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No-go theorem and a universal decomposition strategy for quantum channel compilation
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We rigorously prove a no-go theorem that, in sharp contrast to the case of compiling unitary gates, it is
impossible to compile an arbitrary channel to arbitrary precision with any given finite elementary channel set,
regardless of the length of the decomposition sequence. However, for a fixed error bound ε, we find a general and
systematic strategy to compile arbitrary quantum channels. We construct a universal set with a constant number
of ε-dependent elementary channels, such that an arbitrary quantum channel can be decomposed into a sequence
of these elementary channels followed by a unitary gate, with the sequence length bounded by O( 1

ε
log 1

ε
) in

the worst case. We further optimize this approach by exploiting proximal policy optimization—a powerful
deep reinforcement learning algorithm for the gate compilation. We numerically evaluate the performance of
our algorithm concerning topological compiling of Majorana fermions, and we show that our algorithm can
conveniently and effectively reduce the use of expensive elementary operations.

DOI: 10.1103/PhysRevResearch.5.013060

I. INTRODUCTION

Quantum compilers, which decompose quantum opera-
tions into hardware-compatible elementary operations, play
an important role in quantum computation [1] and digital
simulation [2]. This technique is especially crucial for the
applications of noisy intermediate-scale quantum devices [3],
where the performance of deep quantum circuits might be
limited by noises and quantum decoherences. A number of
notable approaches have been proposed to compile unitary
gates and the dynamics of isolated quantum systems [4–16].
However, in reality quantum systems cannot be perfectly
isolated and will inevitably interact with the external environ-
ment, making the more general quantum channel compiling
indispensable for a wide range of applications [17,18]. Yet,
quantum channel compilation has been barely explored [19],
with major previous attention paid to exploiting the Stine-
spring dilation theorem [20] and compiling arbitrary quantum
channels through elementary gates acting on an expanded
Hilbert space with ancillary qubits playing a prerequisite
role [21–30]. Hitherto, a general and systematic theorem
for the universal compilation of arbitrary quantum channels
has not been established. Here, we prove a generic no-go
theorem regarding universal channel compiling to arbitrary
accuracy. We introduce a universal decomposition strategy to
approximate any channels within bounded error, and we op-
timize the strategy based on deep reinforcement learning (see
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Fig. 1 for an illustration). Machine learning, or more broadly
artificial intelligence, has recently cracked a number of noto-
riously challenging problems, such as playing the game of Go
[31,32], predicting protein spatial structures [33], and weather
forecasting [34]. Its tools and techniques have been broadly
exploited in various quantum physics tasks, including rep-
resenting quantum many-body states [35,36], quantum state
tomography [37,38], learning topological phases of matter
[39–49], and nonlocality detection [50]. For quantum compil-
ing on unitary gates, machine learning approaches have also
been introduced to provide a near-optimal sequence [51,52].
In this paper, we first rigorously prove that it is impossible
to compile any quantum channel to arbitrary accuracy using
unitary gates and a finite set of elementary channels, which
is in sharp contrast to the case of compiling a unitary gate.
As illustrated in Fig. 1, we propose a quantum channel com-
piler that, given a bounded error demand ε, decomposes any
quantum channel into a sequence of finite types of elementary
quantum channels followed by a unitary gate. We provide
a constructive method to obtain the elementary channel set,
and we show that the size of the set scales as O(d2) with
the dimension d of the Hilbert space and is independent of
ε. We additionally prove that the length of the elementary
channel sequence in the decomposition is bounded above by
O( 1

ε
log( 1

ε
)) in the worst case and O( min{n, log( 1

ε
)}/ε) on

average, with n the number of qubits. For the unitary gate
at the end of the decomposition, we optimize our strategy
by training a deep-reinforcement-learning (DRL) agent to
compile it using elementary gates. To reduce the resource re-
quirement, we exploit the proximal policy optimization (PPO)
algorithm [53–55] to train our agent with weighted cost in the
reward function to reduce the use of experimentally expen-
sive elementary gates. We further prove a �( log(1/ε)) lower
bound for any indispensable elementary gate count to compile
an arbitrary unitary gate within error ε. As a benchmark,
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FIG. 1. A schematic illustration of the quantum channel compi-
lation within bounded error. The compiler constructs a constant size
elementary channel set using ε as parameters for each channel. It
first decomposes the target channel into a sequence of elementary
channels E0(ε), . . . , EN (ε) followed by a unitary gate. Then we use
a unitary gate compiler to decompose the final unitary gate into
elementary gates. We further optimize this strategy by employing a
deep-reinforcement-learning (DRL) agent to produce approximation
sequence U1, . . . ,UM . The DRL agent receives an observation from
the current sequence and makes an action accordingly.

we apply our algorithm to randomly generated single-qubit
channels realized by the topological quantum compiling of
Majorana fermions [56–60], whose braidings together with a
nontopological T gate form a universal set. We numerically
show that our algorithm can reduce the use of a T gate by a
factor of 2 compared to the traditional Solovay-Kitaev algo-
rithm.

II. A NO-GO THEOREM

A quantum state can be represented by a positive-
semidefinite operator ρ ∈ O(HS ) with Tr(ρ) = 1, where HS

is the Hilbert space and O(HS ) is the set of operators on
HS . In general, a quantum channel E can be characterized
by a completely positive, trace-preserving (CPTP) map which
maps a quantum state ρ into another state E (ρ) ∈ O(HS ).
Any single-qubit state can be represented as ρ = 1

2 (I + a · σ ),
where a is a three-dimensional vector within the Bloch sphere,
and σ = (σx, σy, σz ) are Pauli matrices. Any linear CPTP map
for a single-qubit system can be represented by a four-by-four
matrix T [21,61–63]:

E → T =
(

1 0
t T

)
, Ti j = 1

2
Tr[σiE (σ j )], (1)

where i, j ∈ {0, 1, 2, 3}, σ0, σ1, σ2, σ3 represent the identity
I and Pauli matrices σx, σy, σz, and T ∈ R3×3, t ∈ R3. Un-
der this representation, a channel is an affine map [64] E :
1
2 (1 + a · σ) → 1

2 (1 + a′ · σ), a′ = T a + t . Geometrically, E
maps the states within the Bloch sphere into states enveloped
by an ellipsoid, with t the center shift from the original cen-
ter and T the distortion matrix for the ellipsoid. To make
the quantum channel E (T, t ) a CPTP map, T must be a
semidefinite Hermitian matrix, and the ellipsoid should be
completely within the Bloch sphere. When det(T ) = 1, the

CPTP map reduces to a unitary gate. In this sense, uni-
tary gates can be regarded as special channels. Throughout
this paper, we differentiate unitary gates from channels for
clarity.

Suppose we have a set of elementary channels and
want to approximate the target channel with a sequence
of unitary gates and elementary channels chosen from the
set. For technical convenience and simplicity, we con-
sider the superoperator trace norm [65] ||Etarget − Eapprox||1 =
maxρ∈O(HS ) ||Etarget(ρ) − Eapprox(ρ)||1 as the distance mea-
sure. Our results can be extended directly to other dis-
tance measures such as the Bures and the Hilbert-Schmidt
metric.

Theorem 1. Given a finite set of elementary channels with
arbitrary unitary gates, it is impossible to compile an arbitrary
single-qubit channel to arbitrary accuracy.

Proof. We only sketch the major steps here and leave
the details of the full proof to Appendix A. Suppose that
we are provided with a finite set of elementary chan-
nels C = {E1, . . . , En} with corresponding distortion matrices
{T1, . . . , Tn} and center shifts {t1, . . . , tn}. Without loss of gen-
erality, we assume that det (Tn) � · · · � det (T1) < 1. Noting
that the composition of channels cannot increase the deter-
minant of the distortion matrix, thus a target channel with
det (T1) < det (T ) cannot be compiled by the channels chosen
from C to arbitrary accuracy, independent of how long the
decomposition sequence is.

The above theorem carries over to multiqubit channels.
For a d-dimensional quantum state ρ ∈ O(HS ), there exists
a canonical and orthonormal basis {Oα, α = 1, . . . , d2 − 1}
[63,66]. A density operator ρ under such a basis reads ρ =
1
d (I + ∑d2−1

α=1 pαQα ), where Qα = √
d (d − 1)Oα . The param-

eters in {pα} form the polarization vector p = (p1, . . . , pd2−1)
of a (d2 − 1)-dimensional ball with the Euclidean norm
||p||2 = 1 representing pure states and ||p||2 < 1 representing
mixed states. As a quantum state ρ can be represented by a
vector within a ball, a quantum channel E : O(HS ) → O(HS )
can be written as an affine map represented by a distortion
matrix T ∈ R(d2−1)×(d2−1) and a center shift t ∈ Rd2−1 similar
to Eq. (1). With this representation, we can extend Theorem 1
to the multiqubit case.

The above results imply that a finite number of elementary
channels cannot approximate an arbitrary target channel to
arbitrary accuracy, regardless of the specific structure of each
elementary channel and the length of the compiling sequence.
This is in sharp contrast with the case of unitary gate compil-
ing, where we can use a small number of elementary gates to
compile an arbitrary unitary gate within any accuracy demand.
We remark that any quantum channel can be implemented by
a sequence of elementary unitary gates acting on an enlarged
Hilbert space, and this seems to contradict the claim of The-
orem 1. However, this spurious contradiction dissolves after
noting the fact that tracing out the ancillary qubits at different
sequence locations will effectively result in different channels
even for the same elementary unitary gates. In other words,
although a small number of different unitary gates suffice to
implement any quantum channel with ancillary qubits, when
restricted to the targeted system no finite set of elementary
channels is universal.
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FIG. 2. (a) A decomposition of the channel Rx ( π

4 ) ◦ EGAD(0.9, 0.9) within the error threshold ε = 0.05, where EGAD(γ , p) is the generalized
amplitude damping (GAD) channel [1]. (b) The distribution of the length of output elementary channel sequences and the average value for
randomly generated single-qubit channels. (c) Comparison of the distribution of the distance ε = d (Ut ,Uapprox) between the target gate Ut and
the approximation gate Uapprox for our algorithm with different T cost CT = 0, 1, 2, the Solovay-Kitaev (SK) algorithm with a net of depth
12, and the brute force algorithm with the sequence length not larger than 10. The inset shows the proportion of T gates in the compilation
sequences. The black dashed line shows the proportion of T gates used in the brute force algorithm, which is considered as a numerical lower
bound for the T gate ratio. The slope k and the error bars are calculated by fitting the scatter points over 1500 test samples.

III. A UNIVERSAL CHANNEL DECOMPOSITION
STRATEGY

Although we have proven that compiling an arbitrary quan-
tum channel within unbounded error using a finite set of
elementary channels is impossible, it is still crucial to explore
whether a finite channel set can realize universal compilation
within a given error demand ε under experimental settings. To
this end, we introduce and prove the following theorem:

Theorem 2. Consider compiling single-qubit channels with
a given accuracy demand ε � 1. We can construct a finite
set of elementary quantum channels using ε as a parameter
such that any single-qubit channel can be compiled by the
elementary channels from this set and a unitary gate within
error ε. The length of the sequence is bounded above by
O( 1

ε
log( 1

ε
)) in the worst case and O( 1

ε
) on average.

Proof. We provide the main idea here. The full proof is
technically involved and thus left to Appendix B. We decom-
pose the compiling process into several steps and provide
a constructive proof. For a target channel E with distortion
matrix T with eigenvalues λ1, λ2, λ3 and center shift t , we first
implement an intermediate channel E∗ with parameters T ∗ =
diag(|λ1|, |λ2|, |λ3|) using an elementary channel set contain-
ing 14 channels E1(T1, t1), . . . , E14(T14, t14) parametrized by
δ = ε

7 . The first eight channels have the distortion matrix
T1 = · · · = T8 = diag{1 − δ, 1 − δ, 1 − δ}, and each element
of their center shift can be 0 or δ. The next four elementary
channels have the distortion matrix diag{1, 1 − δ, 1 − δ}, and
their center shifts have the first element 0 and other ele-
ments either 0 or δ. The last two channels have the distortion
matrix T13 = T14 = diag{1, 1, 1 − δ} and center shifts (0,0,0)
and (0, 0, δ). We then use a unitary gate to realize the basis
transformations and transfer E∗ into the target E .

One can extend the conclusion of Theorem 2 to the mul-
tiqubit case, where the size of the constructed elementary
quantum channel set scales as O(d2). We provide two explicit

constructions to decompose an arbitrary multiqubit quantum
channel into a sequence of elementary channels followed by
a unitary gate. The first construction has an elementary chan-
nel set of O(d2) size with a sequence length O(d2 1

ε
log( 1

ε
)),

and the other uses a much larger elementary channel set
[of size O(2d2

)] but a much shorter decomposition sequence
[of length O( 1

ε
log( 1

ε
))]. We can also bound the average

sequence length for the two constructions by O(d2 1
ε

) and
O( min{n, log( 1

ε
)}/ε), respectively. In other words, we can

decompose any target quantum channel into a fixed sequence
of elementary channels followed by an n-qubit unitary gate.
The channel compilation task has thus been reduced to uni-
tary compiling with elementary unitary gates. We provide
an example of decomposing a quantum channel within error
ε = 0.05 in Fig. 2(a). We remark that the elementary channels
mentioned above can be physically implemented by exploit-
ing an ancillary qubit. Compared to the traditional approaches
that use ancillary qubits and elementary gates, the circuits
to implement each elementary channel in our protocol are
fixed for a given ε and hence might be more convenient for
experimental implementation.

IV. NUMERICAL BENCHMARKS

Though the sequence of elementary channels for a given
target channel is deterministic, we can optimize our strategy
by promote the compiler for the desired unitary gate. We
introduce a general approach (in the sense that it does not
rely on the special properties of the elementary gate set and
thus bears universal applicability). We exploit a reinforcement
learning technique, the proximal policy optimization [53] in
particular, to reduce the count of experimentally expensive
gates. Compared with the DRL algorithm designed in [52],
which applies the neural network to estimate the value func-
tion for each state and uses it as heuristics in the A∗ search,
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PPO directly represents a policy explicitly as πθ (a|s) by a
neural network and searches the approximation sequence in a
depth-first search scheme. This makes the PPO algorithm run
with significantly less time and memory in both the training
and searching stages, which is essential for compiling tasks
for larger systems with more complicated actions and longer
sequence lengths. The updating rules used by PPO explore the
biggest possible improvement step without causing a perfor-
mance collapse [53]. This property makes PPO particularly
suitable for quantum compilation tasks since applying an in-
appropriate gate in the sequence will dramatically destruct the
approximation gate.

Moreover, we modify the reward function used in PPO,
which efficiently reduces the count of a specific gate that is ex-
perimentally costly, by setting rn = r(Un,Ut ) − Cg∗ , where rn

is the reward that the agent receives for the nth step, r(Un,Ut )
is the term comparing the approximation gate Un and the target
gate Ut , and Cg∗ is the additional weighted punishment for the
employment of g∗ gates. By increasing Cg∗ , the agent tends
to avoid using g∗ gates and thus the g∗ count is reduced in
the decomposition. The setting and detailed training process
of the PPO agent is provided in Appendixes D and E. In
addition, we prove a lower bound �(d2 log( 1

ε
)/|G|) for the

number of g∗ in Appendix C, where G is the group generated
by elementary gates except g∗. To benchmark the performance
of our strategy, we carry out numerical experiments concern-
ing decomposition of arbitrary single-qubit quantum channels
including the analytical sequence of elementary channels and
the DRL-based compilation of the desired unitary. For the
channel sequence, we randomly generate channels of different
distortion matrix T and center shift t and calculate the average
sequence length. For the unitary part, we consider topological
compiling with the four-quasiparticle encoding scheme for
Majorana fermions. The details are left to Appendix F. It is
well known that braidings of Majorana fermions only lead to
an elementary gate set SE = {CNOT, H, S}, which is not suf-
ficient for universal quantum computation [57,67]. To achieve
universality, a nontopological T gate with a relatively high
experimental cost is necessary. A lot of effort has been put into
reducing the use of T gates in unitary compiling [13–16,68–
70], which either rely on the specific structure of the Clifford
+ T gate set or utilize ancillary qubits. In contrast, our PPO
algorithm is generally applicable to any universal gate set
without using ancillas.

Here, we exploit the average gate fidelity F (U,V ) =∫
d|ψ〉|〈ψ |UV †|ψ〉|2 provided in the open-source QUTIP

package [71] to measure the distance d (U,V ) = 1 − F (U,V )
between an approximated unitary gate V and a target
unitary gate U . To exploit our DRL algorithm as a single-
qubit quantum compiler, the action space is a set A =
{B12, B−1

12 , B23, B−1
23 , T, T −1} containing six elementary gates.

To train the agent, we employ a deep neural network (DNN)
with five layers of fully connected neurons and train it with a
PPO algorithm encapsulated in the OPENAI gym and baseline
package [72–75]. We generate the training dataset of length
L sequences consisting of the elementary gates to be the
target gate and the test dataset of 1500 random sequences of
gates from A of length between 10 and 80. We compare the
performance of our algorithm, the traditional Solovay-Kitaev

algorithm, and the DRL algorithm with A∗ search [52] on such
a dataset. As a baseline, we also use brute force to generate all
sequences with length up to 10 and find the sequence with
minimal approximation errors. We plot the sequence length
distribution of elementary channels and the average value in
Fig. 2(b). This result agrees very well with the O( 1

ε
) analytical

performance for our strategy.
In Fig. 2(c), we plot the error distribution over the test

dataset and the proportion of the T gate. On average, the
Solovay-Kitaev algorithm with net depth 12 provides a more
accurate approximation than our algorithm at the price of
a longer average length, while the DRL algorithm with A∗
search performs a little worse than our algorithm because
of limited memory and time used in searching. In the inset
of Fig. 2(c), we present the ratio of T gates used in each
algorithm. The dashed line is the proportion of T gates used in
the brute force algorithm, which is considered as a numerical
lower bound for the T gate ratio. We find that by increasing
the cost of the T gate from CT = 0 to 2, the average T gate
rate over the test set decreases from 0.354 to 0.201, which
is very close to the lower bound (0.195). This shows that
adding the cost of the T gate as a punishment in the DRL
algorithm can effectively reduce the T count, compared with
the Solovay-Kitaev algorithm, which gives a T gate rate of
0.445, and the DRL algorithm with A∗ search, which gives
0.346. We remark that the depth-first search scheme makes the
time complexity scale linearly with the maximal search depth
Lmax. This is distinct from the A∗ search (which is breadth-first
and hence exhibits an exponential scaling with Lmax) used
in Ref. [52]. As a result, the PPO algorithm is significantly
less time- and memory-consuming in both the training and
searching stages. This advantage makes our algorithm feasible
for compiling tasks for larger systems with more complicated
actions and rewards. As a tradeoff, the PPO algorithm will not
output the near-optimal sequence for a given target unitary and
accuracy demand, and may even fail to find a decomposition if
the accuracy threshold is too small. We mention that one can
increase the successful rate of the compilation by increasing
Lmax in Appendix E.

V. DISCUSSION AND CONCLUSION

Theorem 1 implies that for channel compiling, there exists
no finite universal elementary channel set. However, for a
given target channel, this theorem does not tell whether it can
be decomposed into predetermined elementary channels to a
desired accuracy. Finding a general and efficiently computable
criterion for determining whether a given channel can be
compiled with a fixed elementary channel set or not is of both
theoretical and experimental importance, and worth future in-
vestigation. Another interesting and important future direction
is to incorporate a partial breadth-first search mechanism into
the current PPO algorithm to increase the success rate and
reduce the total length of the output sequences, at the cost
of a slightly more time- and memory-consuming training pro-
cess. In addition, our proposed PPO algorithm may carry over
straightforwardly to other scenarios, including quantum con-
trol problems [76] and digital quantum simulations [77–81]
for both closed and open systems.
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In summary, we have found and rigorously proved a no-go
theorem concerning compiling an arbitrary channel to arbi-
trary accuracy with any given finite elementary channel set.
We provided a universal decomposition scheme to decompose
arbitrary channels within a given error bound. We further
introduced a DRL gate-compilation algorithm that is generally
applicable and uses no ancillary qubit as an optimization for
our strategy. Our results shed new light on the general problem
of quantum compiling, which provides a valuable guide for
future studies in both theory and experiment.
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APPENDIX A: PROOF FOR THEOREM 1

To formulate the problem, we consider a set S with metric
d (·). A set  ⊂ S is called a δ-net if for any x ∈ S there
exists y ∈  such that d (x, y) � δ [5]. The subset  ⊂ S is
called a dense subset under metric d (·) if it is a δ-net of S for
arbitrary δ.

We recall Eq. (1) in the main text, which provides a matrix-
form mapping representation for a linear CPTP quantum
channel E as

E → T =
(

1 0
t T

)
:

1 + a · σ

2
→ 1 + a′ · σ

2
, (A1)

where T is called a distortion matrix, t is called a center
shift, and the state vectors a′ and a are chosen within the
Bloch sphere satisfying the relation a′ = T a + t . This repre-
sentation indicates that the channel E maps the Bloch sphere
into an ellipsoid. To guarantee the physical feasibility, the
ellipsoid must be enveloped within the original Bloch sphere
and |a|2, |a′|2 � 1. Therefore, T cannot have an eigenvalue
that has magnitude larger than 1. Moreover, if all eigenvalues
of T have magnitude 1, then t = 0 and E is a unitary gate. For
simplicity, we represent a quantum channel E with distortion
matrix T and center shift t as E (T, t ).

As mentioned in the main text, the distance measure be-
tween channels used in this paper is the superoperator trace
norm [65], which measures the maximal 1-norm distance
between the output states of different quantum channels with
the same quantum state ρ chosen from HS as the input state.
For single-qubit states ρ1 = (1 + a1 · σ )/2 and ρ2 = (1 + a2 ·
σ )/2, the trace distance between them reads ||ρ1 − ρ2||1 =
|a1 − a2|/2. This indicates that the distance between chan-
nels E1(T1, t1) and E2(T2, t2) is D if maxρ=(1+a·σ )/2∈HS |(T1 −
T2)a + t1 − t2| = 2D.

Now we start the proof for Theorem 1. We first introduce
the following lemma:

Lemma 1. Suppose we have two single-qubit quantum
channels E1(T1, t1) and E2(T2, t2), and | det(T1)| > | det(T2)|.
If | det(T1)| − | det(T2)| > 6ε, where ε is a constant strictly

smaller than the magnitude of any eigenvalue of T1, then
||E1 − E2||1→1 > ε.

Proof. E1(T1, t1) and E2(T2, t2) in Eq. (A1) map the
Bloch sphere into two ellipsoids. Consider quantum chan-
nels E1(T1, t1), E ′

2(T2, t1), and E2(T2, t2), and suppose ρ∗ =
1+a·σ

2 = arg maxρ∈HS ||E1(ρ) − E ′
2(ρ)||1. Notice that E1 and

E ′
2 have the same center shift t1. We can find another quantum

state that also yields the maximal output state distance as
ρ∗

opp = 1−a·σ
2 = arg maxρ∈HS ||E1(ρ) − E ′

2(ρ)||1 according to
the symmetry property of the ellipsoid. Since the ellipsoid
derived by E2 can be regarded as the ellipsoid derived by
E ′

2 with an additional center shift t2 − t1, at least one of the
distances ||E1(ρ∗) − E2(ρ∗)||1 and ||E1(ρ∗

opp) − E2(ρ∗
opp)||1 is

not smaller than ||E1(ρ∗) − E ′
2(ρ∗)||1. Therefore, we conclude

that ||E1 − E2||1→1 � ||E1 − E ′
2||1→1.

Now we prove that if | det(T1)| − | det(T2)| > 6ε, then
||E1 − E2||1→1 � ||E1 − E ′

2||1→1 > ε. We denote the eigenval-
ues of T1 as λ1, λ2, and λ3 with λ1λ2λ3 = det(T1), and the
eigenvalues of T2 as λ′

1, λ′
2, and λ′

3 with λ′
1λ

′
2λ

′
3 = det(T2).

If ||E1 − E ′
2|| � ε, the ellipsoid produced by E ′

2 will envelope
all quantum states that are at least 2ε within the surface of
the ellipsoid produced by E1. Therefore, the ellipsoid with a
semimajor axis of length |λ1| − 2ε, |λ2| − 2ε, |λ3| − 2ε and
the same direction with the ellipsoid produced by map E1

should fall completely within the ellipsoid produced by E ′
2.

That is to say, | det(T2)| = |λ′
1||λ′

2||λ′
3| � (|λ1| − 2ε)(|λ2| −

2ε)(|λ3| − 2ε). As we mentioned before, T1 and T2 cannot
contain eigenvalues with absolute values larger than 1, thus
| det(T2)| � | det(T1)| − 6ε. This completes the proof for the
lemma.

Then we prove Theorem 1 based on the above lemma.
Suppose we have a finite number N of elementary chan-
nels E1(T1, t1), . . . , EN (TN , tN ) and arbitrary unitary gates in
the channel compiler, and the distortion matrix Ti has a de-
terminant of absolute value di = | det(Ti )|. Without loss of
generality, we further assume that 1 > d1 � d2 � · · · � dN �
0. Therefore, any channel E (T, t ) that can be represented by
a sequence of elementary channels and unitary gates satisfies
det(T ) � d1, or det(T ) = 1, when the sequence only consists
of unitary gates.

Considering the compilation of a target channel E∗(T ∗, t∗)
with det(T ∗) = 1+d1

2 and accuracy demand ε < 1−d1
12 , any

decomposition sequence, whose corresponding generated
channel is denoted as E (T, t ), satisfies either det(T ) � d1 <

det(T ∗) − 6ε or det(T ) = 1 > det(T ∗) + 6ε. Therefore, ac-
cording to Lemma 1 this target channel cannot be decomposed
into elementary channels and unitary gates under such accu-
racy demand ε. This completes the proof for Theorem 1 in the
main text.

APPENDIX B: PROOF FOR THEOREM 2

In this Appendix, we provide the detailed proof for The-
orem 2 in the main text. We assume that the target channel
is E∗(T ∗, t∗), and T ∗ has eigenvalues λ∗

1, λ∗
2, and λ∗

3 with
|λ∗

1| � |λ∗
2| � |λ∗

3| and orthonormal eigenvectors v∗
1 , v∗

2 , and
v∗

3 . We denote t∗ = (t∗
1 , t∗

2 , t∗
3 ) under basis {v∗

1 , v
∗
2 , v

∗
3}. With-

out loss of generality, we assume t∗
i > 0 and suppose the

accuracy demand is ε. Now, we propose a two-step procedure
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TABLE I. A table illustration for our sequence of length k3

to approximate the channel Estep 1 within distance 6δ consisting
of elementary channels in Eqs. (B1a)–(B1f). The first row shows
the position of the elementary channel in the decomposition se-
quence (abbreviated as Seq. Pos.). For the jth elementary channel
in this sequence, it has a distortion matrix Tj = diag{T 11

j , T 22
j , T 33

j }
and a center shift t j = (sx, jδ, sy, jδ, sz, jδ) for j = 1, . . . , k1, t j =
(0, sy, jδ, sz, jδ) for j = k1 + 1, . . . , k2, and t j = (0, 0, sz, jδ) for j =
k2 + 1, . . . , k3.

Seq. Pos. 1 · · · k1 k1 + 1 · · · k2 k2 + 1 · · · k3

T 11
j 1 − δ · · · 1 − δ 1 · · · 1 1 · · · 1

sx sx,1 · · · sx,k1

T 22
j 1 − δ · · · 1 − δ 1 − δ · · · 1 − δ 1 · · · 1

sy sy,1 · · · sy,k1 sy,k1+1 · · · sy,k2

T 33
j 1 − δ · · · 1 − δ 1 − δ · · · 1 − δ 1 − δ · · · 1 − δ

sz sz,1 · · · sz,k1 sz,k1+1 · · · sz,k2 sz,k2+1 · · · sz,k3

to decompose the target channel into a sequence of unitary
gates and channels chosen from 14 elementary channels.

Step 1. We consider realizing a channel Estep 1(Tstep 1, tstep 1),
where Tstep 1 = diag{|λ∗

1|, |λ∗
2|, |λ∗

3|} and tstep 1 = (t∗
1 , t∗

2 , t∗
3 ).

We construct the following 14 elementary channels
E1(T1, t1), . . . , E14(T14, t14) using a parameter δ(ε) to be
fixed later:

T1 = · · · = T8 = diag{1 − δ, 1 − δ, 1 − δ}, (B1a)

T9 = · · · = T12 = diag{1, 1 − δ, 1 − δ}, (B1b)

T13 = T14 = diag{1, 1, 1 − δ}, (B1c)

t1 = t9 = t13 = 0,

t8 = (δ, δ, δ)T ,

t2 = (δ, 0, 0)T , (B1d)

t3 = t10 = (0, δ, 0)T ,

t4 = t11 = t14 = (0, 0, δ)T , (B1e)

t5 = (δ, δ, 0)T ,

t6 = (δ, 0, δ)T ,

t7 = t12 = (0, δ, δ)T . (B1f)

Denoting ki = �min{log(1−δ) |λ∗
i |, log(1−δ) δ}, i = 1, 2, 3,

we have ||λ∗
i | − (1 − δ)ki | < δ, i = 1, 2, 3. We introduce a

procedure to use the above elementary channels to compile
Tstep 1 within distance 6δ using a sequence of k3 elemen-
tary channels. Table I contains a record of each elementary
channel in this sequence. In this sequence, we introduce
three {0, 1} strings sx = sx,1 · · · sx,k1 , sy = sy,1 · · · sy,k2 , and
sz = sz,1 · · · sz,k3 . For si, j (i = x, y, z), it is 0 or 1 when the
center shift of the jth channel in the sequence on the i-axis
is 0 or δ. We use T ii

j (i = 1, 2, 3, j = 1, . . . , k3) to represent
the (i, i)th entry of the distortion matrix Tj for the jth channel
in the sequence.

The sequence in the above table composes a channel
E ′(T ′, t ′), where T ′ = diag{(1 − δ)k1 , (1 − δ)k2 , (1 − δ)k3}
and t ′ = (t ′

1, t ′
2, t ′

3) with each element

t ′
1 = δ

k1∑
j=1

sx, j (1 − δ) j−1, (B2a)

t ′
2 = δ

k2∑
j=1

sy, j (1 − δ) j−1, (B2b)

t ′
3 = δ

k3∑
j=1

sz, j (1 − δ) j−1. (B2c)

From Eqs. (B2a)–(B2c), as ||λ∗
i | − (1 − δ)ki | < δ, i =

1, 2, 3, we can observe that by changing {0, 1} strings
sx, sy, sz, t ′

1, t ′
2, t ′

3 forms a δ-net of interval [0, 1 − |λ∗
1|],

[0, 1 − |λ∗
2|], and [0, 1 − |λ∗

3|], which include all possible
value of t∗

1 , t∗
2 , t∗

3 because the output ellipsoid of the quantum
channel should be within the original Bloch sphere. Given a
center shift element t∗

i ∈ [0, 1 − |λ∗
i |], we can calculate si by

extending t∗
i into the summation over a series δ

∑k1
j=1 si, j (1 −

δ) j−1 on (1 − δ). Therefore, for an arbitrary Estep 1, we can find
strings sx, sy, and sz such that each entry of T ′ and t ′ differs
from Tstep 1 and tstep 1 by δ at most. Hence, the total distance is
strictly smaller than the sum of the distance, which is 6δ.

Step 2. In this step we apply a unitary transformation to
transfer the current basis to the {v∗

1 , v
∗
2 , v

∗
3} basis.

In the above two steps, the unitary gates in steps 2–4 can
be combined as one unitary gate, and according to Ref. [1]
this unitary gate can be approximated within error δ by a
sequence of elementary gates chosen from a universal gate
set. Therefore, the total error cannot exceed the sum of error in
all steps, which is 7δ. By fixing δ = ε

7 , we can decompose an
arbitrary quantum channel into a sequence of unitary gates and
elementary channels chosen from the 14 elementary channels
E1, . . . , E14 constructed in Eqs. (B1a)–(B1f).

Following the two steps above, we can also bound the
length of the sequence for the compilation. In steps 2–4 we
need one unitary gate, while in step 1 the length of the
table does not exceed log(1−δ) δ + 1. In practice, δ = ε

7 is
usually a small number close to 0. Therefore, we can do the
approximation log(1−δ) δ = ln(δ)

ln(1−δ) ≈ 1
δ

ln( 1
δ
) = O( 1

ε
log( 1

ε
)).

This indicates that the length of the entire sequence is
O( 1

ε
log( 1

ε
)). This completes the proof of Theorem 2 in the

main text.
We can extend Theorem 2 to the multiqubit case. As

mentioned in the main text, for a d-dimensional quantum
state ρ ∈ O(HS ), a canonical and orthonormal basis [63,66]
{Oα}, Oα ∈ O(HS ) satisfies (i) O0 = I , (ii) tr(Oα ) = 0,∀α �=
0, and (iii) tr(O†

αOβ ) = δαβ . An arbitrary density operator

ρ can be written as ρ = 1
d (I + ∑d2−1

α=1 pαQα ), where Qα =√
d (d − 1)Oα . The parameters in {pα} form the polariza-

tion vector p = (p1, . . . , pd2−1) of a (d2 − 1)-dimensional
ball with the Euclidean norm ||p||2 = 1 representing pure
states and the Euclidean norm ||p||2 < 1 representing mixed
states. Since a quantum state ρ can be represented as a vector
within a ball, a quantum channel E : O(HS ) → O(HS ) can
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be written as an affine map represented by a distortion matrix
T ∈ R(d2−1)×(d2−1) and a center shift t ∈ Rd2−1,

E → T =
(

1 0
t T

)
, Ti j = 1

d
tr[QαE (Qβ )], (B3a)

p → T p + t . (B3b)

Notice that the above affine map is similar to the single-
qubit case mentioned in the main text, and we can extend
Theorem 2 straightforwardly to the multiqubit scenario.

We assume the target channel to be E∗(T ∗, t∗),
and T ∗ has eigenvalues λ∗

1, . . . , λd2−1∗ . Without loss
of generality, we can rank λ∗

i in decreasing order of
magnitude such that |λ∗

1| � · · · � |λ∗
d2−1|. Inherited from

the proof for the single-qubit channel, ki is defined to be
ki = �min{log(1−δ) |λ∗

i |, log(1−δ) δ}, i = 1, . . . , d2 − 1.
If we directly use the constructive approach in the
proof for Theorem 1, we will create 2d2 − 2 elementary
channels E1(T1, t1), . . . , E2d2 −2(T2d2 −2, t2d2 −2). The first 2d2−1

channels E1(T1, t1), . . . , E2d2−1 (T2d2−1 , t2d2−1 ) have the same
distortion matrix T1 = · · · = T2d2−1 = diag{1 − δ, . . . , 1 − δ},
and their center shifts go through 2d2−1 cases in
which each element of the center shift can be 0 or
δ. The next 2d2−2 elementary channels that follow
are E2d2−1+1(T2d2−1+1, t2d2−1+1), . . . , E2d2−1+2d2−2 (T2d2−1+2d2−2 ,

t2d2−1+2d2−2 ). They share the same distortion matrix diag{1, 1 −
δ, . . . , 1 − δ}, and their center shifts go through all cases that
have the first element as 0 and other elements as either 0 or
δ. The remaining channels are constructed similarly until the
last two channels E2d2 −3(T2d2 −3, t2d2 −3), E2d2 −2(T2d2 −2, t2d2 −2),
which have the distortion matrix diag{1, . . . , 1, 1 − δ} and
center shifts (0, . . . , 0) and (0, 0, . . . , 0, δ). Similar to the
previous proof, we hold strings si, i = 1, . . . , d2 − 1 with the
jth element si, j = 0, 1 representing whether the ith element
of the center shift for the jth channel of the sequence is 0 or δ.

Under this construction, the error in total can be bounded
above by [2(d2 − 1) + 1]δ. Therefore, we fix δ = ε

2(d2 )−1 to
guarantee that the distance between our approximation and
target channel is no more than ε. The length of the sequence
is still bounded by O( 1

ε
log( 1

ε
)).

However, notice that the above construction requires
O(2d2

) elementary channels, which is double exponential to
the number of qubits n. Here, we propose another construction
that only requires O(d2) elementary channels. We still ex-
ploit the four-step compiling process in the previous section.
Steps 2–4 remain the same as the previous construction to
implement complex, negative eigenvalues in the distortion
matrix and perform orthonormal basis transformation. In step
1, we simply use E1(T1, t1), . . . , E2(d2−1)(T2(d2−1), t2(d2−1))
with T2i−1 = T2i = diag{1, . . . , 1, 1 − δ, 1, . . . , 1}, where the
ith diagonal element is 1 − δ, t2i−1 = (0, . . . , 0), and t2i =
(0, . . . , 0, δ, 0, . . . , 0), with the ith element being δ.

Under this construction, step 1 can be decomposed
into substeps compiling Estep i(Tstep i, tstep i ) with Tstep i =
diag{1, . . . , 1, |λ∗

i |, 1, . . . , 1}, tstep i = (0, . . . , 0, t∗
i , 0, . . . , 0)

using E2i−1, E2i separately, where |λ∗
i | and ti are the ith

diagonal element of the distortion matrix and the ith element
of the center shift. In the ith substep, we keep a ki length
0-1 string si and decompose Estep i into a sequence containing
ki elementary channels. If the jth element si, j of si is 0,

we add E2i−1 to the sequence and otherwise we add E2i.
Therefore, the ith element of approximation for the center
shift is

∑ki
j=1 si, jδ(1 − δ) j−1, which forms a δ-net in the range

[0, 1 − |λ∗
i |] as ||λ∗

i | − (1 − δ)ki | < δ, i = 1, . . . , d2 − 1.
Therefore, in each substep we can approximate |λ∗

i | and t∗
i

within distance δ.
The total distance in this step cannot exceed 2(d2 − 1)δ,

which is the same as the previous construction. We can still
fix δ = ε

2(d2 )−1 . It is worthwhile to mention that there exists
a tradeoff between the above two constructions. Though the
second construction only requires O(d2) elementary channels,
the output sequence will have a total length O(d2 1

ε
log( 1

ε
)),

which is exponential in the number of qubits n.
To bound the average performance, we assume that the

eigenvalues of the distortion matrix are i.i.d random vari-
ables distributed in [0,1]. The minimal eigenvalue has the
expectation value E[mini |λi|] = 1

d2 and E[
∏

i |λi|] = 1
2d2−1

.
Notice that the length of the sequence is log(1−δ) mini |λi| in
the first construction and

∑
i log(1−δ) |λi| = log(1−δ){

∏
i |λi|}

in the second construction. By the concavity of loga(x), 0 <

a < 1, the expectation sequence length is O(
min{n,log( 1

ε
)}

ε
) in the

first construction and O( d2

ε
) for the second universal set.

APPENDIX C: LOWER BOUND FOR AN INDISPENSABLE
GATE IN A UNITARY COMPILATION

We now consider quantum compilation for unitary
gates U ∈ SU (d ) with the elementary gate set SE =
{g1, . . . , gn|gi ∈ SU (d )}. A gate set is universal if it can com-
pile arbitrary unitary gates to any given accuracy demand
under the distance measure. In other words, a gate set is
universal if and only if it generates a dense subgroup in SU (d )
[5]. We present the following theorem concerning the lower
bound of any indispensable gate in compiling an arbitrary
unitary.

Theorem S1. For a nondense subgroup G ⊂ SU (d ) gen-
erated by SE , suppose we can find g∗ ∈ SU (d ) such that
G′ generated by {g1, . . . , gn, g∗} is dense in SU (d ). When
employing G′ as an elementary gate set for a quantum com-
pilation task on SU (d ), the number of gates g∗ to compile an
arbitrary gate within distance ε is bounded below by

N∗ = �

(
d2 − 1

log(|G|) log

(
1

ε

))
. (C1)

To derive a lower bound, we exploit the volume method
[5,82] based on the constraint that the whole space of SU (d )
should be covered by the ε-balls centered by the gates that can
be implemented by an elementary gate sequence. The detailed
proof is given below:

Proof. We start with the case when the subgroup G =
〈g1, . . . , gn〉 generated by {g1, . . . , gn} is finite. We denote
the size of G as |G| = K . Consider a compilation with fewer
than t g∗ gates and an unlimited number of gates chosen
from G. If no g∗ gate is used, we can only compile the
K gates in G. When we use at least one g∗ gate, any se-
quence containing 0 < k � t g∗ gates can always be written
as g = (gi11 g∗gi12 ) · · · (gik1 g∗gik2 ), where gi11 , gi12 , . . . , gik1 , gik2

are chosen from G. Consider the subset G∗ = {gsg∗gt |gs, gt ∈
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G} that can generate a dense subgroup of SU (d ). Any se-
quence that contains k g∗ gates can be regarded as k gates
in G∗. Therefore, the number of g∗ gates can be regard as the
number of gates from G∗. As the size of G∗ is |G∗| = K2, the
possible number of gate sequences containing no more than
t g∗ can be bounded above by |G∗| + |G∗|2 + · · · + |G∗|t �
O(K2t+2). Therefore, the total number of gates we can accu-
rately compile with a gate sequence with fewer than t g∗ gates
is bounded above by O(K2t+2).

We exploit the normalized Haar measure on SU (d ) space
such that the volume of SU (d ) is 1 [82]. Under this measure,
the volume of ε-ball in the SU (d ) group scales as �(εd2−1).
If any gate in SU (d ) can be approximated within distance
ε, all ε-balls centered by possible gate sequences generated
by no more that t g∗ gates should cover SU (d ). Hence, we
can deduce that k � d2−1

log |G| log( 1
ε

). This completes the proof of
Theorem 2 in the main text for a finite G.

When the subgroup G is infinite, the lower bound given by
the volume method will reduce to �(1). This lower bound,
however, is not as trivial as it seems. Indeed, we can even find
a simple extreme example, in which one can compile arbitrary
gates with only two g∗ gates and an unlimited number of
gates chosen from an infinite G. Consider a single-qubit gate
compilation with g∗ = H and G = 〈Rx(απ )〉 with a generator
Rx(απ ) of an irrational number α. In this example, G is an
infinite group that can approximate all the rotations along the
x-axis within arbitrary accuracy demands. Notice that an arbi-
trary single-qubit gate can be written as Rx(θ1)Rz(θ2)Rx(θ3)
[1] and Rz(θ2) = HRx(θ2)H , and any single-qubit gate can
be compiled by gates chosen from G and at most two
H gates.

This theorem gives a lower bound for the count of any
indispensable gate g∗ in compiling an arbitrary unitary, which
scales linearly in log( 1

ε
) but is quadratic in the Hilbert space

dimension d that is exponentially large as the system size
increases. In practical applications, g∗ may represent some
experimentally expensive or flawed gate, thus reducing its
count in compiling can be crucial. For the case of quantum
compiling with a Clifford+T gate set, a number of striking
algorithms [12–16], which either exploit its specific structures
or utilize ancillary qubits, have been proposed to reduce the
T count. In the main text, we focus on the quantum compil-
ing on Majorana fermions and nontopological T gates. We
note that the topological gate set for n qubits generates a
Clifford group Cln ⊂ SU (d ) with |Cln| = O(22n2+3n), d = 2n

[83–85]. The worst-case T count for compiling an arbitrary
gate is �((d2 − 1)/n2 log(1/ε)). We mention that topological
quantum compiling has been broadly explored with various
algorithms proposed [86–92]. Most of the algorithms run
in O(poly log(1/ε)) and output sequences of braidings with
length O(poly log(1/ε)) to obtain an approximation within
distance ε from a given target evolution. Based on this com-
pilation scheme, various algorithms have been proposed to
reduce the T count for both multiqubit unitary compilation
[16,68] and single-qubit unitary compilation [69,70]. How-
ever, these algorithms focus on providing an optimal number
of T gates for a given unitary. Compared with these ap-
proaches, our result provide a lower bound for the worst-case
overall unitaries chosen from SU (d ).

APPENDIX D: DEEP REINFORCEMENT LEARNING
AND PPO ALGORITHM

In this Appendix, we give a brief introduction to the deep
reinforcement learning (DRL) and the PPO algorithm we ex-
ploit to compile unitary gates.

1. Introduction to reinforcement learning and policy gradient

To formalize the learning process, we introduce some basic
concepts and notations. A reinforcement learning (RL) aims
to train a decision-making agent in a Markovian decision
process. This process involves a state set S and an action set
A. In step n, the agent chooses an action an ∈ A while the en-
vironment shifts from sn ∈ S to sn+1 ∈ S, providing the agent
a scalar value reward rn as feedback. In a Markovian decision
process, the new state sn+1 and reward rn only depend on the
former state sn and action an. Therefore, the RL process can
be written as a trajectory τ : s0 → a0 → r0 → s1 → · · · →
aN−1 → rN−1 → sN , where N is the maximal number of steps
in an iteration.

The core problem in RL is to learn a policy to choose the
optimal action an given the environment state sn. Therefore,
a policy function π is introduced to map the states to the
action probability distributions. The agent uses this function
π to perform decision-making tasks and choose the action
a ∼ π (s) according to the policy for the state s. In deep
reinforcement learning, a policy πθ is represented by a policy
network with parameters θ . To evaluate the performance of
πθ , an objective function is defined to be the expected return
over all complete trajectories:

J (πθ ) = Eτ∼πθ

[
N∑

n=1

γ nrn

]
, (D1)

where γ is the discount factor, and the expectation is obtained
over all trajectories sampled from πθ .

To find an optimal policy, we have to find the policy that
maximizes the objective function. A straightforward approach
is to perform gradient descent on the policy to solve the
optimization,

θ ← θ + α∇θJ (πθ ), (D2)

where α is a scalar factor known as the learning rate, and
∇θJ (πθ ) is known as the policy gradient. It is proved that the
policy gradient can be calculated by [54]

∇θJ (πθ ) = Eτ∼πθ

[
N∑

n=0

Rn(τ )∇θ log πθ (an|sn)

]
, (D3)

where the action an ∼ πθ is sampled from probability distri-
bution πθ (an|sn) given by the policy at step n, and Rn(τ ) =∑N

n′=n γ n′−nr′
n is the discounted sum of reward from the cur-

rent step n to the end of the trajectory. The algorithm for this
simple policy gradient method is summarized in Algorithm 1.

However, in practical policy gradient the parameter space
and the policy space do not always map congruently. This fact
makes it challenging to find a step size α. If α is chosen as a
small constant, more iterations are potentially required in the
training process. If α is chosen bigger, the agent will be vul-
nerable to a performance collapse in which the agent chooses
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Algorithm 1. The Policy Gradient Algorithm.

Input The environment E , the initial policy parameters θ0, the number of epochs T , the step size α.
Output The optimal policy πθ∗

1. for i = 0, 1, 2, . . . , T do
2. Running current policy πθi in E and obtain a set of trajectories Di = {τi}.
3. Compute the policy gradient:

(∇θ J )i = 1

|Di|
∑
τ∈Di

R(τ )
N (τ )∑
n=0

∇θ log πθi (an|sn),

4. Update the policy by gradient ascent:

θi+1 = θi + α(∇θ J )i

5. end for
6. return πθ∗ = πθT +1 .

a bad action, resulting in a sudden drop in its performance. In
addition, another issue of policy gradient descent is that it is
sample-inefficient because it does not reuse data. To address
these two issues, the proximal policy optimization algorithms
[53] are proposed.

2. Proximal policy optimization

Our algorithm employs proximal policy optimization
(PPO) [53], which is a policy gradient algorithm developed
by OPENAI. The PPO is motivated by an algorithm called
Trust Region Policy Optimization (TRPO) [55], which aims
to find an optimal policy iteratively to maximize the J (π )
without causing a performance collapse. While TRPO applies
second-order methods that are complex to compute, PPO uses
first-order methods and tricks to keep the updated policy from
changing too fast. PPO is much simpler to implement than
TRPO while performing well in practice.

To introduce the PPO algorithm, we first define a value
function Vπ (s) = Es0=s,τ∼π [

∑N
n=1 γ nrn] and a value-action

function Qπ (s, a) = Es0=s,a0=a,τ∼π [
∑N

n=1 γ nrn] given state s,
action a, discount factor γ , and policy π . These two func-
tions are used to evaluate a state and a given state-action
pair. The objective function used in the learning procedure
is defined to be the expected reward of policy π as J (π ) =
Eτ∼π [

∑N
n=1 γ nrn]. In the policy descent procedure, we will

get another policy π ′ in the next iteration given a current
policy π . The objective function changes as

J (π ′) − J (π ) = Eτ∼π ′

[
N∑

n=1

γ nAπ (sn, an)

]
, (D4)

where Aπ (sn, an) = Qπ (sn, an) − Vπ (sn) is defined as the ad-
vantage function. The relative policy performance J (π ′) −
J (π ) provides a metric to measure the improvement of per-
formance after a policy shift. Therefore, maximizing J (π ′) is
equivalent to maximizing J (π ′) − J (π ).

To approximate Eq. (D4), we use the trajectories from
the old policy τ ∼ π and adjust with importance sam-
pling weights Rn(π ) = π ′(an|sn )

π (an,sn ) [54]. This approximation is

given as

J (π ′) − J (π ) ≈ JCPI
π (π ′) = Eτ∼π ′

[
N∑

n=1

Aπ (sn, an)Rn(π )

]
,

(D5)

where JCPI
π (π ′) is known as a surrogate objective. The sur-

rogate objective function can be additionally written as an
average over both τ ∼ π ′ and n as Eτ∼π ′,n[Aπ (sn, an)Rn(π )].
In our algorithm, we use an alternative version of PPO with a
clipped surrogate objective function

JCLIP = Eτ∼π ′,n[Aπ (sn, an)

× min{Rn(π ), clip(Rn(π ), 1 − ε, 1 + ε)}]. (D6)

The above equation is known as the clipped surrogate ob-
jective function, and ε is a hyperparameter that defines the
clipping bound |Rn(π ) − 1| � ε. This parameter will decay
during the training procedure. As the term clip(Rn(π ), 1 −
ε, 1 + ε)Aπ (sn, an) bounds the value JCPI, this objective func-
tion prevents the updates that create large and risky policy
changes.

In objective JCLIP, the most computationally costly parts
are the weight Rn(π ) and advantage Aπ (sn, an). However,
these parts are required in any algorithm that optimizes the
surrogate objective function. The remaining calculations are
essentially constant-time clippings and minimizings. There-
fore, the clipped objective is relatively easy to compute and
understand. The whole PPO algorithm is summarized in
Algorithm 2.

APPENDIX E: SUPPLEMENTARY NOTE ON THE
ALGORITHM AND NUMERICAL EXPERIMENTS

In this Appendix, we provide the design details of the
agent and algorithm we used. We additionally provide more
numerical data about applying this algorithm to compilation
based on Majorana fermion systems. We provide the illustra-
tion of our unitary gate compiler based on the PPO algorithm
in Fig. 3.
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Algorithm 2. The Proximal Policy Optimization Algorithm.

Input The environment E , the initial policy parameters θ0, the initial value function parameters φ0, the number of epochs T , the step
size α.
Output The optimal policy πθ∗

1. for i = 0, 1, 2, . . . , T do
2. Running current policy πθi in E and obtain a set of trajectories Di = {τi}.
3. Compute the advantage function Aπi (s, a) by using the estimation of value function Vφi .
4. Compute the clipped surrogate objective:

JCLIP
i =

∑
τ∈Di

∑N (τ )
n=0

Aπ (sn,an )
N (τ ) min{Rn(π ), clip(Rn(π ), ε)}

|Di|

5. Update the policy by optimizing the objective; this step is done by gradient ascent:

θi+1 = argmaxθ JCLIP
i

6. Update the estimation of value function by minimizing the MSE; this step is done by gradient descent:

φi+1 = argmaxφ

1

|Di|
∑
τ∈Di

N (τ )∑
n=0

[
Vφi (sn) − ∑N (τ )

t=n rt

]2

N (τ )

7. end for
8. return πθ∗ = πθT +1 .

1. Training the PPO agent

Our DNN provided by OPENAI baseline package [72]
consists of five full connected layers each containing 256
neurons. The activated function is the leaky ReLU function
[73] throughout the neural network. We exploit the Adam
algorithm [74,75] as our optimizer, and batch normalization
is applied.

As mentioned in the main text, the DNN is trained to
evaluate the objective function J (π ) with the reward function:

rn = rs(Un,Ut ) − Cg∗ , (E1)

FIG. 3. Our DRL environment to produce approximation se-
quence Un for the target gate U required in the previous step using
elementary gates. At each step n, the agent gets an observation
On and feeds On as the input vector to the deep neural network
(DNN). DNN outputs a probability distribution π (an|On), according
to which the agent chooses the next gate to apply in the decompo-
sition sequence. The environment returns a reward rn to the agent
afterward.

rs =
{

c
(
1 + max

{
0, 1 − n

LUt +10

})
, d (Un,Ut ) < εt ,

−d (Un,Ut )
Lmax

otherwise,
(E2)

where rs(Un,Ut ) is the state reward obtained by comparing
the distance d (Un,Ut ) between the approximation gate Un and
the target gate Ut , Cg∗ is the additional punishment for the
employment of g∗ gate, LUt is the number of gates used for
generating Ut , Lmax is the maximal number of steps allowed to
compile the target gate for the agent, c is a constant to balance
rewards and punishments, and εt is the distance tolerance.

Starting from the identity at each iteration, the agent
chooses a gate from A = {B12, B−1

12 , B23, B−1
23 , T, T −1} in each

step and obtains a reward value calculated by Eq. (E1). When
the distance between the approximation sequence and the tar-
get unitary gate falls within the threshold εt , the agent obtains
a reward and starts a new iteration with a new target gate.
When the number of steps exceeds the maximal length Lmax,
the iteration also terminates.

Before the training process, the DNN is initialized with
random parameters. From the beginning of the training pro-
cess, we feed random sequences consisting of gates from
A = {B12, B−1

12 , B23, B−1
23 , T, T −1} of length 10. We choose the

accuracy threshold εt = 10−3 and train the agent and the DNN
to search for π with higher reward and generate approxi-
mations below the maximal length Lmax. During the training
process, we hold a reward threshold as a function of the length
of the random sequence in the training data. If the reward ob-
tained by the agent when compiling the training data reaches a
threshold, we increase the length of the random sequence gen-
erated as training data until the length reaches 80. In Fig. 4(a),
we plot the average reward as a function of the number of
steps of training. We can observe that the average reward first
increases to the reward threshold and keeps dropping when

013060-10
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C = 0T

C = 1T

C = 2T

C = 0T

Steps

R
ew
ar
d

(a) (b) (c)

Lmax Lmax

ϵ N

Total gates
T gates

FIG. 4. (a) The training process of the DRL agents for different T cost CT = 0, 1, 2. We plot the average reward value as a function of the
number of steps in the training process. (b) The relation of the average compiling error ε over the test dataset with the maximal length Lmax of
generated sequences from the agent. The cost of T gate is set to CT = 0. (c) The average length of the gate sequences and the average number
of T gates produced by the agent when we increase the maximal length Lmax of generated sequences. The cost of T gate is set to CT = 0.

we increase the length of the sequence among training data.
When the length of the randomly generated training sequence
reaches the upper bound 80, the average reward will increase
as we no longer increase the length. Moreover, we can obtain
that the average reward will decrease if we increase the cost
for the T gate. We trained this model on a single NVIDIA
TITAN V GPU for about one day.

2. More results on applying PPO algorithms to topological
quantum compiling on Majorana fermions

To further explore our DRL algorithm in compiling
topological quantum compiling on Majorana fermions, we
construct another test dataset consisting of 1000 random
generated sequences of length 80 with gates chosen from
A = {B12, B−1

12 , B23, B−1
23 , T, T −1}. We feed this dataset into

the trained agent and increase the maximal length Lmax of
the generated sequences to observe the changes of average
distance ε, number of T gates, and approximation sequence
length.

As shown in Fig. 4(b), we input the test dataset into the
agent trained with CT = 0. We observe that when the maximal
length Lmax increases, the average compilation error first de-
creases quickly and then converges to a stable value of about
0.005. This indicates that when Lmax exceeds a threshold, the
major obstacle for improving the accuracy of the compiler will
be the sparsity of the net with approximated policy reward
of the agent. It is worthwhile to mention that compared with
Ref. [52], the search complexity in our algorithm increases
linearly rather than exponentially with Lmax. In Fig. 4(c), we
plot the average length of the approximation sequences and
the number of T gates in the sequences as a function of Lmax.
It is shown that these two functions increase approximately
linearly with Lmax while the proportion of the T gate in the
approximation sequence remains rarely changed. This result
indicates that our DRL agent can stably reduce the usage of
the T gate under different Lmax.

APPENDIX F: ENCODING AND OPERATION
ON MAJORANA FERMIONS

In this Appendix, we briefly introduce the encoding meth-
ods on Majorana fermion systems. The fusion principle for
Majorana fermions is the Ising-type τ × τ ∼ I + ψ , with
I, τ, ψ representing a vacuum state, a Majorana fermion, and

a normal fermion, respectively. In the main text, we consider
the four-quasiparticle encoding scheme where each qubit is
encoded by four Majorana fermions with the total topological
charge as 0. The logical basis states for the qubit are |0〉L =
|[(•, •)I, (•, •)I]I〉 and |1〉L = |[(•, •)ψ, (•, •)ψ ]I〉. Here, each
• is a Majorana fermion, and I, ψ are the two possible fusion
channels of a pair of Majorana fermions.

As shown in Fig. 5(a), the gates {H,S} can be realized
by braidings on the four-quasiparticle scheme. We denote the
four Majorana braiding operators on each quasiparticle as
bi, i = 1, 2, 3, 4 in one logic qubit, and these operators satisfy
b†

i = bi, b2
i = I , and anticommutation relation {bi, b j} = 2δi j .

As shown in Ref. [58], Pauli operators in a computational
basis can be expressed as

σ x = −ib2b3, σ y = −ib1b3, σ z = −ib1b2. (F1)

Unitary operations can be realized by counterclockwise
exchanges of two Majorana fermions as below:

Bj j′ = eiπ/4(ib j b j′ ), (F2)

(a)

= ≃
1 0

0
≃
1

2

1 −

− 1

(b)

T
4
=

FIG. 5. (a) The two elementary gates that can be implemented
through one braiding of Majorana fermions. A logical qubit is en-
coded into four Majorana fermions (enclosed in ovals). (b) An exact
decomposition sequence of using Majorana braidings and a T gate
for compiling the Rx ( π

4 ) gate. Rx (θ ) = exp(−iXθ/2) here represents
the single qubit rotation along the x-axis in the Bloch sphere.
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where j, j′ are chosen as two neighboring quasiparticles.
Specifically, we give three basic braidings as

B12 = B34
∼=

(
1 0
0 i

)
= S, B23

∼= 1√
2

(
1 −i
−i 1

)
. (F3)

We can implement the H gate with the braiding sequence
H = B2

23B−1
12 B23B−1

12 B2
23. Hence, we have shown that a single-

qubit Clifford group generated by the H gate and the S gate
can be realized by Majorana braidings. To compile an arbi-
trary single-qubit gate, we still have to introduce a T gate to
form a universal gate set. A simple example for decomposing
an x-rotation is shown in Fig. 5(b).

However, an entanglement gate on a two-qubit cannot be
obtained through braiding due to the no-entanglement rule
[59]. To implement a two-qubit control gate, we introduce
an accessory topological manipulation called nondestructive
measurement of the anyon fusion [60,67], which can be im-
plemented through the anyon interferometry. We denote the
eight Majorana modes on the two logical qubits as b1, . . . , b8,

where the control (target) qubits are encoded by the first (last)
four modes, respectively. The two-qubit controlled phase-flip
gate �(σ z ) can be represented by

�(σ z ) = e−(π/4)b3b4 e−(π/4)b5b6 e(iπ/4)b3b4b5b6 eiπ/4. (F4)

In the representation above, an ancillary pair b9b10 is
added. We measure the fusion of the four Majorana modes
b4b3b6b9 and get an outcome ±1, which corresponds to the
vacuum state and the normal fermion with projectors �

(4)
± =

1
2 (1 ± b4b3b6b9). Then, we can measure fusion of the Ma-
jorana modes (operator) −ib5b9 with a similar method and
get projectors �

(2)
± = 1

2 (1 ∓ ib5b9). We have the following
relation:

e(iπ/4)b3b4b5b6 = 2
∑

κ,ξ=±
Vκξ�

(2)
κ �

(4)
ξ , (F5)

where V++ = e(π/4)b5b10 , V−− = e−(π/4)b5b10 ,
V+− = ie(π/2)b4b3 e(π/2)b5b6 e(π/4)b5b10 , and V−+ =
ie(π/2)b4b3 e(π/2)b5b6 e−(π/4)b5b10 can be implemented by one
or several braiding operations of Majorana fermions.
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