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Beam parameter optimization in accelerators involves multiple, sometimes competing, objectives. Condensing
these individual objectives into a single figure of merit unavoidably results in a bias towards particular outcomes,
often in an undesired way in the absence of prior knowledge. Finding an optimal objective definition then
requires operators to iterate over many possible objective weights and definitions, a process that can take
many times longer than the optimization itself. A more versatile approach is multi-objective optimization,
which establishes the trade-off curve or Pareto front between objectives. Here we present the first results on
multi-objective Bayesian optimization of a simulated laser-plasma accelerator. We find that multi-objective
optimization reaches comparable performance to its single-objective counterparts while allowing for instant
evaluation of entirely new objectives. This dramatically reduces the time required to find appropriate objective
definitions for new problems. Additionally, our multi-objective, multi-fidelity method reduces the time required
for an optimization run by an order of magnitude. It does so by dynamically choosing simulation resolution and
box size, requiring fewer slow and expensive simulations as it learns about the Pareto-optimal solutions from
fast low-resolution runs. The techniques demonstrated in this paper can easily be translated into many different
computational and experimental use cases beyond accelerator optimization.
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I. INTRODUCTION

Laser-plasma interaction [1,2] and, in particular, its sub-
field of laser-plasma acceleration [3,4] are highly researched
areas with prospects for numerous scientific and societal ap-
plications [5,6]. Until the past decade, both experimental and
numerical investigations in these fields were often based on
single or a few laser shots and particle-in-cell simulations [7],
respectively. Since then, improvements in laser technology
as well as computing hardware and software have made it
possible to gather data for hundreds or thousands of different
configurations in both experiments and simulations [8–10].
This has sparked interest in using advanced techniques from
computer science, particularly machine learning methods,
which can deal more efficiently with large multidimensional
data sets than human operators [11].

Early examples include the use of genetic algorithms
[12,13] and, more recently, the first measurements using sur-
rogate models have been presented [14,15]. The latter are
intermediate models that are generated based on existing
data during optimization and that can be quickly explored
numerically. Studies involving this Bayesian optimization
have demonstrated clear optimization of a carefully chosen
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optimization goal. Importantly, this goal has to be encoded in
the form of a so-called objective function, which acts on the
measurement and gives a scalar output. In the case of a particle
accelerator, the beam can generally be described by the charge
distribution ρ(�x, �p) in the six-dimensional phase space, and
an objective function that optimizes beam parameters will
act on this distribution or a subset of it. One of the simplest
examples of an objective function is the charge objective
function

gQ[ρ(�x, �p)] =
∫

ρ(�x, �p)d�xd �p.

While this function can in principle be used as an objective
function in a particle accelerator, it will usually not yield a
useful optimization result. This is because it optimizes solely
the charge, and all other beam parameters, such as divergence
and energy, are lost in the integration process. In fact, due to
energy conservation, this optimizer tends to reduce the beam
energy, which is an unintended consequence in almost all
conceivable applications of particle accelerators.

In practice, one usually uses a combination of objectives,
e.g., reaching a certain charge above a certain energy or
the total beam energy. The design of objective functions for
these problems is even more difficult because they need to
give some constraints or limits to the single objectives. Many
multi-objective scalarizations take the form of a weighted
product g = ∏

gαi
i or a sum g = ∑

αigi of the individual
objectives gi with the hyperparameter αi describing its weight.
For instance, Jalas et al. [15] optimized the spectrum of
a laser-accelerated beam using an objective function that
combines the beam charge Q, the median energy Ẽ , and
the median absolute deviation �Ẽ . Their proposed objective
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function to be maximized is
√

QẼ/�Ẽ , i.e., the exponential
weights are α1 = 0.5, α2 = 1, and α3 = −1. Here, the use of
median-based metrics results in less sensitivity to outliers in
the spectrum, while the weight parameter α1 = 0.5 explicitly
reduces the relevance of charge compared to the beam energy
and spread.

The choice of particular weights is, however, entirely em-
pirical and usually the result of trial and error. An objective
function is, thus, not necessarily aligned with the actual op-
timization goal, and one often needs to manually adjust the
parameters of the objective function over multiple optimiza-
tion runs. In essence, instead of scanning the input parameters
of an experiment or simulation, the human operator will be
scanning hyperparameters of the objective function many
times over. The less prior knowledge about the system is
known, the longer this process may take.

The underlying problem is essentially one of compression,
i.e., that the objective function needs to reduce a complex
distribution function to a single number characterizing said
distribution. It is impossible to do this without information
loss for an unknown distribution function. In fact, even if
we knew the distribution, e.g., a normal distribution, one
would still need both mean and variance to describe it without
ambiguities. In the case of an unknown one-dimensional dis-
tribution function, we can use multiple statistical descriptions
to capture essential features of the distribution such as the
central tendency (weighted arithmetic or truncated mean, the
median, mode, percentiles, etc.) and the statistical dispersion
of the distribution (full width at half maximum, median abso-
lute deviation, standard deviation, maximum deviation, etc.).
These measures weigh different features in the distribution
differently. One may also include higher-order features such
as the skewness, which occurs for instance as a sign of beam
loading in energy spectra of laser-plasma accelerators [8], or
coupling terms between the different parameters. Last, the
amplitude or integral of the distribution function are often
parameters of interest [16].

In the following, we discuss optimizations of electron en-
ergy spectra according to different objective definitions and
then present a more general multi-objective optimization.

The paper is structured as follows: First, we are going
to discuss details of the simulated laser-plasma accelerator
used for our numerical experiments (Sec. II) and introduce
Bayesian optimization (Sec. III). Then we present results from
optimization runs using different definitions of scalarized ob-
jectives that aim for beams with high charge and low energy
spread at a certain target energy (Sec. IV). We then compare
these results with an optimization using effective hypervol-
ume optimization of all objectives (Sec. V). In Sec. VI we
discuss some of the physics that the optimizer “discovers”
during optimization, and in the last section, we summa-
rize our results and outline perspectives for future research
(Sec. VII).

II. LASER-PLASMA ACCELERATOR

As a test system for optimization, we use an example from
the realm of plasma-based acceleration, i.e., a laser wakefield
accelerator with electron injection in a sharp density down
ramp [8,17]. The basic scenario here is that electrons get

FIG. 1. Illustration of the four variable input parameters from
Table I, namely, the up-ramp length lup, the down-ramp length ldown,
the plateau density ne, and the focus position z0.

trapped in a laser-driven plasma wave due to a local reduction
in the plasma density, which is often realized experimentally
as a transition from one side to the other of a hydrodynamic
shock, hence the often-used name “shock injection.” The
number of electrons injected at this density transition strongly
depends on the laser parameters at the moment of injection,
but also on the plasma density itself. Both parameters also
affect the final energy spectrum the electrons exhibit at the
end of the acceleration process. Here we use simulations to
investigate this system, the primary reason being that they are
perfectly reproducible and do not require additional handling
of jitter, drifts, and noise. However, the methods outlined
in this paper are equally relevant to experiments. The input
space consists of four variable parameters, namely, the plateau
plasma density, the position of laser focus, as well as the
lengths of the up ramps and down ramps of the plasma density
close to the density transition.

While the shock injection scenario is sufficiently complex
to require particle-in-cell codes, we use the code FBPIC by
Lehe et al. [18] in conjunction with various optimizations
to achieve an hour-scale run time. On the hardware side,
the code is optimized to run on NVIDIA GPUs (here we
used Tesla V100 or RTX3090), while the physical model
includes optimizations such as the usage of a cylindrical ge-
ometry with Fourier decomposition in the angular direction
and boosted-frame moving windows [19]. Additionally, we
can take advantage of the very localized injection to locally
increase the macroparticle density in the injection area [8].
Similarly, the linear wakefields forming in regions of lower
laser intensity result in a nearly laminar flow of particles,
meaning that we can decrease the macroparticle density far
away from the laser axis [20].

One particular challenge that arises in simulations over a
large range of parameters is that different input parameters
may result in different computational requirements. For in-
stance, the transverse box size needs to be several times larger
than the beam waist to assure that the energy of a focusing
beam is not lost. Hence, a laser that is initialized out of focus
requires a larger box size than a beam initialized in focus. We
address this by scaling the transverse box size lr as a function
of the laser waist w(z) at the beginning of the simulation. Sim-
ilarly, the size of the wakefield depends on the plasma density,
and accordingly, we scale the longitudinal size lz of the box
with the estimated wakefield size. By using these adapted
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TABLE I. Simulation and scan parameters. The top section shows the four simulation parameters and their ranges that are used in the
optimization problem. Furthermore, a fidelity parameter χ is introduced that allows the optimizer to choose between low- and high-numerical
resolution (see the section on mesh parameters). Based on the scan parameters and the fixed problem parameters, we calculate several dependent
variables that help us to estimate the correct box size for the simulations.

Variable input parameters

Min. value Max. value

Plateau plasma density ne 2 × 1018 cm−3 9 × 1018 cm−3

Up-ramp length lup 0.25 mm 1.75 mm
Down-ramp length ldown 0.0 µm 50 µm
Focus position z0 −0.5 mm 2.5 mm
Simulation fidelity χ 1 4

Fixed input parameters

Laser wavelength λ0 800 nm
Laser power P 50 TW
Laser waist (FWHM) wFWHM

0 20 µm
Laser duration (FWHM) �t 30 fs

Dependent variables

Plasma wavelength λp 2πc
√

meε0/e2ne

Plasma wave number kp 2π/λp

Critical density nc (2πc/λ0)2(meε0/e2)
Critical power Pc 2mec3nc/(rene)
Peak intensity I0 2P/(πw2

0 )
Peak potential a0

√
2I0/ε0c (e/kpmec2)

Matched peak potential amatched
0 2(P/Pc )1/3

Matched bubble radius rb

√
2amatched

0 /kp

Rayleigh length zR πw2
0/λ0

Waist w
√

1 + (z − z0)/zR)2

(Gaussian beam in vacuum)

Simulation mesh parameters

Transverse box size lr 2.5 × w(z = 0)
Longitudinal box size lz 25 µm + rb

Simulation length lz,max 3.5 mm
Transverse resolution �r 600 nm/χ

Longitudinal resolution �z 60 nm/χ

Boost factor γboost

√
lz,max/lz/χ

simulation boxes, we avoid wasting computational resources
and only capture the physics relevant to our problem. It should
be noted that the scan range of these highly optimized simula-
tions is to some extent limited by the appearance of numerical
instabilities or artifacts and, for instance, the boosted-frame
geometry cannot be used in a near-critical setting. A summary
of all free and dependent parameters of the simulations is
given in Table I and illustrated in Fig. 1.

III. BAYESIAN OPTIMIZATION

In this paper, we make use of Bayesian optimization, a se-
quential model-based algorithm, to optimize problems that are
either costly or time intensive to probe. Bayesian optimization
works by constructing a probabilistic surrogate model of an
objective function by sampling the parameter space (see Döpp
et al. [11] for an overview). Here, we use a Gaussian process

(GP) as the probabilistic model, which is a nonparametric
model based on a prior (in this case a zero-mean distribu-
tion) and a covariance function that expresses the correlation
between the prior and the current data points. This surrogate
model is cheap and fast to evaluate, and Bayesian optimiza-
tion finds the next evaluation point by optimizing the model
instead of the real system. To this end, a so-called acquisition
function, which quantifies the expected improvement from a
certain set of input parameters, is used. After a measurement
at this point, the model is updated, and the procedure is re-
peated until a certain stopping criterion is fulfilled.

The main advantage of Bayesian optimization compared
to other methods is that it can find the global optimum of
a function in a very sample-efficient way. Furthermore, the
acquisition function and the model can be adapted to optimize
not only a single objective but multiple combinations of objec-
tives. This adaptation is done in multi-objective optimization
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(see Sec. V), where Bayesian optimization can implicitly op-
timize multiple combinations of objectives by optimizing the
expected hypervolume improvement [21,22].

Despite its high sample efficiency, optimizing a multi-
dimensional problem still requires a non-negligible number of
evaluations. For our laser-plasma accelerator with four vari-
able inputs we typically need to perform on the order of ∼102

evaluations to locate the optimum. Given the hour-scale run
time of our simulations discussed in Sec. II, a full optimization
run would that take several days to compute.

We can speed up the optimization process and allow for
multi-dimensional optimization by using low-resolution sim-
ulations that use a larger numerical grid (see Table I) and
a larger boost factor. They capture the essential physics of
injection and acceleration but have not yet fully converged in
terms of final charge, energy, and so forth. These approximate
solutions take only a few GPU minutes to compute while
providing valuable information for optimization. Importantly,
we can directly incorporate the possibility of varying the reso-
lution and, hence, fidelity of a simulation into the optimization
process by introducing a new fidelity variable χ (see Table I).
In a process called multi-fidelity optimization, we construct
a Gaussian process that models the objective function over
the four input dimensions (ne, lup, ldown, z0) as well as the
fidelity parameter χ . The decision regarding the next position
to probe is taken by a recently introduced multi-objective,
multi-fidelity (MOMF) Bayesian optimization algorithm [23],
which is based on the common optimization of the different
objectives and an additional trust objective. Regarding the
latter, the algorithm also considers the computational cost
associated with the fidelity parameter. From a convergence
study of particle-in-cell (PIC) simulations, we found that the
computing time of our simulations approximately scales with
cost(χ ) ∝ χ3.5. The speed-up gained by taking this cost and
fidelity information into account is on average an order of
magnitude in this study and a full multi-fidelity optimization
run typically takes about 10 h.

While designed for multiple objectives, the MOMF ac-
quisition function also supports the optimization of a single
objective with multiple fidelities [23]. All results pre-
sented in the following, both single- and multi-objective,
were thus obtained using the same algorithm for a fair
comparison. The optimization parameters are outlined in Ta-
ble II and importantly, both objective types have the same
constraints regarding maximum iteration number and compu-
tational budget, as well, and they were executed five times
with five random initial points each to assess the typical
performance.

IV. SINGLE-OBJECTIVE OPTIMIZATION

The goal of the optimization presented here is to produce
quasi-monoenergetic electron beams with a high total charge
around a certain target energy E0. In statistical terms, these
goals can be captured by the difference of the central ten-
dency from the target energy, the statistical dispersion, and
the integral of the electron beam spectrum. But as mentioned
in the Introduction, these three features can be described by
multiple statistical measures such as the standard deviation,
the median absolute deviation, the mean energy, the median

TABLE II. Summary of optimization parameters used in the
paper. Some of the parameters used to run the MOMF algorithm
are outlined in this table. The number of iterations and total cost
are two upper thresholds used to stop the optimization run. When
either value was reached the optimization was stopped. The output
dimensions for scalarized runs was one, while the MOMF optimized
three objectives simultaneously. The cost function was approximated
due to the adaptive meshes used in this study.

Optimization parameters

Number of trials nTRIALS 5
Max. number of iterations nBATCH 150
Maximum cost Ctotal 50 GPU h
Number of initial points nINIT 5
Input dimensions dimx 5
Output dimensions dimy 1 (single objective) or

3 (multi-objective)
Cost function cost(χ ) ∝ χ 3.5

energy, and the total charge [24]. In practice there thus exists
large freedom in how exactly these objectives are encoded
into a single scalarized objective. Each objective function
has a bias toward a particular outcome and, thus, the final
optimization result may differ significantly. In the following,
we present several different objective functions that intend to
reach the same goal, i.e., simultaneously maximize charge,
reduce spectral width, and reduce the distance to the target
energy.

Examples. In terms of the mean energy and standard devi-
ation we can define the objective

O1 = Q
1
2

�Ē2 · σE
, (1)

where Q is the total charge, �Ē2 = |Ē − E0|2 + ε is the
squared difference between the mean energy Ē of the spec-
trum and the target energy, and σE is the standard deviation.
Note that ε in the definition of �Ē2 is an offset to prevent
the objective from approaching infinity as the distance to the
target energy is decreased. Throughout the manuscript we use
ε = 1 MeV, as beams within a distance of 1 MeV to the target
energy are considered sufficiently optimized.

It is a characteristic of the mean that it tends to emphasize
points further away from the target. In the presence of noise, it
is thus often suitable to use median-based descriptors, instead.
Such an objective could be

O2 = Q
1
2

|�Ẽ | · EMAD
, (2)

where Q is the total charge, Ẽ is the median energy of the
spectrum, E0 is the target energy, |�Ẽ | = |Ẽ − E0| + ε is
their absolute distance (plus offset), and EMAD is the me-
dian absolute deviation around the median. Note the use of
the square root to decrease the emphasis placed on the total
charge. This is essentially the aforementioned objective used
by Jalas et al. [15], with the difference that we use a target
energy instead of an energy maximization.

The choice of Q1/2 is, however, entirely empirical and we
can equally well define alternative versions of such an objec-
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TABLE III. Summary of single-objective functions used in the
paper. The five single-objective scalarized functions that are opti-
mized in this study are shown at the top. The middle and bottom
parts show the charge, central tendency, and statistical dispersion
metrics used to construct the single objectives. These are also used
in multi-objective, multi-fidelity optimization.

Objective definitions

Objective 1 O1 Q0.5[(�Ē 2)σE ]−1, Eq. (1)
Objective 2 O2 Q0.5[(|�Ẽ |)EMAD]−1, Eq. (2)
Objective 2a O2a Q2[(|�Ẽ |)EMAD]−1, Eq. (3)
Objective 2b O2b Q3[(|�Ẽ |)EMAD]−1, Eq. (4)
Objective 3 O3 2Qin − Q, Eq. (5)

Charge-related metrics

Q Total integrated charge
Qin Charge within an energy interval E0 ± �E

Central tendency metrics

Ē Mean energy
Ẽ Median energy
E0 Target energy (300 MeV)
�Ē 2 Mean-squared difference of median and target energy
|�Ẽ | Absolute difference of median and target energy

Statistical dispersion metrics

σE Standard deviation
EMAD Median absolute deviation

tive function with different exponential weights of charge. For
instance, we can use the two objectives

O2,a = Q2

|�Ẽ | · EMAD
(3)

and

O2,b = Q3

|�Ẽ | · EMAD
, (4)

which should incentivise the optimizer to find beams with
higher total charge.

We already alluded to the general problem that objectives
using division can get arbitrarily large when decreasing the
value of the denominator. Instead of circumventing this prob-
lem with offsets, it can be preferable to rewrite the objective
entirely without using division. One possible way to do so
in our case is to implicitly optimize the target energy and
the energy spread by optimizing the charge within a certain
energy window. This can be written in the form

O3 = 2Qin − Q, (5)

where Qin = ∫ E0+�E/2
E0−�E/2 Q(E )dE is the charge within a given

energy interval �E around the target energy. A summary
of these single objectives and definitions of metrics used to
define them is outlined in Table III.

Results and discussion. Having defined several “sensible”
objectives, we now present results using them to optimize the
simulated laser wakefield accelerator. In Fig. 2, we show the

FIG. 2. Single-objective spectra. (a) Final spectra obtained using
three different objectives (O1, O2, and O3 from the text) to optimize
the beam charge, the beam distance from the target energy (300
MeV), and the energy spread. The median energy Ẽ of each spectrum
is indicated using triangular markers, while the mean energy Ē is
marked with circles. (b) Example for changes in objective weight.
Here we use variations of the O2 objective with charge squared (O2,a)
or charge to the power of three (O2,b), leading to a higher over-
all charge in the beam and—without explicit optimization—more
peaked spectra.

final spectra of the three scalarized objectives O1, O2, and
O3. Since we use mean energy for the first objective, the
spectrum outliers can influence the mean much more than
the second objective using median energy. This explains why
the first spectrum tends to not have any high- or low-energy
tail. The second spectrum using median energy and median
absolute deviation allows having a high-energy tail while
keeping the median close to 300 MeV. Since this spectrum
has a longer tail, the mean of this spectrum is higher than
300 MeV. The third objective in Fig. 2 has a much higher
peak charge because it has a higher implicit weighting on
the charge. The beam here has an even shorter tail since it
explicitly penalizes the charge outside of the 250–350 MeV
window. Overall, we can see that the different scalarization of
the statistical measures can result in different spectra. Also,
implicitly optimizing for beams near a target energy, as is
done in the case of the third objective, appears to yield better
results than explicitly optimizing for it.

One prominent feature in these spectra is that the energy
exhibiting the highest spectral charge density of electrons,
subsequently referred to as the peak energy Epeak, is much
further from the target energy than the mean or median en-
ergies. This is because highly charged electron beams create
beam-loading effects in laser wakefield accelerators, result-
ing in skewed spectra [8]. For such asymmetric spectra,
the peak does not coincide with the distribution’s mean or
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FIG. 3. Multi-objective optimization. (a) Visualization of the Pareto surface spanned by the nondominated solutions for each of the three
objectives. (b)–(d) Two-dimensional projections of the Pareto surface, showing the Pareto front for the objective pairs of charge vs energy
distance (b), charge vs energy spread (c), and energy spread vs energy distance (d). The results show that the results of a single multi-objective
optimization are either similar or better than those of all of the single-objective runs.

median and an explicit optimization of the peak energy be-
comes necessary, which we discuss in more detail in the next
section.

In the next step we compare the different versions of the
second objective (O2, O2,a, and O2,b) with Q1/2, Q2, and
Q3 weighting, respectively. As expected, the higher weight
increases the total charge in the optimized beam spectrum.
However, while this particular combination of hyperparam-
eters appears to yield objectively better beams than the O2

and O2a variations, it is not possible to know this beforehand,
adding the hyperparameter choice as an additional degree of
freedom to the optimization problem. For any new problem
an operator or user thus needs to run several optimization runs
to identify the most suitable definitions and combinations of
objectives.

V. MULTI-OBJECTIVE OPTIMIZATION

As we have seen in the previous section, a major problem
with the single-objective optimizations of complex systems is
that the optimal weights for the hyperparameters in single-
objective optimization are not known a priori. Thus, to get a
higher value for one particular objective, the weights need to
be changed via trial and error. Furthermore, multi-objective
optimization problems often exhibit some trade-offs in the
optimization of different objectives. As a result, changing
one objective’s weight will also affect the other objectives,
in either a detrimental or beneficial way. A single-objective
optimization will always be biased towards a particular
trade-off. However, it is difficult or impossible to assess
this bias beforehand, and the optimization will often not
yield the optimal trade-off of parameters a user or operator
intended.

A more versatile strategy is to directly explore the trade-off
between different objectives and choose the optimal combi-
nation of objectives a posteriori. This trade-off optimization
results in a solution set that in the output space is known as

the Pareto front and in the input space is known as the Pareto
set. A point is said to dominate another when it has at least a
higher value for one objective while keeping the other objec-
tives equal. Thus, the Pareto front is the set of nondominated
points in any given output space. The area covered by the
dominated space is known as the hypervolume and it is an
indirect measure for the diversity of solutions. In Bayesian op-
timization the expected hypervolume improvement can, there-
fore, be used to optimize different objectives simultaneously.
In our case we choose the mean energy difference �Ē =
|Ē − E0|, the standard deviation σE , and the total charge
in the beam Q as individual objectives spanning the output
space.

Results and discussion. In Fig. 3 we show the results
for one representative run of the multi-objective Bayesian
optimization. By probing the Gaussian process model, we
obtain an entire set of solutions that can be visualized as a
Pareto surface, consisting of all the nondominated points in
the three-dimensional output space. Projections showing the
Pareto fronts for the three pairs of objectives are shown in
Figs. 3(b)–3(d). We also indicate the beam parameters of the
different optimizations presented in the previous section as
blue triangles. The results show that the multi-objective opti-
mization yields comparable performance to the combinations
of objectives discussed in Sec. IV.

This figure also shows some trade-offs, inherent to many
multi-objective problems, some of which have an underlying
physics interpretation. One prominent feature can be seen in
Fig. 3(b), where an increase in the distance to target energy is
seen when the total charge exceeds 500 pC. This distance is
mainly due to a decrease in energy caused by beam loading
[8]: As the charge increases the electron bunch dampens the
strength of the wakefields, which consequently leads to lower
mean energy and, thus, an increase in the distance to the target
energy. Another trade-off in Fig. 3(c) is between high-charge
and monoenergetic beams, where increasing charge results
in a wider spectrum of the electron beams. This indicates
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that the input parameters that yield a beam with a higher
total charge are different from the ones that produce quasi-
monoenergetic beams, an effect seen throughout the literature,
e.g., in Götzfried et al. [8]. Another notable result, albeit not
directly visible from the plots, is the absence of any high-
energy beams with low charge. This is because high-energy
beams are implicitly excluded by the three objectives. As the
energy increases, the distance to the target energy increases
and the charge injected for these high-energy beams is less
than those for lower-energy beams. Hence, most beams are
restricted to energies near or lower than the target energy.

The effect of exploring inherent trade-offs makes multi-
objective Bayesian optimization a very useful optimization
technique. Two important benefits are (a) that one can charac-
terize the capability of the system (laser-plasma accelerator)
regarding each objective and (b) that it yields a solution set
without strong bias towards particular objective combinations.
The expression of the objective in terms of the hypervolume
also avoids the problem seen in single-objective optimization,
where offset values needed to be included for objectives in
the denominator. This is because the hypervolume does not
increase drastically if only a single objective is concerned
and, hence, multi-objective optimization does not excessively
exploit single objectives.

As mentioned earlier, another important feature of this
optimization strategy is that the Gaussian process model is
cheap to probe and provides immediate feedback regarding
the predicted means and variances of each individual objective
(here Q, σE , and �Ē ) for a combination of input parameters x
(i.e., ne, ldown, lup, and z0). These can easily be combined into
any desired objective O(x). We can propagate the variances
through the new objective to get an estimate of the uncertainty
[25] and a conservative solution candidate x̂ can be found
using the lower confidence bound

x̂ = argmax
x

{μ(O(x)) − σ (O(x))}. (6)

In Fig. 4(a) we show such inferred solutions for the
previously defined objectives O1 and O2, see Eqs. (1) and
(2), respectively. Due to the higher charge in these beams,
the value of O1 is approximately 40% higher than in the
single-objective optimization result [see Fig. 2(a)]. The re-
sults for O2 are comparable to those shown before, with
the multi-objective result reaching 90% of the correspond-
ing single-objective result. The objective value is nonetheless
diminished, most likely because the optimizer is not strictly
optimizing the median energy but rather the mean energy.

It is notable that the spectral peaks in these candidate solu-
tions are located at 230 and 272 MeV, respectively, and, thus,
far from the” target” energy E0 = 300 MeV. As discussed
before, this happens because the mean or median of these
highly skewed spectral distributions does not coincide with
the peak energy Epeak. We can address this problem with-
out needing to run a new optimization. Instead, we take the
existing multi-objective scan and construct a Gaussian process
that predicts the peak energy for a given input x. Next, we can
select suitable candidates using

x̂ = argmin
x

{‖E0 − μ[Epeak (x)]‖ + σ [Epeak(x)]}. (7)

FIG. 4. Selected spectra obtained via one multi-objective opti-
mization run. (a) Spectra selected as optimal lower confidence bound
solutions for the objectives O1 and O2. (b) Solutions optimized for
peak energies of 250, 275, and 300 MeV.

As this is a minimization problem, we now use the lower
confidence bound to exploit the existing solutions while
taking into account uncertainty. Suitable results are either
found immediately or found after one or two iterations for
which the results of a candidate solution are used to im-
prove the Gaussian process regression. The results of this
process are shown in Fig. 4(b), showing that the multi-
objective results can even translate to objectives that differ
substantially from the three objectives directing the hyper-
volume search. The results thus show that multi-objective
Bayesian optimization greatly facilitates the process of find-
ing both optimal parameter settings and optimal objective
configurations. The latter can be evaluated a posteriori at neg-
ligible cost and feed subsequent iterations of single-objective
optimizers focused on objective exploitation. It should be
emphasized that this process is most suitable in the optimiza-
tion of unknown systems, e.g., newly set up experiments or
simulations. For well-known systems the optimization of a
well-working objective function, e.g., Eq. (5) with an ap-
propriately chosen energy window, can produce competitive
results.
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VI. INPUT SPACE ANALYSIS

So far, our discussion has been limited to the performance
regarding single or multiple objectives. Another advantage
of Bayesian optimization is that the model created during
optimization can itself be analyzed and provide insights about
the underlying physics and parameter dependencies of the
system. In this section, we thus look at how specifically the
choice of input parameters affects each of the different ob-
jectives. To do so, we use the data from our multi-objective
optimization runs and train a GP model. We can sample points
from this model to generate plots that map the influence of
the input parameters on the individual objectives, either in a
pairwise comparison or individually. The results are shown in
Fig. 5. The data are binned by taking pairwise input parame-
ters while averaging over the other two. This results in a total
of six two-dimensional plots for the four input parameters,
which are color coded by the values of the output objective.
We can also see the influence of a single parameter by repeat-
ing the same procedure as above by averaging over the three
input parameters. This is repeated three times to generate plots
for each output objective. Based on these plots we can observe
trends for each input parameter, which in some cases have
straightforward physical interpretations.

Density (ne). We observe that the charge initially increases
with density, but then somewhat surprisingly starts to decrease
again. Closer analysis of the underlying PIC simulations
showed that injection indeed increases monotonically within
our density range, but at higher density parts the injected
electrons are lost at the end of the accelerator due to dephasing
and defocusing fields. We observe that the optimal energy
is reached at the same density as the optimal charge, which
indicates an optimal charge for beam loading to reach the
desired target energy of 300 MeV. The energy spread tends to
increase with the density and shows an interesting correlation
with the focal plane.

Up-ramp length (lup). We observe that the injected charge
increases linearly with the up-ramp length. This effect is most
likely related to laser self-focusing, where a longer up ramp
allows for stronger self-focusing of the laser and, hence, a
higher laser intensity at the injection point. We also observe
that longer up ramps seem to facilitate reaching the target
energy.

Down-ramp length (ldown). The length of the down ramp di-
rectly affects the injected charge, which is expected as shorter
down ramps correspond to a more rapid wakefield expansion
and, thus, increased injection. Meanwhile, the down-ramp
length shows no influence on the mean energy, which also is to
be expected because within the ranges scanned here it controls
the point of the injection and not the acceleration length.

Focus position (zfoc). The charge is maximized for a spe-
cific focus position, but for the same position we tend to
observe the worst energy and energy spread, most likely be-
cause a higher charge leads to beam loading.

For some parameter combinations we also observe cou-
plings. For instance, the optimal focus position for maximal
charge moves to the front the higher the plasma density is and
the longer up-ramp length is.

FIG. 5. Input space visualization. The pair plots show the rela-
tionship between the four input parameters (ne, ldown, lup, and z0)
regarding the three outputs (charge, energy distance, and energy
spread). The one-dimensional histograms show the average effect of
each input parameter averaged.
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VII. CONCLUSION AND OUTLOOK

To conclude, we have presented the first multi-objective
optimization of a simulated laser-plasma accelerator. The per-
formance of the multi-objective optimizer was benchmarked
against several single-objective optimizers and it was found
to lead to similar or even superior results. Meanwhile, the
multi-objective optimizer yields a far more general result that
does not require iterative fine-tuning of objective parameters.

By combining a state-of-the-art GPU-based simulation
code with a multi-fidelity optimization algorithm, we were
able to perform extensive, multi-dimensional optimizations
that stand out in the field of notoriously expensive particle-in-
cell simulations of physical systems. This result is a milestone
towards using “digital twins” of complex physical systems
to optimize real-life experiments and infrastructure. This not
only concerns laser-plasma acceleration but also applies to
any optimization problem with different available numerical
resolutions.

While the multi-fidelity component most immediately
benefits simulation studies with different resolutions, the
multi-objective techniques presented in this paper can also
be directly transferred to experiments. As already noted

by Shalloo et al. [14] and discussed in Sec. VI, surro-
gate models carry significant information about the physics
interaction that can help physicists to better understand
couplings between input and output parameters. This in-
formation may directly be used to improve experiments,
e.g. as a prior distribution for Bayesian optimization in
experiments.

The data underlying the figures presented in this paper has
been made available online [26], including a combined dataset
of 2443 simulations.
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