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Stability of line-node semimetals with strong Coulomb interactions and properties of the
symmetry-broken state
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We study the stability and phenomenology of line-node semimetals in the presence of Coulomb interactions.
Our results indicate a phase transition to a chiral insulating state that occurs at a finite interaction threshold,
which we determine. We also compute the Landau levels for out-of-plane and in-plane magnetic fields in the
symmetric and symmetry-broken phases. We find that the magnetic field couples to the chiral order parameter,
implying that this degree of freedom can be manipulated in situ in experiments. Finally, we check the existence
of edge states in the symmetry-broken phase. On the system’s boundary, we note that the metallic “drum-head”
states that exist in the symmetric phase are gapped out. However, the symmetry-broken phase permits topological
defects in the macroscopic order parameter in the form of domain walls, which host metallic “interface states.”
These consist of linelike gap-closings that occur on the two-dimensional interfaces.
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Topological semimetals exhibit a band structure that is
gapped everywhere except at a few nodal points, where the
bands meet. The topological nature of these protects them
against perturbations and also gives rise to unique phenomena
such as the chiral anomaly—where nodal points act as sources
and sinks of a spontaneous current—and Fermi arcs, which
are direct manifestations of the bulk topology [1]. Applica-
tions of topological semimetals are thus far mainly as building
blocks of information technology [2–4]. Several of these ma-
terials exhibit a large magnetoresistance effect [5] that may
be exploited in magnetic field sensors [6] and spintronic
devices [7].

In the search for new and technologically useful semimet-
als, symmetry-protected topological phases have emerged as
an important platform that dramatically expands the types of
nodal features realized in a material. Typically, this involves a
combination of point group symmetries and explicitly broken
time-reversal or inversion symmetry. The result is a wide class
of band touching points that carry more than unit topological
charge [8,9] and may also involve multiple bands [10,11] or
have to be classified as line-nodes [12–18].

While the explicit reliance on symmetry significantly
widens the scope of topological and semimetallic materials,
it also has implications for the role of correlations in these:
In tight-binding models of bilayer graphene, the dispersion
is quadratic around the nodal points, yet the system develops
a nematic instability at an infinitesimal interaction [19]. For
multiple-charge Weyl nodes and line-node semimetals with
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contact interaction, renormalization-group theory indicates in-
stabilities at a finite threshold [20,21]. This is also true for
single-layer graphene, where actual material parameters are
situated close to a chiral symmetry-breaking regime [22].
Thus, semimetallic phases that depend explicitly on symme-
try may be susceptible to correlation effects that destroy the
underlying symmetry. This is both an obstacle and an op-
portunity, as symmetry-breaking may give rise to topological
phases and phenomena that have no equivalent in noninteract-
ing systems.

Reliably predicting the parameter regimes where
symmetry-protected topological phases remain stable faces
several delicate problems. The absence of screening means
that interactions are effectively long-ranged, leading to
infrared divergencies. Furthermore, competition between
correlation effects originating from different lengthscales is
plausible. For example, in graphene, the long-range part of the
interaction drives the system towards an asymptotically free
Dirac liquid with divergent Fermi velocity as T → 0, without
causing any instabilities [23]. Thus, the renormalization of the
dispersion occurring primarily at the infrared end increases
the effective kinetic energy relative to the short-range part
of the interaction, which is believed to drive the phase
transition. Therefore, an accurate solution to this class of
problems requires that all lengthscales are treated on an
equal footing.

A type of symmetry-protected topological phase that has
attracted considerable interest is the nodal-line semimetal.
Predictions of this state have been made in TlTaSe2 [15],
CaAgP [16], Ca3P2 [17], and ZrSiS [24] based on reflec-
tion symmetry. In PbTaSe2 it has also been confirmed by
angle-resolved photoemission spectroscopy [14]. Recently,
the observations of strongly renormalized transport properties
and Fermi velocity—as compared to density functional theory
(DFT) calculations—in ZrSiS were interpreted as an indica-
tion of a strongly correlated line-node semimetal [25].
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In this work, we address the stability of line-node semimet-
als as well as the phenomenology of the symmetry-broken
phase. In the first section, we use diagrammatic simulation
techniques [26] to establish quantitative criteria for the sta-
bility of line-node semimetals in the presence of long-range
interactions. Our results indicate an instability occurring at a
finite interaction threshold that gives rise to a chiral insulator.
In the second part, we explore the phenomenology of the
chiral phase. We find that topological defects in the macro-
scopic order host metallic “interface states” in the otherwise
insulating system. We also show that the chiral order couples
to an external magnetic field, providing a means to control
it in situ.

I. STABILITY OF LINE-NODE SEMIMETALS

We consider the case of a single nodal line with a bare
Fermi velocity of v0

f running along the z-axis,

H0(k) = v0
f kxy · σ, kxy = {kx, ky}, (1)

with an interaction of the form

V (k) = α

k2 + λ−2
. (2)

Here, λ is a fictitious screening length introduced to regularize
the series, and we are thus principally interested in the limit
λ → ∞. We consider a cylindrical domain given by

|kz| � �,

√
k2

x + k2
y � �, (3)

where � is the ultraviolet cutoff. Because of a scale invari-
ance associated with the linear dispersion, the only relevant
lengthscale in the low-temperature limit is the ratio of the
UV cutoff and the inverse screening length �/λ−1. To see
this, we may choose a temperature and energy scale where
the temperature is unity by rewriting the partition function
z(β, H ) = z(1, βH ). This gives a bare Green’s function,

1

iω − βH0(k)
= G0(ω, βk), ω = (2n + 1)π, (4)

where we have exploited the linearity of H0 in k. Diagram-
matic corrections to the Green’s function take the form

δG(ω, βk) =
N∏

i=1

dki

N∏
j=1

βV (k j )
2N+1∏
l=1

G0(ωl , βkl ), (5)

where N is the expansion order. Here, the momenta {k j}
depend on {ki} and the external momentum k in a way that is
determined by the diagram topology. If we introduce a change
of scale k′ = βk, we obtain

δG(ω, k′) =
N∏

i=1

dk′
i

βD

N∏
j=1

βV

[k′
j

β

] 2N+1∏
l=1

G0(ωl , k′
l ). (6)

For a screened Coulomb interaction in D = 3, we find

β−D β
α

k′2/β2 + λ−2
= α

k′2 + β2λ−2
. (7)

The UV cutoff changes scale as � → β�, giving

G(ω, β, k, λ−1,�) = G(ω, 1, k′, βλ−1, β�), (8)

which is characterized by the ratio �/λ−1 in the
limit β → ∞.

In the perturbative regime, the nodal line (1) is protected
by a symmetry due to being odd under an orthonormal map
k → −k. The implication of this symmetry is that on the
kz-axis, the Green’s function must have a pole at zero en-
ergy as long as the series expansion remains convergent [27].
Correspondingly, destroying the semimetallic phase requires
breaking this symmetry. In a diagrammatic framework, this
phase transition can be identified via a divergent susceptibility
with respect to a symmetry-breaking perturbation.

A. Contact interaction

The simplest case for the model (1) and (2) occurs when
taking α → αλ−2 and λ → 0, which corresponds to contact
interaction. In this scenario, self-consistent Fock theory can
be conducted analytically, and it provides a simple illustration
of the instability. Specifically, the self-energy satisfies the
relation

	(ωm, k) = 1

β

∑
n

∫
d3q

(2π )3

α

G−1
0 (ω′

n, q) − 	(ω′
n, q)

. (9)

Here, it should be noted that at the level of Fock theory,
	 is independent of frequency, and thus de facto takes the
form of a correction to the effective dispersion. Furthermore,
contact interaction does not renormalize the Fermi veloc-
ity since H0(k) is an odd function. Since the self-energy is
translation-invariant, it must therefore take the form 	(k) =

σz. Inserting this self-energy in (9) and summing over fre-
quency, we obtain

	(k) = 
σz =
∫

d3q

(2π )3
α

H0(q) + 	(q)

2
√(

v0
f qxy

)2 + 
2

× tanh
β

√(
v0

f qxy
)2 + 
2

2
, (10)

where the integral of H0 over k vanishes. Thus, Eq. (10)
provides a self-consistent equation for 
 as a function of
the coupling strength, whose solutions will provide the gap
parameter in this regime. Solutions for which 
 is finite corre-
spond to a symmetry-broken state, while the symmetric phase
is characterized by a vanishing gap. In the low-temperature
limit, and for a cylindrical domain (3) with � = 1, the integral
(10) provides an algebraic expression for the gap of the form

η

2v0
f

⎛
⎜⎝

√√√√1 + 
2(
v0

f

)2 −
∣∣∣∣∣ 


v0
f

∣∣∣∣∣
⎞
⎟⎠ − 1 = 0, (11)

where we have introduced η = α(2π )−2. Equation (11) pre-
dicts a critical coupling strength ηc/v

0
f = 2; see Fig. 1. Above

this threshold, the gap is given by




v0
f

= η

4v0
f

− v0
f

η
. (12)

The onset of a chiral phase at a finite interaction strength is
consistent with results from renormalization-group theory for
contact interaction [21], and it can be directly traced from
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FIG. 1. Self-consistent solution for the gap with contact in-
teractions, as a function of the rescaled coupling strength η. A
second-order transition is established at ηc/v

0
f = 2.

Eq. (10): For small values of 
, the self-consistency equa-
tion scales as 
 ∼ 
α/v0

f , indicating an instability at a finite
threshold of α/v0

f .

B. Simulations

To check the stability of the semimetallic phase for long-
range interactions, we compute the diagrammatic expansion
via a protocol that is based on the stochastic sampling of
Feynman-type graphs. Within this framework, the space of
connected diagrams for the self-energy is sampled through a
metropolis-type random walk [26,28–30]. We work in imagi-
nary time and compute the self-energy, which we then use to
solve Dyson’s equation [31]:

G(ω, k) = 1

iω − H0(k) − 	(ω, k)
. (13)

Here, we use a sampling protocol based on the worm
algorithm as described in [32]. We employ a bold scheme
where the expansion is conducted in dressed Green’s func-
tions while retaining only skeleton graphs. Thus, at order N =
1, the solution corresponds to self-consistent Fock theory. We
do not employ bold interaction lines since this is expected to
have little advantage for a semimetallic system.

Following the scaling relation (8), we can without loss of
generality set � = 1. This gives a volume of the momentum
space of 2π . We then rewrite the integral over k as∫

dk
(2π )D

= 1

(2π )

∫
dk

η

α
, η = α(2π )−2, (14)

which defines a rescaled interaction parameter η and a set of
units where the integral over momenta is of measure unity.

We parametrize the temperature and scale in terms of a
variable γ so that

� = 1, η = 2γ η̃, v0
f = 2γ ṽ0

f , λ−1 = 2−γ λ̃−1. (15)

The limit γ → ∞ thus corresponds to zero temperature and
a divergent ratio �/λ−1. An observable that is convergent in
this limit should correspondingly be a function of η/v0

f .
To obtain a self-consistent solution for the model (1) and

(2), we consider a frequency and momentum-independent

(a) (b)

(c) (d)

(e)

FIG. 2. Diagram topologies for the self-energy: We conduct a
summation of the set of skeleton diagrams for the self-energy up
to second order, corresponding to the topologies (a)–(c). Since we
conduct a self-consistent expansion in the dressed Green’s function,
we implicitly also sum any diagrams obtained by insertion of the
topologies (a)–(c) into themselves, as exemplified by the diagrams
(d),(e). Thus, in the self-consistent solution, the self-energy contains
certain classes of diagrams up to infinite order. We do not include
any diagrams corresponding to forward scattering, since these merely
equate to a shift in the chemical potential, while we are interested in
this problem at a specific stoichiometry where the node lies at the
Fermi level.

starting guess for the self-energy given by

	0(k) = d0
z σz, (16)

which in turn provides a corresponding Green’s function
G0(ω, k). A stochastic summation of the expansion in V gives
a new self-energy 	1(ω, k), which is subsequently used to
construct the Green’s function via Dyson’s equation (13). This
Green’s function is then used to obtain a new self-energy
	2(ω, k), and so forth until convergence. The diagrams con-
tributing to the self-energy are displayed in Figs. 2(a)–2(c).
We sample these in the domain of momentum and imaginary
time.

This scheme is repeated until relevant observables have
converged. Near the phase transition, this typically requires
several hundred iterations. We have used two starting con-
figurations for the self-energy, featuring extremely small or
relatively large symmetry-breaking terms, respectively. For
most parameter regimes, these result in identical solutions.
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FIG. 3. The chiral order parameter O as a function of the interaction strength η in units of the bare Fermi velocity. The screening length
is parametrized by λ−1 = 10−2 × 2−γ , while the inverse temperature is given by βv0

f = 102 × 2γ . Thus, the figures progress towards longer
screening lengths and lower temperatures as γ increases. The red curves correspond to first order (self-consistent Fock theory), while the blue
curves give the second-order self-consistent solution (see Fig. 2 for the included diagrams). Note that we display the square root of the order
parameter since it is approximately quadratic in η over most parameter ranges. The colored bars indicate estimates for the critical point at first
(red) and second order (blue) with confidence intervals. At the higher temperatures, the second-order expansion displays notable noise, but
when the temperature decreases, these diagrams are suppressed by the vanishing density of states at the Fermi level.

However, at low temperatures and for a coupling strength
that is slightly larger than the critical coupling, we observe
a family of very fragile metastable symmetric solutions that
likely result from competition between the symmetric and
antisymmetric parts of the self-energy. The numerical value
used for the published data is d0

z = 103, which ensures a
large gap. To track the onset of a symmetry-broken phase, we
define the chiral order parameter as follows. First, we note
that the self-energy can be decomposed into frequency-
independent and frequency-dependent parts, where the former
stems from contributions that have a δ-function in imaginary
time [like the Fock term in Fig. 2(a)]. The frequency-
independent part of the self-energy can be written

	(k) = d(k) · σ. (17)

The chiral symmetry-breaking is generated by the
z-component, prompting us to define an order parameter

of the form

O = 1

2π

∫
dkdz(k). (18)

Thus, the order parameter is obtained from the σz-component
of the frequency-independent part of 	(k). Since we con-
sider a straight nodal line, we assume a solution that is
translation-invariant in the z-direction. Furthermore, we as-
sume a symmetry of the self-energy

e−iφσz/2	(ω, k)eiφσz/2 = 	
(
ω, Rz

φk
)
, (19)

where Rz
φ represents a rotation around the z-axis by φ.

The results from the simulations are summarized in Fig. 3.
The dots represent raw data points at an expansion order of
N = 1 and 2, respectively, while the lines are guides to the
eye. For most parameter ranges, the order parameter scales ap-
proximately as O ∼ (η/v0

f )2, prompting us to plot the square
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FIG. 4. Critical coupling strength (a) in units of the bare Fermi
velocity v0

f for progressively lower temperatures and longer screen-
ing lengths, parametrized as λ−1 = 10−2 × 2−γ and βv0

f = 102 × 2γ .
For γ � 3 we estimate the critical coupling to ηc/v

0
f = 0.45 ± 0.01.

The corrections at second order are not discernible at this accuracy.
In (b) we plot the critical coupling strength against (γ + 1)−1 and
fit straight lines to the data points satisfying γ � 4. Extrapolating
to (γ + 1)−1 → 0 we find intersections with the y-axis at ηc/v

0
f =

0.441 at first order and ηc/v
0
f = 0.440 at second order, which falls

within our confidence interval.

root. The solutions correspond to different values of γ , which
controls the model parameters according to (15). The inserted
boxes give estimates for the critical point where the order
parameter approaches zero at first and second order.

Figure 4 gives a summary of the estimated coupling
strength as a function of γ , extracted from Fig. 3. As the
temperature is reduced and the screening length diverges,
the critical coupling tends to saturate. For γ � 3, we find
that the critical point is located at ηc/v

0
f = 0.45 ± 0.01. This

corresponds to a screening length of 800 � �γ � 25 600.
The correction from first to second order falls within

the error bars, suggesting that this problem may be well
captured by self-consistent Fock theory. This is consistent
with previous applications of diagrammatic techniques to
semimetallic systems: In Weyl semimetals, the correction
to the Green’s function is almost entirely contained in the

frequency-independent part of the self-energy, leading to the
emergence of virtually free fermions [33]. In graphene, at
least the long-range part of the interaction drives the system
towards an asymptotically free Dirac liquid [23], while for
short-range interactions the convergence of the series has been
demonstrated analytically up to a finite threshold [34].

The fact that semimetals with long-range interaction—in
sharp contrast to metals—are dominated by Fock theory can
be understood from their vanishing density of states at the
Fermi level: In the absence of a Fermi surface, any diagram
corresponding to excitation of the background is exponen-
tially suppressed as ∼ exp(−βεk ), meaning that it rapidly
vanishes at low temperature [33]. Furthermore, the Fock term
imposes a correction to the effective dispersion that scales
as ∼α. Therefore, even for an arbitrarily strong interaction,
the effective expansion parameter is ∼α/α, which remains
of order unity. It should also be stressed that the Coulomb
interaction gives a divergent correction to the Fermi velocity
in the low-temperature limit, further reducing the density of
states.

It has been observed that metallic systems frequently
feature divergencies of the diagrammatic series for strong
interactions and at low temperature. When applying a bold
diagrammatic scheme to a divergent series, this can result
in false convergence to a fix-point that does not represent
a physical solution [35,36]. This phenomenon has not been
reported in any semimetals, where convergence of the series
often persists in the low-temperature limit and for strong in-
teraction. We attribute this to the vanishing density of states
at the Fermi level and the simple structure of self-consistent
Fock theory, which dominates the physics.

II. PHENOMENOLOGY OF THE
SYMMETRY-BROKEN PHASE

In topological semimetals, central electronic properties are
connected to the structure of the gap-closing points. Key
examples of this include protected surface states [1,15] and
novel magnetic responses like the chiral anomaly [37].

In the chiral phase, however, the gap-closing points are
destroyed, meaning that some of these properties are either
lost or substantially altered. Meanwhile, the presence of a
macroscopic order parameter permits topological defects in
the form of domain walls that interpolate between different
chiralities. These defects introduce a new type of surface that
can host localized states.

In this section, we explore how the chiral symmetry-
breaking affects surface states and interferes with Landau
levels, and we contrast these results with the symmetric
regime. For this analysis we will adopt an effective model that
captures the effect of symmetry-breaking on the dispersion:

Heff(k) = H0(k) + 
σz. (20)

Here, 
σz represents the effects of the chiral order.

A. Landau levels and magnetic response

To compute the Landau levels arising when the line-node
is placed in a magnetic field, we consider a dispersion of the
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form (1) and take the Fermi velocity to be unity. This gives

H0(k) = kxσx + kyσy =
(

0 kx − iky

kx + iky 0

)
, (21)

with energy bands

ε± = ±
√

k2
x + k2

y . (22)

Thus, the nodal line runs along the z-axis (0, 0, kz ).
To couple the system to an external magnetic field, we

introduce the displacement of the momentum k by the vector
potential A:

k → k′ = k + A. (23)

First, we consider a magnetic field along the z-direction,
i.e., B = Bẑ. Working in the axial gauge, the vector potential
reads A = (−By/2, Bx/2, 0), so that we can define the ladder
operators in terms of the new momenta,

a = k′
x − ik′

y√
2B

, a† = k′
x + ik′

y√
2B

, (24)

which allows us to write the Hamiltonian in the form

H0 =
(

0
√

2Ba√
2Ba† 0

)
. (25)

The Landau levels can be easily found from the eigenequa-
tion H0� = E�. For � = (|φ1〉, |φ2〉)T, we obtain the two
equations

√
2Ba|φ2〉 = E |φ1〉, (26)

√
2Ba†|φ1〉 = E |φ2〉, (27)

and, by inserting the first equation into the second, we
arrive at

2Ba†a|φ2〉 = E2|φ2〉, (28)

which describes a harmonic oscillator with

E = ±
√

2Bn, |φ2〉 = c |n〉, n = 0, 1, 2, . . . ∈ N, (29)

where c is a normalization constant. Then, for |φ1〉 we have

|φ1〉 = ±c |n − 1〉. (30)

Therefore, for a magnetic field in the z direction, the Landau
levels are given by

E± = ±
√

2Bn, (31)

with eigenstates

�± = c

(±|n − 1〉
|n〉

)
. (32)

The eigenstates appear as a spectrum of bands that are flat
in all directions. The gap between these is controlled by the
external field, as shown in Fig. 5. In contrast to Weyl semimet-
als, line-nodes do not give rise to a chiral anomaly [37] in the
presence of a magnetic field. Instead, a single band remains at
the Fermi level because the dispersion is independent of kz.

For an in-plane field of the form B = Bx̂, we may choose
a vector potential of the form A = (0,−Bz/2, By/2). The

FIG. 5. Landau levels for the line-node semimetal in the presence
of an external field B = Bẑ, as a function of B as given by Eq. (31).
Since the dispersion is independent of kz, the energy levels are flat
in all directions. A zero-energy mode remains for any value of the
applied field.

ladder operators can then be constructed as

a = k′
y − ik′

z√
2B

, a† = k′
y + ik′

z√
2B

. (33)

Expressed in this language, the Hamiltonian (21) takes the
form

H0 =
⎛
⎝ 0 kx − i

√
B
2 (a + a†)

kx + i
√

B
2 (a + a†) 0

⎞
⎠. (34)

From the eigenequation H0� = E�, we obtain for |φ1〉
and |φ2〉 [

kx − i

√
B

2
(a + a†)

]
|φ2〉 = E |φ1〉, (35)[

kx + i

√
B

2
(a + a†)

]
|φ1〉 = E |φ2〉. (36)

As before, we can take the first equation and plug it into
the second. By using the commutator [a, a†] = 1, we finally
arrive at[

k2
x + B

2

(
a2 + (a†)2 + 2a†a + 1

)]|φ2〉 = E2|φ2〉. (37)

Solving Eq. (37) is complicated by the presence of terms of
the form ∼a2 and ∼(a†)2, which render it anharmonic so that
standard recipes for extracting the Landau levels are not appli-
cable. For this reason, we adopt the Bargmann representation
[38–40], which has been widely used in this scenario. Notably,
this technique was applied to an anharmonic oscillator with
a quartic potential [41] and the two-mode squeeze harmonic
oscillator and the kth-order harmonic generation [42]. In this
representation, the ladder operators are related to a complex
variable z according to

a† = z, a = d

dz
, (38)
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while the wave function is a holomorphic function of z only,
namely,

|φ1〉 = ϕ1(z), |φ2〉 = ϕ2(z). (39)

Expressed in this formalism, Eq. (37) takes the form

B

2
ϕ′′

2 + Bzϕ′ +
[

B

2
(z2 + 1) + k2

x

]
ϕ2 = E2ϕ2, (40)

where we have used the notation ϕ′
2 = dϕ2

dz and ϕ′′
2 = d2ϕ2

dz2 .
The different quantum states correspond to solutions of

this equation for corresponding quantum numbers, such as
polynomials of degree n. In principle, it is possible to extract
a solution in the form of a power series in z, though this
turns out to be highly inefficient. Thus, we instead introduce a
reparametrization of ϕ2(z) given by

ϕ2(z) = e−z2/2 ψ2(z). (41)

The differential equation then takes the form

ψ ′′
2 + ω2 ψ2 = 0 with ω2 = 2

B

(
k2

x − E2
)
. (42)

The trivial solution consisting of a combination of two ex-
ponentials does not correspond to the Landau levels, and the
energy E still appears as an arbitrary constant. To extract
the nontrivial solutions, we need to introduce a change of
variables of the form

ρ = ez ⇒ z = ln ρ, (43)

which finally transforms the equation for ψ2 into

ρ2 d2ψ2

dρ2
+ ρ

dψ2

dρ
+ ω2 ψ2 = 0. (44)

Now, we may find solutions of this equation as a polynomial
in ρ of degree n by considering

ψ2(ρ) =
n∑

i=0

fi ρ
i. (45)

Plugging this into the equation, we obtain an expression in
terms of the coefficients of the expansion fi,

ω2 f0 + (1 + ω2) f1 ρ +
n∑

i=2

(i2 + ω2) fi ρ
i = 0. (46)

Since our assumption of a polynomial of degree n implies
fn 
= 0, it trivially follows that n2 + ω2 = 0, giving Landau
levels with an energy

E± = ±
√

1

2
n2B + k2

x , (47)

together with fi = 0, ∀ i 
= n. The function ψ2 then reads

ψ2(ρ) = c ρn ⇒ ψ2(z) = c enz, (48)

where c is a normalization constant. Returning to the original
wave-function component ϕ2, we get

ϕ2(z) = c enz−z2/2. (49)

FIG. 6. Landau levels for the line-node semimetal in the presence
of an external field B = x̂ (B = 1) as given by Eq. (47). In contrast
to the case of a magnetic field along the ẑ direction in Fig. 5, the
levels exhibit a momentum dependence. The two energy levels that
are closest to the Fermi surface cross in the origin.

The ϕ1 component may be written as

ϕ1,±(z) = c

E±

(
kx − i

√
B

2
n

)
enz−z2/2. (50)

In contrast to the Weyl semimetals, the states corresponding to
n = 0 can be treated on an equal footing with the remaining
levels. This quantum number gives two different states related
by E1 = −E2 that cross the Fermi level at kx = 0, as depicted
in Fig. 6.

Finally, we will review these results once a symmetry-
breaking term of the form 
σz is included in the Hamiltonian.
This gives

Heff(k) = kxσx + kyσy + 
σz =
(


 kx − iky

kx + iky −


)
.

(51)

Hence, the energy bands are now given by

ε± = ±
√

k2
x + k2

y + 
2, (52)

so that the system is an insulator. The symmetry-breaking
perturbation introduced in the system has now gapped out
the nodal line, suggesting that the Landau levels will form
away from the Fermi level irrespective of the orientation of
the magnetic field.

For the case of an external field B = Bẑ with ladder op-
erators defined according to Eq. (24), the Hamiltonian reads

Heff =
(



√

2Ba√
2Ba† −


)
. (53)

Following the same approach as above and considering the
eigenequation Heff� = E�, we obtain a harmonic-oscillator-
like equation for |φ2〉 with the solution

E± = ±
√

2Bn + 
2, |φ2〉 = c |n〉, (54)

where c is a normalization. Comparing with Eq. (31), we
see that the effect of the perturbation 
 is to introduce a
displacement of the Landau levels. On the other hand, for |φ1〉
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FIG. 7. Landau levels for a symmetry-broken line-node
semimetal in the presence of an external field B = ẑ (B = 1) as a
function of the symmetry-breaking parameter 
. The applied field
explicitly breaks the symmetry between the chiralities 
 and −
,
respectively, indicating that the chiral order can be manipulated via
a magnetic field.

we have

|φ1,±〉 = c

√
2Bn

E± − 

|n − 1〉. (55)

This scenario is slightly different from the unperturbed
case, and the value n = 0 needs to be considered separately
since |φ1〉 = 0 and |φ2〉 = |0〉. As a result, the energy for
n = 0 is given by E0 = −
. In conclusion, we thus find

E0 = −
, En,± = ±
√

2Bn + 
2, ∀ n 
= 0. (56)

Figure 7 shows the Landau levels (56) for B = 1 as a function
of the symmetry-breaking parameter 
. Besides the afore-
mentioned displacement of the energy levels for n 
= 0, the
unperturbed E0 = 0 state is shifted relative to the Fermi level
depending on 
 in a similar manner to the kz-dependence of
the Landau levels appearing in Weyl semimetals. Thus, for a
symmetry-broken state, the magnetic field lifts the degeneracy
between the two chiralities, implying that this degree of free-
dom can be manipulated by an external field in experiments.

Finally, we consider the case of an in-plane magnetic
field B = Bx̂ in the symmetry-broken phase. Expressed in the
ladder operators defined in Eq. (33), the Hamiltonian takes the
form

Heff =
⎛
⎝ 
 kx − i

√
B
2 (a + a†)

kx + i
√

B
2 (a + a†) −


⎞
⎠. (57)

As before, the eigenvalue equation gives rise to an anharmonic
problem, meaning that we have to rely on the Bargmann rep-
resentation. For |φ2〉 the solution is given by Eq. (37), except
for a shift in energy given by E2 → E2 − 
2. Hence, we can
use the same protocol as above for the in-plane field with the
ω parameter accordingly modified to

ω2 = 2

B

(
k2

x − E2 + 
2
)
. (58)

FIG. 8. Landau levels for the symmetry-broken line-node
semimetal in the presence of an external field B = x̂ (B = 1). As the
system becomes gapped, the crossing of the Landau levels shown in
Fig. 6 is lifted.

The Landau levels are given by

E± = ±
√

1

2
n2B + k2

x + 
2, (59)

with the wave-function components

φ1,±(z) = c

E± − 


(
kx − i

√
B

2
n

)
enz−z2/2, (60)

φ2(z) = c enz−z2/2, (61)

where c is a normalization constant. In the symmetry-broken
phase, the system becomes gapped, with Landau levels situ-
ated at finite energies, as seen in Fig. 8. The levels closest to
the Fermi surface attain a gap of |
|, which is thus indepen-
dent of the chirality.

B. Interface states

In the symmetric phase, the line-node semimetals exhibit
metallic drum-head surface states [15], which are generaliza-
tions of the Fermi arcs that occur in the Weyl semimetals
[1]. These states are stabilized by a combination of topology
and symmetry in the sense that the states are topologically
protected in a subspace generated by the symmetry. Once this
symmetry is spontaneously broken, the lines are gapped out,
and the edge states are no longer protected.

However, the symmetry-broken phase permits domain
walls that interpolate between regions of different chirality,
on which the symmetry-breaking term 
 changes sign. This
opens the possibility for metallic interface states that are
bound to these topological defects. To model this scenario,
we consider a domain wall described by


 = 
(y) =
⎧⎨
⎩


+, y > 0,


−, y < 0,

0, y = 0,

(62)

where 
+ > 0 and 
− < 0 are constants.
To identify the interface states, we apply an analytical ap-

proach based on trial functions that has been applied to Fermi
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arcs within Weyl semimetals in semi-infinite systems [43,44].
Since 
(y) is translation-invariant in the x̂ and ẑ directions
but not along ŷ, it follows that kx and kz are good quantum
numbers while ky is not. Hence, we conduct the substitution
ky → −i∂y, which transforms the effective Hamiltonian into

Heff(kx,−i∂y, kz, y) = kxσx − i∂yσy + 
(y)σz. (63)

Next, we introduce a trial wave function of the form

�(x, y, z) = ψλ|x, z〉 =
(

ψ1

ψ2

)
eλy|x, z〉. (64)

Therefore, our problem is reduced to the eigenequation

Heff(kx,−i∂y, kz, y)� = E�, (65)

with a continuity condition at �(y = 0). The secular equation,
det|H (kx,−i∂y, kz, y) − E | = 0, may be used to find the pos-
sible values of λ, namely

λ = ±
√

k2
x + 
2 − E2. (66)

Requiring the wave function to vanish at y → ±∞, we need
to separate the two regions of different chirality into �+ for
y > 0 and �− for y < 0. Then, we obtain

�+ = c+ψλ+|x, z〉 = c+

(
ψ+

1
ψ+

2

)
eλ+y|x, z〉, (67)

�− = c−ψλ−|x, z〉 = c−

(
ψ−

1
ψ−

2

)
eλ−y|x, z〉, (68)

where c± are constants while

λ± = ∓
√

k2
x + 
2± − E2. (69)

On the other hand, for the eigenstates there are two possible
sets of spinors ψ± = (ψ±

1 , ψ±
2 )T:

ψ± =
(

λ± − kx


± − E

)
and ψ± =

(

± + E
λ± + kx

)
. (70)

Imposing that the solution is continuous at y = 0, we obtain

c+ψλ+ (y = 0, E ) = c−ψλ− (y = 0, E ), (71)

or equivalently,

c+ψ+ − c−ψ− = 0. (72)

Thus, the condition (72) gives us a system of two equa-
tions with two unknowns, c+ and c−. Hence, to have a
nontrivial solution, it is necessary that

det|ψ+ − ψ−| = 0. (73)

Imposing this condition on the eigenvectors defined by
Eq. (70) and using Eq. (62), we find

−(λ+ − kx )E + (λ− − kx )E = 0, (74)

(λ− + kx )E − (λ+ + kx )E = 0, (75)

which reduces to

λ+ = λ− = 0 ⇒ E = ±kx. (76)

Therefore, we obtain two localized states proximate to the
interface y = 0 given by the wave functions

�±(E = −kx ) = c±

(−
± − kx


± + kx

)
e−
±y |x, z〉, (77)

�±(E = kx ) = c±

(

± + kx

−
± + kx

)
e−
±y |x, z〉, (78)

where c± is the normalization. At kx = 0 these meet at the
Fermi level, implying a metallic interface state in the form of
a line-node that is exponentially localized to the domain wall.

To solve the problem of interface states on a domain wall
for a more realistic gap 
, which is continuous in y, it is
generally necessary to apply numerical methods since the ana-
lytical technique introduced above cannot be applied when the
gap has an explicit dependence on y. To obtain a numerically
tractable problem in this scenario, we first conduct an inverse
Fourier transform on y and consider a finite system that can
be diagonalized to find the possible surface states. For this
purpose, we consider a Hamiltonian that is periodic in ky

instead of its continuum equivalent:

H0 = sin kxσx + sin kyσy. (79)

Explicitly writing the creation and annihilation operators,
we find

H0 =
∑

k

[sin kx(a†
kbk + b†

kak ) + i sin ky(−a†
kbk + b†

kak )].

(80)

The inverse Fourier transforms along the ŷ direction take the
form

ak = 1√
M

∑
j

e−iky jak‖, j, bk = 1√
M

∑
j

e−iky jbk‖, j,

(81)

where M corresponds to the number of layers in the ŷ di-
rection, j is the layer index, and k‖ denotes the momentum
parallel to the (010) surface. Thus, we obtain

H0 =
∑
k‖, j

[
sin kxc†

k‖, jσxck‖, j − i

2
c†

k‖, jσyck‖, j+1 (82)

+ i

2
c†

k‖, j+1 σyck‖, j

]
, (83)

where we have defined

ck‖, j = (ak‖, j, bk‖, j )
T. (84)

In this case, the symmetry-breaking contribution to the full
Hamiltonian may be written as

H
 =
∑
k‖, j


( j) c†
k‖, j σz ck‖, j, (85)

where the dependence on y is translated into the layer labeled
j. As before, we are interested in a perturbation 
( j) that
changes sign at y = 0. We consider the scenarios of both an
even or odd number of layers. In the latter case, we take
j0 = 1

2 (M + 1) so that the middle layer j0 corresponds to
y = 0, implying that 
 vanishes at y = 0. We consider a linear
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FIG. 9. Metallic interface states situated at a domain wall that
interpolates between different signs on the chiral order parameter.
The energy levels correspond to a system with 51 layers in the
ŷ-direction with a linear symmetry-breaking term given by Eq. (86).
The red lines correspond to a family of solutions that are exponen-
tially localized to the middle layer that exhibits a line node at kx = 0.

perturbation ranging from −
0 to +
0, with 
0 > 0, that is
given by


( j) = 2
j − 1

M − 1

0 − 
0. (86)

For an even number of layers, the gap function 
 given by
(86) does not vanish anywhere since there is no center layer. In
Fig. 9 we display the corresponding energy dispersion for the
different states with 
0 = 1 and a total number of layers M =
51 as a function of kx (note that the solution is independent
of kz). The states plotted in red exhibit a gap-closing point at
kx = nπ , implying that a line node is present. To establish the
spatial extent of the nodal states, we introduce the following
metric:

�( j) = |ψ j |2
�† �

, (87)

where � = (ψ1, ψ2, . . . , ψ j, . . . , ψM )T is the wave function
of the state. The metric (87) is shown in Fig. 10, revealing
that the metallic interface state is exponentially localized to
the center layer j0.

One may note that, after the introduction of 
( j), the
system is gapped in every layer but the one corresponding to
j0, where 
( j0) = 0. It should therefore be expected that the
interface states fall off as

1

c0
e−
( j) ( j− j0 ), (88)

where c0 is a normalization constant. The red curve in Fig. 10
shows a fit of the form (88) with c0 as a free parameter,
revealing that there is an excellent agreement. The result for
an even number of layers was found to be indistinguishable
from the case of an odd number implying that the metallic
interface states do not depend on details of the domain wall.

FIG. 10. Exponentially localized interface states. The blue curve
presents the spatial extent of the localized states as defined by the
metric (87). The red curve represents a fit of the form (88), displaying
excellent agreement.

III. SUMMARY

We have examined the stability of line-node semimetals
in the presence of Coulomb interactions and found a chiral
instability occurring at a finite interaction strength. The chiral
order parameter exhibits a well-defined behavior in the limit
of an infinite screening length, despite the presence of infrared
divergencies in this problem.

By computing the Landau levels, we observe that an out-
of-plane magnetic field couples to the chiral order parameter,
thus lifting the degeneracy of the two ground states. This pro-
vides the means to select a specific chirality in experiments.

The spontaneous breaking of a Z2 symmetry allows for the
creation of topological defects in the form of domain walls
that interpolate between the two ground states. We observe
that these walls are associated with metallic interface states
in the otherwise insulating system. We also note that the
drum-head surface states that exist in the symmetric regime
are gapped out in the chiral phase.

By the application of magnetic fields which couple to the
chiral order, we expect that it becomes possible to create
domain walls in experiments. If a domain wall is created in
a system with a concave geometry, then it can be trapped on a
“bottleneck,” since the energy cost is proportional to its area
[45]. This would allow observation of the domain wall without
an applied field.

ACKNOWLEDGMENTS

This work was supported by the Swedish Research Coun-
cil (VR) through Grant No. 2018-03882 and Stiftelsen Olle
Engkvist via Grant No. 204-0185. Computations were per-
formed on resources provided by the Swedish National
Infrastructure for Computing (SNIC) at the National Super-
computer Centre in Linköping, Sweden. J.C. would like to
thank Lars Fritz for important input and discussions.

013069-10



STABILITY OF LINE-NODE SEMIMETALS WITH STRONG … PHYSICAL REVIEW RESEARCH 5, 013069 (2023)

[1] S. Jia, S.-Y. Xu, and M. Z. Hasan, Weyl semimetals, fermi arcs
and chiral anomalies, Nat. Mater. 15, 1140 (2016).

[2] A.-Q. Wang, X.-G. Ye, D.-P. Yu, and Z.-M. Liao, Topological
semimetal nanostructures: From properties to topotronics, ACS
Nano 14, 3755 (2020).

[3] J. Ma, Q. Gu, Y. Liu, J. Lai, P. Yu, X. Zhuo, Z. Liu, J.-H. Chen,
J. Feng, and D. Sun, Nonlinear photoresponse of type-ii weyl
semimetals, Nat. Mater. 18, 476 (2019).

[4] W. Han, Y. C. Otani, and S. Maekawa, Quantum materials
for spin and charge conversion, npj Quantum Mater. 3, 27
(2018).

[5] N. Kumar, Y. Sun, N. Xu, K. Manna, M. Yao, V. Süss, I.
Leermakers, O. Young, T. Förster, M. Schmidt, H. Borrmann,
B. Yan, U. Zeitler, M. Shi, C. Felser, and C. Shekhar, Ex-
tremely high magnetoresistance and conductivity in the type-ii
weyl semimetals WP2 and MoP2, Nat. Commun. 8, 1642
(2017).

[6] Y. Wang, E. Liu, H. Liu, Y. Pan, L. Zhang, J. Zeng, Y. Fu, M.
Wang, K. Xu, Z. Huang, Z. Wang, H.-Z. Lu, D. Xing, B. Wang,
X. Wan, and F. Miao, Gate-tunable negative longitudinal mag-
netoresistance in the predicted type-ii weyl semimetal WTe2,
Nat. Commun. 7, 13142 (2016).

[7] Y. Sun, Y. Zhang, C. Felser, and B. Yan, Strong Intrinsic Spin
Hall Effect in the TaAs Family of Weyl Semimetals, Phys. Rev.
Lett. 117, 146403 (2016).

[8] B. Singh, G. Chang, T.-R. Chang, S.-M. Huang, C. Su,
M.-C. Lin, H. Lin, and A. Bansil, Tunable double-weyl fermion
semimetal state in the SrSi2 materials class, Sci. Rep. 8, 10540
(2018).

[9] C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, Multi-Weyl
Topological Semimetals Stabilized by Point Group Symmetry,
Phys. Rev. Lett. 108, 266802 (2012).

[10] B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J.
Cava, and B. A. Bernevig, Beyond dirac and weyl fermions:
Unconventional quasiparticles in conventional crystals, Science
353, aaf5037 (2016).

[11] P. Tang, Q. Zhou, and S.-C. Zhang, Multiple Types of Topologi-
cal Fermions in Transition Metal Silicides, Phys. Rev. Lett. 119,
206402 (2017).

[12] T. Bzdušek, Q. Wu, A. Rüegg, M. Sigrist, and A. A. Soluyanov,
Nodal-chain metals, Nature (London) 538, 75 (2016).

[13] T. Bzdušek and M. Sigrist, Robust doubly charged nodal lines
and nodal surfaces in centrosymmetric systems, Phys. Rev. B
96, 155105 (2017).

[14] G. Bian, T.-R. Chang, R. Sankar, S.-Y. Xu, H. Zheng, T.
Neupert, C.-K. Chiu, S.-M. Huang, G. Chang, I. Belopolski,
D. S. Sanchez, M. Neupane, N. Alidoust, C. Liu, B. Wang,
C.-C. Lee, H.-T. Jeng, C. Zhang, Z. Yuan, S. Jia et al., Topo-
logical nodal-line fermions in spin-orbit metal PbTaSe2, Nat.
Commun. 7, 10556 (2016).

[15] G. Bian, T.-R. Chang, H. Zheng, S. Velury, S.-Y. Xu,
T. Neupert, C.-K. Chiu, S.-M. Huang, D. S. Sanchez, I.
Belopolski, N. Alidoust, P.-J. Chen, G. Chang, A. Bansil,
H.-T. Jeng, H. Lin, and M. Z. Hasan, Drumhead surface states
and topological nodal-line fermions in tltase2, Phys. Rev. B 93,
121113(R) (2016).

[16] A. Yamakage, Y. Yamakawa, Y. Tanaka, and Y. Okamoto,
Line-node dirac semimetal and topological insulating phase in
noncentrosymmetric pnictides caagx (x = p, as), J. Phys. Soc.
Jpn. 85, 013708 (2016).

[17] L. S. Xie, L. M. Schoop, E. M. Seibel, Q. D. Gibson, W. Xie,
and R. J. Cava, A new form of Ca3P2 with a ring of dirac nodes,
APL Mater. 3, 083602 (2015).

[18] S. Kobayashi, Y. Yamakawa, A. Yamakage, T. Inohara, Y.
Okamoto, and Y. Tanaka, Crossing-line-node semimetals: Gen-
eral theory and application to rare-earth trihydrides, Phys. Rev.
B 95, 245208 (2017).

[19] O. Vafek and K. Yang, Many-body instability of coulomb in-
teracting bilayer graphene: Renormalization group approach,
Phys. Rev. B 81, 041401(R) (2010).

[20] B. Roy, P. Goswami, and V. Juričić, Interacting weyl fermions:
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