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Improved calculations of mean ionization states with an average-atom model
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The mean ionization state (MIS) is a critical property in dense plasma and warm dense matter research, for
example, as an input to hydrodynamics simulations and Monte Carlo simulations. Unfortunately, however, the
best way to compute the MIS remains an open question. Average-atom (AA) models are widely used in this
context due to their computational efficiency, but as we show here, the canonical approach for calculating the MIS
in AA models is typically insufficient. We therefore explore three alternative approaches to compute the MIS.
First, we modify the canonical approach to change the way electrons are partitioned into bound and free states;
second, we develop a novel approach using the electron localization function; finally, we extend a method, which
uses the Kubo-Greenwood conductivity to our average-atom model. Through comparisons with higher-fidelity
simulations and experimental data, we find that any of the three new methods usually outperforms the canonical
approach, with the electron localization function and Kubo-Greenwood methods showing particular promise.
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I. INTRODUCTION

Warm dense matter (WDM) is a phase of matter character-
ized by temperatures on the order of 1–100 eV and densities of
10−2–104 g cm−3 [1,2]. Under these conditions, conventional
divisions between solid-state and plasma physics are bridged
and a variety of interesting phenomena emerge, including for
example nonequilibrium effects [3], phase transitions [4,5],
and partially ionized matter. WDM is observed in various
astrophysical domains, such as exoplanets [6] and brown
and white dwarfs [7,8]; furthermore, during inertial confine-
ment fusion (ICF), materials are exposed to WDM conditions
[9,10].

The mean ionization state (MIS), or equivalently the free
electron density, is of particular importance in WDM. It
is directly related to physical properties such as electrical
conductivity, opacity, collision rates, and acoustic velocities
[11,12]. Furthermore, the MIS is an input parameter for var-
ious simulations including hydrodynamics [13] and Monte
Carlo simulations [14], finite-temperature pseudopotentials
for density-functional theory calculations [15,16], and in com-
puting adiabats used in ICF modeling [10]. Additionally,
accurate predictions of the MIS are crucial for validating and
fitting models to experimental data [17,18].
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In the WDM regime, it is often difficult to distinguish
between bound and free electrons, meaning the MIS is hard
to define. The ramifications of this ambiguity extend be-
yond direct computation of the MIS: they are relevant to
recent debates regarding the ionization potential depression
(IPD) effect [19–22], and further raise questions regarding
the application of the Chihara decomposition [23–25]. These
difficulties are further compounded by the variety of methods
used in the modeling of WDM, running all the way from
analytical models such as Stewart-Pyatt [26] and Ecker-Kroll
[27] to ab initio density-functional theory (DFT) [28–32] and
path-integral Monte Carlo [33,34] simulations. It is therefore
of great interest to develop an approach for calculating the
MIS that is consistent between different models and experi-
mental results.

Average-atom (AA) models are a popular and successful
tool in modeling the WDM regime, since they incorporate
in a natural way quantum effects (typically using DFT) at
a manageable computational cost [35–37]. There is a wide
range of AA models [38], but they share in common the
concept of an atom immersed in a plasma. Typically, the MIS
is defined as the number of electronic states with energy above
a certain threshold,

Z̄ =
∫ ∞

ε0

dεg(ε) fFD(ε), (1)

where g(ε) denotes the density of states, fFD(ε) the Fermi-
Dirac (FD) distribution, and ε0 the chosen energy threshold.
In AA models, the threshold energy is typically chosen to
be the value of the mean-field potential at the boundary of
the Voronoi cell RVS (the atomic radius), ε0 = vs(RVS). Other
choices for ε0, for example equating it to the chemical poten-
tial, could also be considered.
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As seen in a previous work [38], the definition (1) is
somewhat limited, showing large discrepancies for differ-
ent choices of boundary condition and sharp discontinuities
when Z̄ is plotted as a function of temperature or density.
Furthermore, bound and free states in AA models are typ-
ically treated differently (although not always, for example
Refs. [39,40]): the definition of Z̄ is thus both an output
of and input to the model, which means any errors may
self-multiply.

DFT-based molecular dynamics (DFT-MD) simulations
can also be used to compute the MIS using definition (1), with
the threshold energy typically assumed to start at the conduc-
tion band lower edge, ε0 = εc. In DFT-MD simulations, all
(noncore) orbitals are treated on the same footing, which is an
advantage (among others) relative to AA models. However,
there are still (at least) two limitations using this definition,
which are common to both DFT-MD and AA models. The
first is the ambiguity about how to define the threshold energy.
The second is the assumption that states can be categorized as
completely bound or completely free based on their energy
alone: DFT-MD results with this method have shown coun-
terintuitive behavior [41] and divergence from experimental
measurements [17].

Consequently, novel ways of computing the MIS have
recently gained traction. For example, Bethkenhagen et al.
proposed using the Kubo-Greenwood (KG) conductivity for-
mula to measure the MIS [11]. This approach was applied to
carbon under high temperatures and gigabar pressures (and
later to the metallization of helium [41]), and the resulting
MIS values showed disagreement with various other methods.
Interestingly, excellent agreement was seen between pressures
computed with an AA model and DFT-MD under these con-
ditions [42]. However, the MIS computed with the same AA
model, using yet another definition for Z̄ , had a systematic
error relative to the DFT-MD KG result, which suggests that a
more pertinent definition of the Z̄ in an AA model might give
better agreement.

In this paper, we explore three methods for computing the
MIS in an AA model, and compare results with DFT-MD
simulations [11] and experimental data [43–45]. First, we
apply the canonical definition (1), which (as expected) gives
inconsistent results, particularly for high densities. Second,
we modify the canonical approach such that the orbitals are
no longer categorized as bound or free based on their energy.
Instead, they are partitioned depending on their shell (1s, 2s,
etc.), an approach that was used for the (nonaverage-atom)
XCRYSTAL model in Ref. [46]. Third, we introduce a novel
approach, which uses the electron localization function (ELF)
to determine the MIS. The ELF is well known in quantum
chemistry and materials science [47,48], but has not until
now been applied to study ionization in WDM. We will see
that this method yields more consistent and accurate results
compared to the canonical approach. Finally, we adapt the
KG method of Ref. [11] to our AA model. This approach
shows excellent agreement both with DFT-MD simulations
and the experimental results, but is so far limited to only one
boundary condition in the AA model. Nevertheless, the ELF
and KG results demonstrate that computationally efficient AA
models can accurately and reliably predict the MIS across a
wide range of conditions.

II. THEORY

A. Average-atom model

The AA model we use is a generalization of the model
derived in Ref. [38]. We explain here the main features of
this model and the differences from the one presented in
Ref. [38]; however, we direct readers to that paper for a
detailed derivation and discussion of this AA model. In our
AA model, we solve the Kohn-Sham DFT (KS-DFT) equa-
tions for a single atom consisting of a nucleus with charge
Z and a fixed number of electrons Ne (with Ne = Z for all
the systems we consider). Explicit interactions between this
atom and its neighbors are ignored, and instead these interac-
tions are implicitly accounted for via the boundary conditions
imposed on the orbitals at the sphere’s edge (Voronoi sphere
radius, RVS).

The spherically symmetric KS equations to be solved
are given by1[

d2

dr
+ 2

r

d

dr
− l (l + 1)

r2

]
Xnl (r) + 2[εnl − vs[n](r)]Xnl (r)=0,

(2)

where vs[n](r) is the KS potential, given by

vs[n](r) = −Z

r
+ 4π

∫ RWS

0
dx

n(x)x2

r>(x)
+ δFxc[n]

δn(r)
, (3)

with r>(x) = max(r, x). The three terms in the potential
are, respectively, the electron-nuclear attraction, the classical
Hartree repulsion, and the exchange-correlation (xc) potential,
which is equal to the functional derivative of the xc free
energy. As ever, due to the dependence of the KS potential on
the density n(r), the KS equations must be solved iteratively
until self-consistency is reached.

The density n(r) is constructed from the orbitals as

n(r) = 2
∑

nl

(2l + 1) fnl (εnl , μ, T )|Xnl (r)|2. (4)

where fnl (εnl , μ, T ) is the Fermi-Dirac (FD) distribution,
given by

fnl (εnl , μ, T ) = 1

1 + e(εnl −μ)/T
. (5)

we have not made any changes to avoid too much speculation.
The chemical potential μ is determined by fixing the electron
number Ne = 4π

∫ RVS

0 drr2n(r) to be equal to a predetermined
value (in this paper, Ne = Z in all cases).

We impose boundary conditions on the KS orbitals Xnl (r),
which are intended to implicitly account for interatomic inter-
actions. In our earlier paper [38], we argued that a physically
intuitive condition was to impose smoothness of the density at
the edge of the Voronoi sphere (VS),

dn(r)

dr

∣∣∣∣∣
r=RVS

= 0. (6)

1We note here one difference from the AA model presented in
Ref. [38]: in this paper, we solve the spin-unpolarized KS equations,
i.e., the spatial spin-up and spin-down orbitals are assumed to be
identical, X ↑

nl (r) = X ↓
nl (r).
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Mathematically there is no unique way to enforce the above
condition, but two simple choices are

0 = Xnl (RVS), (7)

0 = dXnl (r)

dr

∣∣∣∣∣
r=RVS

, (8)

which we refer to, respectively, as “Dirichlet” and “Neu-
mann” conditions. From a theoretical standpoint within the
AA model, there is no way to unambiguously differentiate
between these boundary conditions.

We now note a key improvement we have made to our
AA model compared to Ref. [38]. In that paper, we only
solved the KS equations (2) for the bound electrons, defined as
those with energies below the threshold energy ε0. For the re-
maining unbound electrons, we used the ideal approximation,
which amounts to assuming a constant density for the bound
electrons, nub(r) = n̄. In this work, we make no distinction
between bound and unbound orbitals during the SCF proce-
dure: in other words, we solve the same equations (2) for all
orbitals, regardless of their energy. As already mentioned, this
removes the issue of the MIS being both an input to the model
(via the ionization threshold ε0) and an output of it. Moreover,
as we will soon see, the expressions for the KG conductivity
and the ELF are explicitly orbital dependent; it therefore does
not make sense to calculate these properties when part of the
density is constructed in an orbital-free manner as we had
done in the past.

Furthermore, to extend our comparisons beyond the model
described above, we have implemented the AA model pro-
posed by Massacrier et al. [40]. In this model, the KS
equations are solved for both the Dirichlet and Neumann
boundary conditions, yielding energies ε±

nl , which define the
upper (Dirichlet) and lower (Neumann) limits of a band struc-
ture. Within these limits, every energy value is permitted and
the wave function corresponding to that energy is determined.
The KS equations thus become[

d2

dr
+ 2

r

d

dr
− l (l + 1)

r2

]
Xεnl (r)

+2
[
ετ

nl − vs[n](r)
]
Xεnl (r) = 0. (9)

The Fermi-Dirac occupations are multiplied by the Hub-
bard density-of-states (DOS) function gnl (ε), defined as [49]

gnl (ε) = 8

π�2
nl

√(
ε+

nl − ε
)(

ε − ε−
nl

)
, (10)

�nl = ε+
nl − ε−

nl , (11)

which means the density in this band-structure model is given
by

n(r) = 2
∑

nl

(2l + 1)
∫ ε+

nl

ε−
nl

dεgnl (ε) fnl (ε, μ, τ )|Xεnl (r)|2.
(12)

In practice, the energy bands are discretized, and the above
integral becomes a summation over energies within each band,

which we now denote by index k. Following some algebraic
manipulation, the density can be written as

n(r) = 2
Nk∑
k

wk

∑
nl

(2l + 1) fknl (εknl , μ, τ )|Xknl (r)|2, (13)

wk = 8

π (Nk − 1)2

√
k(Nk − 1 − k), (14)

where Nk is the number of points used in the discretization of
each energy band. The above expression closely resembles the
expression for the density in plane-wave DFT codes, since it
has a summation over k points and some weighting wk (with∑

k wk = 1), very much like the k-point mesh for reciprocal
space. It is also clear to see that when the concept of bands in
the AA model is not employed (i.e., when we use either the
Dirichlet or Neumann conditions only), that Nk = 1,wk = 1
and the above expression reduces to the ordinary expression
for the density (4). The above simplification (13), (14) was
not shown in Ref. [40], and we therefore provide a derivation
in Appendix A.

B. Counting method

As discussed in Sec. I, and we will later see in the results,
the canonical definition of the MIS in AA models (1) is
often erroneous, which is why we will explore alternative ap-
proaches. In Secs. II C–II E, we discuss the application of new
methods: first, the counting method, which is a modification
to the threshold approach; second, the electron localization
function (ELF); and lastly, the Kubo-Greenwood conductivity,
to calculating the MIS.

As seen in Eq. (1), the canonical approach to computing the
MIS essentially defines electrons as bound or free depending
on whether their energy exceeds some threshold ε0, typically
defined as the value of the KS potential at the edge of the
atomic sphere. Intuitively, this does make sense, if one imag-
ines electrons being bound so long as their energies are below
the maximum value of the KS potential, and otherwise free.
However, as we will see in Sec. III, this leads to unphysi-
cal discontinuities in the MIS when the energy of an orbital
crosses the threshold value, and is very sensitive to the choice
of boundary conditions.

Rather than making the bound-free partition dependent on
some energy value, we instead propose to partition the elec-
trons based on their shells. This method was used to compute
the MIS in Ref. [46] for the XCRYSTAL model [specifically
Eq. (22) and the surrounding discussion], but has not been ap-
plied (as far as we know) to average-atom models. In fact, the
argument they use for this approach, “our flat potential V0 does
not share the same physical interpretation as the flat potential
used in Ref. [29], as delocalized states can be found below V0

in XCRYSTAL,” is applicable to average-atom models such
as ours, in which there are no constraints on the KS potential.

The method is perhaps best illustrated with an example.
Consider aluminium at its ambient density, ρm = 2.7 g cm−3.
It is well known that, at room temperature, the 1s, 2s and 2p
orbitals are core states, and the remaining orbitals represent
free electron density. This can also be seen by inspection of
the density of states, using, for example, the average-atom
band-structure model.
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FIG. 1. Radial KS orbitals (multiplied by r2) for aluminium at its ambient density (2.7 g cm−3), for different temperatures. We see that
the 1s state is unaffected by the temperature, and the 2s and 2p states are moderately affected, but not so much to change their bound-state
character. The calculation was done with the Dirichlet boundary condition, but due to the core nature of the orbitals, the boundary condition is
of minimal impact.

As the temperature is increased, the character of these core
states actually does not change much, as can be seen in Fig. 1.
Therefore we can essentially consider these states to repre-
sent bound electron density, regardless of the temperature. Of
course, as the temperature increases, the occupation of these
core states will decrease as higher-energy states are occupied,
causing the MIS to increase. We will henceforth refer to this
approach as the counting method, and it can, in theory, be
generalized to any material at a given density. The expression
for the MIS in this counting method is

Z̄ = Ne −
∑

k

wk

∑
n,l∈b

(2l + 1) fnlk, (15)

where b denotes that subset of orbitals considered to be bound.
Although we have included a k dependence in the above
sum, we have done so for generality; ideally, the bound states
should be clearly identifiable as core states, in other words,
their energies should not form a band and the k index should
be redundant.

Clearly, the approach described above works best if orbitals
can be clearly identified as being of bound or free character,
as is typical for metals at their ambient density (for example).
However, when this is not the case, in particular when a
range of densities is spanned for a given material, the above
method is likely to break down. As material density changes,
the orbital character also changes significantly, bands emerge
and disappear, and so on. In such scenarios, one would expect
this counting method to fail. In Sec. III, we will see that this
expectation is borne out.

C. Electron localization function

In this section, we describe the method we have developed
to compute the MIS with the electron localization function
(ELF). The ELF has a long history in quantum chemistry
[47,48,50] as a tool for understanding atomic structure and
chemical bonding. It was originally conceptualized by Becke
and Edgecombe [50], who supposed that the conditional prob-
ability density, i.e., the probability of finding an electron
at position r1 given another electron with the same spin at
position r2, could be used as a basis to measure electron

localization. It was later generalized by Savin [47] such that
any spin-independent electron density could be considered.

In KS-DFT, the expression for the (total density) electron
localization function (ELF) is given by

ELF(r) = 1

1 + [D(r)/D0(r)]2
, (16)

where D(r) and D0(r) are the electron pair density curvature
(EPDC) functions for the system and for the uniform electron
gas (UEG), respectively. These are given by

D(r) = τ (r) − 1

8

[∇n(r)]2

n(r)
, (17)

D0(r) = 3

10
(3π2)2/3n5/3(r), (18)

where τ (r) is the kinetic energy density. There are in fact
multiple ways to define τ (r) [51–53], which of course all yield
the total kinetic energy when integrated over all space. The
definition most commonly adopted in the ELF is [48]

τ (r) = 1

2

Ne∑
i=1

[∇φi(r)]2. (19)

The motivation for the definition of the ELF (16) is to de-
fine electron localization in a quantitative manner, by using the
EPDC of the UEG, a perfectly delocalized electron density, as
a reference. The ELF is bounded in the range 0 � ELF � 1: a
value of 1 indicates strongly localized electron density and
a value of 1/2 indicates equivalence with the (delocalized)
UEG.

One of the principal uses of the ELF is to calculate the
number of electrons in particular shells. In the atomic picture,
the spatial boundary of the shells is equated to minima in the
ELF. Then, the density is integrated between minima to give
the number of electrons in that shell. A visual example of this
procedure is shown in Fig. 2.

We propose to use the ELF as a measure of the MIS by
computing the number of electrons per shell, and assuming
that any electron density beyond a particular shell is free. This
presents a similar issue to the counting method described in
the prior section; however, as we will see, the ELF method
is advantageous when a scan over densities is performed.
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FIG. 2. The ELF (dashed) and radial density distribution
(shaded) for aluminium at its ambient density ρm = 2.7 g cm−3

and low temperature (τ = 0.01 eV). The figure shows how shells
are defined via the minima of the ELF (positions emphasized with
vertical dotted lines), with the electron number for that shell found
by integrating the density in that region. This figure corresponds to
the orange line in Fig. 3(d), i.e., the Neumann boundary condition
and definition (19) for the kinetic energy density.

Nevertheless, this does introduce some ambiguity and means
this approach cannot be considered a black-box method.

In the application of the ELF to our AA model at moderate-
to-high temperatures, we have observed that, using the normal
definition of the kinetic energy density (19), the ELF’s minima
are often not identifiable. However, we have found that an
approximate expression for the kinetic energy density τ (r),
based on a second-order gradient expansion [54], yields more
clearly identifiable minima in the ELF than the normal orbital-
dependent expression. This approximation for τ (r) is given by

τ (r) = 3

10
(3π2)2/3n5/3(r) + 1

72

|∇n(r)|2
n(r)

+ 1

6
∇2n(r), (20)

which leads to the following expression for D(r):

D(r) = D0(r) − 1

9

|∇n(r)|2
n(r)

+ 1

6
∇2n(r). (21)

In spherical coordinates, this becomes

D(r) = D0(r) − 1

9

1

n(r)

∣∣∣∣dn(r)

dr

∣∣∣∣
2

+ 1

6

(
2

r

dn(r)

dr
+ d2n(r)

dr2

)
.

(22)

In Fig. 3, we compare the ELF computed using the usual
definition of the kinetic energy density (19) with the approx-
imate form (20). We compare three temperatures: 0.01 eV,
10 eV, and 100 eV, and consider both Dirichlet and Neumann
boundary conditions. For 0.01 and 10 eV, we see that the shape
of the ELF is in general different for the different forms of
the kinetic energy density; however, the positions of the first
two minima, which correspond to the boundaries of the n = 1
and n = 2 electron shells, are almost identical. On the other
hand, at 100 eV, the n = 2 minimum is no longer identifiable
when the orbital-based definition (19) for the kinetic energy
density is used; this is in contrast to when the approximate
density-based definition (20) is used, in which case the n = 2
minimum is clearly visible.

In general, we have observed the tendency for the orbital-
based expression (19) to break down as temperature increases
for a range of materials and densities. Consequently, we prefer
to use the approximate definition (20), which does not display
the same tendency, for all calculations of the MIS. As is
observed in Fig. 3, particularly in the right-hand panel of
this figure, this can also produce additional and unexpected
minima in the ELF. It is unclear whether these minima are
really physically connected to electron shells, or are simply
artifacts from the average-atom model and boundary condi-
tions. Regardless, since we assume all electron density beyond

0.0

0.5

1.0

D
ir
ic
h
le
t

(a)
τ(r) τ̃(r)

(b) (c)

0 1 2 3

T = 0.01 eV

0.0

0.5

1.0

N
eu
m
an
n

(d)

0 1 2 3

T = 10 eV

(e)

0 1 2 3

T = 100 eV

(f)

r (a0)

E
L
F
(r
)
/
r2
n
(r
)
(a
−1 0
)

FIG. 3. The ELF (in orange and dotted blue lines) and radial density distribution r2n(r) (in shaded pink) for aluminium at its ambient
density (ρm = 2.7 g cm−3), with different temperatures and boundary conditions. The ELF is computed in two ways, (i) using the definition
(19) for the kinetic energy density τ (r) (solid orange line), and (ii) using the approximation (20) τ̃ (r) (dashed blue line). Although the minima
for the n = 1 and n = 2 shells are both clearly visible at T = 0.01 and T = 10 eV using either method, at T = 100 eV, the n = 2 minimum
can only be identified with the approximate definition (20) of the kinetic energy density. (a)–(c) are calculated with the Dirichlet boundary
condition and (d)–(f) with Neumann.
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a certain shell (n � 3 in this example) is free, a correct
physical interpretation of these additional minima is not
strictly required in this approach.

D. Kubo-Greenwood conductivity

In this section, we describe the application of the Kubo-
Greenwood conductivity to compute the MIS within our AA
model. The Kubo-Greenwood (KG) conductivity formula for
a finite system is given by [55,56]

σS1,S2 (ω) = 2π

3V ω

∑
i∈S1

∑
j∈S2

( fi − f j )|〈φi|∇|φ j〉|2

× δ(ε j − εi − ω), (23)

where σ (ω) is the dynamical conductivity for two subsets S1

and S2 of the orbitals, V is the volume of the system under
consideration, φi are the KS orbitals and εi and fi are their
energies and FD occupations. For the total conductivity, S1

and S2 represent the complete set of orbitals.
As described in Ref. [11], Eq. (23) can be used as a proxy

for the mean ionization state in combination with the Thomas-
Reiche-Kuhn (TRK) sum rule [57–59]. This rule establishes
a relationship between the KG conductivity and a certain
number of electrons. For example, if we take S1 and S2 to
both be the complete set of orbitals, then we should recover
the total electron number,

Ne = 2V

π

∫ ∞

0
dωσt,t (ω), (24)

where σt,t denotes the conductivity from the total, or com-
plete, set of orbitals. We note here that the complete set of
orbitals means, in theory, an infinite set of KS orbitals (i.e.,
not just those with nonzero occupation numbers). In practice,
a sufficient number of orbitals is chosen such that the resulting
electron number is equal (within reasonable tolerance) to the
expected electron number. This provides a useful check of the
implementation and convergence of the KG method.

To calculate the MIS, we use

Z̄ = 2V

π

∫ ∞

0
dωσc,c(ω), (25)

where σc,c means both orbital subsets are given by the con-
ducting orbitals.

In the spherically symmetric AA model, the KG conduc-
tivity is given by

σS1,S2 (ω) = 2π

V ω

∑
nl∈S1

∑
n′l ′∈S2

∑
m∈{S1,S2}

( fnl − fn′l ′ )

× ∣∣∇z
nn′ll ′m

∣∣2
δ(εn′l ′ − εnl − ω)δ(l ± 1 − l ′), (26)

which leads to the following expression for ZS1,S2 ,

ZS1,S2 = 4
∑
nl∈S1

∑
n′l ′∈S2

∑
m∈{S1,S2}

fnl − fn′l ′

εn′l ′ − εnl

× ∣∣∇z
nn′ll ′m

∣∣2
δ(l ± 1 − l ′)�(εn′l ′ − εnl ). (27)

In the above equations, ∇z
nn′ll ′m is the z-component of the

momentum integral matrix product,

∇z
nn′ll ′m = 〈φn′l ′m|∇z|φnlm〉, (28)
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FIG. 4. Density-of-states (DOS) with the band-structure AA
model for carbon at 100 eV and a range of densities. Orbitals with
energies below the band-gap are assigned to the valence band, and
orbitals with energies above the gap are assigned to the conduction
band. Note that we deliberately mimic the style of Fig. 2 in Ref. [11],
so that readers can compare the DOS of the AA band-structure model
to the DFT-MD results.

and �(εn′l ′ − εnl ) is the Heaviside step function. The deriva-
tion of the above expressions, and the expression for ∇z

nn′ll ′m
in terms of the radial KS orbitals and spherical harmonic
functions, can be found in Appendix B.

In a conventional AA model, unlike in plane-wave DFT
calculations, there is no concept of a band structure, which
is problematic for determining which subset of orbitals be-
longs to the conducting and valence bands. We could, for
example, use a threshold energy as the dividing line between
conduction and valence electrons. However, since we have the
band-structure AA model at our disposal, we can use that to
guide which orbitals belong in the conduction and valence
bands. This is just done manually (e.g., by inspecting the
DOS, see Fig. 4). Even when the conductivity is evaluated
with the Dirichlet or Neumann boundary conditions, we use
the band-structure model to determine the valence and con-
duction bands.

In Fig. 4, we plot the DOS given by the AA band-structure
model for carbon at 100 eV and various densities. In this
case, there is a clear valence band (to the left of the dotted
lines) and conduction band (to the right). Through inspection
of the energies, the valence band can be associated with the
orbitals in the 1s band. Therefore, when evaluating the KG
conductivity with the Dirichlet or Neumann condition, the 1s
orbital is assigned to the valence band and all others to the
conduction band. The same strategy is used in applications of
the KG method in this paper.

III. RESULTS

All calculations have been performed using the open-
source average atom code atoMEC [60,61]. In Ref. [60], we
describe the structure of the code, together with general al-
gorithmic and numerical details. Numerical details specific
to this paper are given in the Supplemental Material [62].
We note that the following libraries are used extensively by
atoMEC: NumPy [63], SciPy [64], LIBXC [65], mendeleev
[66], and joblib [67].

In the following, we will compare the four methods de-
scribed for computing the MIS: the canonical or threshold
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FIG. 5. Comparison of different models for the mean ionization state (MIS) of carbon with temperature 100 eV as a function of density.
DFT-MD data is taken from Ref. [11] and uses the Kubo-Greenwood method. (a) Comparison of boundary conditions (b.c.s) with the MIS
computed with the energy threshold method. (b) Comparison of boundary conditions with the MIS computed via the counting approach.
(c) Comparison of boundary conditions with the MIS computed via the ELF. (d) Comparison of different methods for computing the MIS with
the Dirichlet boundary condition.

approach (1), the counting method (15), the ELF method,
and the KG approach (25), against a higher-fidelity DFT-MD
benchmark and experimental data. For the threshold, count-
ing, and ELF results, we compare the Dirichlet and Neumann
boundary conditions and the band-structure model [40]. For
the KG results, we use the Dirichlet boundary condition only.
This is because the sum rule check for the total conductivity is
observed very accurately (within 1%) across all conditions for
the Dirichlet boundary condition, but not for the others. We
use throughout the (spin-unpolarized) local density approxi-
mation (LDA) for the xc functional [68].

First, in Fig. 5, we compare our results with the DFT-MD
simulations for carbon from Ref. [11]. In Fig. 5(a), we plot
the MIS Z̄ using the canonical threshold method for each
of the boundary conditions. We see that this method has se-
vere limitations, especially at the highest densities, when the
three boundary conditions yield completely different results.
Furthermore, in the density range in which the DFT-MD sim-
ulations were performed, none of the AA results are remotely
close to the reference result.

In Fig. 5(b), we plot the MIS using the counting method.
In order to obtain these results, we took the electron density in
the 1s orbital to be bound, and everything outside it to be free.
In this case, we observe that the results are quite consistent
between the different boundary conditions. However, they all
tend to the wrong limit as the density increases. This is a
consequence of the assumption that some orbitals, in this
case, the 1s orbital, are bound states for the whole range of
densities. Clearly, from both an intuitive and results-based
perspective, this is not the case. Consider, for example, Fig. 4:
as the material density increases, the part of the DOS that

comes from the 1s orbital (to the left of the left dotted line)
transforms in nature from a δ-like function (signifying bound
electron density) to a wide energy band (signifying free elec-
tron density).

In Fig. 5(c), we plot the MIS obtained via the ELF method
against the DFT-MD benchmark. In order to obtain these
results, we took the electron density in the n = 1 subshell to
be bound, and everything outside it to be free. We see that
this approach yields a more realistic picture for the MIS, as
the results from the three boundary conditions are at least
consistent and capture the correct qualitative behavior; how-
ever, they all systematically underestimate the MIS relative
to the DFT-MD result. Nevertheless, it is interesting that the
ELF method, unlike the counting method, does go towards the
correct limit as density increases. This suggests the ELF has
some ability to inherently distinguish between components of
electron density with different character.

Finally, in Fig. 5(d), we compare results from the four
methods (including KG) using the Dirichlet boundary con-
dition with the DFT-MD simulation. Here we observe very
strong agreement between our AA model and the DFT-MD
benchmark for the KG result, until the highest densities at
which point the KG result seems to have the wrong asymptotic
behavior. In this region, the ELF method actually appears to
show better agreement with the reference result. Of course,
the other limitation of the KG method is that it currently only
works for the Dirichlet boundary condition, and it is possi-
ble that we would see inconsistencies between the boundary
conditions, were a comparison possible.

In Ref. [11], it was postulated that the AA result deviates
from the DFT-MD result because the AA model does not
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FIG. 6. Comparison of different models and experimental data [43] for the free electron density as a function of temperature for solid-
density beryllium (ρ = 1.85 g cm−3). (a) Comparison of boundary conditions with the MIS computed with the energy threshold method.
(b) Comparison of boundary conditions with the MIS computed via the counting approach. (c) Comparison of boundary conditions with the
MIS computed via the ELF. (d) Comparison of different methods for computing the MIS with the Dirichlet boundary condition.

account for the many-body interactions. Based on Fig. 5,
there is encouraging evidence that if the same theory is used
to calculate the MIS for the AA and DFT-MD simulations,
then the agreement is much better. Physically speaking, it is
perhaps not unexpected that the KG result differs from the
ELF and threshold approaches. After all, the KG conductivity
is a frequency or time-dependent property, derived by consid-
ering the linear response of a system to a perturbation; on the
other hand, the ELF and energy threshold are static properties.
On that basis, we should not necessarily presume consistency
between the different methods.

Next, we perform a similar set of comparisons for beryl-
lium in Fig. 6, this time with fixed density equal to its
ambient density (ρm = 1.85 g cm−3) from temperatures be-
tween 1–80 eV. This time, the benchmark results (shown as
the three scattered points with error bars) are taken from an
experiment, in which the free electron density nf was deter-
mined using x-ray scattering [43]. The free electron density is
directly related to the MIS,

nf = Z̄

V
, (29)

where V = (4/3)πR3
VS is the volume of the atom. Like in the

prior carbon example, we have assumed under these condi-
tions that the electron density in the n = 1 (i.e., the 1s orbital)
shell is bound, and everything outside it is free.

Again, the threshold results are shown in the top-left panel
[Fig. 6(a)], the counting results in the top-right [Fig. 6(b)],
and the ELF results in the bottom-left [Fig. 6(c)]. This time,
we see better agreement between the threshold results for the
different boundary conditions, although the Neumann result
is significantly different from the others at low temperatures.
The counting and ELF results are somewhat similar, but re-

solve this inconsistency at low temperatures. Whilst all three
techniques seem to capture roughly the right shape of the
curve and agree quite well with the highest-temperature ex-
perimental measurement, they underestimate the MIS for the
lower-temperature results.

In Fig. 6(d), we compare all three approaches for com-
puting the MIS (threshold, ELF, and KG) with just the
Dirichlet boundary condition against the experimental data.
Intriguingly, the KG results are in very close agreement with
the lower-temperature experimental results, although slightly
overpredict the free electron density at the highest tempera-
ture. The KG result for the lowest temperature (τ ≈ 2 eV)
is particularly interesting, because it is the only method
that correctly predicts the experimentally measured value of
≈2.8×1023 cm−3: this is higher than the value, which we
might naively expect if we take ambient density beryllium
to have two free electrons per atom, which corresponds to
nf = 2.45×1023 cm−3.

The final comparisons we make are with a pair of ex-
periments, both involving aluminium at its ambient density
(2.7 g cm−3). In the first experiment [44], the free electron
density nf and electron temperature were measured. We com-
pare our AA results using the different methods and boundary
conditions with the experimental data in Fig. 7. In fact, under
these conditions, the majority of the AA results actually lie
within the experimental error bars, regardless of the method or
boundary condition used. However, a notable exception is the
prediction for nf given by the Neumann boundary condition
with the threshold method (which has a sharp discontinuity
at around 30 eV), further demonstrating the limitations of
the threshold approach. Nevertheless, Fig. 7 indicates the
AA model seems to be generally accurate under these condi-
tions, independent of the method used to compute the MIS. It
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FIG. 7. Comparison of different models and experimental data [44] for the free electron density as a function of temperature for ambient-
density aluminium (ρ = 2.7 g cm−3). (a) Comparison of boundary conditions with the MIS computed with the energy threshold method.
(b) Comparison of boundary conditions with the MIS computed via the counting approach. (c) Comparison of boundary conditions with the
MIS computed via the ELF. (d) Comparison of different methods for computing the MIS with the Dirichlet boundary condition. The shaded
region represents the experimental error bars.

appears that the ELF method with Neumann boundary condi-
tion is in particularly good agreement with the experimental
benchmark in Fig. 7(c). Since this is the only example to
show such strong agreement, we prefer not to interpret this
observation, but rather attribute it to chance.

In the second experiment [45], the free electron density was
not itself measured, but rather the K-shell ionization energy
for different charge states. We use this data indirectly in the
following way to compare our methods for calculating the
MIS. For a range of temperatures between 1–100 eV, we
compute the MIS and equate it to the charge state. We then
take the K-edge ionization energy as the energy required to
excite the 1s orbital to the continuum [with the continuum
assumed to start at εc = vs(RVS) in our model]. We also follow
Ref. [39] and shift the orbital energy by a constant equal to the
difference between ε1s − εc and the experimentally measured
K-shell ionization energy E0

K at zero temperature (1559.6 eV,
[69]). Therefore the ionization energy is given by

EK = εc − ε1s + �E0
K , with (30)

�E0
K = (

ε0
c − ε0

1s

) − E0
K , (31)

where ε0
c and ε0

1s are the threshold energy and 1s orbital
energy computed with the AA model at zero temperature.
This shifting is necessary because it is well known that KS-
DFT systematically underpredicts ionization potentials using
standard xc functionals [70,71].

This comparison is shown in Fig. 8. In Fig. 8(a), we again
see several discontinuities in the threshold results (for the
Neumann and Dirichlet conditions), and a systematic devi-
ation from the experimental results for higher-charge states.

The reason for these discontinuities, as discussed in detail in
Ref. [38], is because the KS orbital energies are temperature-
dependent; if an orbital crosses the energy threshold at a
certain temperature then it will change its classification from
bound to free (or vice versa) and the MIS will change instan-
taneously. An advantage of the band-structure model is that
it is not prone to discontinuities in the MIS as a function of
temperature, as can be seen in Fig. 8. This is because occu-
pations of the noncore states in the band-structure model are
spread across a band: as the limits of the energy band change,
the MIS smoothly changes. This demonstrates a significant
advantage of the band-structure model when the threshold
method is used.

In Fig. 8(b), the counting approach is seen to yield
consistent agreement, both internally between the different
boundary conditions, and with the experimental benchmarks.
For most charge states, the results lie just inside the experi-
mental error, with some deviation seen as the charge state goes
above 6 (corresponding to temperatures �60 eV). In Fig. 8(c),
the ELF results are self-consistent between the boundary con-
ditions but also display the same systematic deviation from
the experimental data. This is likely a result of the MIS being
underestimated by these methods, as we have seen for the
previous examples. However, in Fig. 8(d), we observe that the
KG results lie consistently within the experimental range. This
shows further promise that the KG approach for calculating
the MIS agrees very well with experimental measurements.

IV. SUMMARY AND DISCUSSIONS

In this paper, we have explored different ways of com-
puting the mean ionization state (MIS), an essential property

013049-9



CALLOW, KRAISLER, AND CANGI PHYSICAL REVIEW RESEARCH 5, 013049 (2023)

FIG. 8. Comparison of different models and experimental data [45] for the K-shell excitation energy as a function of the charge state (given
by the MIS we compute) for ambient-density aluminium (ρ = 2.7 g cm−3). (a) Comparison of boundary conditions with the MIS computed
with the energy threshold method. (b) Comparison of boundary conditions with the MIS computed via the counting approach. (c) Comparison
of boundary conditions with the MIS computed via the ELF. (d) Comparison of different methods for computing the MIS with the Dirichlet
boundary condition.

in warm dense matter and dense plasmas, using a KS-DFT
average-atom model. Following comparisons of the different
methods with DFT-MD results and experimental data, we
summarize the main findings of our paper below.

The canonical method for computing the MIS, which par-
titions the orbitals into bound and free states based on their
energies, is generally insufficient. It often causes unphysical
discontinuities, and inconsistencies between different bound-
ary conditions. If it is to be used, it is much safer to do so with
the band-structure model [40], since this avoids (at least as a
function of temperature) the discontinuities.

We have explored an approach, which we call the count-
ing method (which was also used for the non-average-atom
XCRYSTAL model in Ref. [46]), where the orbitals are par-
titioned into bound and free states based on some predefined
intuition. This does not suffer from the discontinuities present
in the threshold method, and also yields consistent results
between the boundary conditions. However, it breaks down
when orbitals cannot be a priori identified as being strictly
bound or free in character.

We have developed an approach, which uses the electron
localization function (ELF) to partition the orbitals. Like the
counting method, this requires a choice by the user as to
which shells should be considered bound or free; however,
the shells in this case do not necessarily correspond directly
to particular orbitals, and so it yields better results than the
counting method when the material density is varied.

We have applied a method, which uses the Kubo-
Greenwood conductivity [11] to our average-atom model.
This also requires a choice by the user regarding a separation
of orbitals into valence and conducting bands, but the result-
ing MIS has a sophisticated nonlinear dependence on this

separation. This seems to yield the strongest agreement with
DFT-MD and experimental benchmarks. However, so far we
have applied it only to the Dirichlet boundary condition, since
sum rules are not satisfied for the other boundary conditions.

Roughly speaking, we observe two different physical situa-
tions in this paper. In one instance, Figs. 6–8, the temperature
is varied for a metallic material whose mass density is fixed
to its ambient value. This case is relatively straightforward:
with the exception of the canonical approach with the Dirich-
let and Neumann boundary conditions, all the methods yield
good agreement with the benchmark data. This is because, for
metals under a wide range of temperatures, the core orbitals
do not undergo much change in character so can always be
treated as bound states.

The other instance, Fig. 5, in which the material density
(in this paper, carbon) is varied at fixed temperature, is far
more challenging. Neither the threshold or counting method is
sufficient in this case; however, both the ELF and KG methods
yield promising results.

It is worth noting that the KG approach has a fundamental
difference compared to the other methods, since it is based
on a dynamic rather than static theory. Empirically, it seems
to yield systematically higher predictions for the MIS than
the other methods, and also seems closer to the experimental
benchmarks. This perhaps follows from the technique used to
determine the free electron density in such experiments.

Based on the previous point, it may be that the best method
to compute the MIS depends on what is desired. If the aim is
to compare or provide data for an experimental fitting, the KG
approach would appear to be the best approach. However, it
may be that for other purposes, such as when the MIS is used
as input for hydrodynamics codes, alternative methods could
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be favorable. This point will benefit from further investigation
in future.

As a final comment, we note that more experimental data
would help identify which method is most accurate across
the widest range of conditions. However, high-quality exper-
imental measurements of the free electron density (or MIS)
are not trivial to come by. The assumptions used to calculate
the MIS, for example, from the ratio of the inelastic to elastic
scattering in x-ray scattering experiments [43], may be more
likely to break down under the harder case of a material
whose density is varied, as described earlier. This presents
a major challenge for benchmarking different approaches for
calculating the MIS.

In summary, the methods and data we have presented in
this paper should indicate when certain methods for comput-
ing the MIS in average-atom models work, and when they
might be expected to break down. With two of the methods,
the ELF and KG approaches, the results are promising for
all the examples we have tested. This is of particular inter-
est because our AA code can typically run on a laptop in
the timescale of minutes, far less computationally demanding
than DFT-MD simulations.

The data supporting the findings of this paper can be down-
loaded from Ref. [72].
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APPENDIX A: DERIVATION OF wk TERMS
IN BAND-STRUCTURE MODEL

The energy integral to compute the density in the band-
structure model, Eq. (13), must be discretized in practice. It
therefore becomes a summation over energies within each
band, which we now denote by index k,

n(r) = 2
∑
knl

(2l + 1)δεknl gknl
(
εknl , ε

±
nl

)
× fknl (εknl , μ, T )|Xknl (r)|2, (A1)

gknl
(
εknl , ε

±
nl

) = 8

π�2
nl

√(
ε+

nl − εknl
)(

εknl − ε−
nl

)
. (A2)

We now simplify the above expressions, because this sim-
plification was not discussed in the original paper. First, we

note that the energy spacing in the discretization of the energy
band δεknl is therefore given by

δεknl = ε+
nl − ε−

nl

Nk − 1
= �nl

Nk − 1
, (A3)

where Nk is the number of k points (the denominator is equal
to Nk − 1 because there are Nk − 1 spacings for Nk total
points). The product δεknl × gknl (εknl , ε

±
nl ) therefore can be

written as

δεknl × gknl (εknl , ε
±
nl )

= 8

π�nl (Nk − 1)

√
(ε+

nl − εknl )(εknl − ε−
nl ). (A4)

Next, we note that the energies in a band εknl can be
rewritten as

εknl = ε−
nl + k

Nk − 1
�nl (A5)

= ε+
nl + k − (Nk − 1)

Nk − 1
�nl (A6)

Substituting the above expressions into the product δεknl ×
gknl (εknl , ε

±
nl ) leads to the following expression:

δεknl × gknl (εknl , ε
±
nl ) = 8

π (Nk − 1)2

√
k(Nk − 1 − k). (A7)

It is clear the above equation is in fact independent of the
quantum numbers n and l . The density n(r) thus becomes

n(r) = 2
∑

k

wk

∑
nl

(2l + 1) fknl (εknl , μ, T )|Xknl (r)|2, (A8)

wk = 8

π (Nk − 1)2

√
k(Nk − 1 − k). (A9)

APPENDIX B: KUBO-GREENWOOD CONDUCTIVITY
IN THE AVERAGE-ATOM MODEL

In the spherically symmetric case, the KS orbitals are ex-
panded in the form φi(r) = φnlm(r, θ, φ) = Xnl (r)Y m

l (θ, φ),
and the KG conductivity (23) becomes

σS1,S2 (ω) = 2π

3V ω

∑
nlm∈S1

∑
n′l ′m′∈S2

( fnlm − fn′l ′m′ )

× |〈φnlm|∇|φn′l ′m′ 〉|2δ(εn′l ′m′ − εnlm − ω). (B1)

Note that, in the band-structure model, this becomes

σS1,S2 (ω) = 2π

3V ω

∑
k

wk

∑
nlm∈S1

∑
n′l ′m′∈S2

( fknlm − fkn′l ′m′ )

× |〈φknlm|∇|φkn′l ′m′ 〉|2δ(εkn′l ′m′ − εknlm − ω),

(B2)

similar to the KG conductivity in plane-wave DFT codes. For
simplicity, and because we only use the KG conductivity with
Dirichlet boundary condition in this paper, we will present
the equations without the k index. Since the summation only
involves orbitals with the same k value, it is straightforward to
reintroduce this at the end of the derivation.
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We focus first on the integral component of the equation for
σ (ω), which is given by

|〈φnlm|∇|φn′l ′m′ 〉|2 =
3∑

i=1

〈φnlm|∇i|φn′l ′m′ 〉〈φn′l ′m′ |∇i|φnlm〉

(B3)

= 3〈φnlm|∇z|φn′l ′m′ 〉〈φn′l ′m′ |∇z|φnlm〉,
(B4)

where the second equation (44) follows from (43) because the
contribution from each cartesian component of the gradient is
identical in spherically symmetric systems. We choose the z
component because, in the traditional transformation between
Cartesian and spherical coordinates, this leads to a simpler set
of equations. Let us now focus on the following term:

〈φn′l ′m′ |∇z|φnlm〉 = ∇z
nn′ll ′mm′ (B5)

= R(d )
nn′ll ′P

(2)
lml ′m′δmm′ + Rnn′ll ′P

(4)
lml ′m′δmm′ ,

(B6)

which has been taken from Ref. [56]. We do not derive the
above expression, but instead direct readers to the aforemen-
tioned paper where it is derived in full.

The components of the matrix element (45) are given by

R(d )
nn′ll ′ = 4π

∫ RVS

0
drr2Xn′l ′ (r)

dXnl (r)

dr
(B7)

Rnn′ll ′ = 4π

∫ RVS

0
drrXn′l ′ (r)Xnl (r) (B8)

P(2)
lml ′m′ = 2πClmCl ′m′

∫ 1

−1
dxxPm′

l ′ (x)Pm
l (x) (B9)

P(4)
lml ′m′ = −2πClmCl ′m′

∫ 1

−1
dx(1 − x2)Pm′

l ′ (x)
dPm

l (x)

dx
(B10)

Clm =
√

2l + 1

4π

√
(l − |m|)!
(l + |m|)! , (B11)

where Pm
l (x) are the Legendre polynomials. Note there are

some additional factors of 4π in the above expressions
compared to Ref. [56], due to different conventions in nor-
malization of the orbitals.

Returning to the expression for σ (ω), we now have

σS1,S2 (ω) = 2π

V ω

∑
nl∈S1

∑
n′l ′∈S2

∑
m∈{S1,S2}

( fnl − fn′l ′ )

∣∣∇z
nn′ll ′m

∣∣2
δ(εn′l ′ − εnl − ω)δ(l ± 1 − l ′).(B12)

In the above, the double summation over m has been reduced
to a single summation because of the presence of the δmm′

in ∇z
nn′ll ′mm′ . Additionally, the δ(l ± 1 − l ′) comes from sum

rules in the evaluation of the P(2,4) integrals.
Given the relationship between the conductivity and the

number of electrons ZS1,S2 [Eqs. (24) and (25)], we recover
the following expression for ZS1,S2 ,

ZS1,S2 = 4
∑
nl∈S1

∑
n′l ′∈S2

∑
m∈{S1,S2}

fnl − fn′l ′

εn′l ′ − εnl

× ∣∣∇z
nn′ll ′m

∣∣2
δ(l ± 1 − l ′)�(εn′l ′ − εnl ). (B13)
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