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Cavity sub- and superradiance for transversely driven atomic ensembles
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Large atomic ensembles coupled to a single optical resonator mode can be steered to strongly enhanced
or suppressed collective emission via phase controlled excitation. Employing the Tavis-Cummings model we
find so far unreported phenomena. Using a second order cumulant expansion we predict that a homogeneously
excited ensemble equally distributed between odd and even sites along the cavity mode is extremely subradiant
as long as the average excitation remains below 50%, but shows pulsed emission for inversion. The combination
of these two properties enables the implementation of an efficient cavity-enhanced Ramsey probing featuring
a fast readout and minimal heating with particular advantages for atomic clock transitions. For continuous
illumination the nonlinear atom-field interaction induces regular superradiant self-pulsing. Additionally, we
observe an increased pulse delay time in comparison to an excitation through the cavity.
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I. INTRODUCTION

The phenomena of super- and subradiance originating
from constructive or destructive interference of the field ra-
diated by an ensemble of dipoles has been studied for many
decades [1–10]. The decisive quantity is the collective dipole
moment of the emitters with respect to the system’s electro-
magnetic radiation modes which, apart from the ensemble’s
quantum state determining the internal phase relations, is
strongly tied to their spatial distribution. For superradiance,
phase coherence in one given emission mode is sufficient, yet,
subradiance only appears when virtually all of the emission
channels are blocked by destructive interference. While there
are classical analogs of super- and subradiance, in quantum
emitters the radiation is triggered by local vacuum fluctuations
of the electromagnetic field, which are determined by the
system’s geometry [11–13]. These are isotropic and homoge-
neous in free space, but can be modified by, e.g., placing them
in the evanescent field of a waveguide [9,14,15], inside a hol-
low core photonic crystal fiber [16], engineering interactions
for superconducting qubits [17], or as in our case putting them
inside a (linear) resonator, which yields more precise control
over their interference.

Pulsed superradiant output has been demonstrated for
large atomic ensembles in optical cavities [8,18–20]. Super-
radiant lasing [21–23] is one of the prime applications of
cavity superradiance and even self-organization [24] can in-
corporate superradiant behavior. In contrast, subradiance is
a lot harder to access experimentally [25] and treat theoreti-
cally [10,26,27].
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In order to induce cavity mediated superradiant light emis-
sion from an atomic ensemble, it is favorable to excite the
atoms through the cavity instead of from the side, since in
this case all atoms obtain the same relative phase with respect
to the cavity mode to constructively emit photons into the
cavity [8,28]. This raises the question about the behavior of
an ensemble with arbitrary or vanishing relative phases, as
it is, e.g., naturally the case for a transversely driven large
atomic ensemble, homogeneously distributed along the cavity
axis covering odd and even sites of the cavity mode. On the
one hand, one could intuitively think that an ensemble with
vanishing relative phase features a subradiant behavior, since
the light emitted into the cavity interferes destructively [24].
But, on the other hand, there is no phase information
stored in a fully excited ensemble, hence, the dynamics of
atoms inverted through the cavity or from the side must be

FIG. 1. Cavity Sub- and Superradiance Model. We consider a
homogeneous, dilute ensemble of narrow line two-level atoms at
random but fixed positions in a standing wave optical resonator
coherently driven by a transverse plane wave laser. We assume
a weak single atom but strong collective coupling regime, i.e.,
κ,

∑
j g2

j/κ � � � g2
j/κ . The cavity Ramsey fringes and the pho-

ton number self-pulsing are indicated as cavity output signals for the
respective drive laser operations.
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identical in this case, i.e., the emission of a superradiant
pulse [8,17–20].

In this paper we show that there is a transition between
cavity super- and subradiance for an atomic ensemble with
vanishing relative phase. In particular, an inverted ensemble
emits a superradiant pulse, whereas a noninverted ensemble
features a subradiant behavior. This can be crucial for the un-
derstanding and design of cavity QED experiments. Utilizing
this transition from cavity sub- to superradiance enables the
implementation of a cavity-enhanced Ramsey spectroscopy.
The central idea is that the noninverted ensemble is decoupled
from the cavity during the free evolution phase [29,30], but the
final readout of the inverted atoms is still performed via the su-
perradiant manifold. This scheme allows for a fast and precise
readout, without destroying the measured ensemble. Beyond
that, we find a yet unreported self-pulsing of the cavity output
field upon continuously driving the ensemble, which can be
explained by the system dynamics cyclically transitioning
from cavity subradiance to superradiance. Lastly, our setup
can be employed to more accessibly measure delay time
statistics, when pumping the ensemble transversally instead of
through the cavity as the cavity subradiance in this case will
slow down the system’s dynamics, making the output easier
to detect.

II. MODEL

We consider N two-level atoms with a narrow transition
at frequency ωa coupled to a single mode cavity. The atoms
are coherently driven with a detuning between the laser and
the atomic transition of δa = ωl − ωa, the corresponding Rabi
frequency is denoted by �. The cavity is detuned by δc =
ωl − ωc from the laser and we have an atom-cavity coupling
of g j for the j-th atom. The system is depicted in Fig. 1. Its
Hamiltonian in the rotating frame of the pump laser reads

H = − δca†a +
N∑

j=1

[
− δaσ

22
j

+ g j
(
a†σ 12

j + aσ 21
j

) + �

2

(
σ 21

j + σ 12
j

)]
, (1)

with the cavity photon creation (annihilation) operator a† (a)
and the atomic transition operator σ kl

j = |k〉 j 〈l| j for the j-th
atom. The coherent interaction is accompanied by dissipative
processes accounted for by the Liouvillian L[ρ] in the master
equation

ρ̇ = i[ρ, H] + L[ρ]. (2)

In the Born-Markov approximation [31] we can write the
Liouvillian in Lindblad form as

L[ρ] =
∑

i

Ri(2JiρJ†
i − J†

i Jiρ − ρJ†
i Ji ), (3)

with the jump operators {Ji} and their corresponding rates {Ri}
shown in Table I, including cavity photon losses as well as
individual decay and dephasing of the atoms.

As we are targeting narrow clock transitions the system is
operated in the bad and large volume cavity regime κ � �

with only a small single atom cooperativity Cj = g2
j/(κ�) �

TABLE I. Dissipative Processes. The system features a damped
cavity mode as well as atomic decay and dephasing.

i Ji Ri Description

1 a κ cavity photon losses

2 σ 12
j � decay from |2〉 j to |1〉 j

3 σ 22
j ν dephasing of the j-th atom

1 but a sufficiently large ensemble to enter the strong
collective coupling regime NC = ∑

j Cj � 1. Typically, this
parameter regime implies a very large atom number, which
does not allow for a full quantum simulation, but we can very
well treat this problem in a second order cumulant expan-
sion [32,33]. A comparison with a full quantum simulation
for a small atomic ensemble is shown in Appendix C. Ad-
ditionally, we neglect dipole-dipole interaction [4], as our
atomic ensemble is sufficiently dilute. This also means that the
individual free space decay rate of the atoms is not affected.

Throughout the paper we calculate the dynamics in a
second order cumulant expansion [33,34]. Nevertheless, the
mean-field equations already contain the key physics and
therefore we present these much simpler equations for a qual-
itative description of the system:

d

dt
〈a〉 = −

(
iδc + κ

2

)
〈a〉 − i

N∑
j=1

g j
〈
σ 12

j

〉
, (4a)

d

dt

〈
σ 22

j

〉 = −�
〈
σ 22

j

〉 + i
�

2

[〈
σ 12

j

〉 − 〈
σ 21

j

〉]
+ ig j

[〈a†〉〈σ 12
j

〉 − 〈a〉〈σ 21
j

〉]
, (4b)

d

dt

〈
σ 12

j

〉 =
(

iδa − � + ν

2

)〈
σ 12

j

〉

+ i

(
�

2
+ g j〈a〉

)[
2
〈
σ 22

j

〉 − 1
]
. (4c)

III. COLLECTIVE CAVITY MEDIATED SUPER- AND
SUBRADIANCE

In the following, for simplicity, we assume the atoms lo-
cated close to cavity mode antinodes with half of the atoms
at the maxima and half at the minima of the mode function
along the cavity axis. Hence their respective effective coupling
is well approximated by +g and −g. As confirmed by more
involved simulations, investigating a random distribution for
the atom-field coupling, this simplification already captures
the essential physics.

Inverting all atoms with a short π -pulse induces the emis-
sion of a delayed intense light pulse due to cavity-enhanced
superradiant decay [8,17–20]. Synchronized stimulated emis-
sion in a cavity occurs even for a dilute ensemble, which
does not exhibit free space superradiance. Figure 2(a) shows
typical trajectories for the corresponding time evolution of the
intracavity photon number 〈a†a〉. When all atoms are initially
coherently prepared at 〈σ 22〉 = 80% (black line), a superradi-
ant pulse emerges. Figure 2(b) depicts the corresponding time
evolution of the excited state population, showing the cavity
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FIG. 2. Cavity Mediated Collective Decay. Time evolution of
the intracavity photon number (a) and the single atom excited state
population (b) after a short pulse excitation preparing each atom
in the same coherent superposition. The black line represents an
inverted ensemble with 〈σ 22〉 = 80% excited state fraction (≈3π/4-
pulse) and the orange line depicts an ensemble after a π/2-pulse to
create 〈σ 22〉 = 50%. For uniform cavity coupling (dashed line) we
see an immediate superradiant population decay to the ground state
creating a photon pulse in the cavity. Cavity coupling with alternating
signs (solid line) leads to a weaker and time delayed pulse for an
inverted ensemble, while the atomic excitation is almost perfectly
protected from cavity decay without inversion [solid line in (b)].
We have assumed N = 2 · 105 atoms with g = 10�, κ = 104�, and
δa = δc = ν = 0.

mediated decay of the atoms. For comparison we display the
behavior for all atoms equally coupled to the cavity (dashed
line, g j = g), similar to the case of excitation through the
cavity [8,28], showing a much faster and stronger pulse.

However, for the system we consider with alternating cou-
pling (g j = (−1) jg), the dynamics depend drastically on the
population of the atoms. Interestingly, we observe such pulsed
emission for an ensemble of inverted atoms only. If the excited
state population is below 50% the atoms do not emit a signifi-
cant amount of photons into the cavity mode, see solid orange
line in Fig. 2. Figure 3(a) shows the total number of emitted
photons 〈a†a〉out for different values of the initial excited state
population. Almost no photons leak through the cavity mirrors
until the atoms are inverted. Again, the dashed line represents
the case of all atoms coupling equally (g j = g), resembling
a pulsed excitation of the atoms through the cavity. We see
that also noninverted atoms superradiantly emit photons into
the cavity mode without retaining excitation. Additionally, we
plot the peak intracavity photon number (blue) demonstrating
the same behavior.

Figure 3(b) shows the average delay time of the peak
photon number as a function of the atomic excitation. For
uniformly coupled atoms (dashed line) a higher excitation
leads to a later pulse. Whereas for alternating coupling (solid
line) the delay time of the peak increases for lower inversion
and is larger in general. For a perfect π -pulse excitation both
cases lead to identical superradiant pulses in terms of delay
time as well as photon number, since for fully inverted atoms
the phase of the coupling does not matter. However, for only
slightly imperfect π -pulses one already obtains much longer
delay times for a transversely excited ensemble, than for
an excitation through the cavity. Several experimental setups
should allow for observing this result [8,18–20,28].

FIG. 3. Cavity Sub- and Superradiance. (a) Comparison of the
cavity-output photon number 〈a†a〉out = κ

∫ 〈a†a〉dt (black) and peak
intracavity photon number (blue) as a function of the single atom ex-
citation probability for alternating coupling (solid line) and uniform
coupling (dashed line). Note the strong suppression of superradiant
emission in the alternating coupling case as long as no inversion
is created initially. (b) Delay time of the peak photon number. For
alternating coupling the pulse appears later in general and is more
delayed for decreasing inversion, whereas for equally coupled atoms
the pulse delay time increases with growing excited state population.
The circles indicate the parameters chosen for Fig. 2(a).

The origin of this subradiant suppression for a noninverted
ensemble is the destructive interference [5–7,29] of photons
emitted by the atoms coupled to the cavity with opposite
g, in contrast to the widely studied synchronized superra-
diant emission due to constructive interference for a large
inverted ensemble [8,18–20,28]. Analyzing the mean-field
Eqs. (4a) to (4c) explains the transition between cavity sub-
and superradiance qualitatively. First, from Eq. (4a) we notice
the significance of the alternating coupling: the cumulative
dipole moment of the atoms projected on the cavity mode∑

j g j〈σ 12
j 〉 vanishes [29,30] and hence the gain in the cavity

field disappears. For simplicity we have chosen the same laser
excitation phase for all atoms. Yet a varying excitation phase
works equally well as long as the overall relative phase disap-
pears. Typically, this is implicitly realized in a random spatial
distribution of a sufficiently large and dilute ensemble. It is
also true for a ring cavity featuring a continuous atom-cavity
coupling phase along the cavity axis [24] or for atoms coupled
to waveguides or inside hollow core fibers with appropriate
spacing [9,14–16]. Furthermore, we see why an excitation
through the cavity is effectively the same as all atoms equally
coupled and excited from the side: with a drive through the
cavity the phase of the coherence 〈σ 12

j 〉 is determined by
the phase of the coupling g j , therefore the individual parts
of the sum in Eq. (4a) all carry the same phase and do not
compensate.

By these arguments only there seems to be no difference in
the behavior of inverted and noninverted atoms, since the sum
in Eq. (4a) does not depend on the excited state population.
Therefore we calculate the second time derivative of the cavity
field to obtain a qualitative description. By inserting Eq. (4c)
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with 〈σ z
j 〉 = 2〈σ 22

j 〉 − 1 we find

d2

dt2
〈a〉 =

∑
j

g2
j

〈
σ z

j

〉〈a〉 + [...]︸︷︷︸
decay

. (5)

For a clear view we set δa = δc = 0 and hint at the dissi-
pative processes only. For short times, i.e., 〈σ z

j 〉 is constant, a
nonzero initial field 〈a〉t=0 �= 0 leads to the following possible
solutions of Eq. (5): for inverted atoms (〈σ z

j 〉 > 0) the field in-
creases rapidly as a cosh function, which leads to the build up
of the photon pulse, whereas for noninverted atoms (〈σ z

j 〉 < 0)
the field oscillates between zero and the initial value and is
strongly damped due to the large cavity decay rate. Having to
require a nonzero initial field is an artifact of the mean-field
treatment in order to obtain a nontrivial solution and becomes
unnecessary for higher order descriptions.

A. Dicke States Representation

In the mean field approximation the total number of output
photons for a noninverted atomic ensemble with vanishing
cumulative dipole moment is exactly zero. However, a closer
investigation in second order cumulant expansion shows that
there actually is a small amount of photons released into
the cavity. Another interesting aspect of the system is that
an initial inversion with 〈σ 22〉 < 1 leads to N · (2〈σ 22〉 − 1)
photons only, as shown in Fig 3(a). Consequently, the atoms
retain an excited state population of 1 − 〈σ 22〉 after the pulsed
photon emission into the cavity, indicated by the solid line
in Fig. 2(b). To explain these two features we use the Dicke
states [1] of the atomic ensemble, which provide an intuitive
picture for our considered system.

An ensemble of N identical two-level atoms can be ex-
pressed in the basis of Dicke states |J, M〉, with

Jz |J, M〉 = 1

2

∑
j

σ z
j |J, M〉 = M |J, M〉 , (6a)

�J2 |J, M〉 = 3N

4
+ 1

4

∑
j �=k

[
σ 21

j σ 12
k + σ z

j σ
z
k

] |J, M〉

= J (J + 1) |J, M〉 , (6b)

where |M| � J and 0 � J � N/2 [1,26,35,36]. In this de-
scription collective decay has a particularly simple behavior,
the J quantum number is unchanged, while M is reduced. In
the triangle shaped Dicke state diagram in Fig. 4 this corre-
sponds to a vertical line of decreasing M [26,35,36], where
the change in M directly reflects the number of lost excitations
(photons).

The collective emission in our system is induced by the
cavity, with the crucial feature of alternating coupling. In the
representation where the cavity mediated decay is described
by a vertical line, this leads to a different distribution of the J
quantum number due to the different relative phases between
the atoms and the cavity field, see Appendix B. Figure 4
compares the mapping of N = 40 identically coupled atoms,
where states of maximal J are occupied exclusively, to the
case of alternating cavity coupling, where states close to the
boundary of minimal J are populated predominantly. Note
that one finds very similar distributions for an incoherently

FIG. 4. Dicke States. Population of the Dicke states for N = 40
atoms after an initial π/2-pulse in (a) and 3π/4-pulse in (b). The
states occupying the maximal J values correspond to the equally
coupled case (gj = g), whereas the states close to the boundary of
minimal J represent the alternating coupling case (gj = (−1) jg). The
arrow indicates the mapping between the two cases.

pumped ensemble [26,36]. In this representation we can ex-
plain the two features mentioned above in a straight-forward
way by recalling that the collective decay decreases M to its
minimally possible value M = −J only, without changing J
and releasing |J + M| photons. Under collective decay a state
|J, M = +J〉 will thus go to |J, M = −J〉, explaining the re-
maining excited state population of 1 − 〈σ 22〉 after the pulse.
Furthermore, we obtain the total number of released photons
by summing up the emitted excitations of each state weighted
by the corresponding population. This explains the small
losses after a coherent π/2-pulse preparation, see Fig. 4(a).
Note that the coherent excitation leads to a binomial distri-
bution in M, regardless of the cavity coupling. Therefore, the
width of the distribution per atom becomes narrower as 1/

√
N

for an increasing number of atoms. Combined with the feature
that the alternating coupling effectively occupies states close
to the boundary of minimal J yields a shrinking percentage
of lost excitations for a noninverted ensemble for large atom
numbers.

B. Atom Number Dependence

So far we have specified the cavity sub- and superradiance
qualitatively only. A common way of defining sub- and su-
perradiance quantitatively is the scaling of the emitted light
with the atom number [1,3,26]. In our case there are two
possibilities to do this: the usual approach is to look at the
emitted peak photon number. In Fig. 5(a) and Fig. 5(b) we
see that for an inverted ensemble we obtain a large peak pho-
ton number proportional to the atom number squared (black
dashed line), and for a noninverted ensemble the peak is orders
of magnitude smaller and increases less than linearly with
the atom number. At the threshold 〈σ 22〉t=0 = 50% it scales
linearly with the number of atoms [Fig. 5(b) grey dashed
line]. The other way of quantifying sub- and superradiance
is the total number of emitted photons through the cavity. In
Fig. 5(c) the output photon number scales linearly with the
atom number in the superradiant domain and is independent
of N in the subradiant regime. Therefore, the number of lost
photons per atom reduces for increasing particle numbers in a
noninverted ensemble.
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FIG. 5. Atom Number Scaling. Scan of the atom number N and initial excitation 〈σ 22〉t=0 for (a) the peak photon number and (c) the
output photon number, to quantify and define the cavity sub- and superradiance regions. (b) Shows the peak photon number for three different
examples of initial excited state population. The photon number is normalized to the one at N = 104 for the respective value of 〈σ 22〉t=0 to
compare the different scalings.

IV. CAVITY-ENHANCED RAMSEY PROBING

The suppression and delay of superradiance for a trans-
verse excitation can be advantageous for storing excitations
in an atomic ensemble, however, it might also be undesired
if one is interested in fast emission of light. Thus, we can
either use it to our advantage or try to avoid it, depending
on the intended behavior of the system. For example, it can
be convenient to store up to N/2 excitations in N two-level
atoms in some type of quantum battery [37–39], however,
releasing this energy on demand becomes more involved for a
transverse excitation. On the other hand, if we strive for fast
superradiant emission, as in superradiant lasing [18,19,23,40],
a coherent drive along the cavity axis should be preferred due
to faster and stronger light emission. In any case, whether
suppression of superradiance is desirable or not, it is crucial
for the understanding, description, and design of state of the
art experiments [8,18–20,28,41].

A particular application we would like to highlight in this
section is a cavity-enhanced Ramsey scheme, inspired by
Ref. [29], where this idea was first presented for free space
atoms. A transverse pump with an overall vanishing phase
of the atom-cavity coupling allows for a π/2-pulse excitation
of the atomic ensemble without an immediate rapid superra-
diant decay through the cavity. Combining this feature with
fast direct measurements of the number of excited atoms via
the superradiantly emitted cavity photons after the second
Ramsey pulse allows for an implementation of a new cavity-
assisted Ramsey spectroscopy. The crucial advantage of this
scheme is that it can be very fast with no additional manipu-
lation of the atoms needed for the read out, hence the signal is
less perturbed. Furthermore, the atoms are not significantly
heated by this measurement and can therefore be reused,
remarkably reducing the dead time between measurements.
Another advantage to other nondestructive measurements for
atomic clocks [42–44] is that the signal, i.e., the number of
photons, scales linearly with the number of atoms. So, in prin-
ciple, an arbitrarily large number of atoms can be employed,
drastically increasing the signal to noise ratio.

Figure 6(a) shows the output signal, the total number of
photons leaking through the cavity mirrors as a function of the
laser-atom detuning δa. Similar to the conventional Ramsey

method, fringes appear [45–47]. One striking difference, how-
ever, is that a noninverted ensemble does not produce a signal,
corresponding to the flat zero-photon regions. This narrows
the FWHM of the cavity Ramsey fringes slightly compared to
the conventional Ramsey fringes [see Fig. 6(b)]. Including an
atomic dephasing with ν = 10� (dashed line) merely weakens
the signal, yet, the shape of the curve is essentially the same.
By choosing δc = δa we have implicitly assumed that the
cavity is perfectly on resonance with the atomic transition.
Therefore, one might wonder if a detuned cavity impairs the
signal. But, since we operate deeply in the bad cavity regime,
only shifts of the cavity resonance frequency on the order of
κ are important.

Overall, i.e. that enhancing the Ramsey spectroscopy by
adding a cavity achieves the same (or even slightly improved)
accuracy, but has the advantage of a convenient, fast, nonde-
structive measurement scaling linearly in the atom number,
which can substantially reduce the measurement dead time.
At this point we want to mention that the atoms initially need
to be in the ground state for each subsequent measurement. As
we saw in Fig. 2(b), a not fully inverted ensemble will retain

FIG. 6. Cavity Ramsey Method. (a) Fringes in the photon num-
ber obtained via the cavity Ramsey method with characteristic flat
zero-photon regions. (b) Zoom-in on the central fringe. The FWHM
(π/T ) of an optimal independent atom Ramsey sequence with wait-
ing time T and the cavity Ramsey fringe (∼2π/3T ) are highlighted.
The parameters are N = 2 · 105, g = 10�, κ = 104�, δc = δa, � =
1000�, and ν = 0 (solid) or ν = 10� (dashed). The free evolution
time between the two π/2-pulses is T = π/100�. An example cav-
ity Ramsey time evolution is shown in Appendix A.
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FIG. 7. Self-Pulsing. Time evolution of the cavity photon number (a) and excited state population (b) for a continuous drive, resulting
in photon number self-pulsing. (c) and (d) Scans over �, NC, and δa for the peak photon number of the first pulse [red circle in (a)]. The
dashed white lines represent the threshold 2NC� > � > |δa|, (� + ν )/2. The parameters when kept constant are N = 2 · 105, g = 10�, κ =
104�, δc = δa = 0, � = 100�, and ν = 10.

some population in the excited state. This means one needs to
bring these atoms back to the ground state. Unfortunately, this
is not possible in a straight-forward way via a coherent drive
on the clock transition only. However, there are other ways to
achieve this, e.g. with an induced decay via another transition
or by depleting the ground state population temporarily to
some other level.

Obviously, this cavity-assisted Ramsey procedure will not
work for π/2-pulse excitations through the cavity mirrors as
all atoms would exhibit the same relative atom-cavity phase
and will therefore already decay superradiantly after the first
π/2-pulse [8,28], corresponding to the case of equal coupling
(g j = g) in Fig. 2 and Fig. 4.

V. SELF-PULSING UNDER CONTINUOUS ILLUMINATION

Continuously driving the ensemble with a suitable Rabi
frequency leads to striking self-pulsing of the system as shown
in Fig. 7(a). Yet, the explanation for this initially surprising
behavior is rather simple: as we have seen, the photon emis-
sion into the cavity for a noninverted atomic ensemble with
vanishing relative phase is strongly suppressed. Therefore,
there is no significant cavity photon number at least until
t = π/2� [see Fig. 7(b)]. But, as soon as a certain population
inversion is achieved the ensemble emits a superradiant pulse
into the cavity. Subsequently, the excited state population is
depleted below 50% and the photon number quickly reduces
to almost zero due to the very fast cavity decay. Since the laser
is still on, the procedure starts over and we obtain another
pulse, i.e., the system dynamically cycles from cavity sub- to
superradiance. As we can see in Fig. 7(a) the peak photon
number reduces from pulse to pulse. This can be explained in
the Dicke state picture, where the not fully inverted ensemble
retains some excitation after the collective emission and hence
starts over from this instead of the ground state, which leads
to less inversion for the next pulse.

Additionally, the time evolution for equally coupled atoms
(dashed blue line, g j = g) is plotted in Figs. 7(a) and 7(b).
In this case the self-pulsing does not occur and the cavity
photon number reaches a steady state at 〈a†a〉 = �2/4g2 very
quickly. The steady-state value for the excited state population
(〈σ 22〉 ≈ 1.7 · 10−3) is reached much later. Note that the sys-
tem with vanishing relative phase also reaches a steady state

with, surprisingly, the same photon number 〈a†a〉 = �2/4g2

but at a much higher excited state population (〈σ 22〉 ≈ 0.25).
As we need an excited state population of at least 50%

to observe the photon peaks, and the atoms perform Rabi
oscillations to reach this, there should be a lower bound for
the Rabi frequency �, depending on the laser-atom detuning
δa, the atomic decay rate �, and the dephasing rate ν. This is
exactly what we see in Fig. 7(c) and Fig. 7(d). The condition
� > |δa|, (� + ν)/2 needs to be satisfied in order for the
peak intracavity photon number of the first pulse to appear.
Furthermore, the collective photon emission from the atoms
into the cavity is determined by the frequency NC�. Thus, for
the superradiant photon pulse to dominate over the coherent
drive, we need to ensure that NC� > �/2. This threshold is
also shown in Fig. 7(c) and Fig. 7(d).

VI. CONCLUSIONS

We have demonstrated and quantified the suppression of
cavity superradiance of a noninverted atomic ensemble with
an overall vanishing collective cavity coupling. With the
representation of the collective atomic states in the Dicke
basis we have introduced an intuitive picture for the system,
which explains the number of emitted photons and the re-
tained population after the superradiant emission. Compared
to a longitudinal pump through the cavity, the transverse
drive leads to an increased pulse delay time, which makes
its measurement experimentally much more accessible. We
have proposed a particular use case for the transition from
cavity sub- to superradiance in the form of a cavity-enhanced
Ramsey spectroscopy, which simplifies and accelerates the
measurement procedure. We found that the chosen operating
conditions with weak single atom coupling but strong collec-
tive coupling also induce an intriguing self-pulsing instability
for continuous drive at suitable Rabi frequencies. Interest-
ingly, the necessary operating conditions are within reach of
current experimental setups [18,19,28].

Some preliminary investigations of the influence of im-
perfections in the setup as variable coupling strengths, slow
atomic motion, or fluctuations in the excitation procedure
qualitatively yield very similar results for experimentally re-
alistic assumptions. However, a more detailed study of these
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FIG. 8. Full Quantum Model. The second order cumulant expansion (solid line) is compared with a full quantum model (dashed line) for
the cavity subradiance in (a)-(c), the cavity Ramsey method in (d) and the self-pulsing in (e) and (f). In all plots we used κ = 200, � = ν = 0
and δc = δa. For (a)-(c) the remaining parameters are N = 20, g = 10 and δa = 0, for (d) N = 20, g = 10, � = 100 and T = π/10 and for
(e)-(f) N = 2 · 50, g = 4, δa = 0 and � = 4.

and other aspects such as heating and loss is required for a
quantitative prediction of the practical system performance.
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APPENDIX A: COMPARISON WITH FULL
QUANTUM MODEL

To ensure the validity of our second-order cumulant expan-
sion we compare the results with a full quantum model. Of
course this is only possible for a relatively small number of
atoms. To push the number of atoms as far as possible we use
the Monte Carlo wave-function method [48–50], and describe
the atoms in the Dicke basis which means that only collec-
tive atomic effects are captured. Thus, we neglect individual
atomic decay and dephasing. Figure 8 shows the comparison
between the second order cumulant expansion and the full
quantum model for the cavity subradiance [Fig. 8(a)–8(c)],
cavity Ramsey method [Fig. 8(d)] and self-pulsing [Fig 8(e)–
8(f)]. Overall, we find a good qualitative agreement. A perfect
quantitative correspondence is not to be expected for such
small atom numbers. Note that the emitted photons we obtain
in the time evolution of the full quantum treatment in Fig. 8(c)
coincide with the ones calculated from the population distri-
bution of the Dicke states as described in Sec. III A.

FIG. 9. Cavity Ramsey Sequence Time Evolution. For opposite
phase coupling of two subensembles (black lines) the atomic pop-
ulation (middle graph) shows almost no decay between the two
Ramsey π/2-pulses depicted in the lowest graph. A pulsed photon
signal (upper graph) is obtained after the second pulse only. The
maximum photon number appears in the resonant (δa = 0, solid)
case and becomes smaller for the detuned case (δa = 50�, dashed).
In contrast, for all atoms identically coupled (orange lines) cavity-
induced superradiant decay creates an almost identical photon signal
after each pulse virtually transferring all atoms to the ground state
independent of their detuning. The parameters are chosen as in Fig. 6
except for the free evolution time between the two π/2-pulses, which
we set to T = π/200�. The solid lines show δc = δa = 0� and the
dashed lines depict δc = δa = 50�.
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APPENDIX B: DICKE STATE MAPPING

If we represent the collective state of identical two-level
atoms in the Dicke state basis, the cavity-induced collec-
tive decay is only described by a vertical line, i.e., merely
reducing M without changing J , if all atoms couple iden-
tically to the cavity. This is obviously not the case for our
system. However, we can transform our system into a refer-
ence frame where the atoms have an alternating phase. This
leads to an effective system with equal cavity coupling for
all atoms, but a relative phase between atoms. This means
for the preparation of the atoms with the coherent drive, that
the phase of the Rabi frequency � is alternating, instead of
the cavity coupling. To numerically calculate the correct state
occupation for N atoms, as depicted in Fig. 4, we prepare

two spin-N/4 particles with coherent drives of opposite phase,
and combine these two spins by, e.g., using Clebsch-Gordan
coefficients.

APPENDIX C: CAVITY RAMSEY TIME EVOLUTION

Figure 9 shows a typical time evolution of the cavity Ram-
sey method for two different detunings δa = 0 and δa = 50�.
The measured signal corresponds to the area below the curve
of the photon number 〈a†a〉 times κ . Additionally, we plot
the same quantities for the case of equally coupled atoms
(g j = g). We observe that a detuning of δa = 50� does not
significantly change the time evolution and therefore also the
signal (the solid and dashed orange lines overlap).
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