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Intensity interferometry based on Hanbury Brown and Twiss’s seminal experiment for determining the radius
of the star Sirius formed the basis for developing the quantum theory of light. To date, the principle of
this experiment is used in various forms across different fields of quantum optics, imaging, and astronomy.
Although the technique is powerful, it has not been generalized for objects at different temperatures. Here, we
address this problem using a generating functional formalism by employing the P-function representation of
quantum-thermal light. Specifically, we investigate the photon coincidences of a system of two extended objects
at different temperatures using this theoretical framework. We show two unique aspects in the second-order
quantum coherence function: interference oscillations and a long-baseline asymptotic value that depends on the
observation frequency, temperatures, and size of both objects. We apply our approach to the case of binary stars
and discuss the advantages of measuring these two features in an experiment. In addition to the estimation of
the radii of each star and the distance between them, we also show that the present approach is suitable for the
estimation of temperatures as well. To this end, we apply it to the practical case of binary stars Luhman 16 and
Spica o Vir. We find that for currently available telescopes, an experimental demonstration is feasible in the near
term. Our work contributes to the fundamental understanding of intensity interferometry of quantum-thermal

light and can be used as a tool for studying two-body thermal emitters, from binary stars to extended objects.

DOI: 10.1103/PhysRevResearch.5.013057

I. INTRODUCTION

Hanbury Brown and Twiss (HBT) in 1956 reported that
photons with narrow spectral width coming from the star
Sirius have a tendency to arrive as correlated pairs [1]. This
observation turned out to be the most prominent experiment
that led to the development of a quantum mechanical descrip-
tion of photon correlations [2—4]. The intensity-interferometry
experiments of Hanbury Brown and Twiss were of central
importance in the study of photon correlations, and thus the
quantum theory of light that is subject of constant investiga-
tion to date across fields from cosmology, nuclear physics, to
atomic fluorescence [5—14]. The intensity-interferometry ex-
periment quantified the intensity correlations (coincidences)
of light coming from a source or a system of sources which is
incident on two separate detectors. Similar experiments also
allow the classification of sources as single photon, coherent,
or incoherent in nature. Despite the low-mode occupancy of
thermal light, intensity interferometry was employed to esti-
mate the angular size of the star Sirius A by Hanbury Brown
and Twiss.
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Intensity interferometry from thermal sources like stars
is employed to extract useful astronomical information such
as the source (intensity) distribution and size of astronom-
ical objects. More recently, quantum imaging has helped in
overcoming the limitations set by diffraction-limited optics in
microscopy [15-21] and also to resolve astronomical sources
that otherwise were not resolved by interferometry techniques
[22-24]. All the current techniques to date are limited in
terms of the amount of information that can be extracted
(for example, temperature) and often rely on other techniques
(such as spectroscopy) to complement these measurements.
For both applications, i.e., estimating the size and spatial
distribution of sources, the temperature distribution of the
sources has not been taken into consideration. Furthermore,
owing to the fact that in intensity-interferometric methods
the signal scales quadratically with the mean photon num-
ber n = (explhw/(kgT)] — 1)71 it is important to incorporate
and consider the temperature distributions of the astronomical
sources. Therefore, incorporating the individual temperature
of the objects of interest, one can fully characterize the sys-
tem (temperature, distance between them, and angular sizes)
without relying on other complementary measurements. In
this work, we aim to address the scenario when the ob-
jects of interest are at two arbitrary distinct temperatures as
compared to the conventional HBT experiment which only
considers a single object at a uniform temperature. We de-
velop a theoretical framework and also provide an analysis of
the measurement strategies to adopt depending on the experi-
mental conditions available which include the relative motion
of a pair of bounded objects.
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FIG. 1. Sketch highlighting the main features of the second-order
coherence as a function of the separation between two detectors
x = x; — x; (called “baseline”) for a binary star in comparison to the
single-star case, corresponding to Egs. (7) and (11), respectively. The
value at the minimum of the first oscillation pyi, is given by Eq. (16).
The asymptotic value y is given by Eq. (12). The variations of these
two features with respect to the single-case scenario are Foy and Fagy,
defined in Sec. III. The value x4, corresponds to the decay provided
by the Bessel functions, given in Eq. (13), while xo, corresponds to
the position of the first minimum, given by Eq. (14). As it is shown in
the upper panel, the two objects in the binary scenario are assumed
to have different temperatures T, g and sizes. Lastly, D stands for the
distance between the systems and the observation point O (around
which the two detectors are located), while d corresponds to the
distance between the constituents of the binary system.

For the scenario of characterizing stars, this is a significant
objective since it is well known that gravitationally bounded
system of stars are commonly found in the universe, for in-
stance, as binary stars (system of two stars). Motivated by this
but not restricted to it, the general scenario that we are inter-
ested in is formed by two extended spherical objects (A and
B) of different radii and temperatures (Ra g and Ty g, respec-
tively) separated by a distance d between them and by a dis-
tance D with respect to the pair of detectors as shown in Fig. 1.

The quantification of the coincidences is given by the
second-order coherence associated to photocounts on two de-
tectors located at positions X;, X, [25]. The second-order co-
herence is defined in terms of the first- and second-order field
correlations as y @ (x;, x2) = GP(x1, x,)/[GV (x1)GV (x2)],
with G®(x, ..., x) the kth-order correlation of the field
(see in the next section and in Appendix A for complete
definitions). We employ the P-function representation for
calculating the quantum field correlation as functional deriva-
tives of a suitable generating functional. By summing the

contributions of all the pairs of points over the cross sec-
tions of the objects, we obtain a second-order coherence for
extended sources at different temperatures. With respect to
the single-object scenario, the binary system presents a more
complex second-order coherence function, as it is sketched
in Fig. 1. With respect to previous implementations of the
HBT interferometry, we are incorporating the sizes but also
the temperatures of the objects.

We show that the main differences between the single and
binary cases are as follows: (1) the appearance of oscillations,
which in general shows its largest deviation from the single
case in the first minimum (yl\(,fii) which is found at a baseline

X = Xxosc; and (2) an asymptotic value (yo(g)) larger than 1.5
found at baselines x > xaqy. Additionally, the feature Fo is
defined as the difference between the first minimum and the
single-case value. Similarly, the Fjpqy is the variation of the
asymptotic value with respect to the single case. In some
scenarios, minima with larger baselines will be useful too.
These are located at baselines (2m — 1)xpg., With m labeling
them and limited by (1 + xasy/Xosc)/2. The characterization
of the binary system is given by the dependence of these
quantities on the parameters of the system. In this work, we
will show that for photons of frequency w we have

no = w5, Ta, Te, d), v = yP(w, s, Ta, Ts), (1)

Xose = Xose(w, D, d), XAsy = xAsy(wv D, Rn), 2

where s = (Rg/Ra)? is the surface ratio and @ = 27 v, being v
the frequency of collection. In this work we rigorously deduce
the expression for Egs. (1) and (2). Furthermore, we show
its implementation for the best possible characterization of a
given binary system at different temperatures. We note that
this technique can be applied to general scenarios, not limited
to having the objects at different temperatures, but also to
discern specific effects such as the relative orbital motion in
astrophysical scenarios which is crucial for complete charac-
terization of actual situations such as binary star systems.

This work is organized as follows: In Sec. II we fully
develop our theoretical framework, deriving the general result
for the second-order coherence and the expressions for the
main features. We also analyze in this section the limiting
cases, achieving insights and intuition on the underlying phys-
ical aspects. In Sec. III we discuss strategical aspects for
employing the main features in measurements. In Sec. IV we
show how the orbital motion can be included in our calcula-
tions to some extent for some scenarios. In Sec. V we apply all
our results to the case of binary stars, particularly analyzing
the systems Luhman 16 and Spica. In Sec. VI we discuss
some of the key aspects for realizing experiments including
nonequilibrium configurations. In Sec. VII we summarize our
findings and give some future insights on the applicability of
our results. Finally, we devoted several Appendixes to show
the intermediate steps of the calculations showed throughout
the main text.

II. GENERAL FORMALISM FOR FIELD CORRELATIONS
OF BINARY SYSTEMS

In this section we develop the general theoretical frame-
work for studying the electric field statistical properties. For
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this we investigate the electric field correlations associated
to photomeasurements for studying the spatial coherence of
the field generated by a specific sources configuration. In
particular, we are interested in the correlation functions of a
unique component of the electric field operator in such a way
that E = Eé.

As shown in Appendix A, for studying spatial coherence,
the correlation functions of interest can be written as

GOy, .o X, 1) = (ET(xp, 1) EC (x, 1)
x EP(x1,1)...EPx, 0)). (3)

Apart from different methods found in the literature to deduce
these correlations, here we show that they can be derived from
a generating functional Z defined as

Zla(x)]
= <T: exp</ dxa(x)E(_)(x,I)E(+)(X,t)) > )

where : : stands for the normal product of operators and 7 for
the time-ordered product.

Then, the connection with the correlations is in terms of
functional derivatives, having

skz
da(xy)...8a(xy)

For a specific scenario the generating functional allows us to
obtain all the correlation functions connected to photocount-
ing detectors. The determination of the functional depends on
the boundary conditions that enter through the electric field
operator.

Using the functional approach, in Appendix B we show
the calculation for a scenario of a pair of point sources at
different temperatures in the far regime. For calculating the
quantum expectation values we employ Glauber-Sudarshan
representation of P functions. From the first two intensity
correlation functions, we derive the associated second-order
coherence function y® shown in Eq. (B12).

The case of extended objects (EOs) is included by con-
sidering an array of point sources emitting at a certain
temperature from the objects’ surfaces (see Fig. 2). We as-
sume the radiation field originated on the surfaces of the
objects as a fair approximation. This connects to the high
impenetrability of electromagnetic radiation on objects. Par-
ticularly, this approximation is fairly good for stars, but it
stands as an assumption clearly beyond that.

Given a configuration of EOs, each pair of points taken
from them presents a second-order coherence given by
Eq. (B12). The total second-order coherence for the configura-
tion is obtained as a sum of the second-order coherences of all
the pairs of points emitting light that reaches the observation
points. For the case of a binary system of EOs we have to
integrate over the surfaces of the constituents S g:

GP(xy, .. %)

G Xp, 1) =

a=0

1
2)
YRinary (X1, X2) = ————— ds / ds
Binary (Sa + 5802 Jsuss  Jsause
x y@(x1, Xp, 11, 12), (6)

where we have written the explicit dependence of the second-
order coherence on the sources’ positions to avoid confusions.
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FIG. 2. Sketch of the scenario. Two extended objects (EOs) at
temperatures T, and Tg, for instance, stars or planets of radii Ra g. In
contrast to the scenario described before, there are only two obser-
vation points (located at X, ,, respectively) and the distance between
the centers of the EOs is d. In this scenario D > d > x = |x; — X;|.
Given this, each EO radiates from several points but in approximately
a single wave vector per point.

In Appendix E we show the full calculation of the second-
order coherence for a binary system of two spherical EOs.
A crucial approximation is that the surfaces Sy p are taken
as disks of radii Ra . Since D 3> |r; — rp| 3> |X; — X;|, the
curvature of the objects with respect to the observers is negli-
gible so the integration can be taken over the flat cross section.
Thus, the surfaces are taken as Sy g ~ nRi - Given that the
separation between the centers of the constituent is d, the
second-order coherence for the binary system results:

(2)

7/Binary()Cl - )Cz) = ycg) + |:)//§Q(X1 - )Cz)

8Ns
(1+N)?

X COS w—d[x —ollr@e —x) |, @
D 1 2 AB A1 2) |

(1+5)?

+ szyé?(xl — X))+

with each contribution given by

s (1 =N)?
(145?20 +N)?°

3
(SO 8
Yoo =51 (3)

@ 2 D T (oR
Yy —x2) = m[m] Ji (5[161 —Xz])
< Jy (‘“—Rf[xl —xz]), ©)
cD

where s = Sg/Sa = (Rg/Ra)? is the surface ratio and N =
nig/fia the ratio between the mean photon numbers at the
temperature of each object. Finally, x; — x, = x results the
distance between the detectors, known as the baseline.

A. Characterization of binary systems: Oscillations
and asymptotic value

Having obtained a general expression for the second-order
coherence for arbitrary baselines, we proceed to character-
ize binary systems. We focus on the main differences of
the second-order coherence with respect to the single case,
as we anticipated in Sec. I. The main features are sketched in

013057-3



ADRIAN E. RUBIO LOPEZ et al.

PHYSICAL REVIEW RESEARCH §, 013057 (2023)

the lower panel of Fig. 1. While the single-object scenario is
only characterized by a decay from 2 to 1.5 for a baseline x4y
with no direct dependence on the temperature of the source,
the binary system scenario presents features that depend on
the parameters of the constituents {Rx g, 7a g}. This is the re-
sult of interference effects affecting the photons’ distributions
and, therefore, the coincidence counts on the detectors. One
feature corresponds to the oscillations of frequency 2xps.. The
first minimum occurs for a baseline x = xps., Whose value of
the second-order coherence is VI\(/Ileq = yQ)(xoSc). This defines
an amplitude of the oscillation for the shortest meaningful
baseline. A second crucial feature corresponds to the long
baseline or asymptotic value yég) at which the function decays
for x > xasy. Instead of decaying to 1.5, as in the single-object
case, the function can take different values for some systems.

The features and limiting expressions can be summarized
as follows:

(1) For x; —x, = 0 we have ylgizgary (0) = 2 regardless on
the system’s parameters. This is expected since the involved
sources are thermal. The second-order coherence for equal
time and same position of the detectors must give the well-
known value for thermal light.

(2) Notice that in the limit of small radius of the compan-
ion object Rg — 0, we have

Viary (51 — X2) = V(1 — x2), (10)
obtaining the single-star result, given by

DI (e —x)) |
. (1)
@RA(x1 — X2)

3
Vi1 —X2) = = + 2{

2

(3) For the limit of large distances between the detectors
(large values of x; — x;), we have the asymptotic value

Vi (1 —12) = 72, (12)

with 3 < y& <2 and which only depends on the radii

(RaB) and the temperatures (75 g) of each object, and on
the frequency w. The value y(z) = % is achieved for the
equilibrium case (A = 1). A binary system at thermal equi-
librium presents the same asymptotic value as a single object.
The dependence on s and Ty 5 is such that similar radii but
nonequilibrium gives the opportunity to obtain information
about the binary system from this quantity.

Furthermore, let us remark that there is no dependence on
the observation points (x; »), the distance to the binary system
(D), and the distance between the components (d). The decay

to ycg ) occurs for x = XAsy> With

uicD
a)RA

XAsy = (13)
corresponding to the first zero of the Bessel function (u; ~
3, 83, ...) and containing the largest radius Ra. We will refer
to xasy as the decay baseline.

(4) The oscillating behavior of the two point-sources case
[see below Eq. (B12)] is inherited by the pair of EOs as
oscillations limited by the decay baseline. The period of the
oscillations is given by the oscillation baseline

weD

wd (o

X0sc =

having xosc < Xasy since Ry < d. Remarkably, this is the only
feature that depends on d. As it was mentioned in Sec. I, in
some situations the minima with larger baselines are useful.
Their baselines are given by (2m — 1)xps.. As long as m <
(1 + xasy/X0sc)/2, a minimum takes place.

For the first of these oscillations we have 3’1542131 =
yéizgary (x0sc), allowing for a maximal value of the ratio

Viimary (¥)/ Vgt (X). In addition, having R;/d < 1, we can

show

N X S = —| — _— _— =~ -,
Vi Yod = kR x ] \a )"\ Ta ) T2

which gives

@ ~p_g_" N 16
VMin (1452 1+ N2 (16)

. .. . o, 3
Notice that the minimum possible value is yy = 5, im-

plying a maximal oscillation amplitude. This value is reached
for the case of identical EOs, such that s = 1 (same sizes)
and NV = 1 (thermal equilibrium). If we just impose the ther-
mal equilibrium condition, we get oscillations provided that
s # 0 but without maximal amplitude. The same happens,
in general, for a scenario of objects with different sizes and
temperatures. From just the oscillation amplitude these two
scenarios cannot be distinguished.

Also, notice that for a scenario where xaqy >> Xogc,
yéizgary(pm — 1xosc) &~ Vl\(/ﬁi for m > 1 but not for all of them.
This allows to employ the larger baselines (2m — 1)xgg. for
eventually measuring the maximal oscillation amplitude.

(5) A limit of point sources is obtained by setting Ry =
Rp = R and then taking R — 0, so

Vz(é)(xl —x2)
2 9

yéiiary(xl —x)—> 1+

a7

replacing d| — d, by d in Eq. (B12).

This simplified expression is effective for systems of ob-
jects with similar sizes (Ry =~ Rgp). The last relation results to
be a connection between a limiting case for the binary system
and the two point-sources scenario. Nevertheless, the binary
system in the limit Ry = Rg = R — 0 remains different from
the two point-sources systems although they share some as-
pects on the behavior of its second-order coherences.

Notice that in points 3 and 4 we are showing explicitly the
dependencies as shown in Egs. (1) and (2).

All in all, the second-order coherence is a bounded curve
that starts at yéizgary(O) = 2 and decays to yo(f,). Depending on
the predominance of the last term in Eq. (7), oscillations can
be presented in the second-order coherence function. For the
limiting case d = 0, we get the result for the second-order
coherence Vl\(/ii = 3 when the two objects have their centers in
the same point. The photons coming from both sources travel
approximately the same distance to each observation point.
For this case, there are no oscillations and the second-order
coherence is a monotonous decreasing function. For d # 0,
oscillations arise and they can have an impact in the gen-
eral form of the second-order coherence. As the total system
presents two EOs, the pattern appears to be fringes with an
envelope as in diffraction phenomena due to the finite size of
the objects.
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In this section, we have described the physical aspects of
the second-order coherence for a binary system. We showed as
main features the oscillation amplitude of the first minimum
and the asymptotic value. In the end of point 4, we have
briefly discussed a limitation of measuring just the oscillation
amplitude. For some scenarios, it is not enough for an appro-
priate characterization. Nevertheless, the issue can be solved
by additionally verifying if yo%) = % holds, which is true for
every s in an equilibrium scenario (N' = 1). In this sense, this
is a remarkable example where complementing both features
might be useful. We have not analyzed yet how to choose
the best strategy for measurements and describe the interplay
between them. This is the aim of the next section.

III. OSCILLATION AMPLITUDE VS ASYMPTOTIC
VALUE: COMPETITION OR COMPLEMENTARITY

In previous sections we have given the second-order co-
herence for a binary system. We have shown that the two
main features are the oscillation amplitude associated to the
first minimum 7/]\(,12131 and the asymptotic value y& [Egs. (16)
and (12), respectively]. Both depend on the frequency, the
radii, and the temperatures of the objects. At the same time,
we have that each feature occurs at different scales, given
by the oscillation baseline xos and the decay baseline xasy
[Egs. (14) and (13), respectively]. Only the former depends on
the separation between the constituent objects d. In principle,
each scale can be adjusted by the frequency of observation. In
many scenarios, it is common to have prior information of the
system obtained from independent complementary methods,
such as spectral and visual observations. For the purpose of
the present analysis, we will consider {Ra, Ta} as known
parameters for the rest of this section. Then, a natural concern
is to analyze the competition but also the complementarity
of the two features over the variety of possible scenarios. In
this sense, it is imperative to point out the crucial aspects
to consider for performing measurements with existing tele-
scopes. Furthermore, we show how to compare the features
for deciding which one is optimal to measure or to point out
when do the features complement each other for achieving the
best estimation of the properties of a system.

For addressing these matters, two aspects are crucial:
(i) The comparison between the variations of each quan-
tity with respect to the single-star case. For the case of the
oscillation amplitude, the variation is given by Fo, = 1 —
yl\(/ﬁ; / ys(izn)gle (xosc ), while for the asymptotic value the variation

18 Fpgy = 2y£)/3 — 1. (i1) The largest variation has to be

appreciable.

For point (ii), we take the criteria that a variation is appre-
ciable if it is larger than 1%. For both variations {Fosc, Fasy}
we obtain the same bounds on the surface ratio s:

i < R—B < 10, (18)
10 Ra
with no dependence on rest of the parameters. For observing
Fosc or Fpgy, the size of the two sources must be similar up
to one order of magnitude. Given that yl\(,ﬁl)q and y2 depend
on 5/(1 + s)* [Egs. (16) and (8), respectively], the maximum
value is reached for s = 1. Given a pair of temperatures,

sources of equal sizes maximize both variations.
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FIG. 3. Decision plot for a binary system with Ty =T, =
5778 K. The upper (lower) red solid curve corresponds to 7. (7_).
The red shaded region corresponds to the inequalities given in
Eq. (19), while the blue corresponds to the opposite condition. The
black dotted line corresponds to Tz = 10* K, while the value Ty =
T, corresponds to the equilibrium temperature. Black point 1 (2)
corresponds to v = 10" (10"%) Hz and Tz = 10* K. While for point
1 it happens that Fo, > Fjy, for point 2 the opposite is true.

While point (ii) gives bounds on s, the direct com-
parison of point (i) gives restrictions on the temperatures
(Tx ) and the frequency w. Additionally taking @ as known,
from Fos = Fagy, we obtain that Tg = T4 = hiw/[kgIn(1 +
1/[(4 + +/15)7ia])]. Thus, the conditions on T are

I <Tg <Ti = Fosc > Fagy, (19)

while the opposite is true for 75 outside that region.

Figure 3 corresponds to a plot with axis {v, Tz} (where w =
2mrv) that comprises the decision of which feature dominates.
On the plot we consider a system where Ty = T = 5778 K.
The red shaded region corresponds to the double inequality
given in Eq. (19), bounded by the curves 7. In the blue
shaded region, Fasy > Fogc. Notice that Fos is always larger
when the temperatures of the two constituents are similar
(Ty =~ Ty, for the case of the figure). This is expected since
the oscillations are interference effects connected to the co-
herence and the bunching of photons. These are enhanced due
to the similarity of the two sources. On the other hand, Fjsy
becomes important for greater thermal imbalances.

Note that the frequency of measurement determines which
variation {Fogc, Fasy} 18 greater. For instance, consider the
second object at a temperature Tz = 10* K (black dotted line
in Fig. 3). While, for frequency 10'* Hz (given by point 1)
Fose > Fasy. On the contrary, for frequency 10" Hz (given
by point 2) the opposite is true (Fos < Fagy). In each case,
the strategy for the measurements is different. While for the
former we require baselines of the order of the oscillation
baseline xosc, for the latter the baseline has to be larger than
the decay baseline xaqy. Figure 4 shows the decay and oscil-
lation baselines for D = 25 1y, R, = Rp,and d = 1 AU. We
can observe that for 10!* Hz (point 1 in Fig. 3) the baselines
have to be of the order of a few meters for measuring Vr\(/ﬁ;
Moreover, for a given frequency v when xpsc(V) < Xasy (V)
is true, then yggmy([zm — 1]xose) & yl\(,lzi;, for some m > 1.
In Fig. 4 the orange dotted curves correspond to m = 2, 3.
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FIG. 4. Blue dashed (orange) curve corresponds to the decay
(oscillation) baselines xasy (Xosc) according to Eq. (13) [Eq. (14)] as
a function of the frequency for a binary star located at D = 25 ly,
with the radius Ry = Ry and a distance between the constituents
given by d =1 AU. The blue shaded region corresponds to the
region x > xa. The orange dotted lines correspond to the second
and third minima of oscillation, respectively. Point 1 (2) corresponds
to v = 10" (10") Hz shown in Fig. 3. The blue solid line corre-
sponds to the possible baselines at v = 10" Hz. While for point 1
the baseline is in the order of meters, for point 2 is at least one order
of magnitude larger. Dark gray dashed horizontal line corresponds to
a fixed baseline of 10 m. All the minima and the asymptotic value
can be measured with a baseline of 10 m by changing the frequency
of detection. Points 3, 3’, and 3’ correspond to the minima obtained
at different frequencies, while point 4 corresponds to measuring the
asymptotic value.

We can use the values of these larger baselines at a given
frequency for measuring the oscillation amplitude. For point
2 the baselines have to be at least of 50 m for measuring r2.
Any larger baseline at this frequency also works for measuring
the asymptotic value, as denoted by the vertical solid blue line
in Fig. 4. Also, notice that for a baseline of 10 m (dashed
black horizontal line) it is possible to measure alternatively
both features by changing the observation frequency. Maximal
amplitudes will be obtained at Points 3, 3/, and 3’ for different
observation frequencies. For the asymptotic value, a larger
frequency is required, corresponding to point 4.

In the above arguments, we considered the scenario
wherein the temperature of the first object is known. But, of
course, another possible scenario is when no prior information
is available about both the objects involved. In this case,
it is useful to distinguish between an equilibrium scenario
(Th ~ Tp) from a nonequilibrium one (Tp # Ty). If we are
facing an equilibrium scenario without prior information, the
complementarity of the features can be exploited as the best
strategy. To illustrate this, Fig. 5 shows two scenarios, one
at equilibrium and with a surface ratio 5" (blue dotted curve)
and a second one in nonequilibrium and surface ratio s # s’
(red solid curve), both characterized by the same oscillation
amplitude at the first minimum. First, notice that at equilib-
rium, Fjqy = O irrespective of the surface ratio s’. Measuring
y;? = % reveals that the scenario is an equilibrium scenario,
but it will give no further information about any parameter
of the system. Alternatively, if we only proceed to measure

— Single
— Binary + NEq + s
Binary + Eq + s’

XOsc XAsy

x (Baseline)

FIG. 5. Sketch highlighting how the main features of the second-
order coherence change as a function of the baseline (separation
between the detectors) x = x; — x, for a scenario at equilibrium
(Ta ~ Tg) and with surface ratio 5" (blue dotted curve) and a nonequi-
librium (T, # Tg) with a surface ratio s # s'. The parameters were
chosen such that both scenarios present the same oscillation am-
plitude for the first minimum. Having no prior information about
the temperatures, a distinction between the two scenarios results
from a complementation between the measurements of both features
(oscillation amplitude and asymptotic value). As before, the green
one corresponds to the single case. The vertical lines correspond to
the baseline values associated to x4,y (blue solid), xos. (orange solid),
and the next two minima (orange dashed).

yl\(,flf1 without prior information about the temperatures, then

the two scenarios shown in Fig. 5 are compatible with the
measurements. A solution for a given s and Tz = 7o might
be compatible with the measured value )/1\(,[21:1 In this case,
both temperatures will remain unknown since for Ty =~ Tj it
happens that )/1\(,[231 is just a function of s’. A second possible
scenario compatible with the same measured value yl\(,ﬁi could
be found under the condition Ty # T by choosing a suitable
value of s # s'. Thus, without prior information about the
temperatures of the objects, a complementary measurement of
y;? will lead to a distinction between the two. In this sense,
both features complement each other to uniquely distinguish
a scenario.

Until this point, we have analyzed the correlations of the
photons coming from two sources at a fixed distance d. But
it is common in binary systems, particularly in astrophysics,
that one of the objects is orbiting the other one due to its
gravitational interaction. In this sense, it is crucial to include
the orbital motion, at least in an approximate way, to consider
its impact on the photon correlations. In the next section, we
show how this can be done in a simple way for the case where
a circular orbit is contained on the plane shown in Fig. 2.

IV. ORBITAL MOTION INCLUSION

As we mentioned before, the effect of the orbital motion
should be included for a complete analysis of, for instance,
stellar systems. In these scenarios, the orbital motion is as-
sumed as circular to a good approximation. A replacement of
the constituents’ actual distance d by its apparent distance d*
is appropriate since D > d. In Fig. 6 we show the scenario
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FIG. 6. Sketch for the definition of the apparent distance d* between the two EOs with respect to the observer O given that D >> d. The
angle o corresponds to the phase angle, while the ¢ is the angular separation between the EOs.

where each orbital position is defined by the value d* as a
function of the actual distance d and the phase angle «.

The relation is obtained by employing the “sine law.” By
simple trigonometrical arguments, it can be shown that

d* D D d

— = T = (20)
sing cosg sina  sing

being ¢ the angular separation between EOs for the observer.
From the last two relations we can easily find that

d sin«o

cos [arcsin (% sin oz)]

d* =

~ d sina, 21
where the last approximation holds in the limit d < D.

We replace d — d* ~ d sino in all the expressions of
the previous section to include orbital motion. In Fig. 7 we
show the second-order coherence of a binary system for dif-
ferent values of the phase angle o. For o =0 (dark red
dashed curve), no oscillations appear, even though the curve is
different from the single EO found in Fig. 1 because yég ) #* %
in general. For « # 0, the oscillations take place according

——— Single
a=T71/2

a = 711/6

a-0

XOsc XAsy

x (Baseline)

FIG. 7. Sketch highlighting how the main features of the second-
order coherence change as a function of the baseline (separation
between the detectors) x = x; — x, for different values of the phase
angle «. This corresponds to the replacement d — d* given by
Eq. (21) into Eq. (7). The reddish curves correspond to phase angles
a =0, /6, m /2, respectively, while the green one corresponds to

the single case. The values xaq and xo4 correspond to Egs. (13)
and (14).

to the interference pattern defined by the instantaneous value
of the apparent distance d*. As the phase angle approaches
o = 1 /2, more oscillations are contained within the envelope
curve. The maximum number of oscillations occurs for the
case @ = /2 (red solid curve), which corresponds to the
maximum apparent distance between the two components.
For this case, the first minimum of oscillation corresponds to
Xosc, Which is the shortest distance for a minimum to occur.
Simultaneously, yéizgmy(x = X0sc, ¢ = 7/2)/ )/S(izn)gle(x = XOsc)
maximizes the difference between the binary and single cases
for every every x and «. This is shown in Fig. 8, where a nor-
malized second-order coherence 7 (x) = y@(x)/ ys(izn)gle(x)
is plotted as a function of . A measurement at the baseline,
X = Xosc, gives the best possibility of observing oscillations
and, moreover, provides a way to estimate d. It also gives the
best variation Foy for determining the rest of the parameters,
such as the temperatures or the radii of the objects.

To realize Fig. 8 experimentally, the light collection time
required for a single measurement needs to be much smaller
than the orbital period t. Then, as a fair approximation the
measurement can be associated to a single position in the orbit
(labeled by «). For binary stars, the orbital periods can go
from days (as the Spica system) to decades (as the Luhman

= ammmmn
1 r ‘“\\ 'o' X= XOSC
[} ~ S
. ~ .
H \\ R X= XOsc/2
' \\ !
v A\ | N |] eeaaaaaa
= y NS X = 2X0sc
= ! NG i
D K N Sem=—" . !
1. ‘I " “ .
) D . N
[} 4 . ;
[} 3 ), N
[y g *, o
[y g P o
| o . e
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0 T g 3n o
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a

FIG. 8. Sketch highlighting the behavior of the ratio 7®(x) =
y@(x)/ ys(izn)glc(x) as a function of the phase angle o when the two
detectors are separated by a distance x equal to Xosc, X0sc/2, 2X0sc-
“Min” corresponds to the value 5 / Vs(iz,?gle(xmc)»
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TABLE I. System parameters of the binary stars Luhman 16 and Spica (« Vir). The distance to the binary star D is given in light years (ly).
Jupiter’s radius is taken as Ry = 7.1492 x 10”7 m while the solar radius is Ry = 6.957 x 10® m. The distance between the constituents of the
binary star d is given in astronomical units (AU). The parameter t corresponds to the orbital period, while m stands for the apparent magnitude

of the binary stars in the V band.

D (ly) Ra Ry Rz /Ra Ty (K) Tz (K) d (AU) T m
Luhman 16 6.51 ~1.04R, ~0.84R, 0.82 1210 1350 3 27.54 years 10.733
Spica (a Vir) 250 747R, 3.74R, 0.5 25300 20900 0.12 4 days 0.97

16 system). The possibility of measurement depends on the
particular experimental setup, on how much light is collected,
and at the same time on the binary system under study.

A crucial aspect about this curve is that it represents a
periodic motion. The cases for which the half-period of the or-
bital motion is accessible experimentally should be separated
in two: the systems that can be resolved by complementary
methods and, therefore, each measurement can be matched
to its corresponding phase angle «; and the systems where
the latter is not possible since the individual motion of the
constituents cannot not be accessed. For the cases where
the motion is resolved, the curves of Fig. 8 should be, in
principle, directly obtained. On the other hand, for the cases
with not-resolved motion, Fig. 8 might be still recovered. For
this, measurements can be taken as a function of time and by
recognizing its periodic structure, the corresponding curve as
a function of « could be inferred.

Lastly, if T is much larger than the time of experiment and,
consequently, measurements for different o are not possible,
an estimation of d is still possible by obtaining the curve of
Fig. 7 provided « is known in advance. Otherwise, those mea-
surements only contribute with an estimation of d*, keeping d
inaccessible by these means.

In the next sections we apply these results to the study of a
paradigmatic case: binary stars.

V. APPLICATION TO MEASUREMENTS
ON BINARY STARS

We now focus on applying our results to binary stars.
These are systems that are vastly found in the Universe. Their
classification comes according to the method of observation.
The properties of the system condition the method to em-
ploy. In this sense, for some binary stars their components
can be directly observed. For these cases the optical condi-
tions for observation (associated to the relative motion and
relative brightness of the components) are optimal. The two
components can be distinguished by direct visualization with
appropriate telescopes. Other systems, presenting less advan-
tages for individual visualization of the components, require
to be explored by other indirect methods. Spectroscopy or the
employment of photometry are methods where the presence
of a second component is inferred from measurements of
Doppler effect or brightness variations by eclipsing orbits,
respectively.

Here we aim to exploit the statistics of photon measure-
ments. In principle, the restrictions of the method relate to the
observation of the features {yl\(,ﬁfj, y;?} of the second-order co-
herence summarized in Fig. 1. As we discussed in Sec. 11, the
measurement strategy depends, on one hand, on the variations

{Fosc, Fasy) for the specific system under observation and, on
the other hand, on the baseline possibilities of our intensity
interferometer to collect photons of frequencies for which the
variations are observable. Lastly, we have to take into account
the orbital motion. All in all, depending on the scenario, a
complete description of the system could be possible, includ-
ing the constituents’ distance d, but also the temperatures and
radii of each component {Rx, Ta, Rg, Tg}.

In this work we analyze two cases: the binary stars Luhman
16 and Spica o Vir. The former is a binary brown-dwarf
system that shows to be resolved by the South Gemini Ob-
servatory in Chile in the visible spectrum. The latter is a
spectroscopy binary that is a well-studied case (see Ref. [26]).
Both constituents star in Spica are several times larger and
hotter than the Sun. Their closeness (d ~ 0.12 AU) and dis-
tance (D ~ 250 ly) preclude individual detection. As stated
in Ref. [26], intensity interferometry was employed for mea-
suring the radii of the components {Ra, Rg} and the distance
between them d. Here, we also show that with the same
technique, the temperatures can be also obtained.

For showing the feasibility of the approach presented here
as an alternative measurement method we take the measured
values for the parameters of the mentioned binary stars, given
in Table I.

For both systems the size requirement for appreciable vari-
ations given in Eq. (18) is satisfied. In Fig. 9 we show the Fog.
and Fjyy, together with the oscillation and decay baselines
{X0sc» Xasy} as functions of the frequency for both binary stars.
As we mentioned on Sec. III both plots have to be considered
simultaneously in order to determine the best strategy for
performing an experimental measurement. In the infrared, for
Luhman 16, Fo, reaches 25% for frequencies approximately
up to 100 THz. For the first minimum, the associated baseline
is within ~0.3-3 m. Nevertheless, given that xssy > 1 Km,
we have that minima of larger baselines are useful in the same
way. As we show, for the minimum corresponding to m = 6,
we have xgs. ~ 10 m, and for m = 25 the baselines are closer
to 100 m. Particularly, for v = 10 THz, the oscillation base-
line is xpsc & 100 m, corresponding to point A. In this range
of frequencies, Fasy = 0. These results are also verified in the
left panel of Fig. 10. For the Spica system, in the infrared
we have that Fos is around 12%, while Fasy = 0. In fact, this
extends up to the ultraviolet spectrum. The baselines required
are between some meters (in the near ultraviolet) to around a
kilometer (in the infrared). This agrees with the measurements
as commented on Ref. [26], related to oscillation amplitude
variations. Unfortunately, in this case, oscillations measure-
ments cannot be complemented by measuring Fjsy since there
is no variation in this range. Therefore, depending on which
property of the system is desired, some prior information
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FIG. 9. Blue (red) curves correspond to Luhman 16 (Spica). Up-
per: variations of the oscillation amplitude Fps (solid curve) and
asymptotic value Fj,, (dotted curve) as a function of frequency.
Lower: baseline values as a function of the frequency for the first
minimum of oscillation [solid curves, xos according to Eq. (14)] and
the decay [dotted curves, xasy according to Eq. (13)]. The dotted blue
(red) lines correspond to the baselines for the 6th and 25th (2nd) min-
ima, respectively. Point A (B) corresponds to a baseline x ~ 100 m
and a frequency v = 10 THz (v = 10 PHz). The red (violet) shaded
region corresponds to the infrared (ultraviolet) frequencies.

might be required. All these aspects can be found also on the
left panel of Fig. 11, which is for v = 600 THz. Furthermore,
given that the orbital period of Spica is T = 4 days, the right
panel shows the analog of Fig. 8. We observe that Min = 0.86
for this case, which is only attainable for the first minimum
baseline xos.. For Luhman 16 in the visible range the situation
is different. Both variations Fps. and Fagy are around 10%.
For oscillations, the baselines are from millimeters to some
meters up to m = 25. For the asymptotic value, the baseline is
in the order of hundreds of meters. Thus, for Luhman 16 it is
possible to combine both types of measurements by setting
two pairs of detectors (in the visible spectrum), with short
and large baselines, as can be observed in the center panel of
Fig. 10. In the ultraviolet spectrum, the oscillations disappear
while the asymptotic value maximizes Fyqy. The baselines are
below 100 m. In particular, for v = 1 PHz, a baseline of 100 m
provides a way to measure the maximum asymptotic value,
corresponding to point B in Fig. 9 and and the right panel
of Fig. 10. Furthermore, a baseline of 100 m provides a way
to simultaneously measure the oscillation amplitude and the
asymptotic value provided the pair of detectors can measure
photons of v = 10 THz and v = 10 PHz, according to points
A and B. Let us remark that although the latter frequencies

are not feasible with actual detectors, the strategy of fixed
baseline and variable frequency might be fruitful for some
other system. In this sense, we are illustrating all the possible
strategies for setting an experiment.

All in all, on general grounds the difference in the baseline
scales for each binary stars is mostly given by the difference
on the distance to the systems (D). As typically happens in
optics, a system located further requires a larger baseline. The
difference on the oscillation amplitude is due to the similarity
of the constituents of each binary star. While the relative
sizes (Rg/Ra) are approximately similar, a better situation for
Luhman 16 is because the temperatures of the constituents are
closer than in the Spica case. The Luhman 16’s constituents
are more similar to each other than the Spica’s, which gives
more appreciable oscillations. Furthermore, for Luhman 16
it should be also possible to get an optimal strategy in the
visible spectrum, where the system is not resolved, but where
the combination of the two features may lead to a full charac-
terization of the system.

Including the orbital motion requires consideration of the
orbital period t. For Luhman 16, the orbital period t is too
large. Therefore, it is not practical to measure the separation
distance using photometry observations (in visible). Further-
more, the dependence with the phase angle « (as in Fig. 8)
may not be possible to observe. As an alternative, the distance
between the constituents (d) can be estimated from a second-
order coherence measurement (as in Fig. 7) if and only if the
phase angle is known. Otherwise, only the apparent distance
d* can be estimated. In the case of Spica the period is 4 days,
so the dependence with the phase angle might be possible to
observe, as we mentioned before.

All in all, depending which parameter is to be estimated,
the different restrictions for a successful experiment.

VI. NONEQUILIBRIUM HBT INTENSITY
INTERFEROMETRY EXPERIMENT AND FEASIBILITY

In this section, we discuss the practical implementation to
measure the second-order coherence function using a typical
Hanbury Brown and Twiss setup that involves two different
optical telescopes (with the desired baseline) equipped with
single-photon detectors and timing-cards to measure coinci-
dent photon detection events. The two main conditions that
need to be considered are as follows:

(1) The measurements at both the telescopes should be
performed within a time window that allows for the recog-
nition of correlated photon pairs.

(2) Considering the low-photon-number occupation for
the thermal states it is important to estimate the measurement
time necessary to get enough coincidence detection events, in
other words, the signal-to-noise ratio is sufficient enough.

By measuring second-order correlations as a function of
the distance between the telescopes, one measures the cor-
relations between the photons from different points on the
wavefront from the stars. Varying the baseline essentially
varies the time separation between the points. Thus, based on
the coherence time given by /i/T, where T is the temperature
of the object, the correlation function decays. This points to
the fact that it is important to perform measurements within
a time window that allows for the recognition of correlated
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FIG. 10. Second-order coherence y‘® as a function of the baseline x for Luhman 16 for « = 7 /2 (at which d* = d) and the single-object
case (taken as the largest constituent alone). The left panel corresponds to a frequency v = 10 THz (infrared), the center panel to v = 600 THz
(visible), and the right one to v = 10 PHz (ultraviolet). On every panel, the solid blue vertical lines correspond to the values of the decay
baseline x4, at each frequency [according to Eq. (13)]. On the left panel, the solid orange vertical line corresponds to the first minimum of
oscillation xpg. The dashed orange line corresponds to the position of the minimum m = 6 as shown in Fig. 9. Similarly, the dashed gray
curve corresponds to minimum m = 25, with a baseline x &~ 100 m, corresponding to point A in Fig. 9. Similar notation is shown in the orange
dashed lines in the center and right panels. The gray dashed line on the right panel corresponds to one of the possible asymptotic baseline
x ~ 100 m, corresponding to point B in Fig. 9. With a baseline x ~ 100 m it is possible to measure both the oscillation amplitude and the

asymptotic value by changing the frequency of photocollection.

photon pairs. To elucidate, here let us focus a single source
such as a mercury vapor lamp or the star Sirius A, as in
the original Hanbury Brown and Twiss experiments. In the
experiment in order to detect the correlations it is necessary
to measure the two photons coming from the source arrive
at the detectors within the coherence time of the source tcop.
For a mercury vapor lamp the typical coherence time is given
by i/Tramp (being Tramp the temperature of the lamp) while
for a star can be approximately taken as Tcq, ~ 1074 s.
Following Ref. [7], if the signal is registered over a range

that got correlated during the travel is Tgin/Tcon ~ 107°. Thus,
it is necessary to use detectors that are fast enough to enable
detection of the correlated pairs. We note that the reasoning
and estimations provided hold regardless on the number of
stars since the order of magnitude of the coherence time does
not change with the properties of the stars.

The second condition aims to address the feasibility of the
proposed HBT experiment. This is crucial owing to the fact
that the apparent brightness of stars varies over a large range
and thus the photon flux reaching the detectors (for example,

within 5-45 MHz, the corresponding binning time is around

see Table I). Furthermore, this is specifically needed for the
gin ~ 1078 5. The probability of observing a pair photons

typical scenarios we address: where objects (binary stars) of

Spica a-Vir, v =600 THz

Spica a-Vir, v =600 THz
2.0F I

1.0215, Paaky
1 LY L/ N X = Xosc
19[
0.98}
1.8[
S > |
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16[
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FIG. 11. Left panel: Second-order coherence y® as a function of the baseline x for Spica o Vir for a = 7 /2 (at which d* = d) and the
single-object case (taken as the largest constituent alone) for v = 600 THz (in the visible spectrum). The solid orange (blue) line corresponds
to the first minimum xog (asymptotic value x,4y), while the dashed orange corresponds to the second minimum (with a baseline 3x¢,), which
is the only one available. The dashed gray line corresponds to a baseline xq. /2. Right panel: The ratio @ (x) = y @ (x)/ ys(izn)gle () as a function
of the phase angle « for a frequency v = 600 THz in the visible spectrum. Three curves corresponding to the baselines x = xogc, X0sc/2, 3X0sc»
associated to the vertical lines shown on the left panel. The maximum variation is achieved for x = xqs at the half-angle 7 /2, corresponding
to the maximum apparent distance between the constituents (d* = d). These curves could be obtained for Spica o Vir because of its relatively

short period (7 = 4 days).
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different sizes and at different temperatures are involved. The
signal-to-noise ratio (S/N) required for a given frequency
filter band is given as [27]

Texpt \ /2
(SMNJrwis = AnF [y () = 3/2]A 72 (S52) 7 @2)

where A is the geometric mean of the areas of the two tele-
scopes; F' is the photon flux of the sources defined as number
of photons per unit bandwidth, per unit area, and per unit time;
n corresponds to the quantum efficiency of the detectors; x is
the baseline; Af is the electronic bandwidth of the detector
plus signal-handling system; and finally Ty is the measure-
ment time.

As a feasible experimental scenario, we consider the ob-
servation by a pair of telescopes with a radius Ry = 0.6 m
and an efficiency of 0.3 for the photodetectors. We assume a
V-band filter, which corresponds to a wavelength A = 550 nm
with a bandwidth AA = 88 nm. The flux for each system is
obtained from the apparent magnitudes according to the rule
m = —2.5log,,(F/F') taking F’' as the standard reference
flux for the V band. Finally, we consider the electronic band-
width of the detector to be 1/Tgc,q, being Tyeaq the dead time
of the detector.

For the systems under study, Spica « Vir and Luhman 16
binary stars, the signal-to-noise ratio estimates are encourag-
ing enough to put this experiment proposal into immediate
implementation. In the case of the Spica, we have that the total
number of photons arriving to each telescope per unit time
(N = nR%elnAAF M/[hc], being ¢ the light velocity) is around
4.437 x 10 s~!. Since the number saturates typical photode-
tectors, we can assume that the collected light is attenuated to
arate 2 x 10° s~!. Within these circumstances, to achieve a
(S/N)rms =~ 50 for the oscillation baseline xpg an integration
time of Texpe & 25 ps is required. On the other hand, for Luh-
man 16, attenuation is not needed. To get (S/N)rms =~ 395, the
required integration time is Texpe &~ 10 ps. We note an impor-
tant detail regarding the asymptotic value, taking a baseline
X > Xpessel, TOr the Spica we do not notice an appreciable
variation in the V band (see Fig. 9), while, for Luhman 16,
we get for the signal-to-noise ratio similar numbers as the
oscillation amplitude.

VII. CONCLUSIONS

In this work we have entered the study of spatial coherence
on photon statistics particularly applied to nonequilibrium
configurations of sources. For this, we have developed a gen-
eral formalism for calculating the electric field correlation
functions as functional derivatives of a suitable generating
functional. Implementing the P-function representation, we
have focused on situations involving two extended spherical
objects (formed by a continuous of point sources) at different
temperatures. Specifically, we have calculated the second-
order coherence associated to coincident counts of photons
at two different points of space. As in the Hanbury Brown
and Twiss experiment of intensity interferometer, both pairs
of objects and detectors lie on the same plane.

As general results, we demonstrated that the second-order
coherence of binary scenarios is mainly characterized by
two features: (1) oscillations as a function of the baseline

x (distance between the detectors); and (2) a long-baseline
asymptotic value. On one hand, the latter is characterized
by a value yég) [Eq. (8)] and is found for baselines satis-
fying x > xasy [Eq. (13)]. On the other hand, the former
is reminiscent of the effect of photon bunching. It can be
exploited by the employment of the minima of oscillation.
The first one, characterized by a value y{,ﬁ; [Eq. (16)] and
a baseline xos [Eq. (14)], is in principle the best of them
for extracting information of the system. However, for sce-
narios where xogc < Xagy, the minima with larger baselines
[(2m — 1)xps] can give the same information as the first since
Vi (121 — 1Tx05e) & Yyp-

We then analyzed how to define the best measurement
strategy according to different possible scenarios. As both
features depend in different manners on the frequency of
the photons collected, the surface ratio of the objects, and
both temperatures, we show what are the crucial aspects
defining the interplay between the variations of each feature
{Fosc, Fasy} and the baselines. We show that competition and
complementarity of the features can be found in different
scenarios. While the oscillations are found to be enhanced
when the two sources are similar (similar sizes and photon
mean numbers), the asymptotic value is enhanced for sim-
ilar sizes but greater thermal imbalances (different photon
mean numbers). Also, as the photon mean numbers depend
on frequency of the photons collected, we analyzed how to
combine measurements in different regions of the spectrum.
The fact that temperatures are part of the possible estimations
provided by the approach opens a new branch of application
for intensity interferometry and Hanbury Brown and Twiss
experiments.

Motivated by scenarios where one of the objects is orbiting
another one, we included orbital motion in our calculations
through a simplified model of circular orbits. We explored
the impact of this motion on the second-order coherence.
Depending on the prior information about the system and the
orbital period itself, the measurements of )/I\(,IZI:1 could lead to
an estimation of the actual (d) or, alternatively, just to the
apparent distance between the objects (d*).

We applied our model and results to the case of two binary
stars: Luhman 16 and Spica « Vir. Their choice was based on
the fact that their different properties demonstrate the broad
application of our approach to actual scenarios.

From the experimental side, we have analyzed some
aspects on the feasibility, estimating the integration time re-
quired for measuring the features in the V band. An estimation
of the signal-to-noise ratio for the measurements of photo-
coincidences showed promising numbers for the binary stars
considered. For measurements of the oscillation amplitude
we obtained an integration time on the order of a few tenths
of microseconds for signal-to-noise ratios of 35-50. For the
asymptotic value, in the V band, it is only possible for the
Luhman 16 case, obtaining similar values. For the Spica case,
the variation in the asymptotic value is not appreciable.

All in all, we believe that this work is contributing to take
current available methodologies one step further, including
nonequilibrium configurations. This gives the chance to a
better characterization of the systems under study. In this
sense, let us remark that although we have applied our results
to astrophysical systems, the same formalism may be useful
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for scenarios involving microscopical sources out of thermal
equilibrium.
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APPENDIX A: A GENERATING FUNCTIONAL FOR THE
CORRELATION FUNCTIONS

This Appendix is devoted to show how the correlation
functions for the electric field operator can be obtained from a
generating functional. We start by considering the concept of
spatial coherence, which relates to measurements of photons
in different points of space. These measurements are associ-
ated to the quantum correlations of the electric field operator
at different points of space. In our case, we start by defining
the kth-order correlation function by following Ref. [28]:

(k)

!
PO,

= (B 0ES ) B @OE (1) 1)

Ll /
0(L(xl,...,xk,xl,...,)ck)

= (E7(x). .. E;j(xk)E;;“(x;) .. .EA‘O([Z_)()C,/C)), (A1)

where :: stands for the normal product, the coordinates are
x; = (x;, t;), while {¢;} stands for the components of the elec-
tric field operators.

In our case, we will be interested in the case where these
functions are connected to measurements of photons in differ-
ent points of space. In this sense, we are interested in the case

J

Zsclajn(x)] = <T : exp</ dx ajk(x)EA](f)(x, t)EA]fH(x, t)) >

where x; = x] and o; = «]. Then, the notation simplifies to

k
x) =GW (x1, ...

[og...ap,ar ..o ]

GO (xy, ..

o ...0 . ,xk),

(A2)
where the subscripts in squared brackets [« ... o, o1 ... o]
imply that there is no sum although the subscripts are
repeated.

Notice that these functions will be measuring correlations
at different space-time points between different polarizations
of the electric field. In that sense, if we want to go further
and only explore correlations at different spatial points, then
we should set o; = « and t; =t for every i. Thus, we get
correlation functions that can be written as

GP(xy, ..., %, 1)
= (Ex,1)...ET(xi, 1)

x EP(xy,1). .. ED(xy, 1))

oy Xy X1y -

—G®

[o...0,cx...]

(Xi,t, .. X, 55X, F, ., X, 8),  (A3)

where we have omitted the polarization subscripts for
simplicity.

Observing the definitions of the quantum correlation func-
tions for spatial coherence on Eq. (A2), we turn to analyze the
functional defined as

Zlaj(x, 7)]

= <T: exp(/dxf rdt aj (X, r)Ej(—)(x, r)EI§+)(X, r)) :>,
’ (Ad)

where a (X, 7) stands for, in principle, an arbitrary distribu-
tion defined in all the space-time points where the electric field
operators are spanned. The time # in principle is arbitrary.

For the particular case of analyzing the spatial coherence of
the electric field, we set ajx (X, T) = ajx(x)5(r — 1) with 0 <
t < t¢. Thus, the functional Z reduces to

(AS5)

If, in addition, we consider the case for which a single component of the electric field is analyzed (i.e., E = Ee), the generating

functional Zgc simplifies to

Zla(x)] = <T : exp< / dx a(x)E ) (x, 1)EP(x, t)) > (A6)
Then, we immediately notice that the functional derivative of the functional Z with respect to a at x; reads as
872 8 R . R N
=(T: /dx ﬂEH(x,r)E(“(x,t) exp /dxa(x)E<—>(x,r)E<+>(x,t) ). (A7)
8a(X1) SQ(Xl)
By noticing that
sa(x)
=8§(x —x1), A8
Batx1) (x—xp) (A8)
we immediately get that
8Z o R e R
St )=<T: [E( )(Xl,t)E(+)(x1,t)]exp</ dxa(x)E' >(x,t)E<+>(x,r)> > (A9)
alXy
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In the same way, we can easily extend this to every order,
noticing finally that

skz

G0, X ) = e
(x Xk, 1) da(xy)...8a(xy) |,—o

(A10)

which corresponds to Eq. (5).

This shows that we can obtain the correlation functions of
arbitrary order of the electric field for studying the spatial co-
herence [Eq. (A3)] from the generating functional of Eq. (A6).
As developed, this procedure is general and the information
about the particular source configuration and its states is en-
coded in the electric field operator and the expectation value.

APPENDIX B: NONEQUILIBRIUM TWO-SOURCES
FORMALISM

This Appendix is devoted to the calculation of the second-
order coherence y® for the particular scenario of two point
sources at different temperatures from the correlations ob-
tained from generating functional mentioned at the beginning
of Sec. IT and Appendix A.

First of all, let us state that we are interested in scenarios
involving objects in the far regime and describing the light
coming from them. The electric field operator is given by a
combination of plane waves:

. 27 liewy \ /? ;
E(+)(X, 7) = _iz < v P) apkep)» et(p~x—wpr), (B1)

pA

while EC)(x, 7) = [E™(x, 7)]*. The summation is over the
modes of the electromagnetic (EM) field. This expansion
agrees with the one for a quantized free field in a box (see
Refs. [28,29]). The operator &;X (@py.) corresponds to the cre-
ation (annihilation) operator of a photon of mode pA, being p
the wave vector and A the polarization label and characterized
by a frequency w, = cp, while V corresponds to the volume
for “box normalization.” The unit vector ep, accounts for the
polarization of each plane wave, satisfying p - ep, = 0 while
A=1,2

Now, we follow the approach of Ref. [30] for the case of
two point sources (1 and 2) located at different points P »
(characterized by positions r; ;) as in Young’s interference
experiment. Now, the specific form of the quantum state for
two sources located at different positions must be introduced.
Considering Glauber’s representation, the state of one beam
(coming from one of the sources) is represented in the ba-
sis [{vg, }) while the second one is analogously described in
the basis [{vg,}), having 8 = (p, A). In addition, we assume
the two point sources to be independent each other. Then, the
density operator of the combined field is given by

b= / / (05,14 (05, P (05, P> (o)

x H{vg, }, {vg, 1) ({vg, }, {vg, 1, (B2)

where P;({vg}) corresponds to the Glauber’s P function of
the ith source (with i = 1, 2). This representation is still am-
biguous since the “two-sources” states |{vg, }, {vg,}) are not
defined yet. In Ref. [30] the authors declare how the field

| Point-sources

r
i
I
Do |
r-r| '
|‘2|Ii D y o Pt
I ——T’*u L be-x |
I ' 77
L‘ X X
"2§ '

FIG. 12. Sketch of the scenario. Two point sources at tempera-
tures 7; and 7; and located at positions r ,, respectively. The sketch
shows the plane where the sources and the observation points (at
positions X; j, with i =1,...,k) are contained. Two sources are
approximately located at a distance D from the observation points
and approximately aligned along the x axis. The distance between
the sources is given by |r; — r»|. In this scenario D > |r;y — ra| >
|x; — X/, so each point source radiates in a single wave vector.

operator acts on this kind of state, following that
E®x, 0)l{vg ), (ve})

= [E{"(x, 1) + ES7V(x, Dl{vg ), (vp,)),  (B3)

having

. 2 hw, N
ENx 1) =-i) - P yprep €PTn=en(=iml - (B4)
pr

where t,, = s,,/c is the time that it takes to a signal generated
at P, to reach an observation point P at x. In this sense, s, =
|x — r,| corresponds to the distance between the source point
P,, and an observation point P. Thus, we can say that E; + E,
corresponds to the total electric field at the observation point
P due to the two sources.

We are interested in the quantum correlation functions for a
scenario where two sources are separated from the observation
points by a distance D much larger than the distance between
the observation points, as shown in Fig. 12. A frequency
filtering allows us to consider just single modes arriving from
each source. Each of the two modes have the same frequency
w but different wave vectors p; = (w/c)n;, being n; the unit
vectors associated to each direction connecting a point source
with the observation point P. For astrophysical scenarios, this
is a reasonable assumption since the distance between the
sources |r; — r»| and the distance between all the observa-
tion points |x; — x;| for all the pairs of observation points
@i, j=1,...,k)satisfy D > |r; — rz| > |x; — x;|. Thus, the
radiation coming from each source can be fairly approximated
by a single mode with unit vectors n; = s;/s; connecting each
source to the observation point. Furthermore, as E = Ee, the
electric fields of Eq. (B4) read as

Er(nJr)(Xv 7) & —iEyum ei%[nm-rm*c(rftm)]’

with & = /2nhw/V .

Taking into account these considerations, the state in
Eq. (B2) can be given by the combination of states with
just one mode per source. As we consider each source to be

(B5)
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thermal, the P function associated to each one is

1 |vil?
Pi(vi) = — EXP[—_—], (B6)
wn; n;
where 71; = 1/(exp[hw/(kgT;)] — 1) is the mean photon num-
ber of the source i at temperature 7;. Within the context
of extended objects (EOs), let us remark that assuming a
thermal state implies that each part of the objects are taken
as black-body radiators. Strictly speaking, for astrophysical
objects this is, of course, an approximation. However, for our
purposes of studying the main features of photon correlations
the approximation is sufficiently good.
Having all the previous considerations, we can write the
generating functional for the scenario just described as

Zla(x)]

1 il Il | g2 .

-t _1Am m

=—— e m m 2t Ami V]V d2v1d2v2, (B7)
Teniny

with the coefficients given by
A = E2 f dx e’ AR g (x), (B8)

where AR;;j(x) = R;(X) — R;(x) corresponds to the difference
in the optical path traveled by the radiation coming from each
source, so R;(X) = n; - r; + ct;.

In Appendix C we show the complete calculation,
obtaining

1
[(1 — Apfi (1 — Apity) — fifia|Apa]*]

Employing Eq. (5) we can obtain the correlation functions.
In Appendix D we show the calculation for the first two
correlation functions for a scenario in the far regime, having

Zla(x)] = (B9)

GV =&y + y), (B10)

G(z)(xl — X))~ Zgg{fl% + ﬁ% + nny

x |:l + cos (%[M —Xz])]}-

(B11)

Here, the first-order correlation is constant and indepen-
dent of the sources’ positions. This is expected since the two
sources are incoherent, so the total intensity corresponds to
the sum of the intensities of both sources. On the other hand,
despite being incoherent sources, the intensity correlation
of second order provides further information as it depends
on the distance between the sources (d; — d,), the distance
to the sources’ configuration with respect to the observa-
tion points (D), and the distance between detectors (x; — x»).
Notice that for the case where the two sources are at the
same position (d; = dy) we get fo]):m (x; —x2) = 2(G)?,
which corresponds to the value for a thermal source of mean
photon number #; + 7ii;. The two sources held at different
temperatures but at the same position are perceived as a single
thermal source. The same value is obtained for the general
case (d; # dp) when the two measurements are taken at the
same point (x; = x,), having G?(0) = 2(GM)%. The latter

implies that measuring at a single point provides no further
information about the sources’ configuration than the one ob-
tained from the first-order correlation G'V. However, different
detection points (x; # x,) give intensity correlations showing
that temporal coincidence of photodetections at different po-
sitions is affected by the difference in optical path traveled
by the photons, finally depending on the distance between the
sources.

As we mentioned in the Sec. I, a meaningful measure of the
coincidences consists on the two point-sources second-order
coherence y(2)(xl, X, ). For the present case, we obtain

N
(2) —_ = B ——
Vo5 (X1 — X2) 2{1 + R +/\/12)2

d —d
X |:cos <—a)( ch 2)(x1 —x2)> — 1i|},

(B12)

with N}, =#ip/it; the ratio between the photon average
number of each point source. The last expression is a gen-
eralization for two sources at different temperatures of the
second-order coherence found in Ref. [4,9]. Notice that as
a function of x; — x,, the second-order coherence is an os-
cillatory function, whose period is uniquely determined by
the cosine’s argument. The coincidence counts on a pair of
detectors by photons coming from two sources depends on
the distances between the sources (d; — d»), between the de-
tectors (x; — x»), and from the detectors to the sources (D).
This is a second-order interference effect. In contrast, two
thermal sources present no interference pattern at first order,
as it is shown from Eq. (B10), so no amplitude interference
can be exploited in order to get information about the sources’
configuration. However, this kind of incoherence does not
prevent higher-order correlations to show a dependence with
the source’s relative position. Their intensities are correlated
and show interference features of a pair of sources.

APPENDIX C: CALCULATION OF THE GENERATING
FUNCTIONAL FOR TWO THERMAL POINT-SOURCES

This Appendix shows how the generating functional of
Eq. (4) is calculated for the scenario of two thermal point
sources to finally obtain the result of Eq. (B9). We start
by implementing the two-sources state for single modes in
astrophysical scenarios, summarized in Egs. (B2) and (BS5),
for calculating the expectation value of the right-hand side
of Eq. (4), provided the thermal P functions characterizing
the state of each source [Eq. (B6)]. Then, we have that the
generating functional reads as

Z[a(x)]

1 BTG LI - SR
— — e D +> et Ami V] UdeUlevz’ (Cl)
T-n1ny

with the coefficients given by
A = E? / dx e'¢ AR ™ g (x), (C2)
where AR;;j(x) = R;(X) — R;(x) corresponds to the difference

in the optical path traveled by the radiation coming from each
source, SO R;(X) = n; - r; + ct;.
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Moreover, the functional derivative of these coefficients
reads as

8A = E2,¢ BRu(X). (C3)
da(x’)

The resulting integral consists in a multidimensional Gaussian
integral as long as 1/1; — A;; > Ofor/ = 1, 2. This is the case
for the two possible evaluations of a that we are considering,
so the integrals converge. Splitting each variable v, in real

J

2(% —A11> 0

A =
-2 Re(Alz)

—2Im(Ay2)

2Im(Ay2)
—2Re(Arn)

which determinant results

2
4[(1 — Ay (1 — Agpiin) — yiia|A |
detA=|: [( 1171)( - _22"2) iz |A| ]:| . (C6)
niny

Thus, we have that the generating functional reads as

0 2(% —An)

and imaginary parts (with d’v = d(Re[v])d (Im[v])), the in-
tegral reads as

—M—M-FZZ AmiVivm 12 2
e i 1m=13ml V) md Uld vy

_IT Ay (2m)*
— 2 d = , C4
/]1{4 e V=, oA (4
with v = (Re[v(], Im[v;], Re[v,], Im[v,]) and dv=
d?v,d?v,, while the matrix is given by
—2Re(A1;) —2Im(Apn)
2Im(Apn) —2Re(A12)
, (C5)
2<L _ A22) 0
i
0 Z(g —A22>

APPENDIX D: CALCULATION OF THE FIRST TWO
CORRELATION FUNCTIONS

This Appendix is devoted to show the calculation of the
first two correlation functions given in Eqgs. (B10) and (B11)
from the generating functional of Eq. (B9). The scenario
of interest consists in two thermal point sources at differ-
ent temperatures. The involved distances are typical of an
astrophysical scenario, having that the distance between the
sources (d = |r; — rp|) and the distance between all the ob-
servation points |x; — X;| for all the pairs of observation points

1 (i, j =1, ..., k) are smaller than the distance D between the
Zla(x)] = — — — 5, (CT) . . . o
[(1 = Apa)(1 = Apity) — iiiia|A12 %] sources and the observation points, satisfying D >> d > |x;
At a first point it is important to write the functional deriva-
which corresponds to Eq. (B9). tives of the generating functional given in Eq. (B9):
|
8Z SA1 _ _ L 8An _ [ B8A}, 8A 1, 5
= 1—-A 1-A A AT Z , DI
da(xy) |:8a(X1)nl( ) € 11nl)(Sa(Xl)n2 - nlnz(&a(xl) 2+ AR Sa(xy) (ZlatD (D)
8°Z A SA SA SA 8A7, BA SAT, SA
= iy | — 11 22 . 11 22 12 12 12 12 (Z[CZ(X)])2
da(x1)da(x;) da(xy) da(xy)  da(xp)da(x))  da(xy)da(xy)  da(xz) da(x;)
1o _ _ L 8A»n _  _ _ [ 8A}, 8A 1
1-A 1—-A A Al
|:8a(x1)nl( 2012) + ( ”nl)(Sa(xl)nz+n1n2(5a(x1) 12+ 2 3atxn)
X il (1 — Agiip) + (1 — Ayiiiy) oAz iy + iy o4 Ap -i-ATZ(SAi Zla(x)])?. (D2)
da(x2) a(xz) da(x2) da(x2)
Apart from this, we can calculate the first two quantum correlation functions from the generating functional, obtaining
SA 3A
GV =ity — iy ——| = E3( + ), (D3)
da(x1)|,—o da(x1)|,—o
SA SA SA SA SA SA
GO (xy, x2) = 272 11 11 2 22 22 4 ﬁlflz[ 22 11
da(x1)|,—g 8a(x2) | ,—o da(x1) | ,—g 8a(x2) | ,—o da(xz) | ,—g 0a(x1) | ,—o
3A1 8An 8A 1, 8A7, 8A7, 8A1, }
da(x2)|,mg a(X1) |9 da(X1) |, 0a(X2) |,  Sa(X1) |, da(X2) |,—o
w
- 255‘{;—1% e leﬁz[l + cos (;[ARIZ(XI) _ ARIZ(XZ)])]}. (D4)
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Notice that in the case of thermal equilibrium (77; = 71, =
1), the expression directly agrees with the one obtained in
Eq. (4.4.18) of Ref. [29]. Moreover, Eq. (D3) corresponds
directly to Eq. (B10).

Considering the integrations involved in this work and the
typical astrophysical scenarios mentioned, the positions are
given by

rio =d X+ Dy + z12Z. (D5)

With the mentioned approximations, we immediately obtain

|xi—rj|=\/(x,»—d,)2+z§+D2
X —d:\2 Z:\2
—pli+(F =4 (_,)
e (554) 4
1/xi—d:\> 1/z:\2
(L) )| o

Within this regime, the second-order coherence reads as

G (x) —xp) ~ 253{;&% + 715 + g7y

dy —d.
X |:1 + cos (%[}q —xz])]}.

D7)

Notice that the coordinates z; , make no effect in the second-
order coherence at the end since the observation points are on
the x axis. Notice that the last expression corresponds exactly
to Eq. (B11).

Finally, we proved the expressions for the first two
correlation functions for two thermal sources of different tem-
peratures in an astrophysical scenario.

APPENDIX E: CALCULATION OF THE SECOND-ORDER
COHERENCE FOR AN ASTROPHYSICAL
BINARY SYSTEM

This Appendix shows the calculation of the second-order
coherence for a binary system (a pair of AEOs), starting from
Eq. (6) and arriving to Egs. (7), (8), and (15). The scenario
consists in two spherical objects of radii R g and at different
temperatures T g (associated to mean photon numbers 74 g,
respectively). As we mentioned in the main text, a crucial
approximation is that the surfaces S, g are taken as disks of
radii Rp . Since D 3> |r; — 12| > |X; — X/, the curvature of
the objects with respect to the observers is negligible so the
integration can be taken over the flat cross section. Thus, the
surfaces Spp ~ nRi - Finally, we consider the separation
between the centers of each constituent as d.

In general, the second-order coherence for the binary sys-
tem results from summing the second-order coherences of all
the pair of points, given by Eq. (6):

1
2)
Voinay X1, X2) = ———— d51/ ds,
Binary (Sa + SB)? Js,us, SaUSS
x y P (x1, X2, 11, 12). (E1)

Considering that the second-order coherence for a pair of
points is given by Eq. (B12), we have that the second-order
coherence for the binary system reads as

2) _ ﬁiﬁj w(d; — d>) . .
Votary (X1 — X2) = (SA+SB)2 Z / ds, / dSz{l—i- G tn Y [cos< > (x1 Xz)) 1“ (E2)

,j=A,B

For the surface integrations we should consider that the binary system presents component A centered in the origin of the
x-z plane, while component B is centered around a point on the x axis located at a distance d. Then, for the integrations over

the points of the component A, we have |. Sa dS; =

over the points of the component B, we have |, S dS = /o

O

dr; fOZ” d@ r,, so d; = rjcosf;. On the other hand, for the integrations
R
“dr;

"do;rjand d; = d + r;cos 0;. In general, the positions can

be written as d; = §; pd + rj cos 6;. Using that cos(a — b) = cos(a) cos(b) + sm(a) sin(b) and the integrals

s wr cos 27 ¢DR ®R
dr dorcos| " (x) —x) | = g (= x) ), (E3)
0 0 cD w(x; —x2) \cD
R 2 . [wr cos6
dr dOrsin| ———(x; —xp) | =0, (E4)
0 0 cD

then, we have

a)(d1 — dg) wd
dS; | dSycos| ———(x1 —x2) | = | 8iadja + ;8B +cos | —(x1 —x2) | (8;a8;B + SiBS;A)
S; S_; cD cD

27TCDR,'

w(x] — x2)

Therefore, for a binary system we have

(2) 2
YBinary (X1 — X2) = v + 492

J Q)R,' 27TCDR]‘ J a)R E5
1<5(x1 —xz))m 1(5()51 —x2)> (ES)

8Ns

d
[y&(xl —x0) + Sy — x) + T ™ (Z’—D[xl -~ xz])y,ﬁ;(xl -~ m}, (E6)
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with each contribution given by

3 (1 —N)?
2 _ =
N R TSR T Vot E7
2 cD 2 wR; wR ;
ViJQ)(xl —x)= m[m] Ji (E[xl —x2]>J1 (C_Dj[x] —xz]), (E8)

where s = Sg/Sa = (Rg/Ra)* is the surface ratio and N = fig/iis the ratio between the mean photon numbers at each
temperature. Notice that the last equations correspond to Egs. (7), (8), and (15).

[1] R. H. Brown and R. Q. Twiss, 2. A test of a new type of stellar
interferometer on sirius, in A Source Book in Astronomy and As-
trophysics, 1900—1975 (Harvard University Press, Cambridge,
MA, 2013), pp. 8-12.

[2] R. J. Glauber, Coherent and incoherent states of the radiation
field, Phys. Rev. 131, 2766 (1963).

[3] E. C. G. Sudarshan, Equivalence of Semiclassical and Quantum
Mechanical Descriptions of Statistical Light Beams, Phys. Rev.
Lett. 10, 277 (1963).

[4] R. Loudon, The Quantum Theory of Light (Oxford University
Press, Oxford, 2000).

[5] P. Grangier, G. Roger, A. Aspect, A. Heidmann, and S.
Reynaud, Observation of Photon Antibunching in Phase-
Matched Multiatom Resonance Fluorescence, Phys. Rev. Lett.
57, 687 (1986).

[6] S. Sattler and H. J. Hartfuss, Intensity interferometry for mea-
surement of electron temperature fluctuations in fusion plasmas,
Plasma Phys. Controlled Fusion 35, 1285 (1993).

[7] G. Baym, The physics of hanbury brown-twiss intensity inter-
ferometry: from stars to nuclear collisions, Acta Phys. Polon. B
29, 1839 (1998).

[8] M. Giovannini, Hanbury brown—twiss interferometry and
second-order correlations of inflaton quanta, Phys. Rev. D 83,
023515 (2011).

[9] L. P. Csernai, E. S. Hatlen, and S. Zschocke, Differential hbt
method for binary stars, arXiv:1505.07342.

[10] J. D. Cohen, S. M. Meenehan, G. S. Maccabe, S. Groblacher,
A. H. Safavi-Naeini, F. Marsili, M. D. Shaw, and O. Painter,
Phonon counting and intensity interferometry of a nanomechan-
ical resonator, Nature (London) 520, 522 (2015).

[11] S. Kanno and J. Soda, Detecting nonclassical primordial gravi-
tational waves with hanbury-brown-twiss interferometry, Phys.
Rev. D 99, 084010 (2019).

[12] K. N. Rai, S. Basak, and P. Saha, Radius measurement in binary
stars: Simulations of intensity interferometry, Mon. Not. R.
Astron. Soc. 507, 2813 (2021).

[13] M. Bojer, Z. Huang, S. Karl, S. Richter, P. Kok, and J. von
Zanthier, A quantitative comparison of amplitude versus in-
tensity interferometry for astronomy, New J. Phys. 24, 043026
(2022).

[14] T. Mehringer, S. Mihrlein, J. von Zanthier, and G. S. Agarwal,
Photon statistics as an interference phenomenon, Opt. Lett. 43,
2304 (2018).

[15] C. Thiel, T. Bastin, J. von Zanthier, and G. S. Agarwal, Sub-
rayleigh quantum imaging using single-photon sources, Phys.
Rev. A 80, 013820 (2009).

[16] J.-M. Cui, F-W. Sun, X.-D. Chen, Z.-J. Gong, and G.-C.
Guo, Quantum Statistical Imaging of Particles without Restric-
tion of the Diffraction Limit, Phys. Rev. Lett. 110, 153901
(2013).

[17] Y. Israel, R. Tenne, D. Oron, and Y. Silberberg, Quantum
correlation enhanced super-resolution localization microscopy
enabled by a fibre bundle camera, Nat. Commun. 8, 14786
(2017).

[18] A. Classen, J. von Zanthier, M. O. Scully, and G. S. Agarwal,
Superresolution via structured illumination quantum correlation
microscopy, Optica 4, 580 (2017).

[19] R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-
Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, Super-
resolution enhancement by quantum image scanning mi-
croscopy, Nat. Photonics 13, 116 (2019).

[20] A. Forbes and V. Rodriguez-Fajardo, Super-resolution with
quantum light, Nat. Photonics 13, 76 (2019).

[21] A. Classen, F. Waldmann, S. Giebel, R. Schneider, D. Bhatti,
T. Mehringer, and J. von Zanthier, Superresolving Imaging of
Arbitrary One-Dimensional Arrays of Thermal Light Sources
Using Multiphoton Interference, Phys. Rev. Lett. 117, 253601
(2016).

[22] D. Gottesman, T. Jennewein, and S. Croke, Longer-Baseline
Telescopes Using Quantum Repeaters, Phys. Rev. Lett. 109,
070503 (2012).

[23] M. Tsang, R. Nair, and X.-M. Lu, Quantum Theory of Super-
resolution for Two Incoherent Optical Point Sources, Phys. Rev.
X 6,031033 (2016).

[24] F. Bao, H. Choi, V. Aggarwal, and Z. Jacob, Quantum-
accelerated imaging of n stars, Opt. Lett. 46, 3045
(2021).

[25] C. Gerry, P. Knight, and P. Knight, [Introductory
Quantum Optics (Cambridge University Press, Cambridge,
2005).

[26] R. H. Brown, The Intensity Interferometer: Its Application to
Astronomy (Taylor and Francis, London, 1974).

[27] D. Dravins, T. Lagadec, and P. D. Nuiiez, Long-baseline op-
tical intensity interferometry - laboratory demonstration of
diffraction-limited imaging, Astronomy & Astrophysics 580,
A99 (2015).

[28] P. W. Milonni, The Quantum Vacuum: An Introduction to Quan-
tum Electrodynamics (Academic, New York, 2013).

[29] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
University Press, Cambridge, 1999).

[30] L. Mandel and E. Wolf, Coherence properties of optical fields,
Rev. Mod. Phys. 37, 231 (1965).

013057-17


https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1103/PhysRevLett.10.277
https://doi.org/10.1103/PhysRevLett.57.687
https://doi.org/10.1088/0741-3335/35/9/016
https://doi.org/10.1103/PhysRevD.83.023515
http://arxiv.org/abs/arXiv:1505.07342
https://doi.org/10.1038/nature14349
https://doi.org/10.1103/PhysRevD.99.084010
https://doi.org/10.1093/mnras/stab2391
https://doi.org/10.1088/1367-2630/ac5f30
https://doi.org/10.1364/OL.43.002304
https://doi.org/10.1103/PhysRevA.80.013820
https://doi.org/10.1103/PhysRevLett.110.153901
https://doi.org/10.1038/ncomms14786
https://doi.org/10.1364/OPTICA.4.000580
https://doi.org/10.1038/s41566-018-0324-z
https://doi.org/10.1038/s41566-018-0344-8
https://doi.org/10.1103/PhysRevLett.117.253601
https://doi.org/10.1103/PhysRevLett.109.070503
https://doi.org/10.1103/PhysRevX.6.031033
https://doi.org/10.1364/OL.430404
https://doi.org/10.1051/0004-6361/201526334
https://doi.org/10.1103/RevModPhys.37.231

