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Steady-state distributions of nascent RNA for general initiation mechanisms
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Fluctuations in the number of nascent RNA accurately reflect transcriptional activity. However, mathematical
models predicting their distributions are difficult to solve analytically due to their non-Markovian nature
stemming from transcriptional elongation. Here we circumvent this problem by deriving an exact relationship
between the steady-state distribution of nascent RNA and the distribution of initiation times, which can be
computed for any general initiation mechanism described by a set of first-order reactions. We test our theory
using simulations and live cell imaging data.
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I. INTRODUCTION

Transcription in single cells occurs in bursts whose size
and timing is random [1]. Intuitively, a burst originates from
rapid mRNA transcription when a promoter briefly switches
on. The experimental distribution of mature mRNA numbers
can often be fitted using the exact solution of a simple Markov
model of gene expression, called the telegraph model [2–5].
This model describes the promoter switching between two
states of activity and inactivity, the production of mature
mRNA occurring one molecule at a time whilst in the active
state, and the degradation of mature mRNA via a first-order
reaction. However, in recent years, doubts have arisen about
the validity of this kinetic description, principally because
mature (cellular) mRNA does not provide a direct read-out
of transcription [6,7]—the fluctuations of mRNA numbers in
the cell are strongly influenced by various post-transcriptional
events such as splicing, nuclear export, and DNA replication.

In order to circumvent such issues, it has been proposed
that gene expression can be more accurately understood by
studying nascent RNA fluctuations, i.e.. variability in the
number of RNA polymerase (RNAP) molecules that are ac-
tively involved in the elongation phase of transcription. By
its very definition, this is a direct read-out of transcription.
The numbers of actively transcribing RNAPs can be estimated
directly from nascent single-cell sequencing methods [8] or
more commonly using single molecule fluorescence in situ hy-
bridization (sm-FISH) where intronic probes specifically label
(nonspliced) nascent RNA [7,9]. Fitting of these numbers
using stochastic models that account for RNAP dynamics can
help us more accurately understand which regulatory steps in
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transcription are tuned to achieve required mRNA expression
levels [10,11].

Real-time observation of transcription in vivo has revealed
that initiation is a stochastic process, whereas elongation and
termination are fairly deterministic [12]. Transcription can be
thus modelled by a stochastic, multistep process describing
initiation, followed by a deterministic, single-step reaction
describing elongation and termination. Despite this simplifi-
cation, models of this type are particularly difficult to solve
because they are inherently non-Markovian. So far, only two
such models have been solved analytically: one in which the
promoter is always active [13,14], and the other in which the
promoter switches between two states of activity and inactiv-
ity [Fig. 1(b)] [6]. A few other, more realistic models have
been studied, but only the first two moments of the nascent
RNA distribution have been obtained analytically [15–17].
None of these models, however, account for the complex mul-
tistep process of initiation that has been elucidated by decades
of biochemical research [18].

In this paper, we develop a general framework that allows
us to find nascent RNA distribution for models with stochas-
tic, multistep initiation, under the assumption of deterministic
elongation and termination [Fig. 1(a)]. The significance of
this result is that it applies to any initiation process that
produces nascent RNA at time intervals that are indepen-
dent and identically distributed (iid) random variables with
an arbitrary probability density function f (t ). This is true
for any stochastic process described by first-order reactions
with time-independent kinetic rates, some of which are shown
in Figs. 1(b)–1(d). We argue that while transcription initi-
ation includes invariably many bimolecular steps, these are
well approximated by pseudo first-order reactions because
transcriptional machinery is generally abundant (the range
of transcription factor copy numbers in bacteria is between
1–103 copy numbers per cell, whereas in mammalian cells it
is between 103–106 [19]). Furthermore, we also ignore any
variations of the rates over timescales that are much longer
than the elongation time, e.g., initiation rates that change over
time due to their dependence on the cell volume [20]. For such
processes, we solve a first passage time problem to get an
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FIG. 1. (a) Nascent RNA is produced by an initiation process at
time intervals that are independent and identically distributed (iid)
random variables with an arbitrary probability density function f (t ).
Elongation and termination are modelled deterministically, i.e., they
take a fixed amount of time T to finish. [(b)–(d)] Examples of the
initiation processes that can be studied by this framework, in the or-
der of increasing complexity. S1, S2, etc. are gene states. Red circles
denote the off states. (b) The telegraph process [2]. (c) A three-state
process that accounts for the binding of RNAP [21]. (d) A stepwise
process of eukaryotic transcription that accounts for the binding of
general transcription factors and RNAP [18,22], and the promoter
proximal pausing of RNAP in metazoans [23,24].

analytic expression for f (t ). The steady-state nascent RNA
distribution is then computed using renewal theory, which
generalizes the Poisson process by allowing for a nonexpo-
nential f (t ). We verify our theory by stochastic simulations
and using experimental results for the transcription kinetics in
Escherichia coli [25].

The paper is organized as follows. The waiting time dis-
tribution between two successive nascent RNA production
events is computed in Sec. II for general initiation processes
described by first-order reactions with time-independent rates.
An exact relationship between the waiting time distribution
and the nascent RNA distribution is derived and applied to
examples of initiation processes in Sec. III. The theory is
compared to experimental data from live cell imaging in E.
coli in Sec. IV. Conclusions are presented in Sec. V.

II. WAITING TIME DISTRIBUTION BETWEEN
SUCCESSIVE NASCENT RNA PRODUCTION EVENTS

Transcription is divided into initiation, elongation, and ter-
mination. Initiation is a complex multistep process, which
starts by the binding of an RNAP at the promoter, together
with several transcription factors, and ends when the RNAP
escapes the promoter and starts productive elongation. During
elongation, RNAP traverses the gene and copies its sequence
into a nascent RNA. The termination occurs at the gene end,
leading to a mature RNA transcript.

We consider a stochastic initiation process consisting of M
gene states labeled by S1, . . . , SM . The gene switches between

the states according to first-order reactions

Si

ki j−⇀↽−
k ji

S j, i, j = 1, . . . , M, i �= j, SM
kM−→ SK + N. (1)

The last reaction describes production of nascent RNA (N),
after which the initiation process starts again from the state
SK (K takes a fixed value between 1 and M). Equation (1) is a
general description of the initiation process using first-order
reactions. Particular cases are obtained by removing some
reactions, which is equivalent to setting the rates of those
reactions to zero.

We are interested in computing the probability density
function (pdf) of the waiting time between successive events
of nascent RNA production. This is a first passage time prob-
lem that can be solved by replacing the last reaction in Eq. (1)
with SM → A, where A is an absorbing state, i.e., once the
process reaches A, it stops. The pdf f (t ) is then equal to
kMPM (t ), where PM (t ) is the probability that the gene is in
state M at time t , given that it was in state K at time 0,
and kMdt is the probability that the transition SM → A occurs
in the time interval [t, t + dt ). The probability PM (t ) can be
found by solving the following master equation:

dPi

dt
=

M∑
j=1

k jiPj −
⎛
⎝ M∑

j=1, j �=i

ki j + δi,MkM

⎞
⎠Pi, (2)

with the initial condition Pi(0) = δi,K , where δi, j is the Kro-
necker delta. The pdf f (t ) is given by

f (t ) = kM (exp(Lt ))MK , (3)

where the matrix elements of L read

Li j = k ji, i �= j, Lii = −
M∑

j=1, j �=i

ki j − δi,MkM . (4)

A central function in renewal theory is the Laplace transform
of the pdf f (t ), denoted by f ∗(s). Formally,

f ∗(s) = kMP∗
M (s) = kM (sI − L)−1

MK , (5)

where P∗
M (s) is the Laplace transform of PM (t ) and I is the

M × M identity matrix. Particular examples of f (t ) and f ∗(s)
are discussed later in the text.

III. DISTRIBUTION OF NASCENT RNA
IN THE STEADY STATE

A. Results for general f (t )

Our approach for solving the general problem in Fig. 1(a)
is based on recognizing that the number of nascent RNA
production events that occurred up to time t , denoted by NI (t ),
constitutes a renewal process [26]. A renewal process gener-
alizes the Poisson process by allowing for nonexponentially
distributed waiting times between successive events. As in
the Poisson process, the waiting times in the renewal process
are mutually independent. In transcription, this assumption is
supported by experimental evidence [12].

We denote by Ti the time of the ith nascent RNA production
event, measured from some reference time point t = 0. For
simplicity, we assume that a nascent RNA production event
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occurred immediately before t = 0. If ti denotes the wait-
ing time between ith and (i − 1)th nascent RNA production
events, ti = Ti − Ti−1, where T0 = 0, then

Ti =
i∑

j=1

t j, i = 1, 2, . . . . (6)

Since t j are iid random variables, the pdf of Ti is the i-fold
convolution of f ,

ki(t ) = f ∗i(t ). (7)

The Laplace transform of ki(t ) is given by

k∗
i (s) =

∫ ∞

0
dt e−st ki(t ) = [ f ∗(s)]i. (8)

The probability of NI (t ) = n is equivalent to the probability
of Tn � t < Tn+1, which is given by

P(NI (t ) = n) = P(Tn � t < Tn+1),

= Kn(t ) − Kn+1(t ), (9)

where Kn(t ) = ∫ t
0 dt ′ kn(t ′) for n � 1 is the cumulative dis-

tribution function of Tn, and K0(t ) = 1. The mean number of
initiations up to time t , which we denote by H (t ), is given by

H (t ) = 〈NI (t )〉 =
∞∑

n=0

nP(NI (t ) = n)

=
∞∑

n=0

n(Kn(t ) − Kn+1(t )) =
∞∑

n=1

Kn(t ). (10)

In renewal theory, H (t ) is known as the renewal function.
Related to the renewal function is the renewal density h(t ),
which is defined as the time derivative of H (t ),

h(t ) = d

dt
H (t ) =

∞∑
n=1

kn(t ). (11)

The interpretation of h(t ) is that h(t )dt is equal to the proba-
bility that a new renewal event occurs between t and t + dt .
The Laplace transform of h(t ) is given by

h∗(s) = f ∗(s)

1 − f ∗(s)
. (12)

Using the small-s expansion f ∗(s) = 1 − μs + O(s2), we get
that the long-time limit of h(t ) is given by

lim
t→∞ h(t ) = lim

s→0
h∗(s) = 1

μ
. (13)

In other words, the density of renewals in the steady state is
uniform.

We denote by T the total time of elongation and termina-
tion. Since T is fixed in our model, the number of nascent
RNA actively engaged in transcription at time t is equal to

N (t ) =
{

NI (t ), t � T,

NI (t ) − NI (t − T ), t > T .
(14)

The probability P(N (t ) = n) for t � T is given by Eq. (9). In
order to find the probability distribution of N (t ) for t > T , we
first need to find the probability density function ft0 (τ ) of the
forward recurrence time τ , where τ is defined as the time until

the next initiation event measured from a fixed time point t0
(we will later set t0 = t − T ). Using the renewal density h(t ),
the expression for ft0 (τ ) reads [26]

ft0 (τ ) = f (t0 + τ ) +
∫ t0

0
dt ′h(t0 − t ′) f (t ′ + τ ). (15)

The first term corresponds to having no renewals before t0,
whereas the second term corresponds to having the last re-
newal at some earlier time t0 − t ′, followed by a renewal at
a time t0 − t ′ + t ′ + τ . In the steady state, t0 → ∞ and the
expression for ft0 (τ ) simplifies to

f∞(τ ) = lim
t0→∞ ft0 (τ ) = 1 − F (τ )

μ
, (16)

where F (t ) = ∫ t
0 dt ′ f (t ′) is the cumulative distribution func-

tion of the waiting times between successive nascent RNA
production events, μ is the mean waiting time, and we as-
sumed that limt0→∞ ft0 (t0 + τ ) = 0. The Laplace transform of
f∞(τ ), which we will need in a moment, is given by

f ∗
∞(s) = 1 − f ∗(s)

μs
. (17)

We now have all the preliminaries to compute the proba-
bility P(N = n) to find n nascent RNA molecules on the gene
in the steady state. For n = 0,

P(N = 0) =
∫ ∞

T
dτ f∞(τ ) = 1 −

∫ T

0
dτ f∞(τ ). (18)

The Laplace transform of P(N = 0) with respect to T is
therefore given by

P∗(0, s) =
∫ ∞

0
dT e−sT P(N = 0)

= μs − 1 + f ∗(s)

μs2
. (19)

Because nascent RNA production events are mutually inde-
pendent, the Laplace transform P∗(n, s) of P(N = n) for n �
1 is given by a product of f ∗

∞(s) and the Laplace transform of
P(NI (t ) = n − 1),

P∗(n, s) =
∫ ∞

0
dT e−T sP(N = n)

= [1 − f ∗(s)]2[ f ∗(s)]n−1

μs2
, n � 1. (20)

Equations (19) and (20) are our main result. They connect
the Laplace transform of P(N = n) to the Laplace transform
of f (t ) for all initiation processes described by Eq. (2). For
these processes, f ∗(s) is a rational function of s, meaning that
P(N = n) can be computed from Eqs. (19) and (20) by partial
fraction decomposition, for which many methods are available
[27].

The moments of P(N = n) can be computed from the
probability generating function,

G(z) =
∞∑

n=0

znP(N = n), (21)
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whose Laplace transform G∗(z, s) with respect to T is given
by

G∗(z, s) = 1

s
+ (z − 1)[1 − f ∗(s)]

μs2[1 − z f ∗(s)]
. (22)

For example, the mean number of nascent RNA 〈N〉 and the
variance Var[N] are given by

〈N〉 = T

μ
, (23a)

Var[N] = L−1

{
1 + f ∗(s)

μs2[1 − f ∗(s)]

}
(T ) −

(
T

μ

)2

, (23b)

where L−1{. . . }(T ) is the inverse Laplace transform of the
expression in the curly brackets, evaluated at T .

In the rest of this section, we compute nascent RNA dis-
tribution for a range of initiation processes. We first consider
three initiation processes for which we compute nascent RNA
distributions analytically. These are the Poisson process, the
telegraph process and the fully irreversible process with ar-
bitrary number of steps with equal rates. We then consider
a three-state initiation process proposed in Ref. [21] that ac-
counts for RNAP recruitment. Finally, as a full demonstration
of our framework, we consider a ten-state initiation process
based on a canonical model of eukaryotic transcription initi-
ation that includes the on and off switching of the promoter,
the binding and unbinding of six general transcription factors
(IID, IIA, IIB, IIF, IIE and IIH) and RNAP, the unwinding of
the double-stranded DNA, and the promoter proximal pausing
of RNAP in metazoans. For the last two processes, we com-
pute the nascent RNA distribution numerically.

B. The Poisson process

The Poisson process describes a constitutive promoter with
one gene state (M = 1). The reaction scheme for this process
is given by

S1
k1−→ S1 + N. (24)

Since there is only one state, K = 1. The pdf f (t ) is an
exponential,

f (t ) = k1e−k1t , f ∗(s) = k1

s + k1
, (25)

and the mean is given by μ = 1/k1. Inserting Eq. (25) into
Eqs. (19) and (20) and inverting the Laplace transform we get

P(N = n) = (k1T )n

n!
e−k1T , (26)

which is the Poisson distribution.
The Poisson process is special because the forward recur-

rence time τ has the same exponential distribution as f (t ),
ft0 (τ ) = k1e−k1τ , i.e., it does not depend on t0. This is the
memoryless property of the exponential distribution. For t <

T , P(N (t ) = n) is a convolution of f and Kn−1 − Kn evaluated
at t , which yields

P(N (t ) = n) = (k1t )n

n!
e−k1t , t < T, (27)

where we have used the fact that Kn(t ) is an Erlang distribu-
tion with the shape parameter n and the rate parameter k1,

Kn(t ) = 1 −
n−1∑
m=0

(k1t )m

m!
e−k1t . (28)

For t > T , P(N (t ) = n) is a convolution of ft−T and Kn−1 −
Kn evaluated at T , which gives

P(N (t ) = n) = (k1T )n

n!
e−k1T , t > T . (29)

Since this distribution is the same as the stationary distribu-
tion, we conclude that the steady state is reached immediately
after the first round of transcription elongation, i.e., at time T .

C. The telegraph process

The telegraph process describes a bursty promoter that
switches between two gene states (M = 2), an inactive state
S1 and an active state S2. The reaction scheme for this process
is given by

S1
k12−⇀↽−
k21

S2
k2−→ S2 + N. (30)

After initiation, the process remains in the active state (K =
2), see Fig. 1(b). The Laplace transform of f (t ) has been
computed in Appendix B and reads

f ∗(s) = k2(s + k12)

s2 + (k21 + k12 + k2)s + k12k2
. (31)

The mean initiation time μ is given by

μ = − df ∗

ds

∣∣∣∣
s=0

= k21 + k12

k12k2
. (32)

To find P(N = n), we write f ∗(s) as

f ∗(s) = k2(s + k12)

(s + λ1)(s + λ2)
, (33)

where −λ1 and −λ2 are roots of the quadratic equation

(s + λ1)(s + λ2) = s2 + s(k21 + k12 + k2) + k12k2. (34)

Inserting Eq. (33) into Eqs. (19) and (20) we get for n = 0 and
n � 1, respectively,

P∗(0, s) = s + λ1 + λ2 − 1/μ

(s + λ1)(s + λ2)
, (35)

P∗(n, s) = (s + k21 + k12)2[k2(s + k12)]n−1

μ[(s + λ1)(s + λ2)]n+1
. (36)

The inverse Laplace transform of P∗(n, s) is

P(N = 0) = λ2 − 1/μ

λ2 − λ1
e−λ1T + λ1 − 1/μ

λ1 − λ2
e−λ2T , (37)

P(N = n) =
n∑

i=0

T n−i(Ai,ne−λ1T + Bi,ne−λ2T )

(n − i)!
, (38)

where Ai,n and Bi,n are computed in Appendix B. The prob-
ability generating function G(z) is given by Eq. (B17) in
Appendix B. The expression for G(z) is the same as in Sup-
plemental Material of Ref. [28], Eq. (1.15). There it was
shown that the nascent RNA distribution, obtained from G(z),
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FIG. 2. (a) Probability density function f (t ) of the waiting time
between successive nascent RNA production events for the initiation
processes described by Eq. (30) and depicted in Fig. 1(b). The solid
line is the theoretical prediction from Eq. (3), and the points are
from stochastic simulations (SSA). (b) The respective probability
distribution of the nascent RNA, obtained by inverting Eqs. (19) and
(20), and compared to stochastic simulations (delay SSA) performed
using DelaySSAToolkit.jl package in Julia [29]. Model parame-
ters are: k12 = 0.06 min−1, k21 = 0.042 min−1, k2 = 5.52 min−1 and
T = 4.167 min.

matches the one obtained in Ref. [6]. The predicted distribu-
tions f (t ) and P(N = n) are in excellent agreement with ones
obtained by stochastic simulations, see Fig. 2.

D. Fully irreversible process with arbitrary number of steps
with equal rates

This process describes a constitutive promoter with multi-
ple rate-limiting steps with equal rates. The reaction scheme
for this process is given by

S1
λ−→ S2

λ−→ . . .
λ−→ SM

λ−→ S1 + N, (39)

where M is the number of rate-limiting steps and all reactions
have the same rate λ. We have assumed that the process
returns to state S1 after each round of initiation. If the process
returns to some other state SK , then the results in this sec-
tion pertain but with M replaced by M − K + 1. The waiting
time distribution between successive nascent RNA production
events is an Erlang distribution with a shape parameter M and
a rate parameter λ, whose pdf reads

f (t ) = λMtM−1

(M − 1)!
e−λt , f ∗(s) = λM

(s + λ)M
. (40)

This distribution is ubiquitous in cellular biology and natu-
rally arises from Markov multistep processes [30]. The mean

initiation time μ is given by

μ = − df ∗

ds

∣∣∣∣
s=0

= M

λ
. (41)

Inserting f ∗(s) into Eqs. (19) and (20) we get for n = 0 and
n � 1, respectively,

P∗(0, s) = (Ms − λ)(s + λ)M + λM+1

Ms2(s + λ)M
, (42)

P∗(n, s) = λM(n−1)+1[(s + λ)M − λM]2

Ms2(s + λ)M(n+1)
. (43)

The partial fraction decomposition and the inverse Laplace
transform of P∗(n, s) were computed in Appendix B. The final
result is

P(N = n) = e−λT

M

⎧⎨
⎩

N+−1∑
j=0

(N+ − j)
(λT ) j

j!

−2
N0−1∑
j=0

(N0 − j)
(λT ) j

j!
+

N−−1∑
j=0

(N− − j)
(λT ) j

j!

⎫⎬
⎭,

(44)

where N+ = M(n + 1), N0 = Mn, N− = M(n − 1), and we
have used a convention according to which a sum in which the
upper bound is lower than the lower bound is equal to zero.

E. Three-state process that accounts for RNAP recruitment

This process describes a bursty promoter that accounts
for binding and unbinding of transcription factors and RNAP
[21]. The reaction scheme for this process is given by

S1
k12−⇀↽−
k21

S2
k23−⇀↽−
k32

S3
k31−→ S1, S3

k3−→ S2 + N, (45)

see also Fig. 1(c). Here, S1 is an inactive gene state, S2 is a
gene state in which the gene is bound to transcription factors,
and S3 is a gene state in which RNAP is bound and paused.
During the initiation process, transcription factors may unbind
from the DNA (S2 → S1). The bound RNAP may also unbind
from the DNA, either alone (S3 → S2) or together with the
transcription factors (S3 → S1). Once the RNAP is released
into productive elongation, the gene state returns to state S2,
waiting for the next RNAP.

The Laplace transform of the pdf f (t ) has been computed
in Appendix B and reads

f ∗(s) = k3k23(s + k12)

s3 + bs2 + cs + k12k23k3
, (46)

where b and c are given by

b = k12 + k21 + k23 + k32 + k31 + k3, (47)
c = (k12 + k21)(k31 + k32 + k3)

+ k23(k12 + k31 + k3). (48)

The mean initiation time μ can be written as

μ = − df ∗

ds

∣∣∣∣
s=0

= (k12 + k21)(k31 + k32 + k3)

k12k23k3

+ k23(k12 + k31)

k12k23k3
. (49)
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FIG. 3. (a) Probability density function f (t ) of the waiting time
between successive nascent RNA production events for the initiation
processes described by Eq. (45) and depicted in Fig. 1(c). The solid
line is the theoretical prediction from Eq. (3), and the points are
from stochastic simulations (SSA). (b) The respective probability
distribution of the nascent RNA, obtained by inverting Eqs. (19) and
(20), and compared to stochastic simulations (delay SSA) performed
using DelaySSAToolkit.jl package in Julia [29]. Model parame-
ters are: k12 = 1.92 min−1, k21 = 1.92 min−1, k23 = 9.6 min−1, k32 =
0.96 min−1, k31 = 1.92 min−1, k3 = 19.2 min−1 and T = 4.167 min.

From here we can get P(N = n) by inserting f ∗(s) into
Eqs. (19) and (20) and taking the inverse Laplace transform. It
is possible, albeit tedious, to do this analytically. Instead, we
do this numerically—the results are shown in Fig. 3 and are in
excellent agreement with the results of stochastic simulations.

F. Ten-state process of eukaryotic transcription initiation

As our final example, we consider a ten-state initiation
process based on a canonical model of eukaryotic transcrip-
tion initiation [18,22], see Fig. 1(d) and Fig. 4. The reaction
scheme for this process is given by

S1
k12−⇀↽−
k21

S2 (gene activation/deactivation), (50a)

S2
k23−⇀↽−
k32

S3 (TFIID binding/unbinding), (50b)

S3
k34−⇀↽−
k43

S4 (TFIIA binding/unbinding), (50c)

S4
k45−⇀↽−
k54

S5 (TFIIB binding/unbinding), (50d)

S5
k56−⇀↽−
k65

S6 (TFIIF · RNAP binding/unbinding), (50e)

S6
k67−⇀↽−
k76

S7 (TFIIE binding/unbinding), (50f)

S7
k78−⇀↽−
k87

S8 (TFIIH binding/unbinding), (50g)

S8
k89−⇀↽−
k98

S9 (open/closed PIC) (50h)

S9
k910−→ S10, (promoter proximal pausing) (50i)

S10
k10−→ SK + N (release into elongation). (50j)

S1 and S2 are the off and on states of the promoter, respec-
tively. General transcription factors and RNA polymerase bind
the promoter in the following order: TFIID (S3), TFIIA (S4),
TFIIB (S5), TFIIF and RNAP (S6), TFIIE (S7) and TFIIH,
resulting in the closed preinitiation complex (PIC, S8). The
TFIIH unwinds the promoter DNA, creating an open PIC (S9)
that begins the elongation. In metazoans, the elongating RNA
polymerase pauses shortly after the initiation (S10) [23,24].
The RNAP is eventually released into productive elongation,

FIG. 4. A ten-state initiation process based on a canonical model of eukaryotic transcription initiation [18,22], which includes the on and
off switching of the promoter, the binding and unbinding of six general transcription factors (IID, IIA, IIB, IIF, IIE and IIH) and RNAP, the
unwinding of the double-stranded DNA, and the promoter proximal pausing of RNAP in metazoans [23,24]. We consider two scenarios for
reinitiation: in one, the gene returns to the on state S2 (K = 2), and in the other, the gene returns to the state S4 (K = 4) with transcription
factors IID and IIA bound to the promoter [31,32].
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TABLE I. Parameter values for the ten-state process of eukary-
otic transcription initiation sourced from the literature. See the main
text for their full description.

Parameter Description Value Reference

k12 PLEC on rate 0.04 min−1 [1]
k21 PLEC off rate 0.53 min−1 [1]
k23 TFIID binding 1/1.1 min−1 [33]
k32 TFIID unbinding 1/130 min−1 [33]
k34 TFIIA binding 1/20 s−1 [34]
k43 TFIIA unbinding 1/8 min−1 [35]
k45 TFIIB binding 1/3.2 s−1 [34]
k54 TFIIB unbinding 1/1.5 s−1 [34]
k56 TFIIF & RNAP

binding 2.3 × 10−3 s−1 [36]
k65 TFIIF & RNAP

unbinding 3 × 10−3 s−1 [36]
k67 TFIIE binding 1.7 × 10−2 s−1 [37]
k76 TFIIE unbinding 5 × 10−2 s−1 [37]
k78 TFIIH binding 5 × 10−2 s−1 [37]
k87 TFIIH unbinding 1/5 min−1 [37]
k89 closed to open PIC 1.9 × 10−3 s−1 [38]
k98 open to closed PIC 1.1 × 10−4 s−1 [38]
k910 release into

elongation 0.17 s−1 [38]
k10 promoter proximal

unpausing 1/5 min−1 [39]
T elongation time 14 min [40]

clearing the promoter for the next round of initiation. We
assumed two scenarios for the reinitiation: in one, the gene
returns to the on state S2 (K = 2), and in the other, tran-
scription factors IID and IIA remain bound to the promoter
[31,32]—this scenario corresponds to K = 4 (dashed line in
Fig. 4).

Kinetic parameters describing the progression from the on
state (S2) to the production of nascent RNA were sourced from

the literature [1,33–40] and were assumed to be representative
of eukaryotic genes (Table I). The values of k12 and k21 were
matched to the on and off rates inferred from the transcription
kinetics of PLEC gene promoter in mouse fibroblast cells
(gene id 18810) [1]. For this promoter, the mean time it took
to initiate from the on state, assuming no return to the off state,
was reported to be 5.2 min [1]. The values of k54, k56, k89, and
k10 were adjusted to match this value to the mean initiation
time obtained from f (t ) in Eq. (A11) after setting k21 = 0 and
K = 2, yielding k54 = 1/30 s−1, k56 = 6.9 × 10−2 s−1, k89 =
5.7 × 10−2 s−1, and k10 = 2 min−1. The elongation time T
was obtained by dividing the gene length of PLEC gene
(60.404 kb) by the RNA polymerase II speed of 4.3 kb/min
[40].

The Laplace transform of f (t ) was computed analytically
for this process, because the matrix L in Eq. (4) is tridiagonal,
for which the inverse is known explicitly [41]. The derivation
of f ∗(s) is presented in Appendix A. The plot of f (t ) obtained
by inverting f ∗(s) numerically is presented in Figs. 5(a) and
5(b) for two reinitiation scenarios K = 2 and K = 4, respec-
tively. The corresponding nascent RNA distribution P(N = n)
is presented in Figs. 5(c) and 5(d). Both f (t ) and P(N = n)
are in excellent agreement with the results from stochastic
simulations.

Next, we performed sensitivity analysis in order to under-
stand how the kinetic rates of the model affect the nascent
RNA distribution. In particular, we computed the local sensi-
tivity coefficient si j defined as

si j = ki j

FFN

∂FFN

∂ki j
, (51)

where FFN is the Fano factor of the nascent RNA distribution,

FFN = Var[N]

〈N〉 . (52)

FIG. 5. (a) Probability density function f (t ) of the waiting time between successive nascent RNA production events for the initiation
processes described by Eqs. (50a)–(50j) and depicted in Fig. 4. The solid line is the theoretical prediction from Eq. (3), and the points are from
stochastic simulations (SSA). (b) The respective probability distribution of the nascent RNA, obtained by inverting Eqs. (19) and (20), and
compared to stochastic simulations (delay SSA) performed using DelaySSAToolkit.jl package in Julia [29].
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FIG. 6. Absolute value of the local sensitivity coefficient |si j | defined in Eq. (51). Rates are labeled according to Eqs. (50a)–(50j) and
Fig. 4. Blue bars with diagonal lines have si j < 0, whereas red bars with dots have si j > 0. (a) K = 2. (b) K = 4.

A value x of si j means that a 1% change in the value of ki j

causes a x% change in the value of FFN . To find si j , we write
Eq. (51) as

si j = ki j

FFn

[
D2

〈N〉 − D1

(
Var[N]

〈N〉2
+ 2

)]
, (53)

D1 = ∂〈N〉
∂ki j

, D2 = ∂〈N2〉
∂ki j

. (54)

The advantage of our analytical solution over stochastic
simulations is that D1 and D2 can be computed directly from
Eqs. (23a) and (23b), respectively. The results for si j for all
18 kinetic rates are presented in Fig. 6. When reinitiation
occurs from the on state (K = 2), we find that FFN is most
sensitive to changes in the on rate, the off rate, and the rate
of TFIID binding [Fig. 6(a)], which indeed have been identi-
fied previously as rate-limiting steps in transcription initiation
[21,42]. However, we get markedly different values of si j if we
assume that TFIID and TFIIA remain bound at the promoter
until reinitiation [Fig. 6(b)]. We note that si j measures local
sensitivity, which means that its value will likely change for a
different choice of parameters.

IV. COMPARISON WITH EXPERIMENTAL DATA
FROM LIVE CELL IMAGING

In Ref. [25], transcription kinetics of a target gene were
followed in live Escherichia coli cells, one transcription event
at a time. This was possible by a method that tags mRNA in
vivo with MS2-GFP proteins [43,44]. In the experiment, the
target gene was controlled by the tetA promoter, which was
induced (turned on) by anhydrotetracycline (aTc) at a concen-
tration of 15 ng/ml at two temperatures, 24◦C and 37◦C. The
waiting time distribution between successive mature mRNA
production events was measured experimentally and fitted to
a hypoexponential distribution with three rates denoted by r1,
r2, and r3 [Figs. 7(a) and 7(b)]. The Laplace transform of the

pdf of this distribution is given by

f ∗
fit (s) = r1r2r3

(s + r1)(s + r2)(s + r3)
. (55)

To apply our theory to these data, we assumed that the
measured intervals between the productions of successive
mature RNA molecules were not significantly affected by
elongation. According to Ref. [25], this assumption is sup-
ported by the fact that the mean duration of the intervals
between successive mature mRNA production events was
larger than 600 s, whereas the elongation time took only
tens of seconds. Sequence-specific transcriptional pauses, if
existed, were ruled out as being too short to significantly affect
the measured distributions (they are in the range between 10–
100 s). Premature termination was also excluded as it would
result in a multimodal distribution that was not observed in
the experiment.

The fraction of cells with a given number M(t ) of mRNA
was measured at t = t1 = 1 h after the induction by aTc. Since
MS2 tags protected mRNA from degradation, we assumed
that the number of mRNA M(t1) was equal to the number of
transcription initiation events from the time of full induction
t0 until t1 − T ,

M(t1) = NI (t1 − t0), (56)

where T is the elongation time. The latter was only tens of
seconds, hence we approximated t1 − T by t1. The time of
full induction by aTC was estimated to be t0 = 20 min [25].
From Eqs. (9) and (56) it follows that the Laplace transform
of P(M(t ) = n) is given by

L{P(M(t ) = n)} =
∫ ∞

0
dt P(M(t ) = n)e−st

= [1 − f ∗
fit (s)][ f ∗

fit(s)]n

s
. (57)

The distribution of M(t1) was obtained by computing the in-
verse of Eq. (57) evaluated at t1 − t0 = 40 min. The results for
24◦C and 37◦C are shown in Figs. 7(c) and 7(d), respectively.
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FIG. 7. (a) Probability density function f (t ) of the waiting times between successive mature RNA production events measured in Ref. [25]
at 24◦. Black line is a fit to the hypoexponential distribution obtained by inverting f ∗

fit (s) in Eq. (55) with r1 = 1/620 s−1, r2 = 1/240 s−1,
and r3 = 1/115 s−1. (b) Same as in (a) but at 37◦C with r1 = 1/245 s−1, r2 = 1/254 s−1 and r3 = 1/109 s−1. (c) Probability distribution
P(M(t1) = n) of the fraction of cells with a given number of mRNA molecules measured 1 h following induction by aTc at 24◦C, compared
to the theoretical prediction obtained by computing the inverse of Eq. (57) evaluated at t1 = 40 min. (d) Same as in (c) but at 37◦C.

Both distributions are in a very good agreement with the
experimental data, given that no fitting parameters were used
other than those of ffit (t ). This suggests that the knowledge of
the waiting time distribution was sufficient to correctly predict
the distribution of the accumulated mature mRNA.

V. CONCLUSIONS

We have presented a general framework that allows us to
predict the distribution of nascent RNA from the distribution
of waiting times between successive nascent RNA production
events, assuming the time of elongation and termination to
be fixed. The significance of our solution is that it applies
to any initiation mechanism that is modelled by first-order
reactions with time-independent rates. The theory also allows
for a model-free prediction of the nascent RNA distribution,
provided the waiting time distribution is measured experimen-
tally. We have tested our theory on the number of accumulated
nascent RNA in live cells, whereas the theory is yet to be
tested on the number of nascent RNA that are actively engaged
in transcription under steady state conditions.

A major advantage of our theory is that it provides an
exact steady-state solution of the nascent RNA distribution
for a wide range of initiation mechanisms. This means that
given data on the number of nascent RNA in each cell in a
population, we can use the theory to compute the exact likeli-
hood of observing this data and from the maximization of the
latter we can estimate the optimal parameter values for a given
initiation mechanism. More importantly, by doing this for a
number of plausible initiation mechanisms, we can use the
Bayesian information criterion to select the best mechanism
that explains the data.

Important directions for future work include assessing the
importance of stochastic events in transcription elongation,
such as RNAP collisions, ubiquitous pausing, and premature
termination, which have not been accounted for in this frame-
work.

The code and data to reproduce Figs. 2, 3, and 5 are avail-
able on GitHub [45].
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APPENDIX A: WAITING TIME DISTRIBUTIONS
FOR THE INITIATION PROCESSES DEPICTED IN FIG. 1

1. The telegraph process

This process has two gene states (M = 2). After initiation,
the process returns to the state S2 (K = 2). The conditional
probability Pi(t ) that the gene is in state Si at time t , given that
it was in state S2 at time 0 and that no nascent RNA production
has yet occurred, satisfies the following master equation:

dP1

dt
= k21P2 − k12P1,

dP2

dt
= k12P1 − (k2 + k21)P2. (A1)

with the initial condition Pi(0) = δi,2. By taking the Laplace
transform of both sides, we get

sP∗
1 = k21P∗

2 − k12P∗
1 ,

sP∗
2 − 1 = k12P∗

1 − (k2 + k21)P∗
2 , (A2)

and from there the Laplace transform of f (t ) in Eq. (31).

2. Three-state process that accounts for RNAP recruitment

This process has three gene states (M = 3). After initiation,
the process returns to the state S2 (K = 2). The conditional
probability Pi(t ) that the gene is in state Si at time t , given that
it was in state S2 at time 0 and that no nascent RNA production
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has yet occurred, satisfies the following master equation:
dP1

dt
= k31P3 + k21P2 − k12P1,

dP2

dt
= k12P1 + k32P3 − (k21 + k23)P2,

dP3

dt
= k23P2 − (k31 + k32 + k3)P3, (A3)

with the initial condition Pi(0) = δi,2. By taking the Laplace
transform of both sides, we get

sP∗
1 = k31P∗

3 + k21P∗
2 − k12P∗

1 ,

sP∗
2 − 1 = k12P∗

1 + k32P∗
3 − (k21 + k23)P∗

2 ,

sP∗
3 = k23P∗

2 − (k31 + k32 + k3)P∗
3 , (A4)

and from there the Laplace transform of f (t ) in Eq. (46).

3. A stepwise process that accounts for the binding of general
transcription factors and RNAP

This process has M gene states. After initiation, the process
returns to the state SK . The conditional probability Pi(t ) that
the gene is in state Si at time t , given that it was in state SK at
time 0 and that no nascent RNA production has yet occurred,
satisfies the following master equation:

dP1

dt
= k21P2 − k12P1,

dP2

dt
= k12P1 + k32P3 − (k21 + k23)P2,

...

dPM

dt
= kM−1MPM−1 − (kMM−1 + kM )PM, (A5)

with the initial condition Pi(0) = δi,K . We can write Eq. (A5)
compactly as

dP

dt
= AP, P(t ) =

⎡
⎢⎣

P1(t )
...

PM (t )

⎤
⎥⎦, (A6)

where A is a M × M tridiagonal matrix whose nonzero ele-
ments are

[A]i,i+1 = ki+1,i, i = 1, . . . , M − 1, (A7)

[A]i,i = −ei, i = 1, . . . , M, (A8)

[A]i+1,i = ki,i+1, i = 1, . . . , M − 1. (A9)

Here, e1 = k12, ei = kii−1 + kii+1 for i = 2, . . . , M − 1, and
eM = kMM−1 + kM . The solution to Eq. (A6) is

P(t ) = eAt P(0), (A10)

where eAt is the matrix exponential. From here, we get the
initiation time distribution as

f (t ) = kMPM (t ) = kM (eAt )MK , (A11)

and from there, the Laplace transform of f (t ),

f ∗(s) = kM (sI − A)−1
MK . (A12)

Because A is a tridiagonal matrix, the inverse (sI − A)−1

can be found explicitly [41]. Following [41], we define the
following recurrence relations:

z0 = 1, z1 = s + e1, (A13a)

zi = (s + ei )zi−1 − kii−1ki−1izi−2, (A13b)

yM+1 = 1, yM = s + eM , (A13c)

y j = (s + e j )y j+1 − k j+1 jk j j+1y j+2. (A13d)

for i = 2, . . . M and j = M − 1, . . . , 1. The matrix elements
(sI − A)−1

M1 and (sI − A)−1
MM can be expressed as, respectively,

(sI − A)−1
M1 =

∏M−1
n=1 knn+1

y2

(
s + e1 − k21k12

y3

y2

) , (A14)

(sI − A)−1
MM = 1

s + eM − kMM−1kM−1M
zM−2

zM−1

, (A15)

whereas (sI − A)−1
MK1 for K = 2, . . . , M − 1 reads

(sI − A)−1
MK =

∏M−K
n=1 knn+1

yK+1

(
s + eK − kKK−1kK−1K

zK−2

zK−1
− kK+1K kKK+1

yK+2

yK+1

) , K = 2, . . . , M − 1. (A16)

APPENDIX B: INVERSE LAPLACE TRANSFORM
OF P∗(n, s) FOR SELECTED INITIATION PROCESSES

1. The telegraph process

For this process, the Laplace transform P∗(n, s) for n = 0
and n � 1 are given by, respectively,

P∗(0, s) = s + λ1 + λ2 − 1/μ

(s + λ1)(s + λ2)
, (B1)

P∗(n, s) = (s + k21 + k12)2[k2(s + k12)]n−1

μ[(s + λ1)(s + λ2)]n+1
(B2)

By decomposing P∗(0, s) into partial fractions, we get

P∗(0, s) = μs + μλ1 + μλ2 − 1

μ(s + λ1)(s + λ2)

= λ2 − 1/μ

(λ2 − λ1)(s + λ1)
+ λ1 − 1/μ

(λ1 − λ2)(s + λ2)
. (B3)

This can now be inverted using the following identity:

L−1

{
1

(s + α)n

}
(T ) = T n−1

(n − 1)!
e−αT , (B4)

from which we get Eq. (37).
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For n � 1, the partial fraction decomposition of P∗(n, s)
reads

P∗(n, s) =
n∑

i=0

Ai,n

(s + λ1)n+1−i
+

n∑
i=0

Bi,n

(s + λ2)n+1−i
, (B5)

where Ai,n and Bi,n for i = 0, . . . , n are given by

Ai,n = 1

i!

di

dsi
[P∗(n, s)(s + λ1)n+1]

∣∣∣∣
s=−λ1

, (B6)

Bi,n = 1

i!

di

dsi
[P∗(n, s)(s + λ2)n+1]

∣∣∣∣
s=−λ2

. (B7)

To find these coefficients, we define an auxiliary function
u(s; λ),

u(s; λ) = (s + k12)n−1

(s + λ)n+1
. (B8)

The coefficients A0,n and A1,n read

A0,n = (k21 + k12 − λ1)2u(−λ1; λ2), (B9)

A1,n = (k21 + k12 − λ1)2u(1)(−λ1; λ2)

+ 2(k21 + k12 − λ1)u(−λ1; λ2). (B10)

For i � 2, applying the general Leibniz rule to the product of
(s + k12 + k21)2 and u(s; λ2) leads to

Ai,n = 1

i!
(k21 + k12 − λ1)2u(i)(−λ1; λ2)

+ 2

(i − 1)!
(k21 + k12 − λ1)u(i−1)(−λ1; λ2)

+ 1

(i − 2)!
u(i−2)(−λ1; λ2) i = 2, . . . , n, (B11)

where we have used the notation

u(i)(−λ1; λ2) = di

dsi
u(s; λ2)

∣∣∣∣
s=−λ1

. (B12)

Applying the general Leibniz rule to u(i)(s; λ2), we get

u(i)(−λ1, λ2) = (−n − 1)i
(k12 − λ1)n−1

(λ2 − λ1)n+1+i

× 2F1

(
−i, 1 − n,−i − n;

λ2 − λ1

k12 − λ1

)
,

(B13)

where (x)i = x(x − 1) . . . (x − i + 1) is the falling factorial
and 2F1(a, b, c; z) is the Gaussian or ordinary hypergeometric
function. The coefficient Bi,n can be obtained from Ai,n by re-
placing λi ↔ λ2. This concludes the derivation of the inverse
Laplace transform of P∗(n, s) for the telegraph process.

By inserting Eq. (31) into Eq. (22), we get the following
expression for the Laplace transform of the probability gener-
ating function G∗(z, s),

G∗(z, s) = s + k21 + k12 − k2u + u/μ

s2 + s(k21 + k12 − k2u) − k12k2u
, (B14)

where u = z − 1. Next, we introduce λ1(u) and λ2(u) such
that

s2 + s(k21 + k12 − k2u) − k12k2u
= [s + λ1(u)][s + λ2(u)]. (B15)

We now write

G∗(u, s) = s + k21 + k12 − k2u + u/μ

[s + λ1(u)][s + λ2(u)]
, (B16)

which can be inverted using the partial fraction decomposi-
tion. The final result for G(u) is

G(u) = e−λ1(u)T

2(k1 + k21)
√

	(u)
{(k1 + k21)[

√
	(u) − (k1 + k21)] − (k1 − k21)k2u

+ (k1 + k21)[
√

	(u) + (k1 + k21)]e
√

	(u)T + (k1 − k21)k2u e
√

	(u)T }, (B17)

where 	(u) = (k21 + k12 − k2u)2 + 4k12k2u.

2. Fully irreversible process with arbitrary number of steps
with equal rates

For this process, the inverse Laplace transform P∗(0, s) and
P∗(n, s) for n � 1 are given by, respectively,

P∗(0, s) = (Ms − λ)(s + λ)M + λM+1

Ms2(s + λ)M
, (B18)

P∗(n, s) = λM(n−1)+1[(s + λ)M − λM]2

Ms2(s + λ)M(n+1)
. (B19)

The partial fraction decomposition of P∗(n, s) reads

P∗(n, s) =
M(n+1)−1∑

i=0

Ai,n

(s + λ)M(n+1)−i
, (B20)

where

Ai,n = 1

i!

di

dsi
[P∗(n, s)(s + λ)M(n+1)]

∣∣∣∣
s=−λ

, (B21)

and i = 0, . . . , M(n + 1) − 1. For n = 0,

Ai,0 = (i + 1)λM−1−i

M
, i = 0, . . . , M − 1. (B22)
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Inserting this back into Eq. (B20) and inverting the Laplace
transform gives

P(N = 0) = e−λT

M

M−1∑
i=0

(M − i)
(λT )i

i!
. (B23)

For n � 1, Ai,n is given by

Ai,n = i!λ2M−2−i[(i − 2M + 1)1{i � 2M}
−2(i − 2M + 1)1{i � M} + i + 1], (B24)

where 1{x � y} = 1 if x � y and is 0 if x < y. Inserting Ai,n

into the expression for P∗(n, s) and taking the inverse Laplace
transform yields the nascent RNA distribution in Eq. (44).
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