αtδ(t ) − (αt + 1)

(
γs

2
+ i�CLS

)

× e−i(ωt +�CLS )t e−ct�(t ). (B3)

Employing the early-time approximation Eq. (C3) for the
analyzer response, the FFC spectrum in the large analyzer-
target detuning limit Eq. (16) for a cavity target given by
Eq. (B3) can be calculated in the time domain as

I(ν,�) = E2
0

∫ ∞

0
dteiνt e−St [ce−ixt + c∗eixt ]

= iE2
0

[
c

ν − x + iS

+ c∗

ν + x + iS

]

= 4E2
0

[
Re(c)(iν − S ) − Im(c)x

(ν + iS )2 − x2

]
. (B4)

Here, we have introduced the parameters

S = c + γa + ba

2
, (B5a)

x = � − (�CLS + ωt − ωa), (B5b)

c = αt (α
∗
t + 1)

(
γs

2
− i�CLS

)
ba. (B5c)

Note that evaluating the absolute value squared of the
complex-valued FFC spectrum Eq. (B4) yields two
Lorentzians in the limit of large detunings,

|I(ν,�)|2 = 16E4
0

( |c|2
(ν − x)2 + S2



+ |c|2
(ν + x)2 + S2



+ 2Re

[
c2

(ν − x + iS )(ν + x − iS )

])

−−−→
x	S

16E4
0 |c|2

(
1

(ν − x)2 + S2


+ 1

(ν + x)2 + S2


)
.
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This is consistent with our observation of a Lorentzian line
shape in diagonal cavity spectra in Sec. III C 2, and it further
supports our key result that the diagonal cavity spectrum in-
deed yields the nuclear resonant part St of the spectrum only.
This is most easily seen by the fact that spectra affected by the
interference of the nuclear response with the electronic back-
ground response in general have Fano line shapes; see Fig. 6.
As in the case of nuclear forward scattering, the response is
shifted in the FFC spectrum by the analyzer-target detuning
via x and broadened by the analyzer response width via S .

To retrieve collective nuclear parameters from vertical cuts
through the diagonal structure, we define a more general fit
function based on the absolute value of Eq. (B4) as

D(ν) = |I(ν,�)| = A

√
ν2 + (px)2(

ν2 − x2 + S2


)2 + 4x2S2


, (B6)

where we assumed that S

x 
 1, which is consistent with
the off-resonant approximation used to derive I(ν,�). The
fit parameters related to Eqs. (B5) are A = 4E2

0 Re(c) and
p = Im(c)/Re(c).

The position of the maximum of each vertical section is
given by x and the lines formed by these maxima can be fitted
similarly to the procedure described in Sec. III B to obtain
�CLS as crossing point with the ν axis. The total decay rate
c is determined by averaging over the S retrieved from each
vertical section and subsequent subtraction of the effective
analyzer width γa+ba

2 = 1.67γa for a 1-μm-thick stainless steel
analyzer containing 55% of 57Fe.

Since cavity spectra can be considerably broadened by
superradiance, we use two optimization strategies to reduce
resonant effects: First, we optimize the � fit range toward the
lowest line fit error as described in Sec. III B, however, by
evaluating the first 40 fits. This suppresses resonant effects af-
fecting the shape of the diagonal line at small detunings while
at the same time taking into account as many data points as
possible. The second optimization is related to low-frequency
deviations from the Lorentzian line shape also caused by
resonant effects: To minimize its influence on the fit outcome,
a series of model fits given by Eq. (B6) with adapted ν fit
range is performed on each vertical cut taking into account
a different number of data points below the peak maximum.
Specifically, we first include a frequency range starting right
below the expected peak maximum only and evaluate eight
fits j ∈ {0, 1, . . . , 7} in which 10 j datapoints are added at the
lower end of the vertical cut. Again, the fit with the least fit
error is selected. It was found that this approach improves
the fit result especially in the vicinity of the superradiance
maximum where resonant effects are expected to be strongest.

APPENDIX C: LINE SHAPES IN NUCLEAR
FORWARD SCATTERING

In this Appendix, we briefly discuss the response functions
of single-line targets in nuclear forward scattering in the time
domain and employ them to evaluate their line shape in the
FFC spectra.

For a single-line target, the scattering part of the generic
response function in the time domain Eq. (5) evaluates to

[4,5,36–39]

St (t ) = −�(t )

√
bt

t
J1(2

√
btt )e− γt

2 t e−iωt t , (C1)

where �(t ) is the Heaviside step function, γt the decay rate
of the individual nuclei, and ωt the transition frequency. The
thickness parameters bi for target (i = t) and analyzer (i = a)
are given by

bi = πρi fLMγi

k2
i (1 + α)

di, (C2)

where ρi denotes the number density of resonant nuclei, γi its
line-width, ki the wave number of the resonant radiation, di

the target’s thickness, fLM the Lamb-Mössbauer factor, and α

the internal conversion coefficient (for more details, see e.g.,
Refs. [5,39]). For α-iron the internal conversion coefficient
is given by α = 8.56 [39] and the Lamb-Mössbauer factor at
ambient conditions is of the order fLM ≈ 0.8 [93].

In the early-time approximation bat 
 1, the correspond-
ing response for a thin single-line analyzer evaluates to

Sa(t,�) = −�(t ) ba e− γa+ba
2 t e−i(ωa+�)t . (C3)

This early-time approximation of the analyzer response is
based on √

ba

t
J1(2

√
bat ) ≈ bae− ba

2 t , (C4)

which is valid for bat 
 1 up to first order.
The two response functions Eq. (C1) and (C3) can be used

to evaluate the expression for the FFC spectrum in Eq. (16) in
the time domain. Then, the Fourier transform of the positive
branch [also cf. Eq. (17)] is given by

f (ν) = INR
0

∫ ∞

−∞
dt eiνt S∗

t (t ) Sa(t )

= INR
0 ba

∫ ∞

0
dt

√
bt

t
ei(ν−x)t e−St J1(2

√
btt )

= A

[
exp

( −ibt

ν − x + iS

)
− 1

]
, (C5)

with

x = � − ωt + ωa, (C6)

S = γt + γa + ba

2
, (C7)

A = baINR
0 . (C8)

Since the line shapes obtained from the FFC spectrum co-
incide with the target response functions as shown in the
main text, Eq. (C5) also corresponds to the well-known fre-
quency response function in nuclear forward scattering, as
expected. However, as compared to the standard expressions
[4], Eq. (C5) contains a spectral broadening entering in S

caused by the convolution with the analyzer, and an additional
frequency shift due to the interference with the analyzer radi-
ation leading to the diagonal structure of the FFC spectrum.

In the main text, we employ Eq. (C5) as the fit model
in Eq. (33) to extract spectral parameters from the phase-
combined and off-resonant spectra.
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APPENDIX D: PHASE-DEPENDENCE OF FIELDS AND
INTENSITIES UPON REVERSING SAMPLE ORDER

In this Appendix, we derive the x-ray field behind a combi-
nation of two nuclear absorbers, both of which acquire sudden
relative phase shifts immediately after arrival of the x-ray
pulse, either by near-instantaneous displacements or by rapid
changes of the magnetic field at the nuclear positions (for
details, see Sec. IV). In particular, we focus on the effect of
the ordering of the two absorbers.

We start by deriving the field behind a single absorber.
To evaluate the response of the absorber, it is convenient
to transform into its rest frame, which refers to the frame
where the nuclear resonances are time-independent. Denoting
the laboratory frame incident field EL

in(t ), the corresponding
incident field in the rest frame is

ER
in(t ) = e−iφ(t )EL

in(t ), (D1)

where φ(t ) is the time-dependent phase shift. The outgoing
field in the rest frame is

ER
out(t ) = (

T ∗ ER
in

)
(t )

=
∫ ∞

−∞
dt ′ T (t − t ′) e−iφ(t ′ ) EL

in(t ′). (D2)

Finally, transforming back into the laboratory frame yields

EL
out(t ) = eiφ(t )ER

out(t )

=
∫ ∞

−∞
dt ′ ei[φ(t )−φ(t ′ )] T (t − t ′) EL

in(t ′). (D3)

Next, we calculate the field behind two absorbers, the nuclear
resonances of both change with time. We denote the response
function of the upstream [downstream] absorber as T1 [T2],
with phase shifts given by φ1 [φ2]. We obtain

Eout(t ) =
∫ ∞

−∞
dt ′

∫ ∞

−∞
dt ′′ ei[φ2(t )−φ2(t ′ )] T2(t − t ′)

× ei[φ1(t ′ )−φ1(t ′′ )] T1(t ′ − t ′′) EL
in(t ′′). (D4)

Assuming a near-instantaneous incident field EL
in(t ′′) =

E0δ(t ), we find

Eout(t ) = E0

∫ ∞

−∞
dt ′ ei[φ2(t )−φ2(t ′ )] T2(t − t ′)ei[φ1(t ′ )−φ1(0)] T1(t ′)

= E0

[
δ(t ) + ei[φ1(t )−φ1(0)] S1(t ) + ei[φ2(t )−φ2(0)] S2(t )

+
∫ t

0
dt ′ei[φ2(t )−φ2(t ′ )] ei[φ1(t ′ )−φ1(0)]S2(t − t ′)S1(t ′)

]
.

(D5)

Here, we have used T (t ) = δ(t ) + S(t ), neglected for sim-
plicity the nonresonant electronic absorption, and the integral

ranges are constrained since S(t ) ∝ �(t ), where �(t ) is the
Heaviside unit step function. As expected, the individual res-
onant responses of the two absorbers are modified by their
respective phase shift, as can be seen from the second and
third term in Eq. (D6). However, the last term, which corre-
sponds to the radiative coupling, is only affected by the motion
of the upstream absorber in case of near-instantaneous phase-
jumps. This is due to the fact that the effect of the steplike shift
of the second absorber can be neglected since exp(i[φ2(t ) −
φ2(t ′)]) in the radiative coupling term contributes only in the
negligible interval t ′ = 0. Intuitively, only relative phase shifts
between in- and outgoing radiation may modify the outgoing
field, and all x-rays scattered by the upstream absorber reach-
ing the second absorber after the incident pulse at t = 0 are
not affected by its change in phase since it is already finished.
For analogous reasons, the contribution of the steplike phase
φ1 can be moved out of the integral, since φ1(t ′) = φ1(t ′′) for
any t ′, t ′′ > 0. With this, Eq. (D5) can be written as

Eout(t ) = E0[δ(t ) + ei[φ1(t )−φ1(0)] S1(t ) + ei[φ2(t )−φ2(0)] S2(t )

+ ei[φ1(t )−φ1(0)]S1,2(t )], (D6)

where we have defined the radiative coupling contribution

S1,2(t ) =
∫ ∞

−∞
dt ′S2(t − t ′)S1(t ′). (D7)

Using Eq. (D6), adding the absorption and dispersion
prefactors α, assuming φ1(0) = 0 = φ2(0) without loss of
generality, and specifying the ordering of analyzer and target,
immediately leads to Eqs. (26) and (27) of the main text.

Finally, the intensity after the two absorbers follows from
Eq. (D6) as

I (t ) = Ib + 2I0Re[ei(φ2−φ1 )S∗
1S2

+ S∗
1S1,2 + ei(φ2−φ1 )S2S∗

1,2], (D8)

where we have again assumed φ1(0) = 0 = φ2(0) and defined
φi ≡ φi(t > 0). From this result, two important conclusions
can be drawn. First, phase control of both absorbers does
not add an additional degree of freedom beyond the phase
control of only one absorber, since only the difference of
the two phases enters the expression for the experimentally
accessible intensity. Hence, we restrict our discussion to the
phase control of the analyzer, since a target phase control
may not always be experimentally feasible, i.e., for thin-film
cavities. Second, if only one of the absorbers (analyzer) is
moved, then the ordering of the two absorbers is crucial. The
corresponding intensities for either the first or the second
absorber being moved are given in Eqs. (29) of the main text.
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