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The linear Hawkes point process is a first-order non-Markovian stochastic model of intermittent bursty
dynamics. While its nonlinear extensions, called nonlinear Hawkes processes, are expected to be more powerful
in describing the coexistence of excitatory and inhibitory effects (or negative feedback) as occurs, for instance,
in seismic and neural systems, such nonlinear Hawkes processes have been found hitherto to be analytically
intractable due to the interplay between their non-Markovian and nonlinear characteristics, with no analytical
solutions available. Here we systematically classify the solutions of the nonlinear Hawkes processes and then
present their various exact/asymptotic solutions using the field master equation approach introduced previously
by us. We report explicit power-law formulas for the steady-state intensity distributions Pss(λ) ∝ λ−1−a, where
the tail exponent a is expressed analytically as a function of parameters of the nonlinear Hawkes models.
We introduce the basic analytical tools for advanced Hawkes modeling, particularly for model calibration to
time-series data in various complex systems.
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I. INTRODUCTION

Intermittent bursts are ubiquitously observed with temporal
and spatial clustering characters in physical [1,2], seismic
[3–6], epidemic [7], financial [8–10], and social systems
[11,12]. Such bursty dynamics can be well described by the
Hawkes process [13–15], a non-Markovian self-excited point
process capturing both long-memory effects and critical bursts
such that past events keep their potential influence to trigger
future bursty events for a long time, potentially leading to crit-
ical bursts. However, the essential non-Markovian nature of
this model has been an obstacle preventing the development of
a unified analytical theory because the established framework
of Markovian stochastic processes is not applicable.

Recently, however, a new theoretical scheme was devel-
oped to address such non-Markovian stochastic processes
directly, in particular for the Hawkes process [16,17]. This
scheme is based on a mapping from the non-Markovian
Hawkes model to an equivalent stochastic partial differential
equation (SPDE). The SPDE is then mapped to an equiva-
lent field master equation (ME), i.e., a functional-differential
equation for the probability density functional (PDF) of the
intensity. The solutions of this equation can be obtained ana-
lytically in their asymptotic form, in particular near criticality.
This theoretical framework predicted a novel nonuniversal
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power-law relation for the intensity as an intermediate asymp-
totics [18]. It has the potential for further explorations of the
theoretical properties of more general Hawkes processes.

Since the basic linear Hawkes (LH) process is analytically
solved in this framework, it is natural to seek further gen-
eralization of the framework, such as for nonlinear Hawkes
(NLH) processes [19,20]. Nonlinear Hawkes processes are
particularly important to account for the presence of inhibitory
effects: In addition to positive feedback, many systems are
characterized by coexisting negative feedback. In the context
of point processes, while the standard Hawkes process de-
scribes only excitatory processes, many systems are kept in
balance by the additional occurrence of inhibitory processes.
For instance, inhibitory effects naturally appear in seismicity
[21,22] as any earthquake creates a tensorial stress perturba-
tion within the earth’s visco-plasto-elastic crust with the pres-
ence of “stress shadows” in certain regions around the rup-
tured fault where future earthquakes are less likely [23], while
other regions are brought closer to rupture by an increase in
the local relevant stress component. Similarly, neurobiological
brains are kept in balance by the interplay between excitatory
and inhibitory neurotransmitters, with the resulting cascades
of excitations exhibiting power-law statistics [24–26].

The long-standing problem of combining inhibitory and
excitatory effects in point processes requires considering non-
linear extensions of the Hawkes processes in order to fulfill
the condition that the intensity (a probability per unit time)
remains non-negative. Our recent Letter [27] presented a step
toward a general theory of NLH processes by applying the
framework of the field ME [16,17]. In that Letter we dis-
covered the existence of an asymptotic ubiquitous power-law
distribution of the intensity for NLH processes in the case of
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mark distributions with nonpositive mean. Since NLH pro-
cesses may have a huge variety of forms, and thus of control
parameters, for instance, in the tension-intensity map defined
below and in the mark distribution, it would be useful to
further study various NLH processes by systematically clas-
sifying their solutions according to the asymptotic analyses of
the field MEs.

The present article supplements our Letter [27] by pro-
viding a systematic classification of various NLH processes,
together with various explicit exact and asymptotic solutions.
In this paper we present a general formulation for the NLH
processes and provide their explicit solutions for various
cases. In particular, we report three interesting asymptotic fea-
tures which are valid for a wide class of memory kernels. (i)
In the absence of inhibitory effects, i.e., when events all have
positive marks, we find a nonuniversal power-law relation for
the intensity distribution at criticality, with an exponent a that
can take any value, i.e., corresponding to a genuine power law
(a > 0) or to an intermediate power-law asymptotics (a � 0).
This is in contrast to the LH model, where only a negative ex-
ponent a < 0 exists [16,17]. (ii) In the presence of inhibitory
effects, i.e., both positive and negative marks coexist, in the
case where the mark distribution has zero mean correspond-
ing to a balance between inhibitory and excitatory effects, a
wide class of NLH processes exhibit Zipf’s law (a ≈ 1) for
their intensity distributions. (iii) For negative-mean marks,
we derive the asymptotic formula for the intensity probability
density function (PDF), whose tail becomes thinner than in the
zero-mean mark case. This provides a different mechanism
for the ubiquity of power laws, including Zipf’s law, in the
form of a universal property of the NLH family composed of
intensity maps growing sufficiently fast as a function of the
tension (to be defined below) and with balanced marks.

This article is organized as follows. We present the detailed
mathematical formulation of the NLH processes in Sec. II.
In Sec. III the NLH processes are mapped onto Markovian
SPDEs, whose time evolution are described by MEs. We
also develop a mathematical scheme to analyze the MEs,
such as the functional Kramers-Moyal expansion and system
size expansion for the diffusive limit. We refer to Sec. III G
for a presentation of the flow chart of the methodology and
our main results. In Sec. IV we study the exact solutions to
NLH processes with an exponential-memory kernel without
inhibitory effect, i.e., only the positive feedback effects are
taken into account. In Secs. V and VI we study the exact
solutions of NLH processes with an exponential-memory ker-
nel and in the presence of inhibitory effects, i.e., when both
positive and negative feedback are considered. In Secs. VII
and VIII we present the asymptotic solutions of the NLH
models with an arbitrary memory in the absence and presence
of inhibitory effects, respectively. Section IX discusses future
possible extensions and progress that can be derived from our
present work. Section X summarizes and is followed by nine
Appendixes presenting detailed derivations omitted from the
main text for the sake of conciseness.

Readers interested only in the overview of our results
should go to Sec. II and Tables I and II. Indeed, all our results
are summarized in Tables I and II,. which map the inputs of the
model, i.e., setups, to the outputs, i.e., the resultant asymptotic
PDFs.

II. SETUP

We first introduce the mathematical notation used to define
the NLH model. We then review the NLH processes and their
applications for real data analysis of complex systems, to
highlight their utility and importance in various contexts.

A. Mathematical notation

We denote any stochastic variable Â with a circumflex
to distinguish it from a nonstochastic real number A. The
ensemble average of any stochastic variable Â is written as
〈Â〉. The probability density function is denoted by Pt (A) :=
〈δ(A − Â(t ))〉, which characterizes the probability that Â(t ) ∈
[A, A + dA) as Pt (A)dA. Using the probability density func-
tion, the ensemble average can be rewritten as

〈Â(t )〉 :=
∫

APt (A)dA. (1)

We define the real number space by R. Its non-
negative part is defined as R+ := {x | x � 0, x ∈ R}.
The K-dimensional real number space is defined as
RK := {(x1, . . . , xK ) | xk ∈ R, k = 1, 2, . . . , K} and its non-
negative part is written as R+

K := {(x1, . . . , xK ) | xk ∈
R, xk � 0 for k = 1, 2, . . . , K}. We also define the functional
space by SF . For example, a function f defined on R+ is in
the function space SF such that { f (x)}x∈R+ ∈ SF .

In this paper functionals, i.e., maps from a function space
SF to a real number space R, appear to characterize the path
probability density. For any {z(x)}x∈R+ ∈ SF , a functional f
is defined as f [z] := f [{z(x)}x∈R+]. Here the square brackets
emphasize that f is a functional, i.e., its argument is a func-
tion, but not an ordinary function.

For a stochastic variable {ẑ(t, x)}x∈R+ defined on a
field x ∈ R+, the PDF is written as Pt [z] := 〈δ[z −
ẑ]〉 = Pt [{z(x)}x∈R+], with the δ functional δ[z − ẑ] :=∏

x∈R+ δ(z(x) − ẑ(t, x)). Here the PDF is defined over paths
so that probability weighted quantities involve path integrals.
For instance, the ensemble average is defined by

〈Â(t )〉 =
∫

A(t )Pt [z]Dz, Dz :=
∏

x∈R+
dz(x), (2)

where Dz is the path-integral volume element.

B. Model

Let us now formulate the marked NLH process studied
in this paper. Let us consider an internal variable ν̂(t ) that
represents the total tension of the system and which obeys a
non-Markovian stochastic differential equation (SDE)

ν̂(t ) =
N̂ (t )∑
i=1

ŷih(t − t̂i ), (3a)

where {ŷi}i is an independent and identically distributed
random sequence of random numbers (jumps) obeying a dis-
tribution ρ(y), h(t ) is a non-negative memory kernel, {t̂i}i is
a Poisson process conditional on a time-dependent intensity
λ̂(t ), and N̂ (t ) is the total number of events during [0, t )
(called counting process). The jump size ŷi is called a mark in
the point process literature. Here the intensity λ̂(t ) is assumed
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(a) (b)

FIG. 1. Sample trajectory of (a) the tension ν̂ and (b) the intensity λ̂ = g(ν̂ ) in the NLH process (3). The functions and model parameters
are ρ(y) = e−x2/2/

√
2π , g(ν ) = eβν+ν0 , β = 5, and ν0 = 0.5. The memory kernel h(t ) is defined by the expression (14) with h̃(x) = {ηini +

cini (x − xini )}/x for x ∈ [xini, xfin] and h̃(x) = 0 for x �∈ [xini, xfin], with xini = 0.5, xfin = 10, ηini = 0.021, and cini = 0.0044, and we use the
discrete step size dx = 0.0475.

to be stochastic and is a non-negative nonlinear function of the
total tension ν̂(t ), defined as

λ̂(t ) = g(ν̂(t )) > 0. (3b)

In this paper we call g(ν̂) the tension-intensity map or inten-
sity function. The intensity is the probability per unit time for
an event to be triggered: Assuming N̂ (t ) = k, λ̂(t )dt gives the
probability that t̂k+1 ∈ [t, t + dt ) for an infinitely small time
interval dt → 0. We can rewrite Eqs. (3a) and (3b) as

λ̂(t ) = g

⎛
⎝N̂ (t )∑

i=1

ŷih(t − t̂i )

⎞
⎠. (3c)

This is the fundamental dynamical equation governing the
NLH processes. See Fig. 1 for a schematic trajectory.

In this article we particularly focus on power-law forms of
the steady PDF of the intensity for large λ as

Pss(λ) = lim
t→∞〈δ(λ − λ̂(t ))〉 ∝ λ−1−a, (4)

where a is the exponent of the complementary cumulative
distribution function.1

Remark. The model (3) is a natural nonlinear general-
ization of the conventional (linear) Hawkes process. Indeed,
the LH process is recovered by choosing a linear intensity
function

λ = g(ν) = ν + ν0, (5)

assuming both h(t ) and ν are non-negative. In contrast to
the conventional Hawkes process, we do not assume non-
negativity of ν̂ and ŷi for the case of the general non-negative
nonlinear intensity function g(ν̂).

For the LH process, the integral of the memory kernel

η :=
∫ ∞

0
h(t )dt (6)

1We used the PDF exponent aPDF = 1 + aCCDF for the description
of the power-law relations in Refs. [16,17], where CCDF stands for
the complementary cumulative distribution function.

is an important parameter (called the branching ratio) since
it controls the fertility of events to trigger descendants (trig-
gered events). Indeed, the LH process is subcritical for η < 1,
critical at η = 1, and supercritical for η > 1.

C. Motivation and literature review

We now present a brief self-contained review of the exist-
ing literature on NLH processes for statistical physics readers
who may be unfamiliar with this topic. Readers interested
only in our main results may skip this section.

Nonlinear Hawkes processes were first introduced by Bré-
maud and Massoulié [19], who were concerned with general
conditions for the existence of the processes. Since then, there
have been a few applications to seismic, financial, and neural
modeling, in particular for empirical comparisons. However,
beyond the derivation of general conditions for existence,
obtaining analytical solutions of these models is very dif-
ficult due to the complex interplay between their nonlinear
and non-Markovian structures. Only a few studies exist, such
as the analysis of the stability of these processes (condi-
tions for nonexplosiveness) [19], a special solution for the
Zumbach Hawkes processes with an exponential memory
in the diffusive limit [28], and an asymptotic analysis for
high-baseline intensity using the functional central limit
theorem [29].

There are several motivations for introducing NLH pro-
cesses. Here we focus on two interesting properties: (i)
inhibitory effects and (ii) physical underpinning of the non-
linear tension-intensity maps. Indeed, one of the motivations
for introducing NLH processes is to describe inhibitory effects
[20] such that previous events can produce negative feedback
effects on the total tension ν̂. For simplicity, let us consider
the case where the tension-intensity map λ = g(ν) is an in-
creasing function. For this setup, an event with positive mark
ŷi > 0 is likely to induce future events and, inversely, an event
with negative mark ŷi < 0 is likely to inhibit future events.
This means that negative marks ŷi < 0 represent inhibitory
effects, while positive marks ŷi > 0 represent excitatory
effects.
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To implement such inhibitory effects, nonlinearity in the
tension-intensity map is essential because the LH process can-
not accommodate inhibitory effects. Indeed, if we assume an
affine tension-intensity map g(ν) = ν0 + ν with non-negative
constant ν0, ν must take a value larger than −ν0 in or-
der for the tension-intensity map to remain non-negative.
This condition requires that the mark distribution must be
one sided toward the positive direction, i.e., ρ(y) = 0 for
y < 0; otherwise, ν takes a value smaller than −ν0 with
nonzero probability and the model assumption is violated.
In fact, the model cannot be defined as a negative inten-
sity or probability density cannot be given mathematical
sense.

The second nice property of NLH processes is that the
nonlinearity of the tension-intensity maps captures in a natural
way the real mechanisms occurring in the modeled systems.
Let us illustrate this point by reviewing several versions of the
NLH processes studied in the literature.

1. Example 1: Seismic modeling

One of the most illustrative cases is found in the modeling
of statistical seismicity. Let us regard the tension ν̂(t ) as the
total stress component along the fault best oriented for rupture
at a given point �r in the earth’s crust. Let t̂i be the time of
occurrence of the ith earthquake. This earthquake creates a
tensorial stress field that adds to the preexisting stress field.
Again, for our discussion, we simplify the picture by taking
this stress perturbation as being a scalar, for instance, the
Mohr-Coulomb stress amplitude along the fault best oriented
for rupture at point �r. Furthermore, we take into account the
viscoelastic property of the crust, which means that a stress
perturbation is progressively relaxed via a memory kernel
h(t − t̂i ) that tends to 0 at long times. Then the total stress
at �r is obtained as the sum of the stress perturbations created
by all past earthquakes

ν̂(t ) =
N (t )∑
i=1

ŷih(t − t̂i ). (7)

Note that the marks ŷi can be positive (negative), correspond-
ing to the ith earthquake bringing the point �r closer to (further
away from) failure. The former case is the most intuitive and
represents the stress load on �r due to the redistribution of
forces by the earthquake fault slip in its neighborhood, espe-
cially close to its fault tips and in its stress lobes of positive
influence. The latter case is known as stress shadow [23] and
is associated with the tensorial nature of the stress distur-
bances induced by an earthquake. Given the stochasticity in
the distribution of earthquake sizes, in their positions and ori-
entations, the marks ŷi are stochastic variables. Given the total
stress (tension) (7), the next ingredient is to recognize that
mechanical rupture and earthquakes are thermally activated
with an effective inverse temperature β that is renormalized
via the quenched heterogeneity of the medium [30–32]. Then
the probability for the next earthquake to occur is given by
the Arrhenius formula, thus formulating the intensity λ as a
decreasing exponential function e−β	E (t ) of the energy barrier
	E (t ) for nucleation. The key point is to approximate the
energy barrier as a decreasing affine function of the stress
field 	E (t ) = E − ν̂(t ), where E is a constant. Altogether,

this yields

λ(t ) = λ0eβν̂(t ). (8)

We finally obtain the NLH with an exponential intensity

λ̂(t ) = g

⎛
⎝N (t )∑

i=1

ŷih(t − t̂i )

⎞
⎠, g(ν̂) := λ0eβν̂ . (9)

In addition, given that the prediction of earthquake mag-
nitudes is empirically very difficult (while the short-term
prediction of their rates is rather possible [33]), it is a plausible
assumption that the marks are drawn independently of the
current tension ν̂(t ).

In this simplified presentation, we have restricted our at-
tention to the temporal version of the general formulation,
which is known as the multifractal stress activation (MSA)
model [21,22] and involves space in addition to time in the
formulation of the tension and intensity. It is remarkable that
both inhibitory effects and nonlinear intensity function appear
naturally for this system, as the result of the random stress
perturbations induced by earthquakes and from the Arrhenius
law (renormalized by quenched disorder), respectively.

It should noted that Refs. [21,22] offered only an approx-
imate scaling theory to derive magnitude-dependent Omori
law exponents and that no analytical results exist for the MSA
model or for its temporal-only version (9).

2. Example 2: Financial modeling

Reference [34] is one of the very first uses in finance of
the LH process (in its bivariate form) in order to model the
joint dynamics of trades and midprice changes of the NYSE.
Reference [35] provided the first quantitative framework using
the LH process to study and quantify the level of endogeneity
(or reflexivity) of market fluctuations. The basic idea is that
trades and price changes are analyzed by investors (humans
or machines) as one of the useful information channels to
improve trading decisions, on the basis (or belief) that past
actions reveal intentions and that there is a persistence in
price trends, volume, volatility, and more generally of trading
activity. In this sense, the self-exciting Hawkes process is a
natural candidate to model the point processes of discrete
trades and midprice changes [36].

As an improved model, a nonlinear version of the Hawkes
process was introduced by Blanc et al. [28], where the inten-
sity dynamics is given by a quadratic extension to the standard
Hawkes process

λ̂(t ) = λ0 +
∫ t

−∞
L(t − s)ξ̂P

ρ(y);λ̂(s)(s)ds

+
∫ t

−∞
ds
∫ t

−∞
du K (t − s, t − u)

× ξ̂P
ρ(y);λ̂(s)(s)ξ̂P

ρ(y);λ̂(u)(u), (10)

where ρ(y) = 1
2 [δ(y − 1) + δ(y + 1)] and the term ξ̂P

ρ(y);λ̂(s)
(s)

is the compound Poisson process with intensity λ̂(t ) and jump
size distribution ρ(y) as defined below by the expression
(14c). This model is called the quadratic Hawkes processes
and has been analyzed theoretically in Ref. [28].
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Since this model is nonlinear and non-Markovian, its
systematic analysis is difficult and only limited results
are available. However, by assuming K (t, s) = h(t )h(s) and
L(t ) = 0, this model reduces to a simpler NLH process

λ̂(t ) = g

(∫ t

−∞
h(t − s)ξ̂ρ(y);λ̂(s)(s)ds

)
= g

⎛
⎝N̂ (t )∑

i=1

ŷih(t − t̂i )

⎞
⎠,

g(ν) := λ0 + ν2, (11)

where we have used ξ̂ρ(y);λ̂(s)(s) =∑N̂ (s)
i=1 ŷiδ(s − t̂i ). This

NLH process is a special case of the Zumbach Hawkes
process, without the Hawkes feedback. While the Zumbach
Hawkes process is simpler than the quadratic Hawkes process,
it is still difficult to solve analytically. Therefore, the analysis
in Ref. [28] focused on the special case of an exponen-
tial memory h(t ) = (η/τ )e−t/τ and considered the diffusive
limit.2 For this special case, the steady-state PDF of the inten-
sity obeys a power law with nonuniversal exponent

Pss(λ) ∝ λ−1−a, a = 1

2
+ 1

2nZ
, (12)

with a constant nZ called the Zumbach norm (see Ref. [28]
for details). It is remarkable that a power-law relation (12)
appears even for short-memory kernels without introducing
any power-law distributions. This special solution was the
only available analytical solution for a NLH process before
our work [27].

One of the main claims in Ref. [28] is that the power-
law relation (12) provides a validation step supporting the
relevance of the quadratic Hawkes process for financial data
analyses, because it matches the empirical power-law price-
change distribution, which is a well-known stylized fact in
market microstructure. From this viewpoint, the authors of
Ref. [28] claim that the quadratic Hawkes process is a min-
imal generalization beyond the LH process that is essentially
needed to account for empirical facts.

3. Example 3: Self-excited multifractal model

It is also useful to mention the self-excited multifractal
model [37], which is not per se a point process but got its
inspiration from self-excited point processes, the concept of
reflexivity [38], the multifractal random-walk model [39], and
its generalizations [40,41]. Reminiscent of a NLH model with
a much stronger nonlinearity than quadratic, the self-excited
multifractal model is defined such that the amplitudes of the
increments of the process are expressed as exponentials of a
long memory of past increments

dX (t ) = σ exp

(
− 1

σ

∫ t

−∞
h(t − t ′)dX (t ′)

)
dW (t ), (13)

2Blanc et al. call their analysis the low-frequency asymptotics,
taking the long-time limit and a constant endogeneity rescaling. This
asymptotic method is essentially equivalent to the diffusive limit in
the framework of the system size expansion, a traditional asymptotic
analysis developed for statistical physics, which is formulated in
Sec. III E.

where dW (t ) is the increment of the regular Wiener noise
process, h(t ) is a memory kernel function, and σ controls the
amplitude of the noise as well as the dimension and scale of
X (t ). Interpreting dX (t ) as a log-return of a financial price,
the self-excited multifractal process recovers all the standard
stylized facts documented in empirical financial time series.
The exploration of the links between the self-excited multi-
fractal model and the exponential NLH process is left for the
future.

4. Goal of this study: Solutions for various
nonlinear Hawkes processes

The above summaries highlight the fact that analytical so-
lutions for NLH processes have not been obtained yet, except
for special cases (such as the Zumbach Hawkes case with
exponential memory in the diffusive limit). In this context,
our goal is to systematically classify NLH processes and
then provide analytical (both exact and asymptotic) solutions
for various NLH processes, in particular for the steady-state
intensity PDF Pss(λ). All our results are summarized as
Tables I and II, with the mapping between the inputs of the
model, i.e., setups, to the outputs, i.e., the resultant asymptotic
PDFs.

III. MASTER EQUATION FORMULATION

In this section we introduce an analytical framework for the
general NLH process based on the field MEs. We first provide
a Markovian mapping from the original non-Markovian NLH
process to a Markovian SPDE. We then derive the corre-
sponding field ME for any memory kernel, which is shown to
simplify for the special case of an exponential-memory kernel.
We next develop two useful tools that have a long tradition
in the history of physical stochastic processes: the Kramers-
Moyal (KM) expansion and the system size expansion (SSE)
for the diffusive limit. The field ME is then shown to reduce
to the functional Fokker-Planck equations (FPEs) for a special
case.

A. Mapping to Markovian SPDEs

Following Ref. [16], let us present the mapping from the
original non-Markovian stochastic process (3) to Markovian
SPDEs. Let us decompose the total tension ν̂(t ) and the mem-
ory kernel h(t ) as continuous sums

h(t ) =
∫ ∞

0
dx h̃(x)e−t/x, ν̂(t ) =

∫ ∞

0
dx ẑ(t, x). (14a)

The intuition behind this decomposition is that the memory
kernel is decomposed into a continuous sum of exponential
terms with amplitude h̃(x). This then suggests to use x as an
auxiliary field x ∈ (0,∞) and then to decompose the tension
as a continuous sum over the “excess tensions” ẑ(t, x). The
excess tensions are assumed to satisfy the SPDEs

∂ ẑ(t, x)

∂t
= − ẑ(t, x)

x
+ h̃(x)ξ̂CP

ρ(y);λ̂(t ),

λ̂(t ) = G[ẑ] := g

(∫ ∞

0
dx ẑ(t, x)

)
(14b)
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TABLE II. Second summary table of our main results, highlighting the differences from previous articles. In this paper, 22 different
solutions (14 exact and 8 asymptotic solutions) are reported.

Memory kernel h(t ) Mark distribution g(ν )
Tension-intensity

map g(ν ) Main results
Exact or

asymptotic? Related work Section

exponential, η

τ
e−t/τ one-sided exponential,

1
y∗ e−y/y∗�(y)

general g(ν ) (59) exact present result IV

exponential, η

τ
e−t/τ one-sided exponential,

1
y∗ e−y/y∗�(y)

linear, ν + ν0 (67) exact Refs. [16,17,50] IV

exponential, η

τ
e−t/τ one-sided exponential,

1
y∗ e−y/y∗�(y)

ramp, max{ν0, ν − ν1} (70) exact present results IV

exponential, η

τ
e−t/τ one-sided exponential,

1
y∗ e−y/y∗�(y)

ramp, max{ν0, ν − ν1} (76) asymptotic present results IV

exponential, η

τ
e−t/τ two-sided exponential,

1
2y∗ e−|y|/y∗

general g(ν ) (90) exact present results V

exponential, η

τ
e−t/τ two-sided exponential,

1
2y∗ e−|y|/y∗

ramp, max{ν0, |ν|} (92), (96) exact present results V

exponential, η

τ
e−t/τ two-sided exponential,

1
2y∗ e−|y|/y∗

quadratic, kν2 + λ0 (98), (100) exact present results V

exponential, η

τ
e−t/τ two-sided exponential,

1
2y∗ e−|y|/y∗

exponential, λ0|ν|eβν (104), (105) exact present results V

exponential, η

τ
e−t/τ diffusive limit general g(ν ) (108) exact present results V

exponential, η

τ
e−t/τ diffusive limit ramp, max{ν0, |ν − ν1|} (110) exact present results V

exponential, η

τ
e−t/τ diffusive limit quadratic, kν2 + λ0 (112) exact Ref. [28] V

exponential, η

τ
e−t/τ diffusive limit polynomial, k|ν|n + λ0 (114), (116) exact present results V

exponential, η

τ
e−t/τ diffusive limit exponential, λ0eβν (122), (123) exact present results V

exponential, η

τ
e−t/τ diffusive limit FAI, g(ν )  ν2 (125), (126) exact present results V

exponential, η

τ
e−t/τ symmetric (general),

ρ(y) = ρ(−y)
ramp, g(ν ) � ν + ν0 (127) asymptotic present results V

exponential, η

τ
e−t/τ symmetric (general),

ρ(y) = ρ(−y)
quadratic, kν2 + λ0 (132) asymptotic present results V

exponential, η

τ
e−t/τ symmetric (general),

ρ(y) = ρ(−y)
exponential, λ0eβν (138) asymptotic present results V

exponential, η

τ
e−t/τ symmetric (general),

ρ(y) = ρ(−y)
FAI, g(ν )  ν2 (146) asymptotic present results V

exponential, η

τ
e−t/τ asymmetric two-sided

exponentiala
general g(ν ) (162) exact present results VI

exponential, η

τ
e−t/τ asymmetric two-sided

exponentiala
ramp, max{ν0, |ν|} (165) exact present results VI

exponential, η

τ
e−t/τ asymmetric two-sided

exponentiala
exponential, λ0|ν|eβν (169), (171) exact present results VI

exponential, η

τ
e−t/τ asymmetric (general),

ρ(y) �= ρ(−y)
ramp, max{ν0, ν − ν1} (172c) asymptotic present results VI

exponential, η

τ
e−t/τ asymmetric (general),

ρ(y) �= ρ(−y)
FAI, g(ν )  ν2 (175) asymptotic present results VI

general h(t ) general ρ(y) ramp, max{ν0, ν − ν1} (198), (232) asymptotic present resultb VII

general h(t ) general ρ(y) exponential, λ0eβν (235), (256) asymptotic Ref. [27] VIII

general h(t ) general ρ(y) FAI, g(ν )  ν2 (259) asymptotic Ref. [27] VIII

a p(y) =
{

p+
y∗+

e−y/y∗+ , y � 0
p−
y∗−

e+y/y∗+ , y < 0.
.

bA special case was studied in Refs. [16,17].

under the initial condition ẑ(t = 0, x) = 0. The term ξ̂CP
ρ(y);λ̂(t )

is the compound Poisson process with intensity λ̂(t ) and jump

size distribution ρ(y),

ξ̂CP
ρ(y);λ̂(t ) =

N̂ (t )∑
i=1

ŷiδ(t − t̂i ), (14c)
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FIG. 2. Schematics of the Markovian embedding. (a) The original non-Markovian one-dimensional dynamics [described by the SDE (3)]
is mapped onto (b) the Markovian field dynamics [described by the SPDE (14)].

which means that the random marks yi obey the distribution
ρ(y).

This mapping can be schematically illustrated as shown
in Fig. 2: The original dynamics is one dimensional, gov-
erned by the SDE (3). In this low-dimensional representation,
the dynamics is non-Markovian. However, by applying
the Markovian embedding, we can construct an infinite-
dimensional Markovian dynamics governed by the SPDE (14)
by adding sufficiently many auxiliary variables ẑ(t, x).

Proof of equivalence

The SPDE (14b) together with the decomposition formula
(14a) is equivalent to the original marked NLH process (3).
Indeed, the formal solution of Eq. (14b) is given by

ẑ(t, x) = h̃(x)
∫ t

0
dt ′e−(t−t ′ )/x ξ̂CP

ρ(y);λ̂(t )

=
N̂ (t )∑
i=1

ŷih̃(x)
∫ t

0
dt ′e−(t−t ′ )/xδ(t ′ − t̂i )

=
N̂ (t )∑
i=1

ŷih̃(x)e−(t−t̂i )/x, (15)

leading to

ν̂(t ) =
N̂ (t )∑
i=1

ŷi

∫ ∞

0
dxh̃(x)e−(t−t̂i )/x =

N̂ (t )∑
i=1

ŷih(t − t̂i ). (16)

It is noteworthy that this derivation does not make explicit ref-
erence to the definition of λ̂(t ) = g(ν̂(t )) and is independent
of the specific function g(ν).

B. Field master equation

In this section we study the functional ME corresponding
to the SPDE (14b). The field ME of the PDF Pt [z] is given by

∂Pt [z]

∂t
= (Ladv + Ljump)Pt [z], (17a)

with advective and jump Liouville operators

LadvPt [z] :=
∫ ∞

0
dx

δ

δz(x)

(
z(x)

x
Pt [z]

)
, (17b)

LjumpPt [z] :=
∫ ∞

−∞
dy ρ(y)G[z − yh̃]Pt [z − yh̃] − G[z]Pt [z].

(17c)

In this paper we provide various analytical exact or asymp-
totic solutions of (17).

1. Derivation

It is useful to provide a derivation of the field ME (17)
via a discrete approach, which gives a sound mathematical
interpretation and control of the functional derivatives [42].
Let us consider the case of the memory kernel composed of
a discrete sum of K exponentials (which we refer to as K
exponentials)

h(t ) =
K∑

k=1

h̃ke−t/τk . (18a)

The NLH process (3) together with the K exponentials (18a)
can be mapped onto a Markovian equation by introducing ẑ :=
(ẑ1, . . . , ẑK ),

dẑk (t )

dt
= − ẑk (t )

τk
+ h̃k ξ̂

CP
ρ(y);λ̂(t ),

λ̂(t ) = g(ν̂(t )), ν̂(t ) :=
K∑

k=1

ẑk (t ), (18b)

which is parallel to the Markovian embedding procedure for
Eqs. (14). We introduce the following function G, which will
be convenient for future developments:

G(ẑ) := g(ν̂) = g

(
K∑

k=1

ẑk

)
. (18c)
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The ME for the SDE (18) is derived as follows. Let us consider an arbitrary function f (ẑ) and its time evolution df (ẑ(t )) :=
f (ẑ(t + dt )) − f (ẑ(t )) during [t, t + dt ),

df (ẑ) =
{

−∑K
k=1

ẑk
τk

∂ f (ẑ)
∂ ẑk

dt (no jump during [t, t + dt ): probability = 1 − λ̂(t )dt )

f (ẑ + ŷh̃) − f (ẑ) (jump in [t, t + dt ) with ŷ ∈ [y, y + dy): probability = λ̂(t )ρ(y)dtdy),
(19)

with h̃ := (h̃1, . . . , h̃K ). By taking the ensemble average of both sides over realizations of the excess tensions ẑ := (ẑ1, . . . , ẑK ),
we obtain

〈df (ẑ)〉 =
〈
−

K∑
k=1

ẑk

τk

∂ f (ẑ)

∂ ẑk
dt

〉
+
∫ ∞

−∞
dy ρ(y)〈G(ẑ)[ f (ẑ + ŷh̃) − f (ẑ)]dt〉, (20)

which is equivalent to∫ ∞

−∞
dz f (z)

∂Pt (z)

∂t
=
∫ ∞

−∞
dz Pt (z)

(
−

K∑
k=1

zk

τk

∂ f (z)

∂zk
+
∫ ∞

−∞
dy ρ(y)G(z)[ f (z + yh̃) − f (z)]

)

=
∫ ∞

−∞
dz f (z)

(
K∑

k=1

∂

∂zk

zk

τk
Pt (z) +

∫ ∞

−∞
dy ρ(y)[G(z − yh̃)P(z − yh̃) − G(z)P(z)]

)
, (21)

where we have performed an integration by parts and used the variable transformation z + yh̃ → z and the relation

〈df (ẑ)〉 = 〈 f (ẑ(t + dt )) − f (ẑ(t ))〉 =
∫ ∞

−∞
dz f (z)Pt+dt (z) −

∫ ∞

−∞
dz f (z)Pt (z) = dt

∫ ∞

−∞
dz f (z)

∂Pt (z)

∂t
+ O(dt2). (22)

Since Eq. (21) is an identity holding for any f (z), we obtain the corresponding ME

∂Pt (z)

∂t
=

K∑
k=1

∂

∂zk

zk

τk
Pt (z) +

∫ ∞

−∞
dy ρ(y)[G(z − yh̃)P(z − yh̃) − G(z)P(z)]. (23)

We then proceed with the continuous limit for the memory kernel. We first rewrite

h(t ) =
K∑

k=1

h̃ke−t/τk →
K∑

k=1

dx h̃(xk )e−t/xk , ν̂(t ) = g

(
K∑

k=1

ẑk (t )

)
→ g

(
K∑

k=1

dx ẑ(t, xk )

)
(24)

for the formal replacement

τk → xk, h̃k → h̃(xk )dx, ẑk → ẑ(t, xk )dx (25)

obtained by introducing the lattice interval dx and xk := kdx. By introducing the formal functional derivative and integration for
the limits K → ∞ and dx → 0,

δ

δz(xk )
[· · · ] := lim

dx→0

1

dx

∂

∂z(xk )
[· · · ],

∫ ∞

0
dx[· · · ] := lim

dx→0

K∑
k=1

dx[· · · ], (26)

we obtain

∂Pt [z]

∂t
=
∫ ∞

0
dx

δ

δz(x)

z(x)

x
Pt [z] +

∫ ∞

−∞
dy ρ(y)G[z − yh̃]Pt [z − yh̃] − G[z]Pt [z] (27)

and

h(t ) =
∫ ∞

0
dx h̃(x)e−t/x, ν̂(t ) = g

(∫ ∞

0
dx ẑ(t, x)

)
,

(28)

which is equivalent to Eq. (17) (see Appendix A for the
definition of the Dirac δ function and the functional deriva-
tive). See Appendix B for another derivation based on direct
manipulation of functional derivatives.

2. Mathematical remark

Master (or Fokker-Planck) equations based on functional
derivatives often appear in the description of SPDEs, such
as for stochastic chemical reactions [42]. While this con-
tinuous description is a useful tool for formal calculations,
unfortunately, its mathematical foundation has not been es-
tablished yet. Indeed, one can easily observe that there is
the potential problem of encountering a divergence, such as
[δ/δz(x)]z(x)P[z] = δ(0)P[z] + z(x)δP[z]/δz(x). This prob-
lem might be serious for nonlinear SPDEs even for physical
observables (see the divergence problem of nonlinear stochas-
tic chemical reaction, e.g., Chap. 13.3.3 in [42]), while it
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might not be for linear SPDEs. One can find that this diver-
gence is not serious for the LH process and the generalized
Langevin equation [16] at least in understanding physical
observables. Remarkably, for the generalized Langevin equa-
tion, this divergence problem is essentially the same as the one
encountered in quantum field theory and can be renormalized
in the same manner with which the divergence problem of
the zero-point energy is solved in quantum electrodynamics.
We note that, in the case of the NLH process, the SPDE (14)
itself is fortunately linear, while the intensity function g(ν̂) is
nonlinear.

To avoid such mathematically delicate issues, our strategy
is to follow a safer interpretation that follows Ref. [42]: We
regard the field ME (17) [or the FPE (48)] as a formal limit
of the discrete ME (23). If we encounter a potential problem
of divergence in Eq. (17), we return to the discrete ME (23)
to proceed with the calculations and then return to its formal
limit (17). We confirm that our main results hold for the
general discrete cases (18) and we then generalize them to
the continuous limit.

C. Special case: Exponential-memory kernel

Let us focus here on the simplest case of the single
exponential-memory kernel

h(t ) = η

τ
e−t/τ , (29)

or equivalently

h̃(x) = η

τ
δ(x − τ ), (30)

with positive real numbers η and τ . Consistent with the defi-
nition (6), the parameter η is the branching ratio. This special
case is easier to analyze analytically, since the functional ME
(17) reduces to the ME for a PDF of the total tension ν,

∂Pt (ν)

∂t
= 1

τ

∂

∂ν
[νPt (ν)] +

∫
dy ρ(y)g

(
ν − ηy

τ

)
× Pt

(
ν − ηy

τ

)
− g(ν)Pt (ν). (31)

D. Functional Kramers-Moyal expansion

One of the standard analytical prescriptions to analyze
MEs is the KM expansion. The KM expansion was histori-
cally introduced for a formal validation of the FP description
from MEs. This formal expansion was criticized by Van Kam-
pen due to its ambiguous validity as an asymptotic series.
Later, Van Kampen developed a mathematically sophisticated
formulation in the form of the SSE [43]. We present a sound
formulation of the KM functional expansion for the field ME,
which will be utilized for a further generalization of the SSE
in Sec. III E.

1. Exponential-memory case

To first present the key idea, let us focus on the exponential-
memory case (29). By considering the expansion∫

dy ρ(y)g
(
ν − ηy

τ

)
Pt

(
ν − ηy

τ

)

=
∞∑

k=0

αk

k!

(
−η

τ

)k ∂k

∂νk
g(ν)Pt (ν),

αk :=
∫ ∞

−∞
dy ρ(y)yk, (32)

the ME (31) can be rewritten as

∂Pt (ν)

∂t
= 1

τ

∂

∂ν
[νPt (ν)] +

∞∑
k=1

αk

k!

(
−η

τ

)k ∂k

∂νk
g(ν)Pt (ν).

(33)

This is the KM expansion for the ME (31) for this special
case. We have assumed that all the KM coefficients {αk}k�1

are finite, which excludes some singular classes of mark dis-
tributions, e.g., power-law mark distributions.

2. General cases

The above formulation can be generalized by
considering the functional Taylor expansion (see
Appendix A)∫ ∞

−∞
dy ρ(y)G[z − yh̃]Pt [z − yh̃]

=
∞∑

k=0

αk

k!

(
−
∫ ∞

0
dx yh̃(x)

δ

δz(x)

)k

G[z]Pt [z] (34)

with the KM coefficients defined by

αk :=
∫ ∞

−∞
dy ρ(y)yk, (35)

and assuming that all the KM coefficients {αk}k�1 are finite.
Using this relation, the field ME can be rewritten as

∂Pt [z]

∂t
=
∫ ∞

0
dx

δ

δz(x)

(
z(x)

x
Pt [z]

)

+
∞∑

k=1

αk

k!

(
−
∫ ∞

0
dx h̃(x)

δ

δz(x)

)k

G[z]Pt [z]. (36)

E. Diffusive limit: System size expansion

We next consider the diffusive limit for the mark distri-
bution according to the SSE, by assuming that (i) the mark
distribution is symmetric,

ρ(y) = ρ(−y), (37)

i.e., this is the case where inhibitory effects are as prevalent
as excitatory effects. This situation will be further studied in
detail in Sec. V. This model is essentially different from the
positive mark cases, i.e., ρ(y) = 0 for y � 0, because both
positive and negative feedback effects occur with the same
probability. For instance, such an assumption is natural for
seismic models as the stress perturbations induced by earth-
quakes indeed present this symmetry (which has a complex
tensorial spatial rendering; see, for instance, [44]). With this
symmetry condition, all the odd-order KM coefficients are
zero: α2k+1 = 0 for non-negative integer k.

As the second assumption (ii), let us introduce a small
parameter ε > 0 scaling the jump size in the original Hawkes
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FIG. 3. Schematic trajectory of the NLH process in the diffusive limit. While (a) the trajectory is composed of sparse jumps for large ε

(ε = 1.0), (b) the trajectory is composed of many small jumps for small ε and becomes approximately continuous (ε = 0.1). The trajectories
were generated by assuming h(t ) = (η/τ )e−t/τ , ρε (y) = e−y2/2ε2

/
√

2πε2, and g(ν ) = λ0 + kν2, with η = 0.5, τ = 1, k = 1, and λ0 = 0.5. The
discrete time step is 	t = 10−4.

process,

ŷi := εŶi, (38)

or equivalently

λ̂(t ) = g

⎛
⎝ε

N̂ (t )∑
i=1

Ŷih(t − t̂i )

⎞
⎠. (39)

In other words, each jump size ŷi is assumed proportional
to a small parameter ε and thus the rescaled jump size Ŷi

appears as the renormalized jump size independent of ε [see
Fig. 3(a)]. For explicit clarification of the ε dependence, we
denote below the original mark distribution ρ(y) by ρε(y).
This assumption can be interpreted as a weak-coupling limit
between the system and the noise term. Considering the Jaco-
bian relation, i.e., preservation of probability,

ρε(y)dy = ρ̃(Y )dY (40)

with the scaled jump-size distribution ρ̃(Y ), the above scaling
assumption on the trajectory level is equivalent to that for the
mark distribution

ρε(y) := 1

ε
ρ̃
( y

ε

)
. (41)

We note that this scaling assumption is equivalent to the sys-
tem size expansion (often called the � expansion), which was
originally introduced by Van Kampen for a systematic deriva-
tion of the Langevin equation within this kinetic theory (see
the textbook by Van Kampen [43] and a review [45] including
recent extended SSEs [46,47]). With this assumption, the KM
coefficients αk have the scaling

αk =
{
εkα̃k for even k
0 for odd k

(42)

with the ε-independent KM coefficient α̃k := ∫∞
−∞ Y k ρ̃(Y )dY .

In the weak-coupling limit ε → 0, each jump size is very
small and thus the noise term becomes irrelevant if the in-
tensity is constant. To keep the effect of the noise minimally
relevant, let us take the diffusive limit by increasing the in-
tensity as a function of ε, i.e., g(ν) is a function of ε. As the

third assumption (iii), therefore, we assume that the intensity
function satisfies the diffusive scaling

g(ν) = 1

ε2
g̃(ν) (43)

with the ε-independent intensity function g̃(ν) [see Fig. 3(b)].
In other words, the model is explicitly written in the following
form:

λ̂(t ) = 1

ε2
g̃

⎛
⎝ε

N̂ (t )∑
i=1

Ŷih(t − t̂i )

⎞
⎠. (44)

These three assumptions enable us to rewrite the field ME
exactly in terms of the functional FPE in the diffusive limit
ε → 0 [see Fig. 3(b)] as we will elaborate in the following.

It is interesting to mention a report by Gao and Zhu
[29], where a similar but still different form of asymp-
totics is studied by assuming a one-sided mark distribution
ρ(y) = δ(y − 1) and a scaling for the tension-intensity map
g(ν) = (1/ε)g̃(ν) for a nonlinear version of the high-baseline-
intensity regime for the LH processes [48]. For this setup, the
trajectory fluctuates around a deterministic trajectory and thus
shows quite different phenomenology.

1. Exponential-memory case

To understand the main ingredients of our calculations, let
us first focus on the exponential-memory case (29). The KM
expansion can be rewritten as

∂Pt (ν)

∂t
= 1

τ

∂

∂ν
[νPt (ν)] +

∞∑
k=1

ε2k−2 α̃2k

(2k)!

×
(
−η

τ

)2k ∂2k

∂ν2k
g̃(ν)Pt (ν). (45)

By taking the diffusive limit ε → 0 [Fig. 3(b)], we obtain the
exact FPE

∂Pt (ν)

∂t
= 1

τ

∂

∂ν
[νPt (ν)] + D

∂2

∂ν2
g̃(ν)Pt (ν), D := α̃2η

2

2τ 2
.

(46)
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We note that this FPE is equivalent to an Itô process described
by

d ν̂

dt
= − ν̂

τ
+
√

2Dg̃(ν̂) · ξ̂G, (47)

with the Itô product denoted by a centered dot and the
standard white Gaussian noise ξ̂G, satisfying 〈ξ̂G〉 = 0 and
〈ξ̂G(t )ξ̂G(t ′)〉 = δ(t − t ′).

2. General cases

The above formulation can be extended for the field ME.
Indeed, we obtain the exact functional FPE

∂Pt [z]

∂t
=
∫ ∞

0
dx

δ

δz(x)

(
z(x)

x
Pt [z]

)

+
∫ ∞

0
dx
∫ ∞

0
dx′D(x, x′)

× δ2

δz(x)δz(x′)
G̃[z]Pt [z], (48)

with the coefficient

D(x, x′) := α2

2
h̃(x)h̃(x′). (49)

The functional FPE (48) implies that the stochastic dynamics
finally reduces to

∂ ẑ(t, x)

∂t
= − ẑ(t, x)

x
+
√

2G̃[ẑ] · ξ̂G(t ; x) (50)

for the diffusive limit [Fig. 3(b)], with the white Gaussian
noise satisfying

〈ξ̂G(t ; x)〉 = 0, 〈ξ̂G(t ; x)ξ̂G(t ′; x′)〉 = D(x, x′)δ(t − t ′).
(51)

F. Laplace transformation

Here we introduce the relevant notation for the Laplace
transformation. We first define the K-dimensional Laplace
transformation as

LK [ f (z); s] :=
∫ ∞

0
dz e−s·z f (z), s ∈ R+

K . (52)

In a parallel manner, the Laplace transformation in the func-
tion space can be defined as a straightforward generalization
as follows:

Lpath[ f [z]; s] :=
∫ ∞

0
Dz exp

(
−
∫ ∞

0
dx s(x)z(x)

)
f [z],

s ∈ SF . (53)

We note that this Laplace transformation is a kind of path
integral.

G. How to apply the field master equation as the fundamental
equation for analytical calculations

We have formulated the field master equation (17) as
the basis for our analytical calculations. In conventional
Markovian stochastic processes, the ME is one of the most
fundamental equations for analytical calculations. Indeed,
while stochastic differential equations are generally nonlin-
ear equations, the corresponding master equations are always

linear; thus, analytical calculations reduce to eigenvalue prob-
lems in linear algebra. If the solutions to the eigenvalue
problems are obtained, one can access various statistical quan-
tities, such as ensemble averages, correlation functions, and
probability density functions [42].

Thus, for our field ME (17) approach, such a linear-algebra
method is formally applicable. In other words, a general anal-
ysis of the field ME (17) reduces to the eigenvalue problem

Lφλ[z] = −λφλ[z], (54)

with the total linear operator L := Ladv + Ljump, the eigen-
value λ, and the corresponding eigenfunctional φλ[z]. The
time evolution of the PDF Pt [z] is given by

Pt [z] =
∑

λ

cinit (λ)e−λtφλ[z], (55)

with coefficients cinit (λ) fixed by the initial condition P0[z] =∑
λ cinit (λ)φλ[z]. Typically, due to the Perron-Frobenius theo-

rem, the real part of the eigenvalues is non-negative Re(λ) � 0
and the zero eigenvalue exists λ = 0 as the most important
eigenvalue, characterizing the steady state.

If we can solve the eigenvalue problem (54), we can
straightforwardly calculate many useful quantities. For exam-
ple, the ensemble average of an arbitrary observable A[ẑt ] as a
functional of ẑt is formally given by

〈A[ẑt ]〉 :=
∫

A[z]Pt [z]Dz =
∑

λ

cinit (λ)e−λt
∫

A[z]φλ[z]Dz.

(56)

In addition, the steady-state intensity PDF Pss(λ) :=
limt→∞〈δ(λ − G[ẑt ])〉 is written as

Pss(λ) ∝
∫

δ(λ − G[z])φ0[z]Dz. (57)

Thus, only the zeroth eigenfunctional φ0[z] is necessary for
deriving the steady-state intensity PDF Pss(λ). In this sense,
the study of the non-Markovian dynamics (3) is exactly
mapped onto the linear-algebra problem (54) in principle.
The field ME (17) provides a clear view regarding analytical
solutions to the NLH processes. See Fig. 4(a) for the flow
chart for our analytical calculations. In this paper we focus
on the steady-state intensity PDF Pss(λ), requiring only the
zeroth eigenfunctional based on the formula (57). We analyt-
ically obtain the zeroth eigenfunctional φ0[z] corresponding
to various setups. Since the NLH is uniquely identified
by the memory kernel h(t ), mark distribution ρ(y), and
tension-intensity map g(ν), we enumerate the corresponding
solutions by systematically specifying the setup parameters
P := (h, ρ, g) in the following sections to be read like a dic-
tionary. The flow chart for our setup-parameter classification
is presented in Fig. 4(b).

IV. SOLUTION 1: EXPONENTIAL-MEMORY KERNEL
WITH ONE-SIDED MARK DISTRIBUTION AND LINEAR

AND RAMP INTENSITY MAPS

In this section we focus on exact solutions for the simplest
case with the exponential-memory kernel (29), whose dynam-
ics is characterized by a simple ME (31). In particular, we
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(general 
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FIG. 4. Logical structure of this work. (a) Flow chart of our analytical calculations based on the field master equation (17). The field ME
(17) is uniquely identified by the parameters P := (h, ρ, g). By solving the zero-eigenvalue problem (54), we obtain the steady-state intensity
PDF Pss(λ) via formula (57). (b) Flow chart for our systematic classification of the possible intensity PDFs over the parameter set P . We first
categorize the memory kernel h(t ) according to whether it is a pure exponential relaxation or instead represents a general memory process and
then classify the mark distribution ρ(y) in terms of the inhibitory effects and symmetry.

assume here that all the marks are positive ŷ > 0, implying
the absence of inhibitory effects.

A. Exact solutions for one-sided exponential jump

Let us consider the case with the exponential-memory ker-
nel (29) and with the one-sided exponential jump size3 (see
Fig. 5)

ρ(y) := 1

y∗ e−y/y∗
�(y), (58)

whose ME is known to be exactly tractable due to its spe-
cial form [49]. We assume y∗ = 1 without losing generality
because the scale can be absorbed into the branching ratio η.
Since both the memory kernel and jump size are non-negative,
the inhibitory effects are absent in this model. Interestingly,
even this simple model can exhibit nontrivial steady-state

3Here �(y) is the Heaviside function defined by �(y) = 1 for y >

0, �(0) = 1/2, and �(y) = 0 for y < 0.

FIG. 5. Schematic of the one-sided exponential mark distribution
(58) with y∗ = 1.

distribution functions of intensities resulting from the nonlin-
earity of the tension-intensity map g(ν̂). This case is special
because the exact steady-state solution to the ME (31) is
available. In the steady state, the exact steady-state solution
is given by

Pss(ν) = ν−1

Z
exp

(
−cν + τ

∫
g(ν)

ν
dν

)
, (59)

with

c := τ

η
(60)

and with a normalization constant given by

Z :=
∫ ∞

0
dν ν−1 exp

(
−cν + τ

∫
g(ν)

ν
dν

)
. (61)

Derivation

By utilizing the identity (see Appendix C for the technical
derivation)(

1 + 1

c

∂

∂ν

)∫ ∞

0
dy e−yg

(
ν − ηy

τ

)
Pt

(
ν − ηy

τ

)
= g(ν)Pt (ν),

(62)

we can rewrite the ME as
∂Pt (ν)

∂t
= 1

τ
∂ν[νPt (ν)] − ∂ν/c

1 + ∂ν/c
g(ν)Pt (ν), (63)

with the differential operator ∂ν := ∂/∂ν. We note that a sim-
ilar calculation technique can be found in Ref. [49]. This ME
can be rewritten as

∂Pt (ν)

∂t
= − ∂

∂ν
Jt (ν),

Jt (ν) := − 1

τ
νPt (ν) + 1/c

1 + ∂ν/c
g(ν)Pt (ν). (64)

Here we assume the natural boundary condition [42]

lim
ν→∞ Jt (ν) = 0, (65)
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FIG. 6. Schematic of the tension-intensity maps for the linear,
i.e., g(ν ) = ν0 + ν with ν0 = 1, and ramp, i.e., g(ν ) = max{ν0, ν −
ν1} with ν0 = 1/2 and ν1 = 1/2, Hawkes processes. While ν0 must
be non-negative due to the non-negativity of the probability, ν1 can
be either positive or nonpositive.

ensuring that the mean probability velocity Jt (ν)/Pt (ν) is
zero at infinity. We reject the possibility of periodic boundary
conditions which are nonphysical. In the steady state, we thus
obtain the exact steady-state solution (59).

B. Example 1: Linear Hawkes process

For the linear intensity function

g(ν) = ν + ν0 (66)

with base intensity ν0 > 0, the model recovers the conven-
tional LH process. In the subcritical case η < 1, the exact
steady-state solution is given by the � distribution as analyzed
in Ref. [50],

Pss(ν) = 1

Z
ν−1−ae−ν/νcut , Z = ν

τν0
cut �(τν0), a := −τν0,

(67)

with the Gamma function �(x) := ∫∞
0 dt t x−1e−t . The charac-

teristic tension for the exponential cutoff is defined as

νcut := η

1 − η

1

τ
. (68)

The PDF Pss(ν) and thus the PDF of λ is a power law with a
nonuniversal negative exponent a up to the cutoff tension νcut.
Since the cutoff tension diverges near criticality, the power-
law tail described by ν−1+τν0 and λ−1+τν0 corresponds to an
intermediate asymptotics [18], as reported in Ref. [16].

C. Example 2: Ramp tension-intensity map

Let us consider the ramp tension-intensity map (also called
a rectified linear unit in the context of recent works in machine
learning)

g(ν) = max{ν0, ν − ν1} (69)

for positive ν0 and any real number ν1 (see Fig. 6). In this
paper the NLH process with the ramp tension-intensity map
(69) is called the ramp Hawkes process. While the ramp
Hawkes process is quite similar to the LH process, its minimal

nonlinearity leads to a genuine asymptotic power-law tail, thus
very different from the LH process. In the subcritical regime
η < 1, the exact steady-state solution is given by

Pss(ν) =
{ 1

Z ν−1−τν1 e−ν/νcut , ν > ν0 + ν1

(ν0+ν1 )−τ (ν0+ν1 )

Z ν−1+τν0 eτ (ν0+ν1 )−cν, ν � ν0 + ν1,

(70)

with the exponential cutoff νcut given by the expression (68),
the constant c given by (60), and the normalization constant Z
given by (61).

Interestingly, for ν1 > 0 and at criticality η = 1, for ν >

ν0 + ν1, Pss(ν) becomes a pure power law

Pss(ν) ∝ ν−1−a, a := τν1, (71)

which is normalizable without truncation. Given the asymp-
totic linear relationship between ν and λ, the same power-law
behavior holds for the PDF of λ. This power law is different
from the intermediate asymptotic power-law distribution (67)
for the LH process. In this sense, the ramp Hawkes process
can reproduce any power-law relationship (including both true
and intermediate asymptotics) at criticality, which may be
useful to account for power-law distributions observed empir-
ically in various systems. It is remarkable that such a slight
change from the affine structure (66) to the rectified linear
(69) structure creates this large difference in the asymptotic
intensity distribution. Note also that, since max{ν0, ν − ν1} <

ν + ν0 ∀ ν1 > 0, the ramp tension-intensity map has a smaller
intensity than that of the LH process, which explains the thin-
ner tail (71) compared with (67) (the latter becoming so heavy
tailed close to criticality so as to become non-normalizable).
Intuitively, the base tension ν0 in the ramp tension-intensity
map (69) acts as a replenishing engine that ensures a minimum
activity, which can become the source of bursts. This structure
of the ramp tension-intensity map is somewhat reminiscent of
the Kesten process [51–53], which is well known to produce
power-law distributions with the tail exponent depending on
the distribution of the multiplicative factors. It is interesting
that the exponent a = τν1 is independent of the resourcing
term.

D. Existence of steady-state solutions

The exact solution (59) is useful in understanding the
condition for the existence of a steady-state solution. For
example, let us consider the case of the exponential tension-
intensity map

g(ν) = λ0eβν, β > 0, (72)

which has been used in the statistical calibration of neural
spike time series in neural science [54]. The exact solution
(59) predicts that this NLH process has no steady-state solu-
tion. Indeed,

Pss(ν) ∝ ν−1 exp

(
−cν + λ0τ

∫
ν−1eβνdν

)
∝ ν−1 exp[−cν + λ0τ Ei(βν)]

� ν−1 exp

(
−cν + λ0τ

eβν

βν

)
(73)
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for large ν with the exponential integral Ei(x) :=
− ∫∞

−x t−1e−t dt . This PDF is not normalizable, implying
that this NLH process is always unstable independently of the
model parameters.

To avoid this problem, one of the easiest solutions is to
introduce an upper bound in the intensity function

g(ν) = min{λ0eβν, λmax}, (74)

with the finite upper boundary parameter λmax > 0. In
Ref. [54] Gerhard et al. introduced a similar regularization to
guarantee the stability of their model. However, it is remark-
able that this NLH process is always unstable in the absence of
the upper bound and thus simulation results sensitively depend
on the specific value of the cutoff λmax.

In general, if the tension-intensity map diverges faster than
the linear (or ramp) function, there is no stationary solution.
Indeed, for g(ν) � λ0ν

n with n > 1, we obtain

Pss(ν) � ν−1

Z
exp

(
−cν + λ0τ

∫
νn−1dν

)

∝ ν−1 exp

(
−cν + λ0τ

n
νn

)
, (75)

which is not normalizable. In this sense, the ramp Hawkes pro-
cess is the boundary between the stationary and nonstationary
Hawkes processes under the assumption of an exponential
memory (29) and one-sided exponential marks (58).

Thus, an NLH process with one-sided positive marks is
not so flexible, if we require its stationarity. However, this
situation drastically changes if we allow for the coexistence
of excitatory and inhibitory effects, i.e., marks can take both
positive and negative values. Indeed, as will be shown in
Sec. V, NLH processes with two-sided marks are flexible
enough to accommodate various nonlinearities without losing
their stationarity.

E. Robust asymptotic results

The previous presentation of exact solutions for the ramp
tension-intensity map (69) for the special case of (a) an expo-
nential memory and (b) an exponential jump-size distribution
allowed us to highlight the appearance of power-law tails for
the distribution of tensions near and at criticality. Here we
show that such a power-law behavior is asymptotically robust
for general jump-size distributions, assuming that the memory
is exponential. With the notation

h(t ) = η

τ
e−t/τ , g(ν) � ν − ν1 + o(ν0) for large ν, αk :=

∫ ∞

0
ykρ(y)dy < ∞ for any k � 1, α1 = 1,

the steady-state intensity distribution Pss(ν) is given by the
nonuniversal power-law relation

Pss(ν) ∝ ν−1−a, a := 2τν1

α2
. (76)

Given the asymptotic linear relationship between ν and λ, the
same power-law behavior holds for the PDF of λ.

We stress that ν1 can take any real value, either positive,
negative, or zero. If negative or zero, the derivation does not
extend all the way to the limit η = 1 and the power law (76)
is truncated as in (67) by an exponential cutoff. This result
implies a true power-law tail for positive ν1, i.e., normalizable
without a cutoff tail even at criticality, or intermediate asymp-
totic power-law tail for nonpositive ν1, i.e., not normalizable
without a cutoff tail near criticality. Notably, this recovers
Eq. (71) for the one-sided exponential mark distribution (58)
for which α2 = 2.

Derivation

Since we are interested only in the tail of the intensity PDF,
let us focus on the asymptotic properties of the ME (31) for
large ν. The ME (31) has the asymptotic expression

1

τ

∂

∂ν
[νPss(ν)] +

∫
dy ρ(y)

(
ν − ν1 − ηy

τ

)
Pss

(
ν − ηy

τ

)
− (ν − ν1)Pss(ν) � 0 for large ν (77)

in its steady state, obtained by replacing g(ν) by ν − ν1

asymptotically. Applying the Laplace transform

P̃ss(s) := L1[Pss(ν); s] =
∫ ∞

0
dν e−sνPss(ν) (78)

to Eq. (77) yields

− s

τ

d

ds
P̃ss(s) − �(s)

(
d

ds
P̃ss(s) + ν1P̃ss(s)

)
� 0,

�(s) :=
∫ ∞

0
dy(e−sηy/τ − 1)ρ(y). (79)

Its solution is given by

ln P̃ss(s) � −ν1s +
∫ s

0

ν1s′ds′

s′ + τ�(s′)
, (80)

with the normalization condition P̃ss(s = 0) = 1. Considering
the expansion

�(s) = −η

τ
s + η2α2

2τ 2
s2 + · · · , (81)

ln P̃ss(s) has the asymptotic form for small s near criticality
1 − η � 1,

ln P̃ss(s) � 2τν1

α2
ln s for small s, (82)

implying, by inverse Laplace transform, a power-law asymp-
totics for the steady intensity PDF:

Pss(ν) ∝ ν−1−2τν1/α2 . (83)

For nonpositive ν1, this PDF is not normalizable and thus re-
quires a cutoff tail, such as the exponential given by Eq. (67).
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FIG. 7. Schematic of the two-sided symmetric exponential mark
distribution (84) with y∗ = 1.

V. SOLUTION 2: EXPONENTIAL-MEMORY KERNEL
WITH TWO-SIDED SYMMETRIC MARK DISTRIBUTION

FOR LINEAR TO FAST-ACCELERATING
INTENSITY MAPS

In this section we study both exact and asymptotic solu-
tions of the ME (31) for the PDF of the total tension ν valid
for an exponential-memory kernel (29) and in the presence of
inhibitory effects (i.e., marks ŷ can be both positive and neg-
ative). The inhibitory effects imply that events can sometimes
suppress or decrease the amplitude of bursts, which can lead
to phenomena essentially different from those in the preceding
section.

A. Exact solutions to two-sided symmetric
exponential mark distribution

Let us focus on the case with the two-sided symmetric
exponential mark distribution (see Fig. 7)

ρ(y) = 1

2y∗ e−|y|/y∗
, (84)

which corresponds to the existence of symmetric positive (y >

0) and negative (y < 0) feedback effects with zero mean. We
again assume y∗ = 1, without loss of generality. This negative
feedback effect is called the inhibitory effect in Ref. [20] and
is known to be difficult to deal with in analytical approaches.
We present the exact solution of Eq. (31) with (84) for some
specific forms of λ = g(ν).

Let us recall the identity(
1 − 1

c

∂

∂ν

)∫ 0

−∞
dy e−|y|g

(
ν − ηy

τ

)
Pt

(
ν − ηy

τ

)
= g(ν)Pt (ν), (85)

where c = τ/η has been defined in (60) (see Appendix C for
the derivation). This identity together with the other identity
(62) implies a third identity useful to solve the ME (31):∫ +∞

−∞
dy

e−|y|

2
g
(
ν − ηy

τ

)
Pt

(
ν − ηy

τ

)

= 1

2

(
1

1 + ∂ν/c
+ 1

1 − ∂ν/c

)
g(ν)Pt (ν)

= 1

1 − ∂2
ν /c2

g(ν)Pt (ν). (86)

We thus obtain a simple representation of the ME (31):

∂Pt (ν)

∂t
= 1

τ
∂ν[νPt (ν)] + ∂2

ν /c2

1 − ∂2
ν /c2

g(ν)Pt (ν). (87)

This ME can be written in the more familiar form

∂Pt (ν)

∂t
= −∂Jt (ν)

∂ν
, (88)

where the probability current is defined by

Jt (ν) := −
(

ν

τ
+ ∂ν/c2

1 − ∂2
ν /c2

g(ν)

)
Pt (ν). (89)

This formulation makes more transparent the meaning of the
boundary condition limν→∞Jt (ν) = 0 ensuring that the mean
probability velocity Jt (ν)/Pt (ν) is zero at infinity. We reject
the possibility of periodic boundary conditions which are non-
physical.

Then the steady-state solution satisfies the second-order
differential equation

d2

dν2
[νPss(ν)] − τ

d

dν
[g(ν)Pss(ν)] − c2νPss(ν) = 0. (90)

This is obtained by setting ∂Pt (ν)
∂t = 0 in (88) and using

limν→∞Jt (ν) = 0, which leads to Jt (ν) = 0 ∀ ν, from which
Eq. (90) is derived.

1. Example 1: Ramp tension-intensity map

For the ramp tension-intensity map

λ = g(ν) = max{ν0, |ν|}, (91)

which corresponds to setting ν1 = 0 in Eq. (69) and adding the
absolute value, the solution of (90) is a truncated-Lévy-type
intensity asymptotic tail

Pss(λ) ∝ λ−1e−λ/λcut ,
1

λcut
:= 2c2

τ + √
4c2 + τ 2

for large λ,

(92)

where c = τ/η has been defined in (60). For ν1 �= 0 in
Eq. (69), the exact form of the intensity distribution is also
available.

Remarkably, this model has no critical point: The process is
always stationary for all η < ∞, due to the stabilization effect
of the inhibitory component of the process, and thus λcut is
always finite. This is in contrast to the ramp Hawkes process
with one-sided exponential jumps (without inhibitory effect)
and thus highlights the fact that the inhibitory effects can be
crucial in understanding even the qualitative behavior of the
NLH processes in general.

Derivation of the exact solution. The ME (90) reduces to
the following set of modified Bessel differential and constant-
coefficient second-order differential equations:

ν2 d2φ(ν)

dν2
+ ν

dφ(ν)

dν
− (c2ν2 + γ 2)φ(ν) = 0,

γ := 1 − τν0

2
, φ(ν) := νγ Pss(ν) (0 � ν � ν0), (93)
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d2

dν2
ψ (ν) − τ

d

dν
ψ (ν) − c2ψ (ν) = 0,

ψ (ν) := νPss(ν) (ν0 � ν). (94)

The exact solution is then given by

Pss(ν) =
{

ν−γ [C[1]Iγ (c|ν|) + C[2]Kγ (c|ν|)], |ν| � ν0

C[3]|ν|−1e−|ν|/νcut , |ν| > ν0,

1

νcut
:= 2c2

τ + √
4c2 + τ 2

, c := τ

η
, (95)

with integral constants C[1], C[2], and C[3] and modified Bessel
functions of the first and second kinds [denoted by Iγ (x) and
Kγ (x), respectively; see Appendix D 1]. The integral constants
are determined by the normalization and continuity condi-
tions

∫∞
−∞ dν Pss(ν) = 1 and limν↑ν0 Pss(ν) = limν↓ν0 Pss(ν).

We thus obtain that the intensity distribution is given by the
sum of a δ function centered on ν0 and the truncated Lévy
distribution

Pss(λ) = [1 − C[3]�(0, ν0/νcut )]δ(ν − ν0)

+ C[3]λ−1e−λ/νcut �(ν − ν0). (96)

where the incomplete Gamma function is �(a, x) :=∫∞
x dt ta−1e−t .

2. Example 2: Quadratic tension-intensity map

For the quadratic tension-intensity map corresponding to
the Zumbach Hawkes process (see Sec. II C 2)

λ = g(ν) = kν2 + λ0, (97)

the solution of (90) is a power-law steady-state distribution4

Pss(λ) ∝ |λ|−1−a, a := 1

2
+ c2

2kτ
, c := τ

η
, (98)

with λ0 > 0 and the power-law exponent a > 1/2. The exact
form of the intensity distribution is also available. We note
that this nonuniversal power-law scaling is consistent with
Eq. (12), which was reported for the diffusive limit of the
Zumbach Hawkes process in Ref. [28].

Derivation of the exact solution. By the variable trans-
formation x = kτν2/2, the ME (90) for ν > 0 reduces

to

x
d2φ(x)

dx2
+
(

3

2
− τλ0

2
− x

)
dφ(x)

dx
−
(

1 + c2

2kτ

)
φ(x) = 0,

φ(x) := P(ν(x)), ν(x) :=
√

2x

kτ
. (99)

This is the confluent hypergeometric differential equation and
thus its exact solution is given by

φ(x) = C[1]
1F1

(
1 + c2

2kτ
,

3

2
− τλ0

2
; x

)

+ C[2]
1U1

(
1 + c2

2kτ
,

3

2
− τλ0

2
; x

)
, (100)

with integral constants C[1] and C[2] and the confluent hyper-
geometric functions of the first 1F1 and the second kind 1U1

(see Appendix D 2). The integral constants are determined by
the normalization condition

∫∞
−∞ dν Pss(ν) = 1. Interestingly,

this solution has the following asymptotic form for large x [see
Eq. (D4)]:

φ(x) ∝ x−1−c2/2kτ . (101)

The steady-state distribution of the intensity λ is then given by

Pss(λ) =
∣∣∣∣dν

dλ

∣∣∣∣Pss(ν) ∝ λ−1−a, a := 1

2
+ c2

2kτ
, c := τ

η

(102)

for the tail λ → ∞. This is a power-law asymptotic distribu-
tion with a nonuniversal exponent a without truncation.

3. Example 3: Exponential intensity map

For the exponential tension-intensity map

λ = g(ν) = λ0|ν|eβν, (103)

the solution of (90) is Zipf’s law for the intensity distribution

Pss(λ) ∝ λ−2 (104)

up to a logarithmic factor ln λ, for large λ with positive con-
stants λ0 and β. This intensity map is inspired by the MSA
model [21,22], where the dominant contribution comes from
the exponential factor originating from the Arrhenius law (see
Sec. V B 4 for more details).

Derivation of the exact solution. The exact steady-state
solution of (90) is given by

Pss(ν) =
⎧⎨
⎩

C[1]

ν
ecν

1U1
(
1 + c

β
, 1 + 2c

β
; λ0τ

β
eβν
)+ C[2]

ν
ecνL2c/β

−1−c/β

(
λ0τ
β

eβν
)
, ν � 0

C[3]

ν
exp

(
cν − λ0τ

β
eβν
)

1U1
(

c
β
, 1 + 2c

β
; λ0τ

β
eβν
)+ C[4]

ν
exp

(
cν − λ0τ

β
eβν
)
L2c/β

−c/β

(
λ0τ
β

eβν
)
, ν < 0,

(105)

with integral coefficients C[1], C[2], C[3], and C[4] and the
generalized Laguerre function Lb

a(x) (see Appendix D 3).
Considering the asymptotic formulas (D4) and (D6), C[2] must

4If λ0 is zero, the steady-state distribution is singular at ν = 0 as
Pss(λ) ∝ ν−1 and thus is not normalizable.

be zero since Pss(ν) → 0 for ν → ∞. This means that the
asymptotic tail is given by

Pss(ν) ∝ ν−1e−βν, (106)

which leads to the Zipf law (104) for the steady
intensity distribution, by using the Jacobian relation
dνPss(ν) = dλPss(λ) ⇐⇒ Pss(λ) = |dν/dλ|Pss(ν). As shown
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in Secs. V B 4 and V C 3, this asymptotic Zipf law (104) is
robust for exponential-type tension-intensity maps under gen-
eral symmetric mark distribution (or more generally when the
mark average is zero), on the condition that the memory kernel
is exponential and the mark distribution has its moments at all
orders being finite.

B. Exact solutions in the diffusive limit

Let us now consider the diffusive limit formulated in
Sec. III E and assume an exponential-memory kernel (29):

h(t ) = η

τ
e−t/τ , ρε(y) = 1

ε
ρ̃
( y

ε

)
, g(ν) = 1

ε2
g̃(ν).

(107)

For this case, by solving the FPE (46) in the steady state, we
obtain the explicit solution

Pss(ν) ∝
ε→0

1

g̃(ν)
exp

(
− 1

τD

∫
νdν

g̃(ν)

)
, D := α̃2η

2

2τ 2
(108)

for any g̃(ν), assuming that ρ̃(y) and g̃(ν) are independent of
ε and that all the integrals appropriately converge.

1. Example 1: Ramp tension-intensity map

Let us first consider the example of the ramp tension-
intensity map

g(ν) = max{ν0, |ν − ν1|} (109)

with positive real number ν0 > 0 and arbitrary real number5

ν1. For ν > ν0 + ν1, the solution of the FPE (46) is the
truncated Lévy distribution for the tension (and thus for the
intensity)

Pss(ν) = 1

Z

e−ν/νcut

(ν − ν1)1+a
, νcut := Dτ, a := ν1

Dτ
, (110)

with an exponential tail tapering the intermediate power-law
tail. We note that this model has no critical point due to the
inhibitory effects leading to the characteristic intensity for the
exponential cutoff νcut to be always finite.

2. Example 2: Quadratic tension-intensity map

We next study the exact solution of the quadratic intensity
(97), corresponding to the Zumbach Hawkes process (see
Sec. II C 2) in the presence of inhibitory effects. Using the
formula (108), the exact solution of the FPE (46) in the steady-
state regime is given by

Pss(ν) = 1

Z
(kν2 + λ0)−1−1/2kDτ , (111)

which is equivalent to

Pss(λ) = 1

Z ′
λ−1−1/2kDτ

√
λ − λ0

∝ λ−1−a (λ → ∞),

a := 1

2
+ 1

2kDτ
, (112)

5Here ν1 can be either positive, zero, or negative.

with Z ′ := 2
√

kZ . This is a power-law distribution without
truncation and with a nonuniversal exponent a. We note that
this nonuniversal power-law scaling is essentially identical
to Eq. (12) for the diffusive limit of the Zumbach Hawkes
process reported in Ref. [28].

3. Example 3: Polynomial tension-intensity map

Let us consider the case of the polynomial intensity given
by

g̃(ν) = k|ν|n + ν0, n > 2 (113)

with positive constant ν0 > 0. Using the formula (108), we
obtain the exact steady-state distribution, the solution of the
FPE (46),

Pss(ν)

∝ 1

k|ν|n + ν0
exp

[
− ν2

2τDν0
2F1

(
1,

2

n
, 1 + 2

n
; −k|ν|n

ν0

)]
(114)

with the hypergeometric function 2F1 (see Appendix D 4). By
considering the asymptotic expansion

ν2
2F1

(
1,

2

n
, 1 + 2

n
; −kνn

ν0

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2π
n

sin 2π
n

( ν0
k )2/n

︸ ︷︷ ︸
const

+o(ν0), n > 2

ν0
k ln

(
kν2

ν0

)+ o(ν0), n = 2

(115)

for large ν, we obtain the asymptotic form of the steady PDF
for |ν| → ∞ �⇒ λ → ∞ as

Pss(ν) ∝ 1

k|ν|n + ν0
�⇒ Pss(λ) ∝ λ−1−a, a := 1 − 1

n
.

(116)

Note that the limit n → +∞ recovers Zipf’s law. The manner
with which the exact solution (114) recovers Eq. (112) for
n → 2 is now elaborated.

Crossover between n = 2 and n > 2. Remarkably, the so-
lution (112) for the quadratic Hawkes (i.e., n = 2) and the
one (114) for the polynomial Hawkes with n > 2 are slightly
different. This qualitative difference can be seen from the ana-
lytical singularity of the hypergeometric function 2F1 at n = 2
and suggests a crossover between two power-law regimes.
Here we explicitly estimate the crossover point.

Let us introduce a small positive parameter ε as

n := 2

1 − ε
> 2 (117)

and consider the limit ε ↓ 0. We focus on the discontinuous
switching in Eq. (115) between n > 2 and n = 2. To estimate
the crossover point, it is necessary to evaluate their higher-
order asymptotic behavior for large ν with nonzero ε as given
by Eq. (D12). As summarized in Appendix D 4 b, the thresh-
old intensity is estimated to be

λ∗ := ν0e2/ε, (118)

013067-18



ASYMPTOTIC SOLUTIONS TO NONLINEAR HAWKES … PHYSICAL REVIEW RESEARCH 5, 013067 (2023)

which characterizes the crossover between the two regimes.
We thus obtain the explicit crossover formula as

Pss(λ) ∝
{

λ−1−a1 for λ � λ∗, a1 := 1
2 + 1

2kDτ

λ−1−a2 for λ  λ∗, a2 := 1
2 .

(119)

The existence of this crossover point can be intuitively un-
derstood as follows. Let us go back to the SDE representation
(47). Remarkably, the cases n = 2 and n > 2 are critically
different in the sense that the relaxation term −ν/τ is the same
order as the fluctuation

√
2Dg̃(ν)ξG for n = 2, whereas it is

negligible for n > 2∣∣∣−ν

τ

∣∣∣� √
2Dg̃(ν)ξG (120)

for a sufficiently large ν  ν∗. Such a crossover point can
be roughly estimated by the relationship ν∗/τ = √

2Dg̃(ν∗),
suggesting ν∗ = C1/ε with some constant C. We therefore
obtain ln λ∗ ∝ ε−1 consistently with Eq. (118).

4. Example 4: Multifractal stress activation model

An interesting example is the MSA model for earthquake
triggering proposed in Refs. [21,22] and summarized for our
purposes in Sec. II C 1, which corresponds to

g̃(ν) = λ0 exp(βν), (121)

with the base intensity λ0 > 0 and effective inverse tempera-
ture β > 0. From the steady-state solution (108) of the FPE
(46), we obtain the steady-state solution Pss(ν) for the tension
ν and Pss(λ) of the intensity λ = λ0eβν :

Pss(ν) = 1

Z

e−βν

λ0
exp

(
e−βν (1 + βν)

λ0β2τD

)

�⇒ Pss(λ) = 1

βZ
λ−2 exp

(
λ−1[1 + ln(λ/λ0)]

β2τD

)
. (122)

The derivation of Pss(λ) from Pss(ν) uses the Jacobian
relation dνPss(ν) = dλPss(λ) ⇐⇒ Pss(ν) = βλPss(λ). This
steady-state intensity distribution exhibits Zipf’s law similarly
to the aforementioned result (104):

Pss(λ) ∝ λ−2 for large λ. (123)

5. Example 5: Fast-accelerating intensity

Let us focus on a large class of intensity map g(ν) satisfy-
ing

g̃(ν)  ν2 for large ν, (124)

which we refer to as a fast-accelerating intensity (FAI) map.
For example, the polynomial intensity (113) beyond second

order and the MSA intensity (121) belong to this class. Fast-
accelerating intensity maps are special in the sense that the
asymptotic PDF of ν, which is solution of the FPE (46), is
given by

Pss(ν) ∝ 1

g̃(ν)
exp

(
− 1

τD

∫
ν dν

g̃(ν)

)
= exp[− ln g̃(ν) − o(ν−c)], (125)

with some positive constant c > 0. This expression is derived
from Eq. (108), considering that ν/g̃(ν) = o(ν−1). We thus
obtain a general asymptotic form

Pss(λ) ∝ λ−1

∣∣∣∣dg̃(ν)

dν

∣∣∣∣−1

ν=g̃−1(λ)

. (126)

C. Robust asymptotic solutions

1. Robust exponential tail for the ramp intensity

Here we show that the exponential tail (92) and (96)
for the ramp intensity (91) of the steady-state solution
(108) of the FPE (46) remains valid for general symmetric
mark distributions, assuming appropriate convergence of the
moment-generating function and with an exponential-memory
function

h(t ) = η

τ
e−t/τ , ρ(y) = ρ(−y), g(ν) � ν + ν0

for large ν �⇒ Pss(λ) ∝ e−λ/λcut for large λ, (127)

up to a subleading contribution in the form of a truncated
power law. The parameter λcut is given by the self-consistent
relation

1

τλcut
= �

(
η

τλcut

)
,

�(x) :=
∫ ∞

−∞
dy ρ(y)(exy − 1) =

∫ ∞

−∞
dy ρ(y)(cosh yx − 1),

(128)

where �(x) is the moment-generating function. The equa-
tion for λcut has a single positive solution (see Appendix F).

Derivation. The solution (127) can be derived by direct
substitution into the ME (31) as follows. Let us make an ansatz
that the solution is given by

Pss(ν) ∝ e−ν/λcut for large ν. (129)

By considering the relations for large ν,

1

τ

d

dν
(νe−ν/λcut ) +

∫ ∞

−∞
dy ρ(y)

(
ν + ν0 − ηy

τ

)
e−ν/λcut+ηy/τλcut − (ν + ν0)e−ν/λcut

= νe−ν/λcut

(
− 1

τλcut
+
∫ ∞

−∞
dy ρ(y)eηy/τλcut − 1

)
+ o(νe−ν/λcut )

= νe−ν/λcut

[
− 1

τλcut
+ �

(
η

τλcut

)]
+ o(νe−ν/λcut ), (130)
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the ME (31) in the steady state reads

νe−ν/λcut

[
− 1

τλcut
+ �

(
η

τλcut

)]
+ o(νe−ν/λcut ) = 0 (131)

for large ν. This relation is equivalent to the self-consistent
relation (128).

2. Robust power-law tail for quadratic intensity

We show that the power-law tail for the quadratic intensity,
such as Eqs. (102) and (112), of the steady-state solution (108)
of the FPE (46) is generally valid for general symmetric mark
size distributions

h(t ) = η

τ
e−t/τ , ρ(y) = ρ(−y),

g(ν) � kν2 + λ0 for large ν �⇒ Pss(λ) ∝ λ−1−a (132)

for large λ with a > 1/2, assuming appropriate convergence
of the KM coefficients.

Note that the authors of Ref. [28] conjectured that the
PDF of the intensity of various Zumbach Hawkes processes

should be a power law with a nonuniversal exponent. Our
results confirm this conjecture, as least for an exponential-
memory kernel, in the sense that the power-law asymptotics
with a nonuniversal exponent a > 1/2 is a robust property of
Zumbach Hawkes processes, independently of the shape of
the mark distribution, as long as it is symmetric with finite
moments.

Derivation. Let us return to the ME in the steady state,

1

τ

∂

∂ν
[νPss(ν)]

+
∫ ∞

−∞
dy ρ(y)

[
k
(
ν − ηy

τ

)2
+ λ0

]

× Pss

(
ν − ηy

τ

)
− (kν2 + λ0)Pss(ν) = 0. (133)

We make the ansatz that the asymptotic solution is given by

Pss(ν) � Cν−κ + o(ν−κ ) for large ν, (134)

with a positive κ and a certain constant C. This implies that

C

{
1 − κ

τ
ν−κ +

∫ ∞

−∞
dy ρ(y)

[
k
(
ν − ηy

τ

)2
+ λ0

](
ν − ηy

τ

)−κ

− (kν2 + λ0)ν−κ + o(ν−κ )

}

= C

{
1 − κ

τ
ν−κ +

∫ ∞

−∞
dy ρ(y)

[
kν−κ+2

(
1 − ηy

τν

)−κ+2
+ λ0ν

−κ
(

1 − ηy

τν

)−κ
]

− (kν2 + λ0)ν−κ + o(ν−κ )

}

= C

{
1 − κ

τ
ν−κ +

∫ ∞

−∞
dy ρ(y)

[
kν−κ+2

(
1 + (κ − 2)ηy

τν
+ η2y2(κ − 1)(κ − 2)

2τ 2ν2

)
+ λ0ν

−κ

]
− (kν2 + λ0)ν−κ + o(ν−κ )

}

= C

(
1 − κ

τ
ν−κ + kα2η

2

2τ 2
(κ − 1)(κ − 2)ν−κ + o(ν−κ )

)
� 0, (135)

which leads to the self-consistent relation

κ = 2 + 1

kDτ
, D := α2η

2

2τ 2
. (136)

We thus obtain the power-law tail of the intensity distribution

Pss(λ) ∝ λ−1−a, a := 1

2
+ 1

2kDτ
. (137)

3. Robust Zipf’s law for the multifractal stress activation model

We have shown that the exact steady-state solution of the
FPE (46) exhibits Zipf’s law for the MSA model (121) with
exponential-memory kernel in the diffusive limit. Here we
show that Zipf’s law universally and robustly appears for the
MSA model with any general symmetric mark distribution, on
the condition that the memory is exponential and the appropri-
ate integrals converge, i.e.,

h(t ) = η

τ
e−t/τ , g(ν) = λ0eβν, ρ(y) = ρ(−y)

�⇒ Pss(λ) ∝ λ−2 for large λ. (138)

a. Derivation. By defining φ(ν) := g(ν)Pss(ν), the steady-
state ME is given by

1

τ

∂

∂ν
[νe−βνφ(ν)] +

∫ ∞

−∞
dy ρ(y)φ

(
ν − ηy

τ

)
− φ(ν) = 0.

(139)

For large ν, the first term on the left-hand side is negligible
due to the exponential factor e−βν , implying∫ ∞

−∞
dy ρ(y)φ

(
ν − ηy

τ

)
− φ(ν) � 0 for large ν. (140)

Assuming that φ(ν) is non-negative, this integral equation has
a general solution

φ(ν) = C0 + C1ν, (141)

with constants C0 and C1 (see Appendix F). By imposing
the natural boundary condition, C1 must be zero, as shown
later, and therefore the general solution is given by φ(ν) = C0.
This implies the following asymptotic form of the steady-state
PDF:

Pss(ν) = φ(ν)

g(ν)
∝ e−βν. (142)

We thus obtain Zipf’s law for the intensity PDF, from the
Jacobian relation Pss(λ) = Pss(ν)|dν/dλ|.
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b. Natural boundary condition. Here we impose the nat-
ural boundary condition to remove C1. Let us use the KM
expansion (33) to define the probability current as

∂Pt (ν)

∂t
= − ∂

∂ν
Jt (ν),

Jt (ν) := − 1

τ
[νPt (ν)] −

∞∑
k=1

α2k

(2k)!

η2k

τ 2k

∂2k−1

∂ν2k−1
g(ν)Pt (ν).

(143)

For the steady-state distribution, let us ignore the first term in
Jt (ν) for large ν to obtain

Jss(ν) � −
∞∑

k=1

α2k

(2k)!

η2k

τ 2k

∂2k−1

∂ν2k−1
g(ν)Pss(ν) for large ν.

(144)

By direct substitution of the general solution g(ν)Pss(ν) =
φ(ν) = C0 + C1ν, we obtain

Jss(ν) � −
∞∑

k=1

α2k

(2k)!

η2k

τ 2k

∂2k−1

∂ν2k−1
(C0 + C1ν) = −η2α2

2τ 2
C1.

(145)

Since the natural boundary condition implies limν→∞ Jt (ν) =
0 for any t , we obtain C1 = 0.

4. Robust asymptotic form for fast-accelerating intensity maps

We now show that the asymptotic form (126) of the steady-
state solution (108) of the FPE (46) is robust even for general
mark distribution for any FAI map:

h(t ) = η

τ
e−t/τ , g(ν)  ν2 (for large ν), ρ(y) = ρ(−y)

�⇒ Pss(λ) ∝ λ−1

∣∣∣∣dg(ν)

dν

∣∣∣∣−1

ν=g−1(λ)

for large λ. (146)

a. Derivation. By defining φ(ν) := g(ν)Pss(ν), the steady-
state ME is given by

1

τ

∂

∂ν

(
ν

g(ν)
φ(ν)

)
+
∫ ∞

−∞
dy ρ(y)φ

(
ν − ηy

τ

)
− φ(ν) = 0.

(147)

For large ν, the first term on the left-hand side is negligible be-
cause g(ν) is an FAI. The self-consistency of this assumption
will be confirmed later. This implies∫ ∞

−∞
dy ρ(y)φ

(
ν − ηy

τ

)
− φ(ν) � 0 for large ν. (148)

Assuming the non-negativity of φ(ν) and the natural bound-
ary condition, this integral equation has a single solution
φ(ν) = C0 with a constant C0, using the same logic as that
in Sec. V C 3. Finally, this implies the following asymptotic
form of the steady-state PDF of ν:

Pss(ν) ∝ 1

g(ν)
. (149)

The formula (146) for the intensity PDF then derives from the
Jacobian relation Pss(λ) = Pss(ν)|dν/dλ|.

b. Self-consistency of the assumption. Let us check
whether this solution is consistent with the assumption that the
first term in Eq. (147) is irrelevant for large ν. For simplicity,
we focus on the case of g(ν) = νn with integer n � 2. We first
assume the expansion of the solution

φ(ν) = φ0(ν) + φ1(ν) + · · · , φ0(ν) = C[0],

|φ0(ν)|  |φ1(ν)| (150)

for large ν with a constant C[0]. By assuming that the first term
on the left-hand side of Eq. (147) is subleading, we obtain

(1 − n)C[0]

τ
ν−n +

∫ ∞

−∞
dy ρ(y)φ1

(
ν − ηy

τ

)
− φ1(y) � 0.

(151)

We solve this nonhomogeneous integral equation by assuming
a solution ansatz

φ1(ν) � C[1]ν−κ , κ > 0. (152)

By using
∫∞
−∞ yρ(y)dy = 0, we obtain∫ ∞

−∞
dy ρ(y)φ1

(
ν − ηy

τ

)

=
∫ ∞

−∞
dy ρ(y)C[1]

(
ν − ηy

τ

)−κ

=
∫ ∞

−∞
dy ρ(y)C[1]ν−κ

(
1 − ηy

τ
ν−1
)−κ

=
∫ ∞

−∞
dy ρ(y)C[1]ν−κ

(
1 + κηy

τ
ν−1

+η2κ (κ + 1)y2

2τ 2
ν−2 + O(ν−3)

)
= C[1]ν−κ [1 + C[2]ν−2 + O(ν−3)], (153)

with the constant C[2] defined by

C[2] := η2κ (κ + 1)

2τ 2

∫ ∞

−∞
y2ρ(y)dy. (154)

Equation (151) is thus equivalent to

C[1]C[2]ν−κ−2 � (n − 1)C[0]

τ
ν−n. (155)

This implies that the exponent κ must satisfy

κ = n − 2. (156)

This means that the subleading term φ1(ν) is actually negli-
gible when κ > 0 ⇐⇒ n > 2. We thus confirm that the first
term in Eq. (147) can be dropped for FAI maps with depen-
dence on ν faster than ν2 for large ν.

VI. SOLUTION 3: EXPONENTIAL-MEMORY KERNEL
WITH TWO-SIDED ASYMMETRIC MARK DISTRIBUTION

FOR LINEAR TO FAST-ACCELERATING
INTENSITY MAPS

We study here both exact and asymptotic results for the
case with the exponential-memory kernel and the two-sided
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FIG. 8. Schematic of the two-sided asymmetric exponential
mark distribution (158) with (p+, p−, y∗

+, y∗
−) = (0.3, 0.7, 1, 2).

asymmetric mark distribution with negative-mean mark

h(t ) = η

τ
e−t/τ , p+ :=

∫ ∞

0
dy ρ(y) > 0,

p− :=
∫ 0

−∞
dy ρ(y) > 0, m :=

∫ ∞

−∞
yρ(y)dy < 0 (157)

and consider FAI maps g(ν)  ν2.

A. Exact solution for two-sided asymmetric
exponential mark distribution

Let us focus on the case with the two-sided asymmetric
exponential mark distribution (see Fig. 8):

ρ(y) =
{ p+

y∗+
e−y/y∗

+ , y � 0
p−
y∗−

ey/y∗
− , y < 0,

(158)

where p+ + p− = 1, y∗
+ > 0, and y∗

− > 0. The mean mark is
given by

m := y∗
+ p+ − y∗

− p− < 0. (159)

By using the identities (62) and (85), the ME reads

∂Pt (ν)

∂t
= 1

τ
∂ν[νPt (ν)] + ∂ν

( p−
c−

− p+
c+

)+ ∂ν

c+c−(
1 + ∂ν

c+

)(
1 − ∂ν

c−

) g(ν)Pt (ν),

c± := τ

ηy∗±
. (160)

This means that the ME expresses the condition of probability
conservation

∂Pt (ν)

∂t
= −∂Jt (ν)

∂ν
,

Jt (ν) := −ν

τ
Pt (ν) −

( p−
c−

− p+
c+

)+ ∂ν

c+c−(
1 + ∂ν

c+

)(
1 − ∂ν

c−

) g(ν)Pt (ν). (161)

By requiring the natural boundary condition limν→∞ Jt (ν) =
0, we obtain the second-order partial differential equation that

the steady-state PDF Pss(ν) satisfies

τ

(
A+ B

d

dν

)
φ(ν)+

(
1 + C

d

dν
− B

d2

dν2

)(
ν

g(ν)
φ(ν)

)
= 0,

φ(ν) := g(ν)Pss(ν), (162)

with

A := p−
c−

− p+
c+

:= −η

τ
m > 0, B := 1

c+c−
> 0,

C := 1

c+
− 1

c−
. (163)

We note that the coefficients are simplified for the symmetric
mark distribution y∗

+ = y∗
− and p+ = p− = 1/2 such that A =

C = 0.

1. Example 1: Ramp tension-intensity map

For the ramp tension-intensity map

λ = g(ν) = max{ν0, |ν|}, (164)

we obtain the exact solution for λ > |ν0|,
Pss(λ) ∝ λ−1e−λ/λcut ,

λcut := C + τB +
√

(C + τB)2 + 4B(1 + τA)

2(1 + τA)
> 0

(165)

under the natural boundary condition. This implies that an
exponential tail is observed for this model.

2. Example 2: Exponential tension-intensity map

For the exponential tension-intensity map

λ = g(ν) = λ0|ν|eβν, (166)

we obtain the second-order partial differential equation for
ν > 0 as

y
d2ψ (y)

dy2
+
(

2γ − 1 − C

Bβ
− y

)
dψ (y)

dy

+
(

−γ − A

Bβ
+ Bβ(γ − 1)2 − C(γ − 1) − β−1

Bβy

)
= 0

(167)

after a variable transformation

y(ν) = λ0τeβν

β
, φ(ν) = yγ ψ (y). (168)

Here γ is either one of the roots of Bβ(γ − 1)2 − C(γ − 1) −
β−1 = 0 given by

γ1 := 1 + C − √
4B + C2

2βB
, γ2 := 1 + C + √

4B + C2

2βB
.

(169a)

Equation (167) is equivalent to the confluent hypergeometric
differential equation (D3). We thus obtain the exact solution
for ν > 0 as

φ(ν) = C[1]yγ1
1U1(q1, r1; y) + C[2]yγ2

1U1(q2, r2; y), (169b)
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where

q1 := 1 + C + 2A − √
4B + C2

2βB
, r1 := 1 −

√
4B + C2

βB
,

(169c)

q2 := 1 + C + 2A + √
4B + C2

2βB
, r2 := 1 +

√
4B + C2

βB
,

(169d)

with two constants of integration C[1] and C[2]. For large ν →
∞, assuming the boundary condition limν→∞ Pss(ν) = 0, we
obtain the asymptotic formula

φ(ν) ∝ y−A/βB, (170)

leading to the PDF tail of the intensity:

Pss(λ) ∝ λ−2−β−1u, u = A

B
= − τm

ηy∗+y∗−
. (171)

This result implies that the power-law scaling deviates from
Zipf’s law in proportion to the amplitude m of the asymmetry
of the mark distribution.

B. Robust asymptotic solutions

In this section we generalize the above exact results in the
form of robust asymptotic results under a wide range of two-
sided mark distributions with negative mean, in the presence
of an exponential-memory kernel.

1. Robust exponential tail for the ramp intensity

Let us assume that the ramp intensity is asymptotically

g(ν) � ν − ν1 for large ν, (172a)

with an exponential memory with two-sided mark distribution
of negative mean:

h(t ) = η

τ
e−t/τ , p+ :=

∫ ∞

0
ρ(y)dy > 0,

p− :=
∫ 0

−∞
ρ(y)dy > 0, m :=

∫ ∞

−∞
yρ(y)dy < 0.

(172b)

Here ν1 is an arbitrary real number, either positive or nonpos-
itive in contrast to the LH process. Under this assumption, we
obtain

Pss(λ) ∝ e−λ/λcut for large λ. (172c)

The parameter λcut is given by the self-consistent relation

1

τλcut
= �

(
η

τλcut

)
, �(x) :=

∫ ∞

−∞
dy ρ(y)(exy − 1),

(173)

where �(x) is the moment-generating function. The equa-
tion for λcut has a single positive solution (see Appendix F).
This relation can be derived by a straightforward generaliza-
tion of the derivation in Sec. V C 1.

2. Robust power-law tail for fast-accelerating intensity maps

We show that, under the general assumptions

h(t ) = η

τ
e−t/τ , g(ν)  ν2 for large ν,

p+ :=
∫ ∞

0
ρ(y)dy > 0, p− :=

∫ 0

−∞
ρ(y)dy > 0,

m :=
∫ ∞

−∞
yρ(y)dy < 0, (174)

we obtain the robust asymptotic relationship

Pss(λ) ∝ λ−1

(∣∣∣∣dg(ν)

dν

∣∣∣∣−1

e−uν

)
ν=g−1(λ)

, u := τc∗

η
, (175)

where c∗ is the unique positive root of �(c∗) = 0, with
the moment-generating function is defined by �(x) :=∫∞
−∞ dy ρ(y)(exy − 1).

a. Examples. From this formula, we readily deduce the
power-law PDF for the exponential intensity

g(ν) � λ0eβ �⇒ Pss(λ) ∝ λ−2−β−1u. (176)

We note that this result is consistent with the aforementioned
exact result (171) by considering Eq. (F19) in Appendix F
for the case with the exponential intensity and the two-sided
asymmetric exponential mark distribution.

In addition, we obtain the truncated power-law PDF for the
polynomial intensity

g(ν) � λ0ν
n, n > 2 �⇒ Pss(λ) ∝ λ−2+1/ne−u(λ/λ0 )1/n

,

(177)

where the cutoff length appears due to the asymmetry of the
mark distribution. For the zero-mean mark limit m ↑ 0, the
cutoff disappears as u ↓ 0.

b. Derivation. By defining φ(ν) = g(ν)Pss(ν), the ME is
given by

1

τ

∂

∂ν

(
ν

g(ν)
φ(ν)

)
+
∫ ∞

−∞
dy ρ(y)φ

(
ν − ηy

τ

)
− φ(y) = 0.

(178)

As an asymptotic assumption for the solution, let us first
neglect the first term of Eq. (178) to obtain∫ ∞

−∞
dy ρ(y)φ

(
ν − ηy

τ

)
− φ(y) � 0 for large ν (179)

for the case (174). The self-consistency of this assumption
will be confirmed later. According to Appendix E, the general
solution is given by the superposition of exponentials

φ(ν) �
∑

i

Cie
−(τci/η)ν, (180)

where the ci are the roots of the moment-generating function
�(x) = 0. The moment-generating function is defined by

�(c) = 0, �(x) :=
∫ ∞

−∞
dy ρ(y)(exy − 1), (181)

whose analytical characters are summarized in Appendix F.
According to Appendix F, �(x) = 0 has only two roots at
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x = 0 and x = c∗ > 0. This means that the general asymptotic
solution is given by

φ(ν) � C0e−(τc∗/η)ν + C1, (182)

with integral constants C0 and C1. By imposing the natural
boundary condition, C1 must be zero (see below for the natural
boundary condition). We thus have the solution

φ(ν) � C0e−(τc∗/η)ν . (183)

This implies that the steady-state intensity PDF has the
asymptotic form

Pss(ν) = φ(ν)

g(ν)
∝ 1

g(ν)
e−(τc∗/η)ν, (184)

which implies Eq. (175) from the Jacobian relation Pss(λ) =
Pss|dν/dλ|.

c. Self-consistency of the assumption. Finally, we confirm
here the self-consistency of the ansatz for the solution under
the assumption of FAI maps. Let us assume that the solution
is given by the expansion

φ(ν) = φ0(ν) + φ1(ν) + · · · , φ0(ν) := C[0]e−(τc∗/η)ν,

|φ0(ν)|  |φ1(ν)| for large ν, (185)

with an integral constant C[0]. For simplicity, let us focus
on the case g(ν) = νn with integer n > 2. By assuming that
the first term in Eq. (178) is subleading, we substitute this
expansion into Eq. (178) to obtain

∫ ∞

−∞
dy ρ(y)φ1

(
ν − ηy

τ

)
− φ1(y) � − 1

τ

∂

∂ν
[ν1−nφ0(ν)] �⇒

∫ ∞

−∞
dy ρ(y)φ1

(
ν − ηy

τ

)
− φ1(y) � C[0] c∗

η
ν1−ne−(τc∗/η)ν .

(186)

We make the ansatz for the solution in the form

φ1(ν) � C[1]ν−κe−(τc∗/η)ν, κ > 0 (187)

to obtain the special solution with a constant C[1]. Here the condition κ > 0 is essential; otherwise the consistency relationship
|φ0(ν)|  |φ1(ν)| does not hold. By direct substitution, Eq. (186) is equivalent to∫ ∞

−∞
dy ρ(y)φ1

(
ν − ηy

τ

)
� C[1]

∫ ∞

−∞
dy ρ(y)

(
ν − ηy

τ

)−κ

ec∗y−(τc∗/η)ν = C[1]
∫ ∞

−∞
dy ρ(y)ν−κ

(
1 − ηy

τ
ν−1
)−κ

ec∗ye−(τc∗/η)ν

= C[1]
∫ ∞

−∞
dy ρ(y)ν−κ

(
1 + κηy

τ
ν−1 + O(ν−2)

)
ec∗ye−(τc∗/η)ν

= C[1]ν−κe−(τc∗/η)ν[�(c∗) + 1 + C[2]ν−1 + O(ν−2)], (188)

with

C[2] := κη

τ

∫ ∞

−∞
yec∗yρ(y)dy. (189)

By using �(c∗) = 0, we thus obtain

C[1]C[2]ν−κ−1e−(τc∗/η)ν � C[0] c∗

n
ν1−ne−(τc∗/η)ν . (190)

This implies that the power-law exponent κ must satisfy the
relationship

κ = n − 2. (191)

Because of the assumption κ > 0, we obtain the self-
consistency condition

n > 2, (192)

which is equivalent to the assumption that the tension-
intensity maps must be FAI [g(ν)  ν2].

d. Natural boundary condition. Here we impose the nat-
ural boundary condition to remove C1. Let us use the KM
expansion (33) to define the probability current as

∂Pt (ν)

∂t
= − ∂

∂ν
Jt (ν),

Jt (ν) := − 1

τ
[νPt (ν)] −

∞∑
k=1

(−1)kαk

k!

ηk

τ k

∂k−1

∂νk−1
g(ν)Pt (ν).

(193)

For the steady-state distribution, we ignore the first term in
Jt (ν) for large ν to obtain

Jss(ν) � −
∞∑

k=1

(−1)kαk

k!

ηk

τ k

∂k−1

∂νk−1
g(ν)Pss(ν) for large ν.

(194)

By direct substitution of the general solution g(ν)Pss(ν) =
φ(ν) = C0 + C1e−(τc∗/η)ν , we obtain

Jss(ν) � −
∞∑

k=1

(−1)kαk

k!

ηk

τ k

∂k−1

∂νk−1
(C1 + C0e−(τc∗/η)ν )

= ηm

τ
C1 + ηC0

c∗τ
e−(τc∗/η)ν

∞∑
k=1

αk

k!
c∗k

= ηm

τ
C1 + ηC0

c∗τ
e−(τc∗/η)ν�(c∗)

= ηm

τ
C1, (195)

where we have used �(x) =∑∞
k=1(αk/k!)xk and �(c∗) = 0.

Since the natural boundary condition implies limν→∞ Jt (ν) =
0 for any t , we obtain C1 = 0.
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VII. SOLUTION 4: GENERAL MEMORY KERNEL FOR
ONE-SIDED MARK DISTRIBUTION FOR THE RAMP

HAWKES PROCESS

We have studied the exact solution for the NLH process
assuming that (i) the memory kernel is exponential and (ii)
the jump size obeys the one-sided exponential distributions.
In particular, we derived the power-law tail (71) without trun-
cation, at the critical point for the ramp Hawkes process (69).
As shown in the following in this section, this exact power-law
relation is robust for general ramp Hawkes processes with any
memory kernel and jump-size distribution, only assuming the
finiteness of

〈τ 〉 :=
∫ ∞

0
t h(t )dt =

∫ ∞

0
x2h̃(x)dx < ∞, (196)

with h̃(x) defined in (14a). Note that the critical condition is
characterized by

η :=
∫ ∞

0
h(t )dt =

∫ ∞

0
x h̃(x)dx = 1. (197)

A. Discrete sum of exponentials

Let us first consider the case of a discrete sum of expo-
nentials. In this case, we find a power-law asymptotics at the
critical point η = 1

h(t ) =
K∑

k=1

h̃ke−t/τk ,

λ = g(ν) � ν − ν1 + o(ν0) for large ν,

ρ(y) = 0 for negative y,
∫ ∞

0
yρ(y)dy = 1

�⇒ Pss(λ) ∝ λ−1−a, a := 2ν1〈τ 〉
α2

, 〈τ 〉 :=
K∑

k=1

τ 2
k h̃k

(198)

for either negative or non-negative ν1. This relation is a true
power law for positive ν1, i.e., normalizable even without
cutoff, while it is an intermediate asymptotics for nonpositive
ν1, i.e., not normalizable without cutoff. Note that the critical
condition is given by

η :=
K∑

k=1

τkh̃k = 1. (199)

1. Derivation

Let us first write the asymptotic form of Pss(z) as S(z),

Pss(z) = S(z) + R(z), S(z)  R(z) for large z, (200)

with a correction term R(z) for small z. Here S(z) is assumed
to have a fat tail represented by a power law, while R(z) is
assumed to have a thinner tail. The ME (23) in the steady state

reduces asymptotically to

K∑
k=1

∂

∂zk

zk

τk
S(z)+

∫ ∞

0
dy ρ(y)

(
K∑

k=1

(zk − yh̃k )− ν1

)
S(z− yh̃)

−
(

K∑
k=1

zk − ν1

)
S(z) � 0 for large ν. (201)

Since the asymptotic form of this ME is the same as that
for the LH process presented in Ref. [16] except that ν1 can
be either negative or non-negative, its asymptotic solution for
large ν can be obtained from a calculation similar to that pre-
sented in Ref. [16]. While we refer the reader to Ref. [16] for
an elementary introduction to the calculations, let us sketch
the main steps of the derivation. We first define the Laplace
transformations

P̃ss(s) := LK [Pss(z); s], S̃(s) := LK [S(z); s],

R̃(s) := LK [R(z); s]. (202)

Since Pss(z) is a PDF, the normalization implies that∫
dz Pss(z) = P̃ss(s = 0) = 1. However, S(z) is just an asymp-

totic form of the PDF and there is no guarantee that S̃(s =
0) = 1. For example, assuming that S̃(s1) = Asa + o(sa)
with any noninteger number a and indicator vector 1 :=
(1, 1, . . . , 1), we can expand P̃ss(s) := P̃ss(s1) as

P̃ss(s) = S̃(s1) + R̃(s1) � Asa +
m∑

k=0

cksk + o(sa),

R̃(s1) =
m∑

k=0

cksk + o(sa) (203)

for small s with m := max(�a�, 0) and the floor function
�x� = max{k ∈ Z | k � x} with the set of integers Z. The
normalization condition requires P̃(s = 0) = c0 = 1. By ap-
plying the Laplace transformation to the steady-state ME
(201), we obtain

−
K∑

k=1

sk

τk

∂ S̃(s)

∂sk
− [�(s) − 1]

(
ν1 +

K∑
k=1

∂

∂sk

)
S̃(s) � 0,

�(s) :=
∫ ∞

0
dy ρ(y)e−yh̃·s, (204)

which is valid for small s. Considering [1/S̃(s)]∂ S̃(s)/∂sk =
(∂/∂sk ) ln |S̃(s)|, this equation can be rewritten as

K∑
k=1

(
1 − �(s) − sk

τk

)
∂�(s)

∂sk
� ν1[�(s) − 1],

�(s) := ln |S̃(s)|. (205)

Since this equation belongs to the class of first-order par-
tial differential equations, it can be solved by the method
of characteristics. Let us thus consider the corresponding
Lagrange-Charpit equations

dsk

dl
= 1 − sk

τk
− �(s),

d�

dl
= ν1[�(s) − 1], (206)

with a parameter l describing the position on characteristic
curves. By regarding l as an imaginary time of this system,
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FIG. 9. Schematics of the vector field V (s) := ds/dl for the special cases K = 1 (a) below and (b) at criticality and K = 2 (c) below and
(d) at criticality. The origin s = 0 is the stable attractor below criticality η < 1. An unstable attractor merges into s = 0 at criticality η ↑ 1,
which is consistent with the standard picture of the transcritical bifurcation.

we can apply the standard bifurcation theory of dynamical
systems. Since we are interested in the regime of small s,
let us consider the long-time asymptotic limit l → ∞, where
s(l ) relaxes to the attractor at s = 0 [see the schematic in
Figs. 9(a) and 9(c) for the vector field V (s) := ds/dl for the
cases K = 1 and 2 below criticality η < 1, respectively] such
that liml→∞ s(l ) = 0. Let us expand the equations for small s,

dsk

dl
� −Hs − α2

2

⎛
⎝ K∑

j=1

h̃ js j

⎞
⎠2

+ o(s2), (207a)

d�

dl
� −ν1Ks + o(s), (207b)

with

H :=

⎛
⎜⎜⎜⎝

1
τ1

− h̃1 −h̃2 · · · −h̃K

−h̃1
1
τ2

− h̃2 · · · −h̃K
...

...
. . .

...

−h̃1 −h̃2 · · · 1
τK

− h̃K

⎞
⎟⎟⎟⎠,

K := (h̃1, . . . , h̃K ). (208)

Note that the matrix H is the same as that in Refs. [16,17].
Defining its eigenvalues {λk}k=1,...,K and corresponding eigen-
vectors {ek}k=1,...,K by

Hek = λkek, (209)

H has the following mathematical properties (see Ref. [17]
and Appendix G for details).

(i) All the eigenvalues are real: λk ∈ R1. Accordingly, we
assume that λi � λ j for i < j.

(ii) The determinant of H is given by

det H = 1 −∑K
k=1 τkh̃k∏K

k=1 τk

. (210)

This means that the zero eigenvalue appears at criticality η :=∑K
k=1 τkh̃k = 1.
(iii) The determinant H can be diagonalized by P as fol-

lows:

P := (e1, . . . , eK ), P−1HP =

⎛
⎜⎜⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λK

⎞
⎟⎟⎠.

(211)

(iv) Let us introduce a new representation based on the
eigenvectors:

X =

⎛
⎜⎜⎝

X1

X2
...

XK

⎞
⎟⎟⎠ := P−1s, s =

⎛
⎜⎜⎝

s1

s2
...

sK

⎞
⎟⎟⎠, P−1 =

⎛
⎜⎜⎝

g1
g2
...

gK

⎞
⎟⎟⎠.

(212)

At criticality η = 1, the smallest eigenvalue is zero, λ1 = 0,
and its eigenvector is given by

e1 =

⎛
⎜⎜⎝

τ1

τ2
...

τK

⎞
⎟⎟⎠. (213)

In addition, X1 is represented by

X1 = g1 · s = 1

〈τ 〉
K∑

k=1

τkh̃ksk, g1 =
(

τ1h̃1

〈τ 〉 , . . . ,
τK h̃K

〈τ 〉

)
,

〈τ 〉 :=
K∑

k=1

τ 2
k h̃k . (214)

Given these properties, let us consider the Lagrange-
Charpit equation (207a) in the representation X :=
(X1, . . . . , XK )T . At criticality η = 1, the leading-order
contribution in the Lagrange-Charpit equation (207a) is given
by

dX1

dl
� 0 − α2

2〈τ 〉

(
K∑

k=1

h̃ksk

)2

+ o(X 2),

dXj

dl
= −λ jXj + o(X ) for j � 2. (215)

Since the leading-order contribution will come from the X1

direction, we can assume that |X1|  |Xj | for j � 2 for large
l . We thus ignore contributions other than X1 by assuming
Xj � 0 for j � 2:

s = PX � (e1, . . . , eK )

⎛
⎜⎜⎝

X1

0
...

0

⎞
⎟⎟⎠ = X1e1. (216)
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We thus obtain

dX1

dl
� 0 − α2

2〈τ 〉X 2
1 + o(X 2),

dXj

dl
= −λ jXj + o(X ) for j � 2. (217)

This is the standard normal form of the transcritical bifurca-
tion when regarding l as a physical time [see the schematics
in Figs. 9(b) and 9(d) for K = 1 and 2 at criticality η ↑ 1,
respectively]. The solution is given by

X1(l ) � 2〈τ 〉
α2

1

l − l0
, Xj (l ) � Cje

−λ j (l−l0 ), (218)

with integral constants l0 and Cj for j � 2. We can assume
l0 = 0 as the initial point of the characteristic curve without
losing generality. From expanding �(s), we obtain the solu-
tion

�(l ) �−ν1

∫
dl

K∑
k=1

h̃ksk (l ) � 2ν1〈τ 〉
α2

ln |X |1+ O(X )+ C0,

(219)

with an integral constant C0. According to the method of
characteristics, the general solution is given by

H(C2, , . . . ,CK ) = C0, (220)

with a function H which needs to be determined by the initial
condition. The constants Cj with j � 2 are related to each
other such that

l = 2〈τ 〉
α2X1

, Cj = Xj exp

(
2〈τ 〉λ j

α2X1

)
. (221)

This means that the explicit form of the general solution is
given by

�(X ) � 2ν1〈τ 〉
α2

ln |X1| + O(X )

+ H
(

X2 exp

(
2〈τ 〉λ2

α2X1

)
, . . . , XK exp

(
2〈τ 〉λK

α2X1

))
.

(222)

Note the existence of the divergent term ln |X1| resulting from
neglecting the UV cutoff. Since �(X ) must be constant for
s → 0, except for the artificial logarithmic divergence, we
obtain

lim
X→0

H
(

X2 exp

(
2〈τ 〉λ2

α2X1

)
, . . . , XK exp

(
2〈τ 〉λK

α2X1

))
= const.

(223)

Let us now consider the specific limit X1 → 0, by writing

Xj = Zj exp

(
−2〈τ 〉λ j

α2X1

)
, (224)

with any positive number Zj for j � 2. This specific limit
satisfies the relation

lim
X1→0

X = 0. (225)

Since Eq. (223) should hold for any path taken to reach the
limit X → 0, we obtain the relation even for the specific limit

lim
X1→0

H(Z2, . . . , ZK ) = const (226)

for any positive {Zj} j=2,...,K , implying that H is a constant
function. We thus obtain

|S̃(z)| = exp �(X ) � Ãsa, a := 2ν1〈τ 〉
α2

, (227)

with some positive number Ã.
a. Case with negative a < 0. When ν1 is negative, we have

P̃ss(s) � Asa + o(sa) (228)

for small s with some constant A satisfying |A| = Ã and nega-
tive value a < 0. By applying the inverse Laplace transform
(see Appendix H 1), we obtain the power-law asymptotic
form (198). In this case, the sign of A is determined to be
positive, i.e., A = Ã, for the consistency with the probability
interpretation.

b. Case with 0 < a < 1. This case is equivalent to m :=
�a� = 0. We obtain

P̃ss(s) � 1 − Asa + o(sa), (229)

with some constant A for small s. Assuming that Ã is a positive
real number, we obtain the power-law asymptotic form (198)
(see Appendix H 2).

c. Case with positive noninteger a. Let us define m := �a�
in order to classify the solutions. Since the asymptotic series
of the Laplace transformation is given by

P̃ss(s) � Asa +
m∑

k=0

cksk + o(sa), (230)

we obtain the power-law asymptotic form (198) (see Ap-
pendix H 3), by setting A to a positive (negative) number
for even (odd) m, for consistency with the probability
interpretation.

d. Case with positive integer a. Technically, the positive-
integer case requires a special treatment since the � func-
tion in the Laplace transformation formula (H14) diverges:
�(−a) = ∞. However, since the power-law asymptotics
(198) is valid for any integer a, it is straightforward to obtain
the power-law asymptotics (198) for positive integer a, assum-
ing that the power-law exponent a is a continuous function in
terms of ν1:

a(ν1) = lim
x→ν1

a(x). (231)

While we have numerically checked the validity of this result
(198) for some specific cases (see Sec. VII C for the numerical
results), a rigorous proof of the continuity assumption (231) is
beyond the scope of this paper, as it requires further technical
investigation while the continuity assumption (231) is physi-
cally reasonable.

In summary, we obtain the power-law asymptotics (198)
for general a.

B. General memory kernel

Since the power-law asymptotics (198) holds for gen-
eral discrete sums of exponentials, as a straightforward
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(a) (b) (c)

FIG. 10. Numerical confirmation of our theoretical prediction on the power-law exponents (198). (a) Simulation based on K = 2, (τ1, τ2) =
(1, 2), (h̃1, h̃2) = (0.7, 0.149 95), η = 0.9999, ν0 = 0.01, and ν1 � 0.385, predicting a � 1.0, i.e., a true power law (Zipf’s law). (b) Simulation
based on K = 3, (τ1, τ2, τ3) = (1, 2, 3), (h̃1, h̃2, h̃3) = (0.5, 0.15, 0.1999/3), η = 0.9999, ν0 = 0.01, and ν1 � 0.147, predicting a � 0.5, i.e.,
a true power law. (c) Simulation based on K = 3, (τ1, τ2, τ3) = (1, 2, 3), (h̃1, h̃2, h̃3) = (0.5, 0.15, 0.1999/3), η = 0.9999, ν0 = 0.01, and
ν1 = 0, predicting a = 0, i.e., an intermediate power-law asymptotic.

generalization, we find a power-law asymptotics at the
critical point n = 1 for general memory kernel h(t ) such
that

h(t ) =
∫ ∞

0
dx h̃(x)e−t/x,

λ = g(ν) � ν − ν1 + o(ν0) for large ν,

ρ(y) = 0 for negative y,∫ ∞

0
yρ(y)dy = 1 �⇒ Pss(λ) ∝ λ−1−a,

a : = 2ν1〈τ 〉
α2

, 〈τ 〉 :=
∫ ∞

0
x2h̃(x)dx (232)

for either negative or non-negative ν1. This relation is a true
power law for positive ν1,i.e., normalizable even without cut-
off, while it is an intermediate asymptotics for nonpositive ν1,
i.e., not normalizable without cutoff.

C. Numerical confirmation

Figure 10 shows the numerical results based on the Monte
Carlo simulation of the SDE (3) obtained for a memory func-
tion constructed as a discrete sum of exponentials, for the
ramp intensity (69), and a mark distribution reducing to the
Dirac function centered on y = 1:

h(t ) =
K∑

k=1

h̃ke−t/τk , λ = g(ν) = max{ν0, ν − ν1},

ρ(y) = δ(y − 1). (233)

The simulations are performed by using an adaptive time dis-
cretization scheme (see Appendix I for the detailed numerical
scheme). All panels in Fig. 10 exhibit the predicted power-law
tail of the intensity distribution, in excellent agreement with
our theoretical prediction (198). Notably, the power-law expo-
nent varies continuously as a function of ν1 and the power-law

formula (198) is found to be valid even for integer exponents
such as a = 0 and 1.

VIII. SOLUTION 5: GENERAL MEMORY KERNEL
FOR FAST-ACCELERATING INTENSITY MAPS
AND TWO-SIDED MARK DISTRIBUTION WITH

NONPOSITIVE MEAN MARK

In Secs. V and VI we showed that a general asymptotic
formula is available for the exponential memory and the
two-sided mark distributions with nonpositive mean. Here we
show that, by solving the corresponding MEs, the asymptotic
formula is valid for a wider class of memory kernels with FAI.
This analysis is a detailed version of Ref. [27].

A. Discrete sum of exponentials

We first show that the power-law tail of the PDF of inten-
sities is robust for various memory kernels h(t ) for the MSA
intensity function in the presence of a two-sided mark distri-
bution with nonpositive-mean mark. Specifically, we make the
assumptions, i.e., discrete sum of exponentials, MSA inten-
sity, and two-sided mark distribution with nonpositive-mean
mark,

h(t ) =
K∑

k=1

h̃ke−t/τk , g(ν) = λ0eβν,

p+ :=
∫ ∞

0
ρ(y)dy > 0,

p− :=
∫ 0

−∞
ρ(y)dy > 0, m :=

∫ ∞

−∞
yρ(y)dy � 0. (234)

Under these conditions, we obtain the power-law intensity
PDF

Pss(λ) ∝ λ−2−β−1u for large λ, u := c∗

h(0)
, (235)

where c∗ is the positive root of �(x) for m < 0 (or c∗ = 0 for
m = 0). Remarkably, we recover Zipf’s law exactly for the
zero-mean mark case m = 0.
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1. Derivation

From Eq. (23) the steady-state ME is given by

K∑
k=1

1

τkλ0

∂

∂zk

[
zk exp

(
−

K∑
k′=1

zk′

)
φ(z)

]

+
∫

dy ρ(y)φ(z − yh̃) − φ(z) = 0, (236)

where we have defined φ(z) := G(z)Pss(z). For large z, the
first term on the right-hand side is negligible due to the ex-
ponential factor, leading to∫

dy ρ(y)φ(z − yh̃) − φ(z) � 0 for large z. (237)

We then apply the transformation from z = (z1, . . . , zK ) to
Z := (W, Z2, . . . , ZK ):

z1 = h̃1W,

z2 = h̃2W + Z2,

z3 = h̃3W + Z3,

...

zK = h̃KW + ZK . (238)

Using this variable set, we can rewrite

ψ (W − y; Z2, . . . , ZK )

:= φ(z − yh̃)

= φ(h̃1(W − y), h̃2(W − y) + Z2, . . . , h̃K (W − y) + ZK ).
(239)

The integral equation (237) is then reduced to∫
dy ρ(y)ψ (W − y; Z′) − ψ (W ; Z′) � 0 for large Z,

(240)

with Z′ := (Z2, . . . , ZK ). This variable transformation is use-
ful because Eq. (237) is an effectively one-dimensional
integral equation. Since the variable subset Z ′ is irrelevant in
this integral equation, its solution is given by

ψ (W ; Z′) = C0(Z′)e−c∗W + C1(Z′), (241)

with arbitrary non-negative functions C0(Z′) and C1(Z′) with-
out the variable W (see Appendix E). In addition, by defining
the moment-generating function �(x) := ∫∞

−∞ dy ρ(y)(exy −
1), the constant c∗ is the positive root of �(c∗) = 0 for the
case of negative-mean mark m < 0 or c∗ = 0 for the case
of zero-mean mark m = 0 [see Appendix F for the detailed
properties of �(x)]. Assuming the natural boundary condi-
tion, C1(Z′) must be set equal to zero, as shown later. We then
derive the steady-state distribution Pss(ν) as

Pss(ν) :=
∫ ∞

−∞
dz Pss(z)δ

(
ν −

K∑
k=1

zk

)
� 1

λ0

∫ ∞

−∞
dz exp

(
−β

K∑
k=1

zk

)
C0(Z′)e−c∗W δ

(
ν −

K∑
k=1

zk

)

= e−βν

λ0

∫ ∞

−∞
dz1

∫ ∞

−∞

⎛
⎝ K∏

j=2

dz j

⎞
⎠C0

(
z2 − h̃2

h̃1
z1, . . . , zK − h̃K

h̃1
z1

)
exp

(
− c∗

h̃1
z1

)
δ

(
ν −

K∑
k=1

zk

)
. (242)

Applying the transformation

z′
j := z j − h̃ j

h̃1
z1 for j = 2, . . . , K, (243)

we obtain

Pss(ν) � e−βν

λ0

∫ ∞

−∞
dz1

∫ ∞

−∞

⎛
⎝ K∏

j=2

dz′
j

⎞
⎠C0(z′

2, . . . , z′
K ) exp

(
− c∗

h̃1
z1

)
δ

(
ν − rz1 −

K∑
k=2

z′
k

)

= e−βν

λ0

∫ ∞

−∞

⎛
⎝ K∏

j=2

dz′
j

⎞
⎠C0(z′

2, . . . , z′
K )
∫ ∞

−∞
dz1 exp

(
− c∗

h̃1
z1

)
δ

(
ν − rz1 −

K∑
k=2

z′
k

)

= e−(β−u)ν

rλ0

∫ ∞

−∞

⎛
⎝ K∏

j=2

dz′
j

⎞
⎠C0(z′

2, . . . , z′
K ) exp

(
c∗

h(0)

K∑
k=2

z′
k

)
, (244)

where we have used

δ

(
ν − rz1 −

K∑
k=2

z′
k

)
= 1

r
δ

(
z1 − ν −∑K

k=2 z′
k

r

)
, (245)
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with

r := 1

h̃1

K∑
k=1

h̃k = h(0)

h̃1
, u := c∗

h(0)
. (246)

Assuming that

1

r

∫ ∞

−∞

⎛
⎝ K∏

j=2

dz′
j

⎞
⎠C0(z′

2, . . . , z′
K ) exp

(
c∗

h(0)

K∑
k=2

z′
k

)
< ∞,

(247)

we find that the asymptotic PDF for large ν is given by

Pss(ν) ∝ e−(β−u)ν for large ν. (248)

This asymptotic form implies the power law (235) for the
intensity λ := g(ν).

2. Natural boundary condition

By neglecting the first term in the ME (23) and by applying
the variable transformation (238), we obtain an approximate
ME

∂Pt (W ; Z′)
∂t

�
∫ ∞

−∞
dy[G(W − y; Z′)Pt (W − y; Z′)

− G(W ; Z′)Pt (W ; Z′)]. (249)

By applying the KM expansion, we obtain the conservation of
probability

∂Pt (W ; Z′)
∂t

� −∂Jt (W ; Z′)
∂W

, (250)

with the probability current

Jt (W ; Z′) :=
∞∑

n=1

(−1)n−1αn

n!

∂n−1

∂W n−1
G(W ; Z′)Pt (W ; Z′).

(251)

By substituting the solution (241), we obtain

Jss(W ; Z′) =
∞∑

n=1

(−1)n−1αn

n!

∂n−1

∂W n−1
[C1(Z′) + e−c∗W C0(Z′)]

= mC1(Z′) + C0(Z′)
c∗ �(c∗)e−c∗W , (252)

where we have used �(x) =∑∞
n=1(αn/n!)xn. Since �(c∗) =

0 by definition, we obtain Jss(W ; Z′) = mC1(Z′). The natural
boundary condition requires

lim
W →∞

Jss(W ; Z′) = 0 (253)

for any Z′, implying C1(Z′) = 0.

B. General memory kernel

As done before, any memory kernel can be approximated
by a sum of exponentials such that

h(t ) =
∫ ∞

0
dx h̃(x)e−t/x ≈

K∑
k=1

h̃ke−t/τk . (254)

Since the power-law tail for the PDF of the intensity is found
for any discrete sum of exponentials, it remains valid for

general superpositions of exponential memory. Under the as-
sumption

g(ν) = λ0eβν, p+ :=
∫ ∞

0
ρ(y)dy > 0,

p− :=
∫ 0

−∞
ρ(y)dy > 0, m :=

∫ ∞

−∞
yρ(y)dy � 0 ∀ h(t ),

(255)

we obtain

Pss(λ) ∝ λ−2−β−1u for large λ, u := c∗

h(0)
, (256)

where c∗ is the positive root of �(c∗) = 0 for m < 0 or c∗ =
0 for m = 0. For the zero-mean mark case m = 0, the PDF
obeys Zipf’s law exactly.

C. Numerical confirmation

Figure 11 shows numerical results obtained by Monte
Carlo simulations of the SDE (3) for the memory function
made of a discrete sum of exponential functions, for the
exponential intensity MSA with finite cutoff (to ensure con-
vergence of the numerical scheme), and a zero-mean Gaussian
mark distribution

h(t ) =
K∑

k=1

h̃ke−t/τk , λ = g(ν) = min{λ0eβν, λmax},

ρ(y) = 1√
2πσ 2

e−y2/2σ 2
. (257)

We use an adaptive time discretization scheme (see
Appendix I for the detailed numerical scheme). Here λmax

is a cutoff parameter to control numerical rounding errors.
Figure 11(a) exhibits the Zipf law in the intensity distribution
up to the cutoff λmax, showing agreement with our theoretical
prediction (235).

Figure 11(b) shows a sample trajectory of the inten-
sity obtained for the parameter set K = 3, (τ1, τ2, τ3) =
(1, 0.5, 2), (h̃1, h̃2, h̃3) = (0.5, 0.6, 0.1), λ0 = 0.001, β = 10,
λmax = 106, and σ = 0.3. This semilogarithmic plot illus-
trates that the NLH model exhibits an intermittent behavior
in terms of its intensity, which is qualitatively consistent with
observed phenomena in various complex systems, such as
seismic activity.

D. Generalization to fast-accelerating intensity maps

The above framework can be readily generalized to FAI
maps defined by g(ν)  ν2. Our general result can be formu-
lated as follows. Under the assumptions

h(t ) =
K∑

k=1

h̃ke−t/τk , g(ν)  ν2 for large ν,

p+ :=
∫ ∞

0
ρ(y)dy > 0, p− :=

∫ 0

−∞
ρ(y)dy > 0,

m :=
∫ ∞

−∞
yρ(y)dy � 0, (258a)
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(a) (b)

FIG. 11. (a) Numerical confirmation of our theoretical prediction (235) of the Zipf law for the intensity distribution. This simulation
corresponds to the following set of parameters: K = 3, (τ1, τ2, τ3) = (1, 0.5, 2), (h̃1, h̃2, h̃3) = (0.5, 0.6, 0.1), λ0 = 0.01, β = 6, λmax = 106,
and σ = 0.3. The predicted power-law exponent is given by a = 1.0, i.e., a true power law (the Zipf law) and is shown as the orange straight
line. (b) Sample trajectory of the intensity for K = 3, (τ1, τ2, τ3) = (1, 0.5, 2), (h̃1, h̃2, h̃3) = (0.5, 0.6, 0.1), λ0 = 0.001, β = 10, λmax = 106,
and σ = 0.3. Note that the horizontal reference line is determined by λ0 = 0.001.

we obtain

Pss(λ) ∝ λ−1

[
e−uν

(
dg(ν)

dν

)−1
]

ν=g−1(λ)

for large λ, u := c∗

h(0)
, (258b)

with c∗ the positive root of �(c∗) = 0 for m < 0 or zero for
m = 0, where �(x) := ∫∞

−∞ dy ρ(y)(exy − 1). The derivation
of this result is essentially the same as that in Sec. VIII A, by
replacing the MSA intensity map with the general FAI map.

Since any memory kernel can be approximated by a dis-
crete sum of exponentials [see Eq. (254)], the continuous
version of the statement (258) also holds for any h(t ),

g(ν)  ν2, p+ > 0, p− > 0, m � 0

�⇒ Pss(λ) ∝ λ−1

[
e−uν

(
dg(ν)

dν

)−1
]

ν=g−1(λ)

,

u := c∗

h(0)
, (259)

with c∗ the positive root of �(c∗) = 0 for m < 0 or zero for
m = 0, where �(x) := ∫∞

−∞ dy ρ(y)(exy − 1). Remarkably,
this result implies that the power-law tail for the steady-
state PDF of intensities holds robustly for superpolynomial
intensity maps such as g(ν) ∝ eβν , i.e., the MSA case, and
g(ν) ∝ eβν2

.

IX. DISCUSSION

A. Relationship to nonlinear Kesten processes

We have shown that power-law asymptotics robustly ap-
pears for the quadratic and FAI cases. Here we provide
another derivation based on more heuristic arguments, by
removing inessential technicalities, using the viewpoint of
Kesten processes [51]. Let us focus on the case with exponen-
tial memory h(t ) = (η/τ )e−t/τ and in the diffusive limit, i.e.,
for the symmetric mark distribution ρ(y) = ρ(−y), described
by the FPE (46) and the corresponding SDE (47).

1. Case with a quadratic intensity map: g̃(ν) = kν2 + ν0

Inserting g̃(ν) = kν2 + ν0 in the SDE (47), we obtain

d ν̂

dt
= − ν̂

τ
+
√

kν2 + ν0

√
2D · ξ̂G

t . (260)

Here ξ̂G
t is the standard white Gaussian noise satisfying

〈ξ̂G〉 = 0 and 〈ξ̂G(t )ξ̂G(t ′)〉 = δ(t − t ′). With respect to the
power-law structure of the tail of the PDF of ν, by using
the discretization dν/dt = [ν(t + dt ) − ν(t )]/dt , this SDE
can be regarded as a continuous version of the discrete-time
Kesten process [51]

ν(t + dt ) � atν(t ) + bt , (261)

with at = 1 + (2Dk)1/2ξ̂G
t dt − (dt/τ ) and bt =

ν0(2k)1/2ξ̂G
t dt . The first term atν(t ) controls the intermittent

excursions of ν(t ) to large values, for which ν0 can be
neglected in the last term on the right-hand side of Eq. (260).
The second term bt in the Kesten map (261) is the reinjecting
term, obtained when ν becomes smaller than ν0. As shown in
Ref. [53], the detailed shape of this reinjecting term has no
impact on the existence of a power-law tail and on the value of
its exponent. The only important point is that the reinjecting
term exists to prevent ν from being too small. Remaining no
less than a stochastic variable proportional to ν0, intermittent
runs of exponential growth occur when there is a succession
of positive realizations of ξ̂G

t for several consecutive times
such that the multiplicative factor at is larger than 1 over this
run [52,53].

The condition for the existence of a steady-state PDF
for the Kesten process (261) is that 〈ln at 〉 < 0 [51,53].
For infinitesimal dt , ln at can be expanded as ln at =
(2Dk)1/2ξ̂G

t dt − (dt/τ ) and its mean is then 〈ln at 〉 =
−(dt/τ ) since 〈ξ̂G

t 〉 = 0 by definition. Hence, the condition
for a stationarity process holds true. It is then easy to show by
explicitly writing the self-consistent equation for the steady-
state PDF of ν that it is a power law with exponent a given as
the solution of the equation

〈|at |a〉 = 1. (262)
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Using the fact that ξ̂G
t dt = dW is a Gaussian random variable

with zero mean and variance dt , i.e., it is the infinitesimal
increment of the Wiener process, the average in (262) is ob-
tained by using the saddle-node approximation and we find
that the corresponding solution recovers exactly the expres-
sion (98), namely, a := 1/2 + c2/2kτ , with c := τ/η. This
confirms that our treatment in terms of the diffusive limit
gives equations in the general class of Kesten processes. Other
forms of the tension-intensity map λ = g(ν) can thus be in-
terpreted as continuous nonlinear extensions of the Kesten
process. Therefore, from an intuitive point of view, the power-
law tails of the PDFs of ν and λ can be qualitatively related to
an underlying multiplicative structure together with additional
ingredients to ensure the existence and stationarity of the
process.

2. Case with a fast-accelerating intensity map: g̃(ν) � ν2

We here consider the case of FAI maps satisfying

g̃(ν)  ν2 for positive large ν,

g̃(ν) � const for negative large ν. (263)

Let us take D = 1/2 to simplify notation so that the corre-
sponding SDE is given by

d ν̂

dt
= − ν̂

τ
+
√

g̃(ν̂) · ξ̂G. (264)

Since g̃(ν) � const for negative large ν, ν̂ cannot go to −∞
due to the relaxation term −ν̂/τ . On the other hand, for
positive large ν̂, the dynamics is approximated by

d ν̂

dt
�
√

g̃(ν̂) · ξ̂G, (265)

because
√

g̃(ν̂)  ν̂/τ for FAI maps.
This model is thus similar to Brownian motion with a

position-dependent variance or diffusion coefficient. Interest-
ingly, such a Brownian model has a well-defined steady-state
PDF for FAI maps. Let us thus consider a Brownian motion
obeying the SDE

d ν̂

dt
=
√

g̃(ν̂) · ξ̂G for ν � 0, (266)

which is complemented by the condition of a repulsive hard
wall at ν̂ = 0, which prohibits the Brownian particle from
going to −∞. This condition is a simplification and ensures a
similar result to that in the presence of the relaxation effect in
the original model (264). The steady FPE is given by

d2

dν2
[g̃(ν)Pss(ν)] = 0 for ν > 0, Pss(ν) = 0 for ν < 0.

(267)

If g̃(ν) were not a FAI map, this steady FPE might not
have a normalizable steady-state solution. For example, if
g̃(ν) = const, the general solution of the FPE is given by
a non-normalizable steady-state solution P̃ss(ν) = c0 + c1ν,
satisfying

∫∞
0 dν Pss(ν) = ∞. This model is therefore nonsta-

tionary. In contrast, when g̃(ν) is a FAI map, the FPE (267) has
a normalizable steady-state solution for any FAI map, with

Pss(ν) ∝
{ 1

g̃(ν) for ν > 0
0 for ν < 0

�⇒
∫ ∞

−∞
dν Pss(ν) < ∞. (268)

FIG. 12. Numerical simulations confirming our theoretical pre-
diction on the Zipf law (270) for the intensity distribution. The
simulated SDE describes Brownian motion with the ν̂-dependent
diffusion constant g̃(ν̂)/2 and a reflecting barrier at ν̂ = 0.

We then obtain the robust expression of the steady-state PDF
of the intensity λ := g̃(ν):

Pss(λ) ∝ λ−1

∣∣∣∣dg̃(ν)

dν

∣∣∣∣−1

ν=g̃−1(λ)

for large λ. (269)

This result readily implies that the Zipf law

Pss(λ) ∝ λ−2 for large λ (270)

is observed for a wide class of superpolynomial intensity
maps, such as g̃(ν) = eβν and g̃(ν) = eβν2

.
Let us complete this discussion by mentioning that the

rigorous mathematical demonstration of the existence of
steady-state solutions of the SDE (266) is obtained from the
theorems presented in Ref. [55]. In particular, we refer to the
theorems in Sec. 5.2 in Ref. [55].

a. Numerical simulation. Figure 12 presents the PDF of
the intensity obtained from the numerical solution of the SDE
(266) with an exponential intensity g̃(ν) = λ0eβν . The Zipf
law (270) is obtained for the steady-state intensity distribution
of the SDE describing Brownian motion with ν̂-dependent
diffusion constant g̃(ν)/2 in the presence of a reflecting barrier
at ν̂ = 0. The detailed numerical implementation is described
in Appendix I.

b. Intuitive discussion. Why is the Brownian model with
position-dependent variance stationary for FAI maps? This
might be understandable from the viewpoint of step-size ex-
plosion for large ν̂. As ν̂ grows to very large values, the steps
of the random walk explode even faster and thus it is very
likely that a negative step occurs of huge size which brings
back the Brownian particle to 0 or even pushes it to negative
values if the repelling boundary is absent. In the presence
of the repelling boundary, the huge negative steps bring the
Brownian particle close to 0, for which the random step sizes
become small, which implies that ν̂ remains quite a long time
in the vicinity of the origin. Eventually, ν̂ escapes again to
large values of ν̂, but then the huge random walk step sizes,
when negative, bring it back again to the neighborhood of 0.
This process occurs repeatedly and leads to a stationary PDF
decaying rapidly as 1/g̃(ν̂), due to the effect of the negative
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random steps that push back ν̂ to the left and the boundary
somehow traps the process in its neighborhood. In summary,
this picture implies that the explosive step size leads to an
effective strong trapping potential, which might be counterin-
tuitive at the first glance.

It might be interesting to rephrase the above argument
from the viewpoint of the recurrence time of one-dimensional
Brownian motion. It is well known that the recurrence prob-
ability of one-dimensional Brownian motion with constant
variance g̃(ν) = const is unity, while the average recurrence
time is infinity. In other words, a Brownian particle will surely
return to the origin after a long time, but this waiting time may
be so large that repeated recurrence events cannot be expected
within a finite observation time. In the case of Eq. (266),
the variance of the step lengths depends on the distance
from the origin and becomes larger and larger for large ν.
Thus, the time evolution of this Brownian particle becomes
faster and faster for large ν̂ such that the particle can return
to the origin much sooner than with a constant diffusion co-
efficient and repeated recurrence events can be expected in a
finite time.

Finally, it is useful to stress the difference between the
mechanism underlying the existence of a steady-state power-
law distribution in the conventional linear Kesten process [51]
and that of our FAI Hawkes model. In usual linear Kesten
processes, the underlying mechanism is proportional growth
or multiplicative proportional growth in order for Zipf’s law
and related power laws to occur, in the presence of an average
contraction, i.e., the mean growth rate is negative, together
with a reinjection mechanism. In contrast, our FAI Hawkes
models are characterized by explosive expansions in the pres-
ence of a reflecting or bounded boundary condition. This is
in stark contrast to the conventional approaches based on the
Kesten-type models, proportional growth type, and preferen-
tial attachment-type mechanisms.

B. Implication to financial data analyses

From a broader perspective, our results have significant
implications for financial modeling. Recall that one of the
motivations for introducing the NLH family is to reproduce
empirical stylized facts, in particular the power-law distribu-
tion of returns (see Sec. II C 2 for a brief review). Indeed,
according to Ref. [28], one of the advantages of the quadratic
Hawkes process lies in the fact that it can reproduce a power-
law intensity distribution with nonuniversal exponents [see
Eq. (12)], from which the power-law distribution of price
changes derives.

From this point of view, our results summarized in
Tables I and II show that various NLH processes can repro-
duce power-law intensity PDFs and not just the quadratic
Hawkes processes. Even the ramp Hawkes processes with
one-sided marks (which are arguably a minor modification
of the LH process) can reproduce a power-law distribution
with arbitrary exponent, when near criticality. If one focuses
only on power-law intensity PDFs, various Hawkes models
can be suitable candidate models. Moreover, by assuming
symmetric marks, note that quadratic Hawkes is the model
at the boundary between a class of models with universal

power-law exponents and a class of models with nonuniversal
exponents.

Another debatable point is whether the exponent should be
universal or nonuniversal. The linear and ramp Hawkes pro-
cesses with one-sided marks, the symmetric-mark quadratic
Hawkes processes, and the two-sided FAI Hawkes process
with nonpositive-mean mark have nonuniversal exponents
for the power-law intensity PDF. In contrast, the symmetric-
mark FAI Hawkes processes have universal exponents. The
nonuniversal exponents are useful for flexible data calibra-
tion, while one would like to have strong justifications of
why such parameters are selected in empirical data anal-
yses. On the other hand, universal exponents are useful
if the empirical exponent seems robust and universal, but
this removes flexible data calibration. It might be neces-
sary to construct a suitable framework for model selection
with the goal of developing practical reverse engineer-
ing approaches. This is beyond the scope of the present
paper.

C. Mathematical relation to quantum field theories

We have studied a wide variety of generalized Hawkes
processes. Here we discuss their mathematical relation with
quantum field theories. Let us rewrite z(x) → φ(x) and intro-
duce a momentum operator π (x),

π (x) := −i
δ

δφ(x)
, (271)

which satisfies the canonical commutative relation

[φ(x), π (x′)] = iδ(x − x′). (272)

By introducing the state vector

|Pt 〉 :=
∫

Dφ Pt [φ]|φ〉, (273)

the ME (17) becomes a Schrödinger-like equation for the field
{φ(x)}x as

∂

∂t
|Pt 〉 = H |Pt 〉,

H := i
∫ ∞

0

dx

x
π (x)φ(x)

+
∫ ∞

−∞
dy ρ(y)(T [yh̃] − 1)G[φ], (274)

with the non-Hermitian Hamiltonian H and the translation
operator T [y], defined by

T [y] := exp

(
−i
∫ ∞

0
dx y(x)π (x)

)
, (275)

satisfying T [y]Pt [z] = Pt [z − y]. This equation is nonlocal,
since the Hamiltonian includes an infinite order of momentum
operators.

In the diffusive limit (48), the Hamiltonian reduces to a
local version as a result of the SSE

∂

∂t
|Pt 〉 = H |Pt 〉,
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H := i
∫ ∞

0

dx

x
π (x)φ(x)

−
∫ ∞

0
dx
∫ ∞

0
dx′D(x, x′)π (x)π (x′)G[φ],

D(x, x′) := α2

2
h̃(x)h̃(x′), (276)

where the momentum operator appears via a quadratic form.
In this sense, the SSE for the field ME can be regarded
as a mathematical procedure to obtain local forms of non-
Hermitian field quantum theories in an appropriate limit.

D. Future application: Field master equation for the general
quadratic Hawkes processes

Our present formulation covers a part of the Zum-
bach Hawkes processes, but not the whole class of
general quadratic Hawkes processes (10). Including the
general quadratic Hawkes processes as special cases of
our formalism can in principle be easily performed as
follows. The linear and quadratic kernels L(t − s) and
K (t − s, t − u) can be decomposed according to a Laplace
representation

L(t − s) =
∫ ∞

0
dx e−(t−s)/xL̃(x), K (t − s, t − u)

=
∫ ∞

0
dx
∫ ∞

0
dx′e−(t−s)/x−(t−u)/x′

K̃ (x, x′). (277)

The quadratic Hawkes process then reads

λ̂(t ) = λ0 +
∫ t

−∞
ds ξ̂P

ρ(y);λ̂(s)(s)

(∫ ∞

0
dx e−(t−s)/xL̃(x)

)

+
∫ t

−∞
ds ξ̂P

ρ(y);λ̂(s)(s)
∫ t

−∞
du ξ̂P

ρ(y);λ̂(u)(u)

(∫ ∞

0
dx
∫ ∞

0
dx′e−(t−u)/x′−(t−s)/xK̃ (x, x′)

)

= λ0 +
∫ ∞

0
dx L̃(x)

(∫ t

−∞
ds e−(t−s)/x ξ̂P

ρ(y);λ̂(s)(s)

)

+
∫ ∞

0
dx
∫ ∞

0
dx′K̃ (x, x′)

(∫ t

−∞
ds e−(t−s)/x ξ̂P

ρ(y);λ̂(s)(s)

)(∫ t

−∞
du e−(t−u)/x′

ξ̂P
ρ(y);λ̂(u)(u)

)
, (278)

where we have exchanged the order of integration. By consid-
ering the Markovian SPDE

∂ ẑ(t, x)

∂t
= − ẑ(t, x)

x
+ ξ̂P

ρ(y);λ̂(t )(t ), (279a)

whose explicit solution is given by

ẑ(t, x) =
∫ t

−∞
ds e−(t−s)/x ξ̂P

ρ(y);λ̂(s)(s), (279b)

we obtain

λ̂(t ) = λ0 +
∫ ∞

0
dx L̃(x)ẑ(t, x)

+
∫ ∞

0
dx
∫ ∞

0
dx′K̃ (x, x′)ẑ(t, x)ẑ(t, x′), (279c)

which is equivalent to the original quadratic Hawkes pro-
cesses (10). This means that the quadratic Hawkes dynamics
has been converted into a Markovian dynamics described
by the set of equations (279) in terms of the field variable
{ẑ(t, x)}x. Correspondingly, we obtain the field ME for the
quadratic Hawkes processes as

∂Pt [z]

∂t
=
∫ ∞

0
dx

δ

δz(x)

(
z(x)

x
Pt [z]

)

+
∫ ∞

−∞
dy ρ(y)(G[z − y1]Pt [z − y1] − G[y]Pt [z]),

(280)

with the indicator function 1(x) = 1 for any x ∈ (0,∞) and
the functional intensity map G[z] defined by

G[z] := λ0 +
∫ ∞

0
dx L̃(x)z(x)

+
∫ ∞

0
dx
∫ ∞

0
dx′K̃ (x, x′)z(x)z(x′). (281)

Further formal generalization

Obviously, this method can be readily generalized for any
functional series expansion, at least formally, such as

λ̂(t ) = λ0 +
J∑

j=1

∫ t

−∞
ds1 · · ·

∫ t

−∞
ds jKj (t − s1, . . . , t − s j )

× ξ̂P
ρ(y);λ̂(s1 ) · · · ξ̂P

ρ(y);λ̂(s j )

= λ0 +
J∑

j=1

∫ ∞

0
ds1 · · ·

∫ ∞

0
ds jK̃ j (x1, . . . , x j )

× ẑ(t, x1) · · · ẑ(t, x j ). (282)

Here we have introduced the field variable {ẑ(t, x)} obeying
the Markovian SPDE

∂ ẑ(t, x)

∂t
= − ẑ(t, x)

x
+ ξ̂P

ρ(y);λ̂(t ) (283)

013067-34



ASYMPTOTIC SOLUTIONS TO NONLINEAR HAWKES … PHYSICAL REVIEW RESEARCH 5, 013067 (2023)

and the Laplace decomposition

Kj (t − s1, . . . , t − s j )

=
∫ ∞

0
dx1· · ·

∫ ∞

0
dx j exp

⎛
⎝−

j∑
l=1

t − sl

xl

⎞
⎠K̃ j (x1, . . . , x j ).

(284)

The corresponding field ME can be derived in the same man-
ner. This implies that our formulation has the potential to
cover a wide variety of NLH families beyond the quadratic
Hawkes processes. We leave to future studies the derivation
of explicit analytical solutions for general quadratic Hawkes
processes and beyond, based on our formulation.

X. CONCLUSION

In this article we have studied various analytical solutions
to NLH processes by generalizing the field ME approach
recently developed in Refs. [16,17]. We have derived the
field ME for the general NLH processes and have formulated
its functional KM expansion and the corresponding diffusive
approximation. We then proceeded with deriving various ex-
act solutions of the steady-state intensity distributions for an
exponential-memory kernel in the absence and presence of
inhibitory effects. Some of the robust asymptotic solutions
have been generalized for a wide class of memory kernels,
such as (i) the nonuniversal power law with an arbitrary expo-
nent for the ramp Hawkes process in the absence of inhibitory
effects, (ii) the robust Zipf law for the superexponential in-
tensity family in the presence of symmetric inhibitory and
excitatory effects, and (iii) the ubiquitous power law for the
fast-acceleration intensity Hawkes models in the regime of
zero- or negative-mean mark.

The summaries in Tables I and II exemplify our systematic
analysis of the NLH processes. However, there are two items
that are not treated in the last column of Table I for general
memory kernels h(t ). This is because our focus has been
mainly on FAI Hawkes processes and the ramp Hawkes pro-
cess with nonpositive-mean mark and the quadratic Hawkes
processes with symmetric mark are not FAI Hawkes pro-
cesses. It is likely that different perturbative solutions are
needed to solve these two cases for general memory kernels
h(t ), which we leave for future work.

While only a few analytical solution for limited cases have
been derived in the past for NLH processes due to their nonlin-
ear and non-Markovian nature, we have significantly extended
the set of solutions, obtaining exact and robust asymptotic
expressions with the help of our formulation in terms of
a field ME. This demonstrates the power of this approach
in addressing non-Markovian stochastic processes. It would
be interesting to generalize this framework for more general
non-Markovian stochastic processes, such as non-Markovian
point processes that have arbitrary intensities depending on
the full past history. In addition, our results imply that the
NLH family can accommodate various power-law relations
in the intensity distribution, which could be useful for data
calibration in various complex systems.
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APPENDIX A: FORMAL PROPERTIES
OF THE DIRAC δ FUNCTION

1. Dirac δ function

The Dirac δ function is formally defined by the relation-
ships for real numbers x and y,

δ(x − y) =
{

0, x �= y
∞, x = y,∫ ∞

−∞
f (x)δ(x − y)dx = f (y), (A1)

which is the continuous analog to the Kronecker δ, defined by

δi j =
{

0, i �= j
1, i = j,

∑
i

fiδi jdx = fi (A2)

for integers i and j.
There are several formal methods to construct the Dirac

δ function. In this paper we construct the Dirac δ function
via a formal continuous limit from the discrete picture. Let us
consider the lattice coordinate xi := idx for an integer i with
the lattice interval dx. The Dirac δ function can be formally
introduced by

δ(xi − x j ) = lim
dx↓0

1

dx
δi, j, (A3)

which satisfies∫ ∞

−∞
f (x)δ(x − y)dx

:= lim
dx↓0

∑
i

f (xi )

(
1

dx
δi j

)
dx = f (y) for y = x j . (A4)

2. Functional derivative

The functional derivative is an analog to the partial differ-
ential such that

δ

δz(x)
z(y) = δ(x − y), (A5)

which is similar to (∂/∂zi)z j = δi j . The functional derivative
can be constructed via a formal continuous limit

δ

δz(xk )
[· · · ] = lim

dx↓0

1

dx

∂

∂zk
[· · · ]. (A6)

Indeed, this definition satisfies the relationship (A5) such that

δ

δz(x)
z(y) = lim

dx↓0

1

dx

∂

∂zi
z j = lim

dx↓0

1

dx
δi j = δ(xi − x j ) (A7)

for x = xi and y = x j .
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3. Functional Taylor expansion

For a finite-dimensional vector z := (z1, . . . , zN ), the Tay-
lor expansion is given by

f (z) =
∞∑

n=1

1

n!

(
N∑

i=1

zi
∂

∂xi

)n

f (x)

∣∣∣∣
x=0

. (A8)

As its continuous analog, the functional Taylor expansion for
a function f [z] := f ({z(x)}x ) reads

f [z] =
∞∑

n=1

1

n!

(∫ ∞

−∞
dx z(x)

δ

δy(x′)

)n

f [y]

∣∣∣∣
y=0

. (A9)

APPENDIX B: ANOTHER DERIVATION OF THE FIELD MASTER EQUATION (17)

Here we provide another derivation of the field ME (17) by direct manipulation of PDFs. Let us consider the time evolution
of any functional f [ẑ] := f ({ẑ(t, x)}x ), given by

df ({ẑ(t, x)}x ) := f ({ẑ(t + dt, x)}x ) − f ({ẑ(t, x)}x )

=
{

−dt
∫∞

0 dx ẑ(t,x)
x

δ f (ẑ(t,x))
δẑ(t,x) (no jump during [t, t + dt ): probability = 1 − λ̂(t )dt )

f ({ẑ(t, x) + ŷh̃(x)}x ) − f ({ẑ(t, x)}x ) (jump in [t, t + dt ) with ŷ ∈ [y, y+ dy): probability = λ̂(t )ρ(y)dtdy),

(B1)

with intensity

λ̂(t ) = G[ẑ] := g

(∫ ∞

0
dx ẑ(t, x)

)
. (B2)

By taking the ensemble average on both sides of the equation,
we obtain∫

Dz f [z]
∂Pt [z]

∂t
dt

=
∫

Dz

[
−dt

∫ ∞

0
dx

z(x)

x

δ f [z]

δz(x)

+dt
∫

dy ρ(y)G[z]( f [z + yh̃] − f [z])

]
Pt [z]. (B3)

By integration by parts and performing a variable transforma-
tion z + yh̃ → z, we obtain an identity∫

Dz f [z]
∂Pt [z]

∂t

=
∫

Dz f [z]

[∫
dx

δ

δz

z

x
Pt [z]

+
∫

dy ρ(y)G[z − yh̃]Pt [z − yh̃] − G[z]Pt [z]

]
. (B4)

Since this identity holds for any functional f [z], we obtain
Eq. (17).

APPENDIX C: INTEGRAL IDENTITIES FOR
EXPONENTIAL MARK DISTRIBUTIONS

Here we provide the detailed derivation of the identities
(62) and (85).

1. Positive contribution

Let us consider the quantity

I+(ν) :=
∫ ∞

0
dy

e−y/y∗

y∗ f
(
ν − ηy

τ

)
, (C1)

with the boundary condition limν→±∞ f (ν) = 0. Let us dif-
ferentiate both sides as

d

dν
I+(ν) =

∫ ∞

0
dy

e−y/y∗

y∗
d

dν
f
(
ν − ηy

τ

)
. (C2)

The identity

d

dy
f
(
ν − ηy

τ

)
= −η

τ

d

dν
f
(
ν − ηy

τ

)
(C3)

leads to

d

dν
I+(ν) = −τ

η

∫ ∞

0
dy

e−y/y∗

y∗
d

dy
f
(
ν − ηy

τ

)

= −τ

η

[
e−y/y∗

y∗ f
(
ν − ηy

τ

)]∞

0

− τ

ηy∗

∫ ∞

0
dy

e−y/y∗

y∗ f
(
ν − ηy

τ

)
, (C4)

where we have performed an integration by parts. This means
that

d

dν
I+(ν) = c f (ν) − cI+(ν), c := τ

ηy∗ , (C5)

which is equivalent to(
1 + 1

c

d

dν

)
I+(ν) = f (ν). (C6)

We thus have the identity (62).

2. Negative contribution

Let us consider the quantity

I−(ν) :=
∫ 0

−∞
dy

ey/y∗

y∗ f
(
ν − ηy

τ

)
, (C7)
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with the boundary condition limν→±∞ f (ν) = 0. Let us dif-
ferentiate both sides as

d

dν
I−(ν) =

∫ 0

−∞
dy

ey/y∗

y∗
d

dν
f
(
ν − ηy

τ

)

= −τ

η

∫ 0

−∞
dy

ey/y∗

y∗
d

dy
f
(
ν − ηy

τ

)

= −τ

η

[
ey/y∗

y∗ f
(
ν − ηy

τ

)]0

−∞

+ τ

ηy∗

∫ ∞

0
dy

ey/y∗

y∗ f
(
ν − ηy

τ

)
, (C8)

where we have performed an integration by parts. This means
that

d

dν
I−(ν) = −c f (ν) + cI−(ν), c := τ

ηy∗ , (C9)

which is equivalent to(
1 − 1

c

d

dν

)
I−(ν) = f (ν). (C10)

We thus have the identity (85).

APPENDIX D: SUMMARY OF SPECIAL FUNCTIONS

Here we summarize special functions used in this paper.

1. Modified Bessel functions

The modified Bessel functions of the first and second
kinds, denoted by Iγ (x) and Kγ (x), respectively, are defined
by

Iγ (x) :=
∞∑

k=0

1

k!�(k + γ + 1)

( x

2

)2k+γ

, (D1a)

Kγ (x) := π

2

I−γ (x) − Iγ (x)

sin(γπ )
, (D1b)

which satisfy the modified Bessel equation

x2 d2y

dx2
+ x

dy

dx
− (x2 + γ 2)y = 0. (D1c)

2. Confluent hypergeometric function

The confluent hypergeometric functions of the first and
second kinds are defined by

1F1(a, b; x) := �(b)

�(b − a)�(a)

∫ 1

0
dt ext t a−1(1 − t )b−a−1,

(D2a)

1U1(a, b; x) := 1

�(a)

∫ ∞

0
dt e−xt t a−1(1 + t )b−a−1, (D2b)

respectively. These functions satisfy the confluent hypergeo-
metric differential equation

x
d2y

dx2
+ (b − x)

dy

dx
− ay = 0. (D3)

For positive c and β, an asymptotic formula is available for
large x,

1F1(c, β; x) ∝ �(β )

�(c)
exxc−β, 1U1(c, β; x) ∝ x−c. (D4)

3. Generalized Laguerre function

The generalized Laguerre function Lb
a(x) is defined as the

solution of the differential equation

x
d2

dx2
Lb

a(x) + (b + 1 − x)
d

dx
Lb

a(x) + aLb
a(x) = 0. (D5)

For positive c and β, an asymptotic formula is available for
large x,

L2c/β
−1−c/β (x) � �(c/β )

�(−c/β )�(1 + c/β )
exx−c/β . (D6)

4. Hypergeometric function

The hypergeometric function is defined as the solution of
the hypergeometric differential equation

z(1 − z)
d2y

dz2
+ [c − (a + b + 1)z]

dy

dz
− aby = 0. (D7)

The explicit analytic expansion is given by

2F1(a, b, c; z) :=
∞∑

k=0

(a)k (b)k

(c)k

zk

k!
(D8)

for |z| < 1 with the Pochhammer symbol (a)k := �(a +
k)/�(a) and (a)0 = 1. The hypergeometric function has the
integral representation

2F1(a, b, c; z)

:= �(c)

�(b)�(c − b)

∫ 1

0
t b−1(1 − t )c−b−1(1 − tz)−adt (D9)

for 0 < b < c and |z| < 1 with real numbers a, b, c, and z.
There is an identity

2F1(a, b, c; z) = (1 − z)−a
2F1

(
a, c − b, c;

z

z − 1

)
. (D10)

a. Useful identities

We state the following useful asymptotic formulas. For
n > 2 and large ν → +∞, the following asymptotic formula
holds:

ν2
2F1

(
1,

2

n
, 1 + 2

n
; −kνn

ν0

)
=

2π
n

sin 2π
n

(ν0

k

)2/n

︸ ︷︷ ︸
const

+o(ν0).

(D11a)

In addition, for n = 2 and large ν, we obtain

ν2
2F1

(
1, 1, 2; −kν2

ν0

)
= ν0

k
ln

(
kν2

ν0

)
+ o(ν0), (D11b)

where we have used the identity 2F1(1, 1, 2; x) = −x−1 ln(1 −
x).
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b. Crossover between n = 2 and n > 2

The formulas (D11) are qualitatively different for n = 2
and n > 2 because of the analytical singularity of 2F1 at n =
2. Here we consider the crossover between n = 2 and n > 2.
Since the expansion holds for n > 2,

2F1

(
1,

2

n
, 1 + 2

n
; −x

)
=

2π
n

sin 2π
n

x−2/n −
2
n

1 − 2
n

x−1 + O(x−2)

(D12)

for large x, by the substitution x = kνn/ν0, we obtain the
expansion in terms of the small parameter 1/x, valid for any
n > 2,

ν2
2F1

(
1,

2

n
, 1 + 2

n
; −kνn

ν0

)

� ν2
2π
n

sin 2π
n

x−1

(
x1−2/n − sin 2π

n

π
(
1 − 2

n

)
)

= ν0

k
ν−2ε/(1−ε) π (1 − ε)

sin πε

(
xε − sin πε

πε

)
, (D13)

with ε := 1 − 2/n > 0. By taking the limit ε ↓ 0 for a large
but fixed ν, we can apply

xε − 1

ε
� ln x + ε

2
(ln x)2 + · · · (D14)

to obtain

lim
ε↓0

{
ν2

2F1

(
1,

2

n
, 1 + 2

n
; −kνn

ν0

)}
� ν0

k
ln

(
kν2

ν0

)
, (D15)

recovering formula (D11b).
In contrast, even if ε > 0 is small, the first-order truncation

of expansion (D14) is not applicable for too large ν. Indeed,
the truncation is only valid for

ε

2
(ln x)2 � | ln x| �⇒ k

ν0
νn � e2/ε . (D16)

We thus obtain the characteristic intensity of this crossover as
λ∗ := ν0e2/ε .

APPENDIX E: SOLUTION OF AN INTEGRAL EQUATION

Here we study the solution of the integral equation with the
form ∫ ∞

−∞
dy ρ(y)φ(ν − y) − φ(ν) = 0, (E1)

which repeatedly appears in this paper, with the assumption
that φ(ν) is non-negative. We assume that the mark distribu-
tion is two sided

p+ :=
∫ ∞

0
ρ(y)dy > 0, p− :=

∫ 0

−∞
ρ(y)dy > 0 (E2)

and that the mean mark is nonpositive

m :=
∫ ∞

−∞
yρ(y)dy � 0. (E3)

1. Negative mean mark m < 0

Let us first consider the case with negative-mean mark m <

0. Let us assume that a special solution of Eq. (E1) is given by
an exponential,

φ(ν) � C0e−cν for large ν. (E4)

By substituting this solution into Eq. (E1), we obtain

�(c) = 0, �(x) :=
∫ ∞

−∞
ρ(y)(exy − 1)dy. (E5)

Based on this fact, we decompose the general solution of
Eq. (E1) as the superposition of exponentials

φ(ν) �
∑

i

Cie
−ciν for large ν, (E6)

where ci is the ith root of �(x) = 0. Because φ(ν) is non-
negative, oscillatory solutions (corresponding to ci being a
complex number) are excluded and thus ci must be a real
number. According to Appendix F, the solutions of �(x) = 0
are given by x = 0 and x = c∗ > 0. Thus, we obtain

φ(x) � C0 + C1e−c∗ν for large ν. (E7)

2. Zero mean mark m = 0

We next consider the case with zero-mean mark m ↑ 0.
According to Appendix F, the roots of �(x) = 0 are given
by x = 0 and x = c∗ > 0.

In the zero-mean mark limit m ↑ 0, the positive root c∗
approaches zero as shown here. Let us assume that the mean
mark is negative but very small such that m = −ε with a small
positive parameter ε > 0. The moment-generating function is
expanded around x = 0 as

�(x) = −εx + 〈y2〉x2

2
+ · · · , 〈y2〉 :=

∫ ∞

−∞
y2ρ(y)dy.

(E8)

For small ε, the positive root of �(x) = 0 is given by

c∗ = 2ε

〈y2〉 + o(ε) > 0, (E9)

which converges to zero for the small-ε limit: limε↓0 c∗ = 0.
Assuming a small positive ε, let us expand the solution

(E7) to obtain

φ(x) � C′
0 + C′

1x + O(C1ε
2),

C′
0 := C0 + C1, C′

1 := −C1c∗ = O(C1ε). (E10)

Since C0 and C1 are arbitrary constants, we can assume C1 =
O(ε−1), C′

0 = O(ε0), and C′
1 = O(ε0), where the divergence

of C1 is absorbed by an appropriate selection of C0. Under this
assumption, the solution is given by

φ(x) � C′
0 + C′

1ν + O(ε1), C′
0 = O(ε0), C′

1 = O(ε0).
(E11)

By taking the zero-mean limit ε ↓ 0, we obtain

φ(x) � C′
0 + C′

1ν for large ν (E12)

as the general solution.
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APPENDIX F: ANALYTICAL PROPERTIES OF THE
MOMENT-GENERATING FUNCTION �(x)

Here we summarize the analytical properties of the
moment-generating function

�(x) :=
∫ ∞

−∞
dy ρ(y)(exy − 1) (F1)

in the regime where the mean mark is nonpositive

m :=
∫ ∞

−∞
yρ(y)dy � 0 (F2)

and the mark distribution is two sided

p+ :=
∫ ∞

0
ρ(y)dy > 0, p− :=

∫ 0

−∞
ρ(y)dy > 0. (F3)

The moment-generating function �(x) is a strictly convex
function because

d2�(x)

dx2
=
∫ ∞

−∞
y2ρ(y)exydy > 0, (F4)

implying that �(x) has no more than one minimum.

1. Negative mean mark m < 0

Because we have assumed p+ = ∫∞
0 dy ρ(y) > 0, ρ(y) �=

0 in some finite region of y > 0. Therefore, the relation

m+ :=
∫ ∞

0
yρ(y)dy > 0 (F5)

must hold. Based on this fact, the following three properties
hold.

(i) The tangential line of the curve �(x) at x = 0 has a
negative slope:

d�(x)

dx

∣∣∣∣
x=0

=
∫ ∞

−∞
yρ(y)dy = m < 0. (F6)

(ii) The moment-generating function is zero at x = 0:

�(0) = 0. (F7)

(iii) The moment-generating function diverges to infinity
for large x

lim
x→∞ �(x) = ∞ (F8)

because

�(x) =
∫ ∞

0
dy ρ(y)(exy − 1) +

∫ 0

−∞
dy ρ(y)(exy − 1)

�
∫ ∞

0
dy ρ(y)xy +

∫ 0

−∞
dy ρ(y)(0 − 1)

= m+x − p− → ∞, (F9)

where we have used exy � xy + 1 for x � 0 and exy > 0 for
all x. These properties imply that the minimum of �(x) exists
at some x∗

min > 0 as depicted in Fig. 13(a) and that the roots
of �(x) = 0 are given by x = 0 and x = c∗ > 0.

minimum
(negative)

infi
nit
y(a) (b)

tangent to the    axis

FIG. 13. Schematic of the shape of the moment-generating func-
tion �(x). Here �(x) is strictly convex and takes specific values
�(0) = 0, �(+∞) = ∞, and d�(0)/dx = m. (a) For negative m,
the tangential line at x = 0 has a negative slope d�(0)/dx = m < 0.
The minimum occurs at x = x∗

min > 0 and the roots of �(x) = 0 are
given by x = 0 and x = c∗ > 0. (b) In the zero-mean mark limit
m ↑ 0, c∗ approaches zero and thus the only root of �(x) = 0 is given
by x = 0.

2. Zero mean mark m = 0

Let us consider the case where the mean mark is zero m =
0, which is realized typically for symmetric mark distributions
ρ(y) = ρ(−y). Under this condition, the minimum occurs at
x = 0 because

d�(x)

dx

∣∣∣∣
x=0

= 0. (F10)

This implies that the solution of �(x) = 0 is x = 0, which is
a double root [see Fig. 13(b)]. The appearance of the double
root can be understood as the zero-mean mark limit of the
negative-mean mark regime. While c∗ is positive for m < 0,
it approaches zero in the zero-mean mark limit: limm↑0 c∗ = 0
(see the discussion in Appendix E 2).

In the special case of symmetric mark distributions ρ(y) =
ρ(−y), the moment-generating function can be transformed
into

�(x) =
∫ ∞

−∞
ρ(y)(cosh xy − 1)dy. (F11)

Also, considering the geometrical shape [see Fig. 13(b)], the
equation

�(x) = ax (F12)

has a single positive root for positive a.

3. Special cases

For reference, we summarize several results for specific
mark distributions.

a. Gaussian mark distribution

Let us consider the Gaussian mark distribution

ρ(y) = 1√
2πσ 2

e−(y−m)2/2σ 2
, (F13)

with mean mark m and variance σ 2. The corresponding
moment-generating function is given by

�(x) = emx+σ 2x2/2 − 1, (F14)
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which leads to the explicit formula for the root of �(c∗) = 0
as

c∗ = −2m

σ 2
. (F15)

b. Two-sided exponential asymmetric mark distribution

We next consider the case of the two-sided exponential
asymmetric mark distribution

ρ(y) =
⎧⎨
⎩

p+
y∗+

e−y/y∗
+ , y � 0

p−
y∗−

ey/y∗
− , y < 0,

(F16)

where p+ + p− = 1, y∗
+ > 0, and y∗

− > 0. The mean mark is
given by

m := y∗
+ p+ − y∗

− p− < 0. (F17)

We obtain

�(x) = p+y∗
+x

1 − y∗+x
− p−y∗

−x

1 + y∗−x
, (F18)

which leads to

c∗ = p−y∗
− − p+y∗

+
y∗+y∗−

= − m

y∗+y∗−
> 0 (F19)

as the unique positive root of �(c∗) = 0.

APPENDIX G: PROOFS OF MATHEMATICAL PROPERTIES OF H [EQ. (208)]

Here we summarize the proofs of the main mathematical properties of H defined by Eq. (208).

1. Proof that eigenvalues are real

We show that all eigenvalues of H are real numbers as follows. First, H can be symmetrized as H̄ , defined by

H̄ := AHA−1 =

⎛
⎜⎜⎜⎜⎜⎝

1
τ1

− h̃1 −
√

h̃1h̃2 · · · −
√

h̃1h̃K

−
√

h̃2h̃1
1
τ2

− h̃2 · · · −
√

h̃2h̃K
...

...
. . .

...

−
√

h̃K h̃1 −
√

h̃K h̃2 · · · 1
τK

− h̃K

⎞
⎟⎟⎟⎟⎟⎠, A :=

⎛
⎜⎜⎜⎜⎝

√
h̃1 0 · · · 0

0,
√

h̃2 · · · 0
...

...
. . .

...

0 0 · · ·
√

h̃K

⎞
⎟⎟⎟⎟⎠. (G1)

Indeed, by representing all the matrices by their elements H̄ := (H̄i j ), H := (Hi j ), and A := Ai j , we obtain

H̄i j =
∑
k,l

AikHklA
−1
l j =

∑
k,l

√
h̃iδik

(
δkl

τk
− h̃l

)√
1

h̃ j
δl j = δi j√

τiτ j
−
√

h̃ih̃ j . (G2)

Since H̄ is a symmetric matrix, all their eigenvalues are real. We obtain

Hei = λiei ⇐⇒ H̄ (Aei ) = λi(Aei ). (G3)

This relationship implies that any of the eigenvalues of H are the same as that of H̄ . Thus, all the eigenvalues of H are likewise
real.

2. Determinant

The determinant det H is derived as follows. Let us recall the invariance of determinants

det H = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1

a2
...

a j
...

aK

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1

a2
...

a j + cak
...

aK

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(G4)

for any constant c. This implies that

det H = det

⎛
⎜⎜⎜⎜⎝

a1

a2

a3
...

aK

⎞
⎟⎟⎟⎟⎠ = det

⎛
⎜⎜⎜⎜⎝

a1

a2 − a1

a3
...

aK

⎞
⎟⎟⎟⎟⎠ = det

⎛
⎜⎜⎜⎜⎝

a1

a2 − a1

a3 − a1
...

aK

⎞
⎟⎟⎟⎟⎠ = · · · = det

⎛
⎜⎜⎜⎜⎝

a1

a2 − a1

a3 − a1
...

aK − a1

⎞
⎟⎟⎟⎟⎠ := det

⎛
⎜⎜⎜⎜⎜⎜⎝

a′
1

a′
2

a′
3
...

a′
K

⎞
⎟⎟⎟⎟⎟⎟⎠ (G5)
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and

det H = det

⎛
⎜⎜⎜⎝

a′
1

a′
2
...

a′
K

⎞
⎟⎟⎟⎠ = det

⎛
⎜⎜⎜⎝

a′
1 + τ2h̃2a′

2
a′

2
...

a′
K

⎞
⎟⎟⎟⎠ = det

⎛
⎜⎜⎜⎝

a′
1 + τ2h̃2a′

2 + τ3h̃3a′
3

a′
2
...

a′
K

⎞
⎟⎟⎟⎠ = · · · = det

⎛
⎜⎜⎜⎝

a′
1 +∑K

k=2 τkh̃ka′
k

a′
2
...

a′
K

⎞
⎟⎟⎟⎠, (G6)

with constants {τkh̃k}k . Using these relations, the determinant of H is given by

det H = det

⎛
⎜⎜⎜⎝

−h̃1 + 1/τ1 −h̃2 · · · −h̃K

−h̃1 −h̃2 + 1/τ2 · · · −h̃K
...

...
. . .

...

−h̃1 −h̃2 · · · −h̃K + 1/τK

⎞
⎟⎟⎟⎠

← a1

← a2
...

← aK

= det

⎛
⎜⎜⎜⎝

(1 − τ1h̃1)/τ1 −h̃2 · · · −h̃K

−1/τ1 1/τ2 · · · 0
...

...
. . .

...

−1/τ1 0 · · · 1/τK

⎞
⎟⎟⎟⎠

← a′
1 = a1

← a′
2 = a2 − a1

...

← a′
K = aK − a1

= det

⎛
⎜⎜⎜⎝
(
1 −∑K

k=1 τkh̃k
)
/τ1 0 · · · 0

−1/τ1 1/τ2 · · · 0
...

...
. . .

...

−1/τ1 0 · · · 1/τK

⎞
⎟⎟⎟⎠

← a′′
1 = a′

1 + ∑K
k=2 τkh̃ka′

k← a′′
2 = a′

2
...

← a′′
K = a′

K

= 1 −∑K
k=1 τkh̃k

τ1 · · · τK
. (G7)

Notably, det H = 0 at criticality η = 1. This singularity is consistent with the singularity of the inverse matrix H−1, as discussed
in Appendix G 3.

3. Inverse matrix

The inverse matrix of H is derived from the method of row reduction⎛
⎜⎜⎜⎝

−h̃1 + 1/τ1 −h̃2 · · · −h̃K 1 0 · · · 0

−h̃1 −h̃2 + 1/τ2 · · · −h̃K 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...

−n1/τ1 −n2/τ2 · · · −nK/τK + 1/τK 0 0 · · · 1

⎞
⎟⎟⎟⎠

← b1

← b2
...

← bK

→

⎛
⎜⎜⎜⎝

(1 − τ1h̃1)/τ1 −h̃2 · · · −h̃K 1 0 · · · 0
−1/τ1 1/τ2 · · · 0 −1 1 · · · 0

...
...

. . .
...

...
...

. . .
...

−1/τ1 0 · · · 1/τK −1 0 · · · 1

⎞
⎟⎟⎟⎠

← b′
1 = b1

← b′
2 = b2 − b1

...

← b′
K = bK − b1

→

⎛
⎜⎜⎜⎝

(1 − η)/τ1 0 · · · 0 1 −∑K
k=2 τkh̃k τ2h̃2 · · · τK h̃K

−1/τ1 1/τ2 · · · 0 −1 1 · · · 0
...

...
. . .

...
...

...
. . .

...

−1/τ1 0 · · · 1/τK −1 0 · · · 1

⎞
⎟⎟⎟⎠

← b′′
1 = b′

1 + ∑K
k=2 τkh̃kb′

k
← b′′

2 = b′
2

...

← b′′
K = b′

K

→

⎛
⎜⎜⎜⎝

1 0 · · · 0 τ1 + τ1n1/(1 − η) τ1n2/(1 − η) · · · τ1nK/(1 − η)
−τ2/τ1 1 · · · 0 −τ2 τ2 · · · 0

...
...

. . .
...

...
...

. . .
...

−τK/τ1 0 · · · 1 −τK 0 · · · τK

⎞
⎟⎟⎟⎠

← b′′′
1 = τ1

1−η
b′′

1

← b′′′
2 = τ2b′′

2
...

← b′′′
K = τK b′′

K

→

⎛
⎜⎜⎜⎝

1 0 · · · 0 τ1 + τ 2
1 h̃1/(1 − η) τ1τ2h̃2/(1 − η) · · · τ1τK h̃K/(1 − η)

0 1 · · · 0 τ2τ1h̃1/(1 − η) τ2 + τ 2
2 h̃2/(1 − η) · · · τ2τK h̃K/(1 − η)

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 τKτ1h̃1/(1 − η) τKτ2h̃2/(1 − η) · · · τK + τ 2
K h̃K/(1 − η)

⎞
⎟⎟⎟⎠

← b′′′′
1 = b′′′

1
← b′′′′

2 = b′′′
2 + τ2

τ1
b′′′

1
...

← b′′′′
K = b′′′

K + τ2
τ1

b′′′
1

(G8)
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with the branching ratio η defined by

η :=
K∑

k=1

τkh̃k . (G9)

This relation implies

H−1 =

⎛
⎜⎜⎜⎝

τ1 + τ 2
1 h̃1/(1 − η) τ1τ2h̃2/(1 − η) · · · τ1τK h̃K/(1 − η)

τ2τ1h̃1/(1 − η) τ2 + τ 2
2 h̃2/(1 − η) · · · τ2τK h̃K/(1 − η)

...
...

. . .
...

τKτ1h̃1/(1 − η) τKτ2h̃2/(1 − η) · · · τK + τ 2
K h̃K/(1 − η)

⎞
⎟⎟⎟⎠ (G10)

or equivalently

H−1
i j = τiδi j + τiτ j h̃ j

1 − η
(G11)

in the representation by matrix elements. The above calculation can be directly confirmed as follows:

HH−1 = I ⇐⇒
K∑

j=1

Hi jH
−1
jk =

K∑
j=1

(
−h̃ j + 1

τ j
δi j

)(
τ jδ jk + τ jτkh̃k

1 − η

)
= δik . (G12)

The inverse matrix has a singularity at η = 1, corresponding to the criticality of the ramp Hawkes process.

4. Eigenvectors of H

Since H is directly associated with the real symmetric
matric H̃ , H can be diagonalized such that

P := (e1, . . . , eK ), P−1HP =

⎛
⎜⎜⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λK

⎞
⎟⎟⎠

(G13)

with eigenvectors {ek}k=1,...,K and corresponding eigenvalues
{λk}k=1,...,K .

At criticality η = 1, the smallest eigenvalues is zero such
that λ1 = 0. In addition, the zero eigenvector e1 is explicitly
given by

e1 =

⎛
⎜⎜⎝

τ1

τ2
...

τK

⎞
⎟⎟⎠. (G14)

Indeed, we can directly confirm the relationship

He1 =

⎛
⎜⎜⎜⎜⎝

1
τ1

− h̃1 −h̃2 · · · −h̃K

−h̃1
1
τ2

− h̃2 · · · −h̃K
...

...
. . .

...

−h̃1 −h̃2 · · · 1
τK

− h̃K

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎝

τ1

τ2
...

τK

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

1 − η

1 − η
...

1 − η

⎞
⎟⎟⎠ = 0 for η :=

K∑
k=1

τkh̃k = 1. (G15)

We next consider the representation based on the
eigenvectors

X =

⎛
⎜⎜⎜⎝

X1

X2
...

XK

⎞
⎟⎟⎟⎠ := P−1s, P−1 =

⎛
⎜⎜⎝

g1
g2
...

gK

⎞
⎟⎟⎠. (G16)

On the basis of this representation, we obtain

dX1

dl
= 0 + O(X 2),

dXk

dl
= −λkXk + O(X 2) for k � 2.

(G17)

This implies that the leading-order contribution comes from
the X1 direction such that |X1|  |Xk| with k � 2. We can
approximate

X =

⎛
⎜⎜⎝

X1

0
...

0

⎞
⎟⎟⎠+ O(X 2) �⇒ s = PX � X1e1 + O(X 2).

(G18)

By direct substitution, we can confirm that g1 is given by

g1 =
(

τ1h̃1

〈τ 〉 , . . . ,
τK h̃K

〈τ 〉

)
, 〈τ 〉 :=

K∑
k=1

τ 2
k h̃k . (G19)

Indeed, this implies that X1 is given by

X1 = g1 · s = 1

〈τ 〉
K∑

k=1

τkh̃ksk, (G20)

which leads to

dX1

dl
= 1

〈τ 〉
K∑

k=1

τkh̃k
dsk

dl
= 0 + O(X 2). (G21)
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Thus, we find that the first-order contribution is absent in Eq. (G21), confirming the correctness of the representation of
Eq. (G19). In addition, this representation (G19) is consistent with the identity

P−1P =

⎛
⎜⎜⎝

g1
g2
...

gK

⎞
⎟⎟⎠(e1, e2, . . . , eK

) =

⎛
⎜⎜⎜⎝

τ1h̃1/〈τ 〉 τ2h̃2/〈τ 〉 · · · τK h̃K/〈τ 〉
© © · · · ©
...

...
. . .

...

© © · · · ©

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

τ1 © · · · ©
τ2 © · · · ©
...

...
. . .

...

τ2 © · · · ©

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎞
⎟⎟⎠,

(G22)

where © represents some unspecified value.6 Thus, we find
that Eq. (G19) is the correct and consistent representation.

APPENDIX H: SUMMARY OF ASYMPTOTIC FORMS
OF THE LAPLACE TRANSFORM

Here we summarize the asymptotic forms of the Laplace
transform, in particular for power-law distributions. Let us
first recall the Tauberian theorem for the Laplace transform
of asymptotic power-law functions [56].

Theorem. Let us consider a function f (x) satisfying the
asymptotic form

f (x) � xρ−1L(x) for large x, (H1)

with 0 < ρ < ∞ and slowly varying function L(x).
By definition, a slowly varying function satisfies
limx→∞[L(Cx)/L(x)] = 1 for any positive constant C.
The Laplace transform of f (x) has the asymptotic form

f̃ (s) := L1[ f (x); s] � �(ρ)s−ρL

(
1

s

)
for small s. (H2)

Using this theorem, let us consider the Laplace transform
of power-law functions f (x) � Ax−1−a for various a and pos-
itive constant A.

1. Negative case: a < 0

For a < 0, the Tauberian theorem can be readily applied to
obtain

f̃ (s) � A′sa, A′ := A�(−a) > 0 for small s. (H3)

2. Positive case: 0 < a < 1

Let us consider the relation

f̃ (s) =
∫ ∞

0
f (x)e−sxdx

= [−F (0)(x)e−sx]∞0 − s
∫ ∞

0
F (0)(x)e−sxdx

= F (0)(0) − sL1[F (0)(x); s], F (0)(x) :=
∫ ∞

x
f (x′)dx′.

(H4)

6If we set g1 = ( τ1 h̃1
c , . . . ,

τK h̃K
c ) with some constant c �= 〈τ 〉, the

identity P−1P = E does not hold with the unit vector E, while the
relation dX1/dl = 0 + O(s2) still holds. Therefore, c must be 〈τ 〉 for
self-consistency.

Here we notice that the asymptotic tail of F (0)(x) satisfies the
condition of the Tauberian theorem such that

F (0)(x) �
∫ ∞

x

Adx

x1+a
= A

a
x−a for large x. (H5)

By applying the Tauberian theorem, we obtain

f̃ (s) � F (0)(0) − A′sa + o(sa), A′ := A

a
�(1 − a) > 0.

(H6)

When f (x) is a PDF, F (0)(0) = ∫∞
0 dx f (x) = 1 and we ob-

tain

f̃ (s) � 1 − A′sa + o(sa). (H7)

3. General positive case: Noninteger 0 < a

Let us introduce the integer m := �a� = max{k ∈ Z | k �
a} with the set of integers Z, satisfying m � a � m + 1, and
the iterated integral of f (x):

F (l )(x) :=
∫ ∞

x
dxl+1

∫ ∞

xl+1

dxl · · ·
∫ ∞

x2

dx1 f (x1). (H8)

We find that we can apply the Tauberian theorem to F (m)(x)
because

F (m)(x) � A(−1)m+1

(−a)(1 − a) · · · (m − a)
xm−a

= A(−1)m+1 �(−a)

�(m − a + 1)
xm−a (H9)

with −1 < m − a < 0. Due to the identity

L1[F (l )(x); s] = F (l+1)(0) − sL1[F (l+1)(x); s], (H10)

we obtain an asymptotic relation for small s,

L1[ f (x); s] =
m∑

k=0

(−s)kF (k)(0) + (−s)m+1L1[F (m)(x); s]

�
m∑

k=0

(−s)kF (k)(0) + A�(−a)sa + o(sa).

(H11)

Since the iterated integral satisfies the identity

F (l )(x) = 1

l!

∫ ∞

x
(x′ − x)l f (x′)dx′, (H12)
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we find that F l (0) is proportional to the lth-order moment Ml

when f (x) is a PDF:

Ml :=
∫ ∞

0
xl f (x)dx = l!F (l )(0). (H13)

Stated differently,

L1[ f (x); s] �
m∑

k=0

(−1)kMk

k!
sk + A′sa + o(sa),

A′ := A�(−a). (H14)

Since A is positive for f (x) to be a PDF, i.e., f (x) � 0, A′ must
be negative (positive) for even (odd) m.

APPENDIX I: NUMERICAL IMPLEMENTATION

This Appendix describes our numerical method for the
simulation of the NLH processes. Our starting point is the
Markovian SDE (18) for the discrete sum of exponentials. We
introduce a discretized time series {ti}i and time steps 	ti :=
ti+1 − ti, satisfying 0 = t0 < t1 < · · · < tNT = Ttot . Given that
the intensity of the state-dependent Poisson process is given
by λ̂(t ) = G(ẑ(t )), the discrete version of the SDE (18) is
given by

ẑk (ti + 	ti ) = ẑk (ti )e
−	/tiτk

+
{

0 (probability 1 − G(ẑ(tk ))	tk )

h̃k ŷi (probability G(ẑ(tk ))	tk )
(I1)

with the independent and identically distributed random
number sequence {ŷi}i obeying the mark distribution ρ(y).
Given that G(ẑ(tk ))	tk must be sufficiently small such that
G(ẑ(tk ))	tk � 1 for a proper probability interpretation, we
employ an adaptive scheme for the time discretization

	ti = min

{
	t (1)

max,
	t (2)

max

G(ẑ(ti))

}
(I2)

because the intensity G(ẑ(ti )) sometimes takes extremely large
values near criticality. For this setup, we obtained an empirical
intensity distribution by assuming ergodicity as

Pss(λ) = lim
t→∞〈δ(λ − λ̂(t ))〉

= lim
Ttot→∞

1

Ttot

∫ Ttot

0
δ(λ − G(ẑ(t )))dt

� 1

Ttot

NT−1∑
i=0

δ(λ − G(ẑ(ti )))	ti. (I3)

For its practical implementation, we have applied a parallel
computing technique for better convergence. We have ob-
tained the empirical intensity distribution as

Pss(λ) =
〈

lim
Ttot→∞

1

Ttot

∫ Ttot

0
δ(λ − G(ẑ(t )))dt

〉

� 1

NPC

NPC∑
j=1

⎛
⎜⎝ 1

Ttot

N ( j)
T −1∑
i=0

δ
(
λ − G

(
ẑ( j)(t ( j)

i

)))
	t ( j)

i

⎞
⎟⎠,

(I4)

where ẑ( j)(t ) is the trajectory obtained in the jth parallel
thread and NPC is the number of total parallel threads.

1. Ramp intensity map without inhibitory effect (Fig. 10)

We describe the setup for Fig. 10, where the intensity
function is given by the ramp function and the mark takes a
single value as

G(ẑ) := max

{
K∑

k=1

ẑk − ν1, ν0

}
, ρ(y) = δ(y − 1), (I5)

with any positive number ν0 and any real number ν1.

a. Figure 10(a)

The parameters are given by K = 2, (τ1, τ2) = (1, 2),
(h̃1, h̃2) = (0.7, 0.149 95), η = 0.9999, ν0 = 0.01,
ν1 � 0.385, Ttot = 5 × 106, 	t (1)

max = 0.1, and 	t (2)
max = 0.01

with the initial condition (ẑ1(0), ẑ2(0)) = (1, 1). Since
α2 = 1, we obtain the power-law exponent a � 1.0 from
Eq. (198). The total number of parallel threads is given by
NPC = 4.

b. Figure 10(b)

The parameters are given by K = 3, (τ1, τ2, τ3) = (1, 2, 3),
(h̃1, h̃2, h̃3) = (0.5, 0.15, 0.1999/3), η = 0.9999, ν0 = 0.01,
ν1 � 0.147, Ttot = 5 × 106, 	t (1)

max = 0.1, and 	t (2)
max = 0.01

with the initial condition (ẑ1(0), ẑ2(0), ẑ3(0)) = (1, 1, 1).
Since α2 = 1, we obtain the power-law exponent a � 0.5
from Eq. (198). The total number of parallel threads is given
by NPC = 4.

c. Figure 10(c)

The parameters are given by K = 3, (τ1, τ2, τ3) = (1, 2, 3),
(h̃1, h̃2, h̃3) = (0.5, 0.15, 0.1999/3), η = 0.9999, ν0 = 0.01,
ν1 = 0, Ttot = 5 × 105, 	t (1)

max = 0.1, and 	t (2)
max = 0.01 with

the initial condition (ẑ1(0), ẑ2(0), ẑ3(0)) = (1, 1, 1). Since
α2 = 1, we obtain the power-law exponent a = 0 from
Eq. (198). The total number of parallel threads is given by
NPC = 4.

2. MSA intensity map with inhibitory effect (Fig. 11)

We describe the setup for Fig. 11, where the intensity map
and the mark distribution are given by the exponential func-
tion with finite cutoff and the normal distribution, respectively,
such that

G(ẑ) = min

{
λ0 exp

(
β

K∑
k=1

ẑk

)
, λmax

}
,

ρ(y) = 1√
2πσ 2

e−y2/2σ 2
. (I6)

a. Figure 11(a)

The parameters are given by K = 3, (τ1, τ2, τ3) =
(1, 0.5, 2), (h̃1, h̃2, h̃3) = (0.5, 0.6, 0.1), λ0 = 0.01, β = 6,
λmax = 106, σ = 0.3, Ttot = 5 × 106, 	t (1)

max = 0.1, and
	t (2)

max = 0.01 with the initial condition (ẑ1(0), ẑ2(0), ẑ3(0)) =
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(0, 0, 0). The total number of parallel threads is given by
NPC = 8.

b. Figure 11(b)

The parameters are given by K = 3, (τ1, τ2, τ3) =
(1, 0.5, 2), (h̃1, h̃2, h̃3) = (0.5, 0.6, 0.1), λ0 = 0.001, β =
10, λmax = 106, σ = 0.3, Ttot = 5 × 105, 	t (1)

max = 0.1, and
	t (2)

max = 0.01 with the initial condition (ẑ1(0), ẑ2(0), ẑ3(0)) =
(0, 0, 0).

3. Brownian motion with ν̂-dependent
diffusion constant (Fig. 12)

For Fig. 12 we describe the numerical method for the
Brownian motion with the ν̂-dependent diffusion constant

governed by the SDE (266). The numerical simulation is
based on the discrete version

ν̂(ti + 	ti ) =
{
ν̂(ti ) + √

g̃[ν̂(ti )]	tiξ̂G
i , ν̂(ti ) � 0

0, ν̂(ti ) < 0,
(I7)

with independent Gaussian random number ξ̂G
i . For Fig. 12

we employ the model

g̃(ν̂) = λ0eβν̂ , 	ti = min

{
	t (1)

max,
	t (2)

max

g̃[ν̂(ti)]

}
, (I8)

with λ0 = 10−4, β = 3, 	t (1)
max = 0.1, and 	t (2)

max = 0.01. The
total time of the simulation was T = 5 × 105 and the total
number of parallel threads was NPC = 4.
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