
PHYSICAL REVIEW RESEARCH 5, 013066 (2023)
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A chiral quantum Hall (QH) edge state placed in proximity to an s-wave superconductor experiences induced
superconducting correlations. Recent experiments have observed the effect of proximity coupling in QH edge
states through signatures of the mediating process of Andreev reflection. We present the microscopic theory be-
hind this effect by modeling the system with a many-body Hamiltonian, consisting of an s-wave superconductor,
subject to spin-orbit coupling and a magnetic field, which is coupled by electron tunneling to an integer QH edge
state. By integrating out the superconductor we obtain an effective pairing Hamiltonian in the QH edge state. We
clarify the qualitative appearance of nonlocal superconducting correlations in a chiral edge state and analytically
predict the suppression of electron-hole conversion at low energies (Pauli blocking) and negative resistance as
experimental signatures of Andreev reflection in this setup. In particular, we show how two surface phenomena
of the superconductor, namely, Rashba spin-orbit coupling and a supercurrent due to the Meissner effect, are
essential for the Andreev reflection. Our work provides a promising pathway to the realization of Majorana zero
modes and their parafermionic generalizations.
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I. INTRODUCTION

When electrons are confined to a two-dimensional inter-
face, thus forming a two-dimensional electron gas (2DEG), a
strong externally applied magnetic field causes the quantum
Hall (QH) effect, where the bulk becomes an insulator while
the edges host chiral one-dimensional (1D) conducting states.
Some features of the quantum Hall effect can be understood
in a semiclassical picture: Electrons can form cyclotron orbits
in the two-dimensional bulk, but near the 1D edge the orbits
are disturbed and turn into “skipping orbits” along the edge,
effectively leading to chiral charge transport.

When such an edge state is coupled to a superconduc-
tor (SC), superconducting correlations can be induced in the
former through tunneling of electrons across the interface.
However, as single-particle tunneling into a superconductor
is strongly suppressed due to the energy gap, the dominating
tunneling process will involve pairs of particles performing
Andreev reflection. This can be understood as two electrons
from the edge-state tunneling as a pair into the superconduct-
ing condensate or, in the semiclassical picture, as an edge
electron being retroreflected as a hole, leading to an effective
hybridization of the QH edge state and SC surface [1–4]; see
Fig. 1(a).

Andreev reflection in the absence of a strong magnetic
field has been well studied in both experiment and theory
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for decades [5]. The coexistence of superconductivity and a
QH phase, however, poses a challenge because the magnetic
field must be strong enough to reach the QH phase of the
2DEG but not so strong as to suppress superconductivity.
This is why experimental indications of Andreev reflection
in a QH edge were observed only very recently through
transparent interfaces with high-field superconductors [6–8].
Signatures of Andreev reflection have been observed in the
form of Cooper pair transport between two superconductors
through a graphene sheet in the QH phase [9,10], as well as
signatures of electrons being converted into holes in current
passing a superconducting electrode [11,12]. The details of
these signatures have been found to depend on disorder in both
the 2DEG [13] and the SC [14]. Crossed Andreev reflection,
where an electron is transmitted across a narrow SC as a hole,
has also been observed in graphene in both the integer [15]
and fractional [16] QH phases and is under active theoretical
investigation [17,18].

In addition to the demonstration of a fascinating effect,
these experiments pave the way for novel applications in
quantum technology. If two counterpropagating edge states
are coupled via crossed Andreev reflection, a gap is opened
which is topologically different from the gap induced by direct
tunneling between the edge states [19,20]. It has been pre-
dicted that a domain wall between these types of gapped edge
states should host Majorana fermions in the case of the integer
QH effect and parafermions, a generalization of Majorana
fermions, in the case of fractional QH states [21,22]. These
can be applied as topologically protected qubits [23,24] and
fractional transistors [25].

The experimental observations of signatures of Andreev
reflection still require a deeper theoretical understanding. The
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FIG. 1. In the semiclassical picture (a), an electron performs
a skipping orbit along the QH edge, changing from electron to
hole with each Andreev reflection at the QH/SC interface. As the
hole is retroreflected with opposite momentum of the electron, no
momentum transfer occurs. In the quantum mechanical view (b),
an incoming electron (solid arrows) can tunnel across the QH/SC
interface, which induces particle-hole mixing (dash-dotted arrows)
in the chiral QH edge state. This can result in an incoming electron
being transmitted as a hole (dashed arrow) across the interface. For a
clean interface, tunneling conserves momentum and can only occur
in the presence of a supercurrent at the SC surface.

experiments involve s-wave SCs, where Cooper pairing oc-
curs between two electrons with opposite spins and zero total
momentum. However, in the lowest QH edge state, spins are
polarized due to the Zeeman effect, and still Andreev reflec-
tion is observed even for 2DEGs with no inherent spin-flip
mechanisms (graphene in particular). In addition, the semi-
classical picture involves an electron retroreflected as a hole,
with no momentum transfer, while a more accurate quantum
mechanical description of the problem treats the proximitized
edge state as a hybridized particle-hole plane-wave state [2,3].
In this description, tunneling between the edge state and the
bulk Cooper pair condensate should be heavily suppressed
by conservation of momentum parallel to the interface; see
Fig. 1(b). In the absence of a strong spin-flip mechanism in
the 2DEG, and for macroscopically long interfaces, observing
Andreev reflection would then seem to break spin and mo-
mentum conservation.

In this paper we provide a resolution of these issues
through a detailed analysis of a many-body tunneling model of
a type-II SC tunnel coupled to a spin-polarized QH edge state.
A spin-flip mechanism is provided at the SC surface in the
form of Rashba spin-orbit coupling (SOC), and the screening
current due to the Meissner effect in the SC is explicitly taken
into account. By integrating out the SC, we find an effective
1D p-wave pairing Hamiltonian at low energies in the edge
state. We show that the edge state can inherit SOC from the
SC surface, which is of particular importance for the case of
graphene, which has negligible SOC itself, as suggested in
Refs. [15,16]. The proposed model also makes it clear that in
the tunneling limit, the shift of Cooper pair momentum due

to the screening current allows momentum-conserving chiral
Andreev reflection in the edge state. The present model thus
offers a qualitative explanation for the experimental observa-
tions of Refs. [11,12].

Our investigation of the tunneling limit differs from pre-
vious works [2,3,26], where the system was modeled in the
limit of a highly transparent interface, and Andreev reflection
was possible due to evanescent single-electron excitations
in the SC. With a many-body approach, we show that the
low-transparency limit differs qualitatively from this case by
the introduction of a resonance condition for tunneling. The
systematic microscopic approach we follow provides the ad-
ditional benefit that it allows for future extensions towards
interacting electron systems such as the effective chiral Lut-
tinger liquid edge state of fractional QH systems.

The structure of this paper is as follows: In Sec. II we
will describe the three individual ingredients of the system,
namely, the SC, the QH system, and the tunneling Hamilto-
nian coupling them. In Sec. III, we show how integrating out
the SC gives rise to an induced pairing term and induced SOC
in the QH system. In Sec. IV we analyze possible experimen-
tal signatures of the induced superconducting correlations. In
Sec. V, we discuss the main results, and in Sec. VI we present
our conclusions. Throughout the paper we use units of h̄ = 1.

II. MODEL

To investigate chiral Andreev reflection between a QH
edge state and a SC, we consider an interface represented as a
tunneling barrier along the x axis between a semi-infinite SC
at y < 0 and a semi-infinite 2DEG in the x-y plane at y > 0;
see Fig. 1. We apply a strong homogeneous magnetic field
perpendicular to the QH plane with field strength B0, which
is below the critical field of the SC and falls off exponen-
tially in the superconductor due to the Meissner effect. For
simplicity we start by assuming that the SC is thick enough
that no thin-film effects come into play, while discussion of
more complicated cases follows later in the paper. The total
magnetic field is then

B = B0[ey/λ�(−y) + �(y)]ez, (1)

where λ is the London penetration depth, � is the Heaviside
step function, and ez is the unit vector in the z direction. The
vector potential A corresponding to the magnetic field must
be continuous at the interface. It is convenient to choose the
London gauge for the SC region, i.e., ∇ · A = 0. In this gauge,
A → 0 inside the SC (y � 0), and A has no normal compo-
nent to the SC surface (Ay = 0). Inside the 2DEG (y > 0) we
choose the Landau gauge, A = −B0(y + λ)ex with ex parallel
to the interface, which preserves translation invariance in x
and z, and where the addition of λ ensures continuity at y = 0.
The total vector potential thus unifies the two gauges and
remains continuous throughout space [3],

A(y) = −B0[λey/λ�(−y) + (y + λ)�(y)]ex. (2)

The London gauge [27,28] allows for straightforward calcula-
tion of the screening current presented later in this paper.

We will now introduce the Hamiltonians for each part of
the system, with all energies measured with respect to the
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FIG. 2. A sketch of the relative energy scales of the SC and QH
systems. All energies are measured with respect to the center of the
SC gap. The relationships in the plot are not to scale, e.g., |�0| � μs.

center of the bulk SC gap. A reference sketch of the energy
scales is provided in Fig. 2.

A. Quantum Hall edge state

The quantum Hall material in the z = 0, y > 0 region is
described by a two-dimensional electron gas (2DEG) in a
homogeneous magnetic field, with Hamiltonian

HQH = 1

2me
(q + eA(y))2 − U0, (3)

where q = (qx, qy) is the two-dimensional momentum opera-
tor of an electron in the 2DEG, me is the electron mass, and e is
the elementary charge. We have introduced the energy shift U0

reflecting the band offset between the 2DEG and the SC. In the
chosen Landau gauge, the eigenstates of this Hamiltonian are
plane waves in the x direction (∝ eiqxx, where qx is the canon-
ical x-momentum), while in the y direction they are harmonic
oscillator eigenstates with eigenvalues (1/2 + n)ωc − U0 with
non-negative integer n and cyclotron frequency ωc = eB0/me.
These latter states are centered around the guiding center
coordinate YGC = qx�

2 − λ, corresponding to the harmonic
oscillator minimum, with magnetic length � = 1/

√
eB0. Due

to translational invariance, qx is a good quantum number,
and the bulk dispersion is quantized into Landau levels, i.e.,
equidistant energy levels with macroscopic degeneracy in the
quantum number qx. At the edge of the QH material (y →
0+), the Landau levels bend upwards [29] causing conducting
edge states to propagate chirally around the edge of the mate-
rial. This is caused by the squeezing of the bulk states induced
by the termination of the system at y = 0; see Fig. 3. The
interface between a QH system and vacuum is conventionally
modeled by hard-wall boundary conditions at y = 0. We will
adopt this assumption for the present calculation and will
discuss the consequences of more realistic, softer boundary
conditions for the tunnel barrier to the SC in Sec. V.

A numerical solution for the dispersion of states near the
hard wall was put forward in Ref. [30], which we complement
here by an adjusted version of the approximate analytic solu-
tion of Ref. [31] to be used for further analysis. We consider

FIG. 3. The eigenstates of the QH Hamiltonian are harmonic
oscillator states in the y dimension in the bulk. The guiding center
coordinate YGC corresponds to the spatial minimum of the harmonic
oscillator (solid black curves); as it approaches and passes the hard
wall at y = 0 (solid black line), the states are squeezed and their
energy is increased. Two examples are shown in the figure, an edge
state with YGC = −1.5� to the left and a bulk state with YGC = 5�

to the right. In each case the first three eigenstates are shown (solid
colored curves) with dashed colored lines indicating the energy of
the corresponding eigenstate. The eigenstates were found using the
renormalized Numerov method.

the lowest Landau level, n = 0, and impose two conditions
which determine the approximate edge dispersion up to a con-
stant shift. These conditions lead to an analytical dispersion
which reproduces numerical results to a good approximation.
First, we assume that the dispersion is quadratic and that for
YGC � � we recover the bulk Landau levels. Second we re-
quire that in the bulk, YGC > �, the energy is ωc/2 − U0, while
at the wall, YGC = 0, the energy is 3ωc/2 − U0, i.e., the ground
state of the halved harmonic oscillator [30]. These conditions
yield the edge-state dispersion of the lowest Landau level

Eq = ωc

4�2
�(2� − q�2 + λ)(2� − q�2 + λ)2 − EF , (4)

where we used q ≡ qx as a shorthand and have defined the
Fermi energy EF

EF ≡ U0 − ωc

2
, (5)

which is tunable via the shift U0. Fixing U0 allows us to define
the Fermi momentum qF in equilibrium by EqF = 0, as well
as the Fermi velocity vF , both of which are functions of EF ,

qF (EF ) = 2

�

⎛
⎝1 + λ

2�
−

√
EF

ωc

⎞
⎠,

vF (EF ) = ∂qEq|q=qF = −�
√

EF ωc = −
√

EF

me
. (6)

Due to the choice of gauge in Eq. (2), λ appears in the QH
edge spectrum. This reflects the gauge dependence of the
canonical momentum and ensures the gauge independence
of the energy. Note that the gauge-independent quantities
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FIG. 4. The edge dispersion with EF = ωc/2 of the lowest Lan-
dau level corresponding to the increase in energy due to eigenstates
being squeezed against the wall; see Fig. 3. The red dots indicate the
actual dispersion as calculated numerically using the renormalized
Numerov method. The lower, blue curve shows the approximate an-
alytical expression of Ref. [31], which is accurate at higher energies,
while the upper, red curve shows the modified approximation in
Eq. (4), which is more accurate for low energies.

EF and vF are λ independent, whereas the canonical Fermi
momentum qF is gauge dependent and thus can depend on
λ. Compared with the approximative spectrum in Ref. [31],
we have replaced � → 2� inside the square and the Heaviside
function, as well as ωc/2�2 → ωc/4�2. These substitutions
provide a more accurate approximation for low energies. We
compare the two approximations with numerical results found
using the renormalized Numerov method in Fig. 4 and refer
the reader to Appendix A for more information on the numer-
ical method.

In the following, we will assume that the QH system is at
filling factor ν = 1, corresponding to a filled lowest Landau
level and one edge channel. While in principle our model also
applies to higher filling factors where interesting oscillatory
phenomena occur [2,3], we note that the superconducting
proximity effect can induce cross-channel interactions [32,33]
which are not captured by the presented model. We therefore
limit the discussion to energies below the second Landau
level. In the low-temperature limit and at ν = 1, we can model
the edge channel as a noninteracting 1D system with Hamil-
tonian

Hedge =
∑

q

Eqψ
†
q ψq, (7)

where Eq is defined in Eq. (4) and ψq is the annihilation
operator for an edge electron with momentum q.

B. Superconductor

One of the main challenges for the experimental realization
of the proposed system is to retain a superconducting state in
a strong magnetic field. Experiments involve relatively thin
films of dirty superconductors, such as NbN [15] and MoRe
[9,11], whose superconducting parameters are intricate and
very specific to the details of the material [34–36]. The fun-
damental physics of a conventional SC is, however, generic.
In the interest of reaching an analytically tractable model,

we have therefore decided to resort to a simplified model
of the SC. While we should thus not expect this model to
provide quantitative predictions, it will nonetheless give an
accurate qualitative description of the system because the chi-
ral Andreev reflection arises from the basic physical principles
common to all superconductors.

We therefore start from a BCS Hamiltonian describing an
s-wave SC in a magnetic field

HBCS =
∑

σ

∫
d3r

[
c†
σ (r)

(
[−i∇ + eA(y)]2

2ms
− μs

)
cσ (r)

− (�0c†
↑(r)c†

↓(r) + H.c.)

]
, (8)

where cσ (r) is the annihilation operator for an electron with
spin σ at position r = (x, y, z), ms is the effective electron
mass, μs is the chemical potential, and �0 is the supercon-
ducting order parameter in the form of a complex-valued
constant. To highlight the role of the screening (Meissner) su-
percurrent induced by the magnetic field, we will formulate an
equivalent momentum-space Hamiltonian where the magnetic
field effect is entirely expressed in terms of the supercurrent.
The current density can be expressed as js = nsevs, where
ns is the carrier density and vs = ks/ms is the carrier group
velocity [37]. In the London gauge [27] the current density
is directly related to the vector potential through the Lon-
don equation js = −nse2A/ms, letting us identify ks = −eA.
Specifically, Eq. (2) implies

ks(y) = eB0λey/λex (9)

for y � 0. The current runs parallel to the interface along the
x axis with a magnitude which decays exponentially towards
the SC bulk over a length given by the magnetic penetration
depth λ. In the following, the amplitude of the supercurrent
will matter for the tunnel coupling to the QH system. We
see from Eq. (8) that the effect of the magnetic field at the
surface is a shift of the x-momentum. Gauging away this shift
by transforming cσ (r) → eiks (y)xcσ (r), we see that such a shift
is equivalent to multiplying a plane-wave phase factor by the
order parameter �0 of the SC.

At energies within the SC gap, tunneling between the
superconductor and the QH edge state is only possible by
breaking a Cooper pair in the superconducting condensate.
Since this costs energy of order �0, the relevant length
scale for tunneling is given by the superconducting coherence
length ξ [38]. Experiments on the proposed setup [9,11,12,15]
involve primarily type-II SCs where λ � ξ . For example,
the ratio λ/ξ is between 10 and 100 for thin films of NbN
[15,34,36] and MoRe [11,35,36]. Therefore, at the depths into
which electrons can tunnel, we can neglect the y dependence
of the screening supercurrent and thus approximate the vector
potential by its constant value at the interface. This approxi-
mation allows us to simply use eA = −ksex with

ks = |ks(y = 0)| = eB0λ = λ/�2. (10)

Applying this approximation to Eq. (8) and focusing on de-
grees of freedom of the superconductor within a distance ξ

from the QH system, we can describe the relevant SC surface
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states by the Hamiltonian

H surface
BCS =

∑
σ

∫
d3r

[
c†
σ (r)

(
− 1

2ms
∇2 − μs

)
cσ (r)

− (�0e−2iksxc†
↑(r)c†

↓(r) + H.c.)

]
. (11)

If we Fourier-transform Eq. (11) and change variables to δk =
k − ks, we find

H surface
BCS =

∑
δk,σ

[
εks+δkc†

ks+δk,σ
cks+δk,σ

+ (
�0c†

ks+δk,↑c†
ks−δk,↓ + H.c.

)]
, (12)

where εk = k2/2ms − μs. We conclude that under the as-
sumption of negligible y dependence of the screening current,
the screening of the magnetic field in a type-II SC corresponds
to pairing at the surface occurring between electrons with a
total center-of-mass momentum of ks.

For Andreev reflection to occur between an s-wave SC and
a spin-polarized edge state, some spin-flip mechanism must be
present. In experimental work on crossed Andreev reflection
at low filling factors [15,16], the required spin-flip mecha-
nism is proposed to be SOC in the SC material. While the
geometry of these experiments does not directly correspond
to that treated in this paper, we nevertheless expect SOC to be
present at the surface of a high-field SC following the same
arguments. We can then investigate the effect of this SOC
in our model by considering Rashba SOC at the SC surface,
which can be modeled by adding the term [39]

HSOC = α
∑

k

(kz + ikx )c†
k,↑ck,↓ + H.c., (13)

where α is the Rashba SOC strength. We then find the total
SC surface Hamiltonian, valid within the tunneling distance
of the interface, to be given by

Hsc = H surface
BCS + HSOC

=
∑
δk,σ

[
εks+δkc†

ks+δk,σ cks+δk,σ

+ (
�0c†

ks+δk,↑c†
ks−δk,↓ + H.c.

)
+ (

α[δkz + i(δkx + ks)]c†
ks+δk,↑cks+δk,↓ + H.c.

)]
.

(14)

For ks = ksex, we of course have δkz = kz, but we maintain
the above notation for the sake of consistency and generality.
We note that earlier works have assumed the necessary spin-
flip mechanism to be part of the tunneling Hamiltonian [32]
or due to Rashba SOC in the 2DEG [26]. These approaches
also allow Andreev reflection, but the present model has the
benefits of applying equally to a 2DEG with negligible SOC
such as graphene, as well as elucidating the role of SOC in the
induced pairing after integrating out the SC, as will be shown
in Sec. III.

We note that the derivation above assumes a simple
quadratic dispersion of the SC material and requires a well-
defined momentum. This can be a good approximation even

for the complicated vortex structure of a type-II supercon-
ductor [40]. We note that the presence of vortices allows
the magnetic field to penetrate the SC, decreasing the ampli-
tude of the Meissner current at the surface and thus ks. To
describe superconductors with high critical fields, the param-
eters entering the Hamiltonian should thus not be regarded as
microscopic parameters, but rather as effective parameters of
the low-energy theory.

Previous works have shown that for a highly transparent
interface, the screening current is not the only source of inter-
face supercurrent [2,3,26]. If the coupling is strong, QH edge
electrons penetrate into the SC in the form of an evanescent
wave which is exponentially damped into the SC but is a
plane-wave state parallel to the interface. This state has the
same x-momentum as the edge state, and thus a supercurrent
is induced by the proximity of the QH edge state. Our present
model describes a qualitatively different situation, where the
coupling between QH edge state and SC is weak, such that
evanescence is negligible and the Meissner effect is the only
source of surface supercurrent. The effect of evanescence
could be taken into account by modifying ks, but that is be-
yond the scope of this paper.

C. Tunneling

The origin of Andreev reflection is the tunneling of single
electrons from the QH edge state into the SC near the inter-
face. Weak tunneling across the interface can be described
as single-electron tunneling between electronic states with
identical spin states within a limited range in the y and z
dimensions. Assuming the tunneling to be local in the fields
ψ (x) and c↑(r), the tunneling Hamiltonian is given by

Htunn = γ
√

wzwy

∫ Lx/2

−Lx/2
dx [ψ†(x)c↑(x, 0, 0) + H.c.]

= �
∑
q,k

δq,kx (ψ†
q ck,↑ + H.c.), (15)

where the second line is the Fourier transform of the position-
space expression. We have here defined

� = γ

√
wzwy

LzLy
, (16)

representing an effective tunneling amplitude with γ being
the associated energy, while wy,z are effective widths of the
interface in the y and z directions and Ly,z are the lengths of the
SC in the y and z directions. The Kronecker delta δq,kx reflects
the fact that local tunneling and translational invariance along
the x axis together imply conservation of x-momentum. Thus
tunneling can only occur between electron states with the
same momentum in the x direction.

III. INDUCED SUPERCONDUCTIVITY

We now have a complete description of the system in the
Hamiltonian

H = Hedge + Hsc + Htunn, (17)

with the terms given in Eqs. (7), (14), and (15), respec-
tively. Due to Andreev reflection an effective superconducting
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correlation will be induced into the QH edge state through
the proximity effect. We will investigate this by integrating
out the superconductor and finding an effective low-energy
edge-state Hamiltonian for the hybrid Andreev edge state with
superconducting pairing.

To diagonalize the SC surface Hamiltonian Hsc, we
perform a Bogoliubov transformation and treat the SOC per-
turbatively to first order. Without SOC, the SC Hamiltonian is
twofold degenerate in spin; so we perform degenerate pertur-
bation theory to first order in both energy and eigenstates. The
resulting first-order Hamiltonian

H (1)
sc =

∑
δk

∑
j=±

ε
(1)
δk, jd

†
δk, jdδk, j (18)

has the eigenvalues

ε
(1)
δk,± = δkxks

ms
+ ζδk

± α

∣∣∣∣ks + (δkx + iδkz )
εδk + Es

ζδk

∣∣∣∣, (19)

where we have defined Es = k2
s /2ms and

ζδk =
√

(εδk + Es)2 + |�0|2. (20)

We have furthermore introduced the basis of the quasiparticle
operators dδk, j , which is defined explicitly below. It is impor-
tant to note that the model depends on the assumptions that
in comparison to the minimal excitation energy of the SC, the
SOC amplitude is small enough to enable perturbative treat-
ment, and the tunneling amplitude is small enough to neglect
retardation when integrating out the SC; see Appendix B.
Since the minimal excitation energy depends on the first term
of Eq. (19), we assume this shift to be not too strong. In other
words, we consider the case when the Meissner current is far
from the critical current where the linear term of Eq. (19), the
Doppler shift [41], closes the SC energy gap. We can then
estimate the upper limit on ks as follows: Assuming α = 0
and |Es| � μs, the new minimum excitation energy [37] is
approximately given by

min
(
ε

(1)
δk,±

∣∣
α=0

) = |�0| − |kF |ks

ms
, (21)

where k2
F /2ms = μs. To remain below the critical current, we

then must have

ks <
|�0|ms

|kF | . (22)

We will assume this condition to hold henceforth.
The quasiparticle operators dδk, j are related to the electron

operators in the superconductor ck,σ by(
cks+δk,↑
c†

ks−δk,↓

)

= 1√
2

(−uδk vδk
v∗

δk u∗
δk

)(−ie−iθ+dδk,1 + ie−iθ+dδk,2

e−iθ−d†
−δk,1 + e−iθ−d†

−δk,2

)
, (23)

where

θ± = 1

2
Arg

(
ks ± (δkx + iδkz )

εδk + Es

ζδk

)
(24)

and uδk, vδk are the Bogoliubov transformation parameters,

|uδk|2 = 1

2

(
1 + εδk + Es

ζδk

)
, (25a)

|vδk|2 = 1

2

(
1 − εδk + Es

ζδk

)
, (25b)

with phases adding up to that of the superconducting order
parameter, arg(uδk ) + arg(vδk ) = arg(�0).

Expressing the tunneling Hamiltonian in the quasiparticle
basis leaves us with a total Hamiltonian which depends on the
quasiparticle fields d and the edge-state electron fields ψ . To
integrate out the superconductor, we translate this Hamilto-
nian to the corresponding Euclidian action

S = Sedge[ψ,ψ†] + S(1)
sc [d, d†] + Stunn[ψ,ψ†, d, d†]. (26)

Integrating out the superconductor corresponds to performing
a functional integral over the Grassmann fields for the quasi-
particles d , which yields an effective QH edge-state action
Seff

edge = Sedge + δS (see Appendix B for details). This proce-
dure shows that the tunneling gives rise to an effective retarded
interaction within the QH edge state. In the low-energy limit,
the retardation can be neglected, and the effective action can
be translated back to the corresponding Hamiltonian

H eff
edge =

∑
δq

[(
Eks+δq + δEδq

)
ψ

†
ks+δqψks+δq

+ (
�δqψ

†
ks+δqψ

†
ks−δq + H.c.

)]
, (27)

where we have defined the momentum variable

δq = q − ks, (28)

which measures the edge electron momentum relative to ks. In
Eq. (27), δEδq is a correction to the edge-state dispersion, and
�δq is the effective pairing amplitude. We notice furthermore
that the induced pairing in Eq. (27) acts between electrons
with total momentum 2ks due to the presence of the Meissner
current. Hence we can expect that the effect of pairing is
strongest for qF ≈ ks. Using Eq. (6) and the definition of ks

in Eq. (10), this entails

EF ≈ ωc, (29)

which means that the Fermi level of the QH system should be
close to the second Landau level; see Fig. 2.

In that case, the interplay between the edge states of the two
Landau levels might become important, as has been shown
using a phenomenological model [32,33]. However, the res-
onance condition (29) is a consequence of the Landau level
edge dispersion depicted in Fig. 4. This spectrum has been de-
rived under the assumption of hard-wall boundary conditions
at y = 0. In contrast, a smoother confining potential would
generally lower the resonance energy to values EF < ωc. To
account for this effect, we will use the variable � to denote
the offset between the center of the superconducting gap and
the Fermi level of the QH edge state. For hard-wall boundary
conditions, we have

� = ωc − EF . (30)

The total effective Hamiltonian is then a modified edge-
state Hamiltonian with added pairing between same-spin
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electrons at momenta ks ± δq. We diagonalize it to find the
spectrum of the edge states with induced superconductivity

E eff
δq,± = 1

2

[
Ẽδq − Ẽ−δq ±

√(
Ẽδq + Ẽ−δq

)2 + 4|�δq|2
]
, (31)

where

Ẽδq = Eks+δq + δEδq, (32)

and using Eq. (4),

Eks+δq = ωc�
2

4
�(2/� − δq)(2/� − δq)2 − EF

≈ � + vF δq. (33)

In the last line we expanded the energy to first order in δq
and introduced the Fermi velocity vF ≡ vF (ωc) = −ωc� =
−√

eB0/me [see Eq. (6)]. In the next section we will present
the exact expressions for �δq and δEδq.

Pairing and dispersion

Diagonalizing the effective edge-state Hamiltonian lets us
express the induced pairing contribution to this Hamiltonian
analytically. Due to the fermionic nature of the fields, �δq is
an odd function in δq, and we can express it as �δq = (�̃δq −
�̃−δq )/2, with

�̃δq = i|�0|�2α
∑
ky,kz

ksζκ + (εκ + Es)δq

ζ 2
κ (δqks/ms + ζκ )2

, (34)

where κ = (δq, ky, kz ) and we have ignored terms of or-
der O(α2) to be consistent with the perturbation calculation
above. Note that since this effective pairing is the result of in-
tegrating out the SC, it only depends on parameters of the SC
and the tunneling Hamiltonian, as well as the dimensionality
of the edge system. The same result can thus be extended to
induced pairing in any 1D system.

For small momenta δq we can describe the induced pairing
as only the linear (p-wave) component

�δq  i

2
�pδq, (35)

with �p = −2i∂δq�δq|δq=0 ∈ R. Assuming macroscopic di-
mensions Ly, Lz of the SC allows us to approximate the sum
in Eq. (34) with an integral, which leads to

�p = 2�0msα�2
L

π |�0|3
{

|�0|
( |�0|2/4 + Es(Es − μs)

|�0|2 + (Es − μs)2

)

+ Es

[
arctan

(
Es − μs

|�0|
)

− π

2

]}
, (36)

where �L = �
√

LzLy. This can be simplified further by not-
ing that in a metallic superconductor we have Es, |�0| � μs,
leading to the approximate expression

�p  −2�0msα�2
L

Es

|�0|3 . (37)

This expression makes it clear that a nonzero induced
pairing amplitude requires Rashba SOC (α �= 0), a Meiss-
ner supercurrent (Es �= 0), and electron tunneling (�L �=
0). Note that the induced pairing amplitude �δq in the

FIG. 5. The effective dispersion in Eq. (31) for different Fermi
energies, with linearized versions of δEδq and �δq. Solid and dot-
ted curves denote particlelike (E eff

δq,+) and holelike (E eff
δq,−) bands,

respectively. The inset shows the avoided crossing for EF > ωc. The
dispersion has been calculated for ms = 10me, μs = 0.4 × 104ωc,
|�0| = 40ωc, λ = 0.8�, and �L = α = ωc�.

low-energy theory involves a factor of 1/|�0| which is pro-
portional to the coherence length ξ of a Cooper pair in the
SC. This is a consequence of the induced p-wave pairing
in a chiral edge state ψ (x)ψ (x′)  (x′ − x)ψ (x)∂xψ (x) 
ξψ (x)∂xψ (x) ∝ �−1

0 ψ (x)∂xψ (x).
In addition to the induced pairing, the proximity effect

modifies the kinetic energy by the shift

δEδq = 2�2
∑
ky,kz

εκ + Es − δqks/ms

ζ 2
κ − (δqks/ms)2

. (38)

Taking the small-δq limit as above, we find δEδq = δE0 +
δvδq, where

δE0 = δEδq=0 (39)

and

δv = ∂δqδEδq|δq=0. (40)

Explicitly, we find

δv = − ks�
2
L

π |�0|
[
π

2
− arctan

(
Es − μs

|�0|
)]

 −ks�
2
L

|�0| , (41)

where we used the approximation Es, |�0| � μs for the final
expression. This should be regarded as a renormalization of
the Fermi velocity vF defined in Eq. (6) due to the tunneling
to the superconductor.

The induced constant shift δE0 formally diverges logarith-
mically due to the infinite limits on the sum in Eq. (38);
however, in practice we only sum up to the SC bandwidth,
and we can thus absorb δE0 into the U0 shift and ignore it
throughout the rest of the paper. We note that the kinetic en-
ergy modification δEδq depends on the supercurrent but does
not require SOC. This reflects the fact that the supercurrent
allows tunneling to occur, while the SOC allows the spin
singlet pairing of the SC to induce spin triplet pairing in the
QH edge.

Using Eqs. (36) and (41), we plot the effective dispersion
given by Eq. (31) in Fig. 5. The dispersion consists of two
bands which are similar to the particle-hole bands of a QH
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FIG. 6. The amplitudes of the particle state |ũδq|2 (solid curves)
and the hole state |ṽδq|2 (dashed curves) in the eigenstates of the ef-
fective Hamiltonian, as given by Eqs. (42a) and (42b). For illustrative
purposes, the deviations from the identity are chosen to be small, i.e.,
|EF /ωc − 1| ∼ 10−9. The parameters are the same as in Fig. 5.

edge without induced superconductivity, but the correspond-
ing states are now hybrid particle-hole states. We note that
for EF > ωc the bands have an avoided crossing, while for
EF < ωc they do not.

The eigenstates of the effective Hamiltonian in Eq. (27)
are linear combinations of particle and hole states, with am-
plitudes given by the Bogoliubov transformation parameters

|ũδq|2 = 1

2

(
1 + Ẽδq + Ẽ−δq(

Ẽδq + Ẽ−δq
)2 + 4|�δq|2

)
, (42a)

|ṽδq|2 = 1

2

(
1 − Ẽδq + Ẽ−δq(

Ẽδq + Ẽ−δq
)2 + 4|�δq|2

)
, (42b)

where |ũδq|2 is the amplitude of the particle state and |ṽδq|2
is the amplitude of the hole state. The energy Ẽδq is defined
in Eq. (32). These are shown in Fig. 6 for various values of
� = ωc − EF , and we see that at � = 0 the system undergoes
a phase transition, as originally described in Ref. [42]. In the
next section, we will investigate the impact of this transition
point on transport through the system.

IV. NORMAL-SUPERCONDUCTOR-NORMAL JUNCTION

A useful experimental signature of induced superconduc-
tivity in a chiral edge state is the resistance measured across
a superconducting electrode interfaced with the 2DEG. The
induced superconducting correlations correspond to a mixing
of electron and hole states, leading to a finite probability of
an electron being converted into a hole as it passes the SC.
This can be detected experimentally as a negative effective
resistance [11,12] for the geometry treated below, as well as
for geometries allowing crossed Andreev reflection [15,16].

Let us consider the four-terminal system of Fig. 7 at
filling ν = 1 and with μ2 = 0. We will first derive the trans-
fer matrices across the normal-superconductor-normal (NSN)
junction, which lets us define the probability Ph of an electron
being transmitted across the junction as a hole in a process

2DEG

SC

AES

~

FIG. 7. A sketch of an experimental measurement of the down-
stream resistance R̃23 = dV3/dI , where V3 = μ3/e. A current I is
injected from lead 4 to 2, while the two voltage probes (left and right)
measure μ1 and μ3. Measuring R̃23 < 0 indicates the presence of the
Andreev edge state (AES). Note that the choice of energy gauge in
this paper leads to μ2 = 0.

similar to crossed Andreev reflection. Due to the chirality of
the edge state, there is no backscattering and thus no Andreev
reflection within the edge state. We will then investigate the
four-terminal scattering problem to relate Ph to the differential
downstream resistance R̃23 = dV3/dI , where V3 = μ3/e.

The starting point of the scattering calculation is the Hamil-
tonian in Eq. (27), which governs the QH edge state with
induced superconductivity. To simplify the scattering calcu-
lation, we linearize the Hamiltonian in |δq| � ks, such that

H lin
edge = 1

2

∑
δq

(p†
δq h†

δq)[M(δq) + �σz]

(
pδq

hδq

)
, (43)

with

M(δq) =
(

vF + δv i�p

−i�p vF + δv

)
δq, (44)

where we assumed �p to be positive without loss of generality
and where σz is a Pauli matrix. Moreover, we introduced
Nambu spinors consisting of the modes p†

δq = ψ
†
ks+δq and

h†
δq = ψks−δq. We note that this further linearization does not

account for the avoided crossings seen in Fig. 6, and so
moving forward we consider only the case � > 0, i.e., ωc >

EF > 0. This corresponds to the case where the quantum Hall
system is in the lowest Landau level.

In order to determine the scattering matrix for transport
from lead 1 to lead 3 of Fig. 7, we consider an infinite 1D
edge state along the x axis subject to induced superconduc-
tivity over a finite length L. For this purpose, we need to
construct a position-space representation of Eq. (43). Fourier-
transforming (43) and taking into account Hermiticity, one
finds the effective Hamiltonian for the NSN junction,

HNSN = − i

4

∫
dx(p†(x) h†(x)){M(x), ∂x}

(
p(x)
h(x)

)

+ �

2

∫
dx(p†(x) h†(x))σz

(
p(x)
h(x)

)
, (45)
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where {·, ·} is the anticommutator and

M(x) =
(

vF (x) i�p(x)
−i�p(x) vF (x)

)
. (46)

In the superconducting region (x ∈ [−L/2, L/2]), we assume
that �p(x) ≡ �p = const, while �p(x) = 0 otherwise. More-
over, we assume that |�p(x)| < |vF (x)| for all x, which makes
M(x) positive definite. In this limit we can, for clarity, con-
sider the Fermi velocities in the normal and superconducting
sections as equal, i.e., vF (x) = vF = const. This can be done
without loss of generality since the results turn out to only
depend on the value of vF (x) in the superconducting region
due to the lack of backscattering modes.

The problem has now been cast in the form of a
Bogoliubov–de Gennes Hamiltonian, with which we can
find the energy eigenstates for a spatially inhomogeneous
superconducting system [26]. By integrating the single-
particle Schrödinger equation Hφ(x) = Eφ(x) corresponding
to Eq. (45) over small intervals near the interfaces at x =
±L/2, one can derive the boundary conditions A(x+)φ(x+) =
A(x−)φ(x−), where A(x) = √

M(x) and the superscripts +
and − denote the position infinitesimally far to the right
and left of the discontinuity, respectively. As A(x) is dis-
continuous near these points, φ(x) is discontinuous at the
interfaces as well. We solve the single-particle Schrödinger
equation in each region and use the boundary condition to
connect the solutions. This allows us to derive the transfer ma-
trix TSN relating the scattering states on both sides of a given
interface, e.g., φ(L/2−) = TSNφ(L/2+), as well as the trans-
fer matrix across the superconducting region, φ(−L/2+) =
TSSφ(L/2−). Taking into account the boundary conditions, we
find the total transfer matrix for the full system φ(−L/2−) =
TNSNφ(L/2+) for a scattering state with energy E to be

TNSN =
(

tpp tph

thp thh

)
= e−2ivF EL/ṽ2

F

×
⎛
⎝cos

(
L
L̃

) + i�L̃
ṽF

sin
(

L
L̃

) − 2�pEL̃
ṽ2

F
sin

(
L
L̃

)
2�pEL̃

ṽ2
F

sin
(

L
L̃

)
cos

(
L
L̃

) − i�L̃
ṽF

sin
(

L
L̃

)
⎞
⎠,

(47)

where thp is the amplitude of a particle being transmitted as a
hole and we have defined the parameters

ṽF =
√

v2
F − �2

p, (48)

L̃ = ṽ2
F√

4�2
pE2 + ṽ2

F �2
. (49)

From the scattering matrix, we can extract the probability of
converting an electron entering the NSN junction at position
x = L/2+ into a hole exiting it at position x = −L/2− as Ph =
|thp|2,

Ph(E ) = 1

1 + 1
4 (�/E )2[(vF /�p)2 − 1]

× sin2

(√
4 + (�/E )2[(vF /�p)2 − 1]

(vF /�p)2 − 1

EL

�p

)
. (50)

Due to unitarity, we have Pp = |tpp|2 = 1 − Ph. The expres-
sion consists of a Lorentzian prefactor and a squared sine fac-
tor which depends on the length of the interface L. The oscil-
lating part describes Fabry-Pérot resonances due to repeated
Andreev reflections inside the superconducting region. As
discussed in Refs. [11,12], the interference causing the oscil-
lation can be understood by expressing the hole transmission
amplitude as Ph(E ) ∝ sin2[qph(E )L/2], where qph(E ) is the
momentum difference between the particlelike and holelike
states, both with energy E , propagating through the SC region.

The Lorentzian prefactor is independent of L and describes
the maximum electron-hole conversion rate. It vanishes ∝
(�p/vF )2 for small �p. Moreover, assuming that �p � vF ,
it vanishes ∝ (�pE/vF �)2 at small energies |E | � |�|. This
is a consequence of Pauli blocking [32,33,43] as the p-
wave pairing �p cannot act between two electrons at E = 0.
On the other hand, the prefactor approaches unity ∝ 1 −
(vF �/�pE )2 at energies |E | � |�|. In this case, an incoming
electron with energy E can in principle be paired with an elec-
tron with energy −E . However, this reasoning breaks down
when |E | approaches |�0|. Whether the pairing takes place
also depends on the availability of electrons at these energies,
which will be accounted for by the Fermi functions which will
appear in the following calculation of the current.

An experimentally accessible quantity which carries infor-
mation about Ph(E ) is the differential downstream resistance
R̃23 in the four-terminal setup shown in Fig. 7. Here, terminals
1 and 3 act as voltage probes (i.e., 〈I1,3〉 = 0) with respective
chemical potentials μ1,3. Moreover, a current I is injected
via terminal 4 and, due to current conservation, leaves the
setup via the grounded superconductor at terminal 2. One can
extend the Landauer-Büttiker formalism [44] to account for
both particles and holes (see Appendix C). In the basis of
incoming and outgoing particles and holes at leads 1, 3, and
4, the unitary scattering matrix reads

T =
⎛
⎝ 0 0 12

TNSN 0 0
0 12 0

⎞
⎠. (51)

Using the Landauer-Büttiker formula (C5) and assuming zero
temperature to replace the Fermi functions by step functions,
we arrive at the expression for the current in the different
terminals,

〈I1〉 = 1

2π
(μ1 − μ4),

〈I3〉 = 1

2π

∫ ∞

0
dE [�(−E + μ3) − �(−E − μ3)

+ [1 − 2Ph(E )](�(−E − μ1) − �(−E + μ1))],

〈I4〉 = 1

2π
(μ4 − μ3). (52)

Since terminals 1 and 3 are voltage probes, we have 〈I1,3〉 = 0,
while the injected current leads to 〈I4〉 = I . These constraints
allow us to express all chemical potentials as a function of the
injected current I

I = 1

π

∫ μ1(I )

0
dEPh(E ),

μ3 = μ1(I ) − 2π I. (53)
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FIG. 8. The hole transmission probability Ph with |vF /�p| = 2
as a function of the system length L (in units of �p/μ1) and the de-
tuning from resonance � (in units of μ1). Negative resistance occurs
for Ph > 1/2, and the Ph = 1/2 contours are marked by solid black
curves. Note that we assume � > 0 in this plot as this corresponds
to the lowest Landau level.

A few rearrangements then allow us to finally evaluate the
differential resistance

R̃23 = 1 − 2Ph[μ1(I )]

2Ph[μ1(I )]

h

e2
, (54)

where we have restored physical units with h being the
Planck constant and e being the elementary charge. This is the
energy-dependent extension of the corresponding expression
derived in Ref. [11].

In general, it is not possible to determine μ1(I ) analytically
from Eq. (53). However, to linear order in the injected current
I , we can expand the integral and Eq. (54) to find

R̃23 ∝ [P′′
h (0)I2]−1/3. (55)

The peculiar scaling of the differential resistance as a function
of bias current is due to the p-wave pairing which enforces
Ph(0) = 0 as well as to the particle-hole symmetry which
leads to Ph(E ) ∝ E2 for small energies.

Experimentally, a negative downstream resistance R̃23 < 0
is used as the primary indicator of induced superconducting
correlations [11,12]. We see from Eq. (54) that a negative
resistance occurs when Ph > 1/2. In Fig. 8 the hole transmis-
sion probability Ph(μ1) is plotted as a function of �/μ1 and
μ1L/�p. The contours where Ph = 1/2 are marked by thick
black curves. We immediately see that there are several is-
lands of negative resistance. The behavior of Ph along the line
�/μ1 is determined by the Lorentzian prefactor in Eq. (50).
In particular, no negative resistance is found beyond the half
width at half maximum (HWHM) of this Lorentzian, which
occurs at ∣∣∣∣�HWHM

μ1

∣∣∣∣ = 2√
(vF /�p)2 − 1

. (56)

Along the μ1L/�p axis, hole transmission peaks occur at the
values

μ1L

�p
= π (2n + 1)[(vF /�p)2 − 1]

2
√

4 + (�/μ1)2[(vF /�p)2 − 1]
, (57)

with integer n. At resonance, � = 0, the induced correla-
tions are strong, and perfect hole conversion Ph = 1 becomes

possible despite the model being in the tunneling limit, corre-
sponding to low interface transparency.

V. DISCUSSION

The work presented in this paper constitutes an analytical
prediction of the behavior of induced superconductivity in the
QH edge. It furthermore complements related work in taking
into account the SOC originating in the SC, rather than in
the 2DEG [26] or as an abstract spin-flip mechanism at the
interface [32,33]. It is expected that considering the SOC as
originating in the SC corresponds well with experiments using
Nb-based SCs [45]; see, e.g., Refs. [15,16].

In Sec. IV we predicted negligible hole conversion in the
limit μ1 = 0 due to Pauli blockade as well as due to the
p-wave nature of the induced pairing, and we only find Ph >

1/2 and thus negative resistance away from this limit. We
note that previous experimental results [11] include significant
hole conversion in the μ1 = 0 limit, which can be explained
by the experiment being at higher filling factors, which avoids
the Pauli blockade.

We also predict that Andreev reflection at the interface is
strongly suppressed away from the resonance condition � =
0. While our model only explicitly concerns filling factor ν =
1, it can be most straightforwardly extended to higher filling
factors by adding higher Landau levels while ignoring cross
interactions between the channels. The resonance condition
would then occur once per Landau level. Previous numerical
work [3] has found that Andreev reflection can occur at any
energy across the Hall plateaus for high transparency, while
lowering the transparency suppresses the process except at
one energy per Hall plateau. While further investigation of this
result would be needed, the resonance condition predicted in
this paper is in agreement with the tendency indicated in the
numerical results. Our results thus also suggest that varying
the transparency of the interface may account for the differ-
ence between observing patches of induced superconductivity
on a range of filling factors such as in Ref. [9], and observing
induced superconductivity at a continuous range of filling
factors such as in Refs. [11,12].

It is worth noting that in the presented model the resonance
condition allowing strong Andreev reflection occurs when the
edge-state Fermi energy approaches the second Landau level
from below. This is a problematic limit due to the appear-
ance of the next Landau level and the ensuing cross-channel
interactions. However, this resonance condition was derived
for hard-wall boundary conditions, whereas more realistic soft
boundaries lower the resonance energy and bring it between
Landau levels. This is consistent with Ref. [3], which indicates
that for higher interface transparency the resonance energy
shifts downwards.

As illustrated in Fig. 9, for a fixed ratio vF /�p, the down-
stream resistance exhibits fast (slow) oscillations for high
(low) values of μ1L/�p. As discussed in Sec. IV, this re-
flects the oscillations of Ph(μ1) ∝ sin2[qph(μ1)L/2] with the
particle-hole state momentum difference

qph = 2

√
4 + (�/μ1)2[(vF /�p)2 − 1]

(vF /�p)2 − 1

μ1

�p
. (58)
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FIG. 9. For a fixed |vF /�p| = 2, we predict increased resistance
oscillations with increased μ1L/�p, here shown with two examples
of R̃23(�/μ1) at fixed values of μ1L/�p. At μ1L/�p = 2.5 we
have slow oscillations, i.e., not a full oscillation within the negative
resistance region, while for μ1L/�p = 100 we have fast oscillations.

We note that this prediction represents a rigorous derivation
of the models applied in the analysis of the experiments
presented in Refs. [11,12]. These experiments work with
comparable geometries but different materials. One experi-
ment observes strong oscillations for an interface length L =
600 nm [11], while the other one observes no oscillations for
an interface length L = 150 µm [12]. Within the context of
the presented theory, this would correspond to a large ratio
qph,slow/qph,fast � 1 between the slow- and fast-oscillation ex-
periments, respectively. With the results presented in Sec. III,
this ratio can be directly related to experimentally applied
parameters and material qualities.

As previously noted, the induced pairing results are in
principle independent of the details of the edge-state Hamil-
tonian as long as it is one dimensional. Since the model is
of a many-body nature, we are free to replace the edge-state
Hamiltonian with, e.g., a chiral Luttinger liquid Hamiltonian,
which describes a system of strongly interacting electrons in
1D. This would effectively allow us to model the case of
induced pairing in a fractional QH edge state, a system which
has recently become experimentally available [16].

We have shown that the existence of a surface supercurrent
is essential for electrons to tunnel in a momentum-conserving
system. The results of Sec. III do not depend on our assump-
tion that the supercurrent is entirely due to the Meissner effect.
For instance, to higher orders in tunneling, the tunneling elec-
trons themselves could cause a nonzero supercurrent in an
evanescent mode into the superconductor. One can account
for such effects by regarding ks as an effective parameter.
Fully describing evanescent excitations is beyond the tunnel-
ing limit but could be approximated by assuming that ks is
modified to match the edge-state momentum.

VI. CONCLUSION

We have derived an effective many-body Hamiltonian for
an integer QH edge state at filling factor ν = 1 in tunneling
contact with an s-wave SC with SOC and Meissner current at

the surface. We show that taking these two latter elements into
account resolves the apparent contradiction between experi-
mentally observed induced superconducting correlations from
an s-wave SC, on the one hand, and the theoretical conditions
of spin and momentum conservation in the tunneling limit, on
the other.

We have analytically predicted the probability of an in-
jected electron being converted into a hole while propagating
along the proximitized edge state, showing that when the
electron energy is near the middle of the SC gap, this pro-
cess is suppressed by Pauli blocking. By applying a modified
Landauer-Büttiker formalism, we have related this hole con-
version probability to the experimentally accessible quantity
of differential downstream resistance. A key prediction is that
despite the low interface transparency implied by the tun-
neling limit, strong electron-hole conversion can be reached
via scattering with the Andreev edge channel at a resonance
condition determined by the Meissner current.

The work presented in this paper is theoretical. No data
were produced, and supporting research data are not required.
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APPENDIX A: THE RENORMALIZED
NUMEROV METHOD

We use the renormalized Numerov method [46] to integrate
the Schrödinger equation (SE) by discretizing space into a
grid defined by xn = x0 + nh, where x0 is an initial point,
n ∈ Z, and h is a small step, in this case chosen as h = 10−4�.
Taylor-expanding the discrete wave function and dropping
terms of order O(h6) or higher, we use the SE to formulate
an iterative algorithm where the ratio Rn = ψn+1/ψn is fully
determined by R−1

n−1. For a hard wall at x = 0, we know that for
any edge state we have ψ (x = 0) = ψ (x = 15�) = 0, where
x = 15� is an arbitrarily chosen point in the bulk. This allows
us to iterate forwards from from the hard wall and backwards
from the bulk, both to the point xc, which is chosen as the first
extremum from the wall for numerical stability.

At this point we can define a matching function

G(E ) =
(

ψ (xc + h)

ψ (xc)

)
left

−
(

ψ (xc + h)

ψ (xc)

)
right

, (A1)

which compares the (discrete) slopes of the iterated wave
function from the two directions. Since G(E ) = 0 if and only
if E is an eigenvalue of the Schrödinger equation, we can find
the roots of G(E ) to obtain the eigenvalues of the Hamiltonian,
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after which the eigenfunctions can be constructed from the
boundary conditions, the ratios Rn, and normalization.

APPENDIX B: INTEGRATING OVER
THE EUCLIDIAN ACTION

We can describe the effect of the superconductor on the
edge state by integrating out the superconductor fields of the
total action of the system, resulting in an effective action for
the QH edge state [19].

We consider the following Hamiltonian written as a func-
tional:

H (1)[ψψ†dd†]=Hedge[ψψ†]+H (1)
sc [dd†] + Htunn[ψψ†dd†],

(B1)

where the first two terms are given by Eqs. (7) and (18), re-
spectively, and Htunn from Eq. (15) has been rewritten in terms
of the dk,1/2 quasiparticle operator as defined by Eq. (23). We
can construct the Euclidian action corresponding to H (1) as
[47]

S[ψ†ψd†d]

=
∑

k,q,ω, j

iω(ψ†
q,ωψq,ω + d†

k, j,ωdk, j,ω ) − H (1)[ψψ†dd†],

(B2)

where ω is a Matsubara frequency. Note that in the action,
ψ and d are considered as Grassmann variables instead of
fermionic fields. To perform the path integral over e−S , it is
useful to reexpress the action such that the integral becomes a
Gaussian integral. We first write the action as S[ψ†ψd†d] =
S0[ψ†ψ] + δS[ψ†ψd†d], where S0 contains all terms which
only depend on the QH electron fields. We then consider the
quantum partition function path integral

Z =
∫

D[ψψ†dd†] e−S0[ψψ†]−δS[ψψ†dd†], (B3)

where

D[ψψ†dd†] =
∏

k,q,ω

dψ†
q,ω dψq,ω d (d†

k,ω ) d (dk,ω ). (B4)

The effective action is obtained by performing the path inte-
gral over the superconductor fields∫

D[dd†] e−δS[ψψ†dd†] =
∏
k,ω

∫
d (d†

k,ω )d (dk,ω )e−δS[ψψ†dd†].

(B5)

To solve this integral, we first rewrite δS in terms of the
vectors

φk,ω =
(

dk,1,ω

d†
−k,2,−ω

)
, (B6)

ν†
κ,ω = −γ̃

(
iuκe−iθ̃+ψ

†
kS+q,ω

− v∗
κeiθ̃+ψkS−q,−ω

−iu∗
κeiθ̃−ψkS−q,−ω + vκe−iθ̃−ψ

†
kS+q,ω

)T

, (B7)

where we have defined the angle

θ̃± = 1

2
arg

[
ks ± (q + ikz )

εκ + Es

ζκ

]
(B8)

and κ = (q, ky, kz ). The appearance of κ instead of k arises
from the summation over the Kronecker delta in the tunneling
Hamiltonian. Defining the diagonal matrix

�k,ω =
(

−iω + ε
(1)
k,± 0

0 −iω − ε
(1)
k,±

)
, (B9)

where ε
(1)
k,± is given in Eq. (19), allows us to write the effective

action as

δS[φφ†νν†]

=
∑
k,q,ω

[φ†
k,ω�k,ωφk,ω − φ†

κ,ωνκ,ω − ν†
κ,ωφκ,ω]. (B10)

Since the order of multiplication in the path integral measure
is irrelevant, we can first take the product of all momenta with
kx = q, written as κ, and afterwards multiply by the remaining
momenta where kx �= q, written as k′. This can be explicitly
written as ∏

k

=
∏
κ

∏
k′

, (B11)

which lets us split the product of integrals as follows:∫
D[φ†φ]e−δS[φφ†νν†] =

∏
κ,ω

∫
dφ†

κ,ωdφκ,ωeδS1[φφ†νν†]

×
∏
k′,ω

∫
dφ

†
k′,ωdφk′,ωeδS2[φφ†νν†],

(B12)

where

δS1 = −φ†
κ,ω�κ,ωφκ,ω + φ†

κ,ωνκ,ω + ν†
κ,ωφκ,ω, (B13)

δS2 = −φ
†
k′,ω�k′,ωφk′,ω. (B14)

This reduces the integration to a Gaussian integral of the type

∫
D[φ†φ]e−δS[φφ†νν†] = exp

⎛
⎝ ∑

k′,κ,ω

[
ν†

κ,ω�−1
κ,ωνκ,ω + C

]⎞⎠,

(B15)

where

C = ln(det(�κ,ω )) + ln(det(�k′,ω )). (B16)

Since C contributes an overall, constant shift to the action
(and thus the Hamiltonian), it can be ignored, leading to the
partition function

Z =
∫

D[ψ†ψ] exp

⎛
⎝−S0 −

∑
κ,ω

ν†
κ,ω�−1

κ,ωνκ,ω

⎞
⎠. (B17)

For a small tunneling amplitude �, the ω dependence in �

can be neglected, and we can recover an effective Hamiltonian
from the effective action by considering the ω = 0 case. This
amounts to neglecting retardation and translates to assuming
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that the induced pairing velocity �p as defined in Eq. (36) is
small compared with the edge-state Fermi velocity vF .

APPENDIX C: LANDAUER-BÜTTIKER FORMULA
WITH PARTICLES AND HOLES

Calculating the current through a lead with both particles
and holes is a well-known problem, already treated in the
seminal paper by Blonder, Tinkham, and Klapwijk [48], and
so we only touch upon a few details in this Appendix for
the sake of completeness. We specifically consider a chiral
system, which means there is no reflection, and all incoming
states are transmitted.

If we describe incoming particle-hole states with energy
E by the field ip/h,E and outgoing states by the field op/h,E ,
the current expectation value can be constructed by counting
incoming holes and outgoing particles as contributing nega-
tively to the current,

〈I (t )〉 = 1

2π

∫ ∞

0
dEdE ′ei(E−E ′ )t (〈i†

p,E ip,E ′ 〉

− 〈o†
p,E op,E ′ 〉 − 〈i†

h,E ih,E ′ 〉 + 〈o†
h,E oh,E ′ 〉). (C1)

The incoming particles and holes obey the distributions

〈i†
p,E ip,E ′ 〉 = δ(E − E ′)nF (E − μ), (C2)

〈i†
h,E ih,E ′ 〉 = δ(E − E ′)nF (E + μ). (C3)

These relations can be extended straightforwardly to N leads
with respective chemical potentials {μ1, . . . , μN }. The rela-
tion between incoming states in any lead and outgoing states
in lead m is then given by the scattering matrix(

om,p,E

om,h,E

)
=

∑
n

(
tmn,pp tmn,ph

tmn,hp tmn,hh

)(
in,p,E

in,h,E

)
. (C4)

From this, one can show that the steady-state current in lead
m becomes

〈Im(t )〉 = e

h

∑
n

∫ ∞

0
dE [nF (E − μm) − nF (E + μm)

− (|tmn,pp|2 − |tmn,hp|2)nF (E − μn)

− (|tmn,ph|2 − |tmn,hh|2)nF (E + μn)], (C5)

which generalizes the Landauer-Büttiker formula to supercon-
ductors described in the Nambu basis.
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